Preprints
https://doi.org/10.5194/egusphere-2022-413
https://doi.org/10.5194/egusphere-2022-413
10 Jun 2022
 | 10 Jun 2022

NH3 spatio-temporal variability over Paris, Mexico and Toronto and its link to PM2.5 during pollution events

Camille Viatte, Rimal Abeed, Shoma Yamanouchi, William Porter, Sarah Safieddine, Martin Van Damme, Lieven Clarisse, Beatriz Herrera, Michel Grutter, Pierre-Francois Coheur, Kimberly Strong, and Cathy Clerbaux

Abstract. Megacities can experience high levels of fine particulate matter (PM2.5) pollution linked to ammonia (NH3) mainly emitted from agricultural activities. Here, we investigate such pollution in the cities of Paris, Mexico and Toronto, each of which have distinct emission sources, agricultural regulations, and topography. Ten years of measurements from the Infrared Atmospheric Sounding Interferometer (IASI) are used to assess the spatio-temporal NH3 variability over and around the three cities.

In Europe and North America, we determine that temperature is associated with the increase in NH3 atmospheric concentrations with coefficient of determination (r2) of 0.8 over agricultural areas. The variety of the NH3 sources (industry and agricultural) and the weaker temperature seasonal cycle in southern North America induce a lower correlation factor (r2 = 0.5). The three regions are subject to long range transport of NH3, as shown using HYSPLIT cluster back-trajectories. The highest NH3 concentrations measured at the city scales are associated with air masses coming from the surrounding and north-northeast regions of Paris, the south-southwest areas of Toronto, and the southeast/southwest zones of Mexico City.

Using NH3 and PM2.5 measurements derived from IASI and surface observations from 2008 to 2017, annually frequent pollution events are identified in the 3 cities. Wind roses reveal statistical patterns during these pollution events with dominant northeast-southwest directions in Paris and Mexico cities, and the transboundary transport of pollutants from the United-States in Toronto. To check how well chemistry transport models perform during pollution events, we evaluate simulations made using the GEOS-Chem model for March 2011. In these simulations we find that NH3 concentrations are overall underestimated, though day-to-day variability is well represented. PM2.5 is generally underestimated over Paris and Mexico, but overestimated over Toronto.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

07 Oct 2022
NH3 spatiotemporal variability over Paris, Mexico City, and Toronto, and its link to PM2.5 during pollution events
Camille Viatte, Rimal Abeed, Shoma Yamanouchi, William C. Porter, Sarah Safieddine, Martin Van Damme, Lieven Clarisse, Beatriz Herrera, Michel Grutter, Pierre-Francois Coheur, Kimberly Strong, and Cathy Clerbaux
Atmos. Chem. Phys., 22, 12907–12922, https://doi.org/10.5194/acp-22-12907-2022,https://doi.org/10.5194/acp-22-12907-2022, 2022
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Large cities can experience high levels of fine particulate matter (PM2.5) pollution linked to...
Share