Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-539
https://doi.org/10.5194/egusphere-2022-539
29 Jun 2022
 | 29 Jun 2022

Detecting anomalous sea-level states in North Sea tide gauge data using of autoassociative Neural Network

Kathrin Wahle, B. Emil Vassilev Stanev, and Joanna Staneva

Abstract. Sea level in the North Sea is densely monitored by tide gauges. These measurements are used for validation as well as for the detection of extreme events. Here, we focus on the detection of sea level states with anomalous spatial correlations.

An autoassociative neural network emulates the spatial correlations of gauges in a lower dimensional subspace. Anomalous sea-level states are defined by means of failure of the reconstruction model. Using spatially distributed data as input to the network thus reveals sea-level conditions with unusual spatial correlations. The corresponding atmospheric conditions indicate high wind tendencies and pressure anomalies. Quantitative analysis of such states might help assess and improve numerical model quality in the future as well as provide new insights into the nonlinear processes involved. The method has the advantage of being easily applicable to any tide gauge array without preprocessing the data or acquiring any additional information.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

02 Feb 2023
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023,https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes,...
Share