Preprints
https://doi.org/10.5194/egusphere-2022-1048
https://doi.org/10.5194/egusphere-2022-1048
28 Oct 2022
 | 28 Oct 2022

Enabling dynamic modelling of global coastal flooding by defining storm tide hydrographs

Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts

Abstract. Coastal flooding is driven by both high tides and/or storm surge, the latter being caused by strong winds and low pressure in tropical and extratropical. The combination of storm surge and the astronomical tide is defined as the storm tide. To gain understanding into the threat imposed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Most models capable of simulating coastal inundation at the global scale follow a simple planar approach, often referred to as bathtub models. The main limitations of this type of model are that they implicitly assume an infinite flood duration and do not capture relevant physical processes. In this study we develop a method to generate hydrographs called HGRAPHER, and provide a global dataset of storm tide hydrographs. These hydrographs represent the typical shape of an extreme storm tide at a certain location along the global coastline. We test the sensitivity of the HGRAPHER method with respect to two main assumptions that determine the shape of the hydrograph, namely the surge event sampling threshold and coincidence in time of the surge and tide maxima. These hydrographs can be used to move away from planar to more advanced dynamic inundation modelling techniques at large scales.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Share

Journal article(s) based on this preprint

22 May 2023
Enabling dynamic modelling of coastal flooding by defining storm tide hydrographs
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023,https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Download

The requested preprint has a corresponding peer-reviewed final revised paper. You are encouraged to refer to the final revised version.

Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain...
Share