Preprints
https://doi.org/10.5194/egusphere-2022-1309
https://doi.org/10.5194/egusphere-2022-1309
06 Dec 2022
 | 06 Dec 2022

Tropospheric NO2 vertical profiles over South Korea and their relation to oxidant chemistry: Implications for geostationary satellite retrievals and the observation of NO2 diurnal variation from space

Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok Lamsal, Ja-Ho Koo, and Jhoon Kim

Abstract. Tropospheric nitrogen dioxide (NO2) is of central importance for air quality, climate forcing, and nitrogen deposition to ecosystems. The Geostationary Environment Monitoring Spectrometer (GEMS) is now providing high-density NO2 satellite data including diurnal variation over East Asia. The NO2 retrieval requires independent vertical profile information from a chemical transport model (CTM) to compute the air mass factor (AMF) that relates the NO2 column along the line of sight to the NO2 vertical column. Here, we use aircraft observations from the Korea-United States Air Quality (KORUS-AQ) campaign over the Seoul Metropolitan Area (SMA) and around the Korean peninsula to better understand the factors controlling the NO2 vertical profile, its diurnal variation, the implications for the AMF, and the ability of the GEOS-Chem CTM to compute the AMF and its variability. Proper representation of oxidant chemistry is critical for the CTM simulation of NO2 vertical profiles and is achieved in GEOS-Chem through new model developments including aerosol nitrate photolysis, reduced uptake of hydroperoxy (HO2) radicals by aerosols, and accounting for atmospheric oxidation of volatile chemical products (VCPs). We find that the tropospheric NO2 columns measured from space are mainly contributed by the planetary boundary layer (PBL) below 2 km altitude, reflecting the highly polluted conditions. Repeated measurements of NO2 vertical profiles over SMA at different times of day show that diurnal change in mixing depth affecting the NO2 vertical profile induces a diurnal variation in AMF of comparable magnitude to the diurnal variation in the NO2 column. GEOS-Chem captures this diurnal variation in AMF and more generally the variability in the AMF for the KORUS-AQ NO2 vertical profiles (2.7 % mean bias, 7.6 % precision), with some outliers in the morning due to non-systematic errors in the timing of mixed layer growth.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

22 Feb 2023
Tropospheric NO2 vertical profiles over South Korea and their relation to oxidant chemistry: implications for geostationary satellite retrievals and the observation of NO2 diurnal variation from space
Laura Hyesung Yang, Daniel J. Jacob, Nadia K. Colombi, Shixian Zhai, Kelvin H. Bates, Viral Shah, Ellie Beaudry, Robert M. Yantosca, Haipeng Lin, Jared F. Brewer, Heesung Chong, Katherine R. Travis, James H. Crawford, Lok N. Lamsal, Ja-Ho Koo, and Jhoon Kim
Atmos. Chem. Phys., 23, 2465–2481, https://doi.org/10.5194/acp-23-2465-2023,https://doi.org/10.5194/acp-23-2465-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
A geostationary satellite can now provide hourly NO2 columns and obtaining the NO2 columns from...
Share