Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Preprints
https://doi.org/10.5194/egusphere-2022-282
https://doi.org/10.5194/egusphere-2022-282
06 May 2022
 | 06 May 2022
Status: this preprint has been withdrawn by the authors.

CCdownscaling: an open-source Python package for multivariable statistical climate model downscaling V1.0 

Andrew D. Polasky, Jenni L. Evans, and Jose D. Fuentes

Abstract. Statistical downscaling methods provide an essential bridge between low resolution global climate models and localized information needed by decision makers. As the demand for localized climate information continues to grow to make projections for a wide variety of applications, the need for software that can provide this sort of downscaled data grows with it. The CCdownscaling package described in the article provides a number of downscaling methods, including Self Organizing Maps, as well as a number of evaluation metrics for assessing downscale model skill. In this article, we describe the features of the CCdownscaling package, and show an example use case for downscaling temperature and precipitation. It is open-source and freely available for use in generating downscaled projections.

This preprint has been withdrawn.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share
Download

This preprint has been withdrawn.

Short summary
Statistical downscaling provides methods to bridge the gap between the global climate models and...
Share