Preprints
https://doi.org/10.5194/egusphere-2022-232
https://doi.org/10.5194/egusphere-2022-232
26 Apr 2022
 | 26 Apr 2022

Impulse-driven oscillations of the near-Earth’s magnetosphere

Hiroatsu Sato, Hans Pécseli, Jan Trulsen, Per Even Sandholt, and Charles Farrugia

Abstract. It is argued that a simple model based on magnetic image arguments suffices to give a convincing insight into both the basic static as well as dynamic properties of the near-Earth’s magnetosphere. Qualitative results can be obtained for the heating due to the compression of the radiation belts. The properties of this simple dynamic model for the solar wind – magnetosphere interaction are discussed and compared to observations. In spite of its simplicity, the model gives convincing results concerning the magnitudes of the near-Earth’s magnetic and electric fields. The database contains ground based results for magnetic field variation in response to shocks in the solar wind. The observations also include satellite data, here from the two Van Allen satellites.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

09 Nov 2022
Impulse-driven oscillations of the near-Earth's magnetosphere
Hiroatsu Sato, Hans Pécseli, Jan Trulsen, Per Even Sandholt, and Charles Farrugia
Ann. Geophys., 40, 641–663, https://doi.org/10.5194/angeo-40-641-2022,https://doi.org/10.5194/angeo-40-641-2022, 2022
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
An abrupt increase in pressure associated with interplanetary shocks will compress the magnetic...
Share