Preprints
https://doi.org/10.5194/egusphere-2022-1256
https://doi.org/10.5194/egusphere-2022-1256
12 Dec 2022
 | 12 Dec 2022
Status: this preprint is open for discussion.

QES-Plume v1.0: A Lagrangian dispersion model

Fabien Margairaz, Balwinder Singh, Jeremy A. Gibbs, Loren Atwood, Eric R. Pardyjak, and Rob Stoll

Abstract. Low-cost simulations providing accurate predictions of transport of airborne material in urban areas, vegetative canopies, and complex terrain are demanding because of the small-scale heterogeneity of the features influencing the mean flow and turbulence fields. Common models used to predict turbulent transport of passive scalars are based on the Lagrangian stochastic dispersion model. The Quick Environmental Simulation (QES) tool is a low computational-cost framework developed to provide high-resolution wind and concentration fields in a variety of complex atmospheric-boundary-layer environments. Part of the framework, QES-Plume, is a Lagrangian dispersion code that uses a time-implicit integration scheme to solve the generalized Langevin equations which require mean flow and turbulence fields. Here, QES-plume is driven by QES-Winds, a 3D fast-response model that computes mass-consistent wind fields around buildings, vegetation, and hills using empirical parameterizations, and QES-Turb, a local mixing-length turbulence model. In this paper, the particle dispersion model is presented and validated against analytical solutions to examine QES-Plume’s performance under idealized conditions. In particular, QES-Plume is evaluated against a classical Gaussian-plume model for an elevated continuous point-source release in uniform flow and a non-Gaussian-plume model for an elevated continuous point-source release in a power-law boundary-layer flow. In these cases, QES-plume yields a maximum relative error below 6 % with analytical solutions. In addition, the model is tested against wind-tunnel data for a uniform array of cubical buildings. QES-Plume exhibits good agreement with the experiment with 99 % of matched zeros and 59 % of the predicted concentrations falling within a factor of 2 of the experimental concentrations. Furthermore, results also emphasized the importance of using high-quality turbulence models for particle dispersion in complex environments. Finally, QES-Plume demonstrates excellent computational performance.

Fabien Margairaz et al.

Status: open (until 17 Jun 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1256', Bertrand Carissimo, 31 Jan 2023 reply
  • RC2: 'Comment on egusphere-2022-1256', Jérémy Bernard, 30 May 2023 reply

Fabien Margairaz et al.

Fabien Margairaz et al.

Viewed

Total article views: 499 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
384 105 10 499 5 3
  • HTML: 384
  • PDF: 105
  • XML: 10
  • Total: 499
  • BibTeX: 5
  • EndNote: 3
Views and downloads (calculated since 12 Dec 2022)
Cumulative views and downloads (calculated since 12 Dec 2022)

Viewed (geographical distribution)

Total article views: 443 (including HTML, PDF, and XML) Thereof 443 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 02 Jun 2023
Download
Short summary
The Quick Environmental Simulation (QES) tool is a low computational-cost fast-response framework. It provides high-resolution wind and concentration information to study complex problems, such as spore or smoke transport, urban pollution, and air quality. This paper presents the particle dispersion model and its validation against analytical solutions and wind-tunnel data for a mock-urban setting. In all cases, the model provides accurate results with competitive computational performance.