Preprints
https://doi.org/10.5194/egusphere-2022-1295
https://doi.org/10.5194/egusphere-2022-1295
06 Dec 2022
 | 06 Dec 2022

Impacts of soil management and climate on saturated and near-saturated hydraulic conductivity: analyses of the Open Tension-disk Infiltrometer Meta-database (OTIM)

Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel

Abstract. Saturated and near-saturated soil hydraulic conductivities Kh (mm.h-1) determine the partitioning of precipitation into surface runoff and infiltration and are fundamental to soils’ susceptibility to preferential flow. Recent studies have found indications that climate factors influence Kh, which is highly relevant in the face of climate change. In this study, we investigated relationships between pedo-climatic factors and Kh and also evaluated effects of land use and soil management. To this end, we collated the Open Tension-disk Infiltrometer Meta-database (OTIM), which contains 1297 individual data entries from 172 different publication sources. We analysed a spectrum of saturated and near-saturated hydraulic conductivities at matric potentials between 0 to 100 mm. We found that methodological details like the direction of the wetting sequence or the choice of method for calculating infiltration rates to hydraulic conductivities had a large impact on the results. We therefore restricted ourselves to a subset of 466 of the 1297 data entries with similar methodological approaches. Correlations between Ks and Kh at higher supply tensions decreased especially close to saturation, indicating a different flow mechanism at and very close to saturation as towards the dry end of the investigated tension range. Climate factors were better correlated to topsoil near-saturated hydraulic conductivities at supply tensions ≥ 30 mm than soil texture, bulk density and organic carbon content. We find it most likely that the climate variables are proxies for soil macropore networks created by respective biological activity, pedogenesis and climate specific land use and management choices. Due to incomplete documentation in the source publications of OTIM, we could investigate only a few land use types and agricultural management practices. Land use, tillage system and soil compaction significantly influenced Kh, with effect sizes appearing comparable to the ones of soil texture and soil organic carbon. The data in OTIM show experimental bias is present, introduced by the choice of measurement time relative to soil tillage, experimental design or data evaluation procedures. The establishment of best-practice rules for tension-disk infiltrometer measurements would therefore be helpful. Future studies are needed to investigate how climate shapes soil macropore networks and how land use and management can be adapted to improve soil hydraulic properties. Both tasks require large amounts of new measurement data with improved documentation on soil biology and land use and management history.

Journal article(s) based on this preprint

21 Jul 2023
Impacts of soil management and climate on saturated and near-saturated hydraulic conductivity: analyses of the Open Tension-disk Infiltrometer Meta-database (OTIM)
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023,https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary

Guillaume Blanchy et al.

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1295', Anonymous Referee #1, 15 Dec 2022
  • RC2: 'Comment on egusphere-2022-1295', Paul J. Morris, 20 Mar 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1295', Anonymous Referee #1, 15 Dec 2022
  • RC2: 'Comment on egusphere-2022-1295', Paul J. Morris, 20 Mar 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to revisions (further review by editor and referees) (07 May 2023) by Nunzio Romano
AR by John Koestel on behalf of the Authors (23 May 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (25 May 2023) by Nunzio Romano
RR by Paul J. Morris (08 Jun 2023)
RR by Anonymous Referee #1 (15 Jun 2023)
ED: Publish as is (21 Jun 2023) by Nunzio Romano
AR by John Koestel on behalf of the Authors (21 Jun 2023)

Journal article(s) based on this preprint

21 Jul 2023
Impacts of soil management and climate on saturated and near-saturated hydraulic conductivity: analyses of the Open Tension-disk Infiltrometer Meta-database (OTIM)
Guillaume Blanchy, Lukas Albrecht, Gilberto Bragato, Sarah Garré, Nicholas Jarvis, and John Koestel
Hydrol. Earth Syst. Sci., 27, 2703–2724, https://doi.org/10.5194/hess-27-2703-2023,https://doi.org/10.5194/hess-27-2703-2023, 2023
Short summary

Guillaume Blanchy et al.

Guillaume Blanchy et al.

Viewed

Total article views: 412 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
267 123 22 412 11 9
  • HTML: 267
  • PDF: 123
  • XML: 22
  • Total: 412
  • BibTeX: 11
  • EndNote: 9
Views and downloads (calculated since 06 Dec 2022)
Cumulative views and downloads (calculated since 06 Dec 2022)

Viewed (geographical distribution)

Total article views: 413 (including HTML, PDF, and XML) Thereof 413 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 21 Jul 2023
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
We collated the Open Tension-disk Infiltrometer Meta-database (OTIM). We analyzed topsoil hydraulic conductivities at supply tensions between 0 to 100 mm of 466 data entries. We found indications of different flow mechanisms at saturation than at tensions > 20 mm. Climate factors were better correlated to near-saturated hydraulic conductivities than soil properties. Land use, tillage system, soil compaction and experimenter bias significantly influenced K to a similar degree as soil properties.