Preprints
https://doi.org/10.5194/egusphere-2022-1167
https://doi.org/10.5194/egusphere-2022-1167
10 Nov 2022
 | 10 Nov 2022

Reduced order digital twin and latent data assimilation for global wildfire prediction

Caili Zhang, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci

Abstract. The occurrence of forest fires can impact vegetation in the ecosystem, property, and human health, but also indirectly affect the climate. JULES-INFERNO is a global land surface model, which simulates vegetation, soils, and fire occurrence driven by environmental factors. However, this model incurs substantial computational costs due to the high data dimensionality and the complexity of differential equations. Deep learning-based digital twins have an advantage in handling large amounts of data. They can reduce the computational cost of subsequent predictive models by extracting data features through Reduced Order Modelling (ROM) and then compressing the data to a low-dimensional latent space. This study proposes a JULES-INFERNO-based digital twin fire model using ROM techniques and deep learning prediction networks to improve the efficiency of global wildfire predictions. The iterative prediction implemented in the proposed model can use current-year data to predict fires in subsequent years. To avoid the accumulation of errors from the iterative prediction, Latent data Assimilation (LA) is applied to the prediction process. LA manages to efficiently adjust the prediction results to ensure the stability and sustainability of the prediction. Numerical results show that the proposed model can effectively encode the original data and achieve accurate surrogate predictions. Furthermore, the application of LA can also effectively adjust the bias of the prediction results. The proposed digital twin also runs 500 times faster for online predictions than the original JULES-INFERNO model without requiring High-Performance Computing (HPC) clusters. The implementation code of this study and the developed models are available at https://github.com/DL-WG/Digital-twin-LA-global-wildfire.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

12 May 2023
Reduced-order digital twin and latent data assimilation for global wildfire prediction
Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
Nat. Hazards Earth Syst. Sci., 23, 1755–1768, https://doi.org/10.5194/nhess-23-1755-2023,https://doi.org/10.5194/nhess-23-1755-2023, 2023
Short summary
Caili Zhang, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1167', Anonymous Referee #1, 11 Nov 2022
    • AC2: 'Reply on RC1', Sibo Cheng, 19 Nov 2022
  • RC2: 'Comment on egusphere-2022-1167', Anonymous Referee #2, 17 Nov 2022
    • AC1: 'Reply on RC2', Sibo Cheng, 19 Nov 2022

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1167', Anonymous Referee #1, 11 Nov 2022
    • AC2: 'Reply on RC1', Sibo Cheng, 19 Nov 2022
  • RC2: 'Comment on egusphere-2022-1167', Anonymous Referee #2, 17 Nov 2022
    • AC1: 'Reply on RC2', Sibo Cheng, 19 Nov 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish as is (15 Mar 2023) by David Lallemant
ED: Publish as is (23 Mar 2023) by Philip Ward (Executive editor)
AR by Sibo Cheng on behalf of the Authors (29 Mar 2023)  Manuscript 

Journal article(s) based on this preprint

12 May 2023
Reduced-order digital twin and latent data assimilation for global wildfire prediction
Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
Nat. Hazards Earth Syst. Sci., 23, 1755–1768, https://doi.org/10.5194/nhess-23-1755-2023,https://doi.org/10.5194/nhess-23-1755-2023, 2023
Short summary
Caili Zhang, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
Caili Zhang, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci

Viewed

Total article views: 519 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
367 136 16 519 4 3
  • HTML: 367
  • PDF: 136
  • XML: 16
  • Total: 519
  • BibTeX: 4
  • EndNote: 3
Views and downloads (calculated since 10 Nov 2022)
Cumulative views and downloads (calculated since 10 Nov 2022)

Viewed (geographical distribution)

Total article views: 506 (including HTML, PDF, and XML) Thereof 506 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 06 Sep 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.