Preprints
https://doi.org/10.5194/egusphere-2022-1080
https://doi.org/10.5194/egusphere-2022-1080
14 Nov 2022
 | 14 Nov 2022

Data Quality Enhancement for Atmospheric Chemistry Field Experiments via Sequential Monte Carlo Filters

Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer

Abstract. In this study we explore the applications and limitations of Sequential Monte Carlo filters (SMC) to atmospheric chemistry field experiments. The proposed algorithm is simple, fast, versatile and returns a complete probability distribution. It combines information from measurements with known system dynamics to decrease the uncertainty of measured variables. The method shows high potential to increase data coverage, precision and even possibilities to infer unmeasured variables. We extend the original SMC algorithm with an activity variable that gates the proposed reactions. This extension makes the algorithm more robust when dynamical processes not considered in the calculation dominate and the information provided via measurements is limited. The activity variable also provides a quantitative measure of the dominant processes. Free parameters of the algorithm and their effect on the SMC result are analyzed. The algorithm reacts very sensitively to the estimated speed of stochastic variation. We provide a scheme to choose this value appropriately. In a simulation study O3, NO, NO2 and jNO2 are tested for interpolation and de-noising using measurement data of a field campaign. Generally, the SMC method performs well under most conditions, with some dependence on the particular variable being analyzed.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.

Journal article(s) based on this preprint

07 Mar 2023
Data quality enhancement for field experiments in atmospheric chemistry via sequential Monte Carlo filters
Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 1167–1178, https://doi.org/10.5194/amt-16-1167-2023,https://doi.org/10.5194/amt-16-1167-2023, 2023
Short summary
Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1080', Anonymous Referee #2, 05 Dec 2022
    • AC1: 'Reply on RC1', Lenard Röder, 19 Jan 2023
  • RC2: 'Comment on egusphere-2022-1080', Anonymous Referee #1, 27 Dec 2022
    • AC2: 'Reply on RC2', Lenard Röder, 19 Jan 2023

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2022-1080', Anonymous Referee #2, 05 Dec 2022
    • AC1: 'Reply on RC1', Lenard Röder, 19 Jan 2023
  • RC2: 'Comment on egusphere-2022-1080', Anonymous Referee #1, 27 Dec 2022
    • AC2: 'Reply on RC2', Lenard Röder, 19 Jan 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Lenard Röder on behalf of the Authors (20 Jan 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (02 Feb 2023) by Keding Lu
AR by Lenard Röder on behalf of the Authors (09 Feb 2023)

Journal article(s) based on this preprint

07 Mar 2023
Data quality enhancement for field experiments in atmospheric chemistry via sequential Monte Carlo filters
Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 16, 1167–1178, https://doi.org/10.5194/amt-16-1167-2023,https://doi.org/10.5194/amt-16-1167-2023, 2023
Short summary
Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer

Data sets

Data from TO2021 campaign Crowley, J. N., Dewald, P., Nussbaumer, C. M., Ringsdorf, A., Edtbauer, A., Schuladen, J., Fischer, H., Williams, J., Röder, L., and Hamryszczak, Z. https://keeper.mpdl.mpg.de/d/f12c1d71d4734a89a6ef/

Model code and software

Sequential Monte Carlo Filters for Chemical Box-Models Lenard L. Röder https://github.com/lenroed/smc-boxmodel

Lenard L. Röder, Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, John N. Crowley, Jos Lelieveld, and Horst Fischer

Viewed

Total article views: 281 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
185 85 11 281 33 5 6
  • HTML: 185
  • PDF: 85
  • XML: 11
  • Total: 281
  • Supplement: 33
  • BibTeX: 5
  • EndNote: 6
Views and downloads (calculated since 14 Nov 2022)
Cumulative views and downloads (calculated since 14 Nov 2022)

Viewed (geographical distribution)

Total article views: 268 (including HTML, PDF, and XML) Thereof 268 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 31 Aug 2024
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Field experiments in atmospheric chemistry provide insights into chemical interactions of our atmosphere. However, high data coverage and accuracy is needed to enable further analysis. In this study we explore a statistical method that combines knowledge about the chemical reactions with information from measurements to increase the quality of field experiment data sets. We test the algorithm for several applications and discuss limitations that depend on the specific variable and the dynamics.