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Abstract. Volatile organic compounds (VOCs) are an important class of atmospheric chemical species that can be directly 10 

harmful to human health and contribute to the formation of hazardous secondary products. Measurements of ambient VOCs 

are typically made using “offline” techniques, which are well-suited for distributed measurements but have low time resolution, 

or real-time measurements using state-of-the-art in situ instruments, which have high precision and time resolution, but tend 

to be expensive and so cannot be deployed in a widespread manner. An alternative VOC measurement approach that is both 

real-time and lower in cost would open the possibility of widespread, spatially distributed measurements of VOCs in air quality 15 

and atmospheric chemistry contexts.  While there are several commercially available air sensors that are sensitive to 

environmental VOCs, these sensors are “broadband,” meaning that each can only output a single scalar value that reflects the 

sensitivity of the sensor toward a wide and poorly defined range of VOCs. As a result, VOC air sensors have, to date, seen 

little use in research. Here, we investigate the feasibility of a novel method for measuring environmental VOCs that uses an 

array of such broadband sensors. This array includes VOC air sensors representing three fundamentally different sensor types, 20 

and takes advantage of operational parameters that achieve a diversity of responses amongst sensors with the same type. Within 

a controlled laboratory setting, we obtained calibration curves for ten typical atmospheric VOCs between 5 and 100 ppb and 

explored the effects of varying RH and introducing binary mixtures on sensor responses. Overall, we found that all observed 

sensor responses can be parameterized with linear or power-law models, consistent with results of prior studies and 

expectations based on physical sensing principles. Our results show that each of the 12 sensors in our array appear to have 25 

their own unique sensitivities to various VOCs, resulting in distinctive “fingerprints” of array responses for each compound 

tested. However, we also show that interferences by water vapor and other gases pose substantial challenges that likely cannot 

be fully addressed in the laboratory. Thus, co-location with a reference instrument in the field may first be required if this 

measurement approach is to yield quantitative, chemically specific information about ambient VOCs in indoor or outdoor 

environments.  30 
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1 Introduction 

Measurements of atmospheric pollutants are crucial for improving our understanding of atmospheric chemistry, managing air 

quality, and estimating exposure to compounds that negatively affect human health. Traditionally, real-time measurements of 

indoor and outdoor atmospheric pollutants are made using reference instruments with high precision, sensitivity, and accuracy. 

However, these instruments can be prohibitively expensive in terms of cost and operating requirements.  Even regions with 35 

well-developed monitoring infrastructure struggle to systematically measure the smaller, sub-regional differences in exposure 

(e.g., variations across cities or neighbourhoods, or even across “micro-environments” such as the home, office, or transit) that 

have significant effects on personal exposure and risk (Hossain et al., 2022). The high cost of these instruments also contributes 

to inequities in measuring air pollution: for example, air pollution disproportionately impacts low-and middle-income countries 

(Murray et al., 2020) yet these regions are the most likely to have an air quality data gap (Pinder et al., 2019). To fill these 40 

knowledge gaps, many researchers and regulatory bodies have begun using air sensors to make atmospheric pollutant 

measurements. (Here, we define “air sensors” as monitors that have a purchase cost at least one order of magnitude lower than 

that of a reference instrument measuring the same pollutant (Lewis et al., 2016).) Such sensors have seen major technological 

improvements in the last two decades, and now can measure ambient levels of atmospheric pollutants in the parts-per-billion 

(ppb) range (Snyder et al., 2013). In addition to their lower cost, air sensors have the added benefits of occupying little physical 45 

space, drawing low power, and generally not requiring human intervention to operate. The high spatiotemporal resolution of 

air sensor measurements makes them good candidates for expanding our knowledge of air quality and chemistry via novel 

applications such as distributed sensor networks (Mao et al., 2019), personal exposure monitors (Xie et al., 2021), and multi-

pollutant sensor arrays to identify pollutant sources or transformations (Crawford et al., 2021; Hagan et al., 2019). 

Air sensors have been extremely helpful in characterizing the concentrations of commonly-regulated pollutants, such 50 

as PM2.5 (Badura et al., 2018), O3 (Baron and Saffell, 2017), CO (Han et al., 2021), and SO2 (Hagan et al., 2018). However, 

one important class of atmospheric trace species that has seen little measurement by air sensors are volatile organic compounds 

(VOCs). VOCs are an important class of atmospheric compounds, emitted from numerous natural sources and human activities 

(Guenther et al., 1995). Exposure to VOCs can be directly harmful to human health, and emitted VOCs also form hazardous 

secondary products, including peroxides, ozone, and secondary organic aerosol (SOA). Measurements of ambient VOCs have 55 

traditionally been made using “offline” techniques, such as sorbent tube sampling for later analysis, which are suited for 

distributed measurements but suffer from low time resolution (Woolfenden, 1997).  For decades, real-time measurements of 

ambient VOCs have been made via gas-chromatography mass-spectrometry (GC-MS), but GC-MS has limited sensitivity to 

certain compounds and often requires pre-concentration techniques that decrease effective time resolution (Lerner et al., 2017; 

Pellizzari et al., 1975). The relatively recent development of novel measurement methods, such as proton-transfer reaction 60 

mass spectrometry (PTR-MS), have enabled measurements of ambient VOCs with <1 Hz time resolution. However, 

instruments employing these state-of-the-art measurement techniques can be extremely large, energy-consumptive, and 
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expensive. Hence, a feasible sensor-based alternative would open the possibility of widespread, time-resolved, and spatially 

distributed measurements of VOCs in air quality and chemistry contexts.  

While there are several different types of commercially available air sensors that can detect VOCs at ambient, parts-65 

per-billion (ppb) mixing ratios, they are limited by their non-specific (“broadband”) nature: individual sensors output only a 

single scalar value that reflects a combination of different sensor sensitivities and selectivities toward a wide and poorly-

defined range of VOCs (Spinelle et al., 2017). In other words, a single sensor output can be converted to an equivalent VOC 

concentration by knowing a sensor’s sensitivity to a particular VOC, but only if the sample air contains only that VOC. 

However, a single sensor’s response to a VOC mixture cannot be converted to concentration units without preexisting 70 

knowledge of the mixture’s composition and a detailed understanding of the sensitivity of the sensor to all VOCs in the mixture 

(including any gas interaction effects). As a given airmass is likely to have many VOCs with highly variable and unpredictable 

compositions (Chen et al., 2019), the signal from a single VOC sensor is able to provide very little useful information about 

total VOC concentrations, and even less about VOC composition. 
A potential solution to this problem is to use multiple VOC sensors of differing selectivities. In theory, meaningful 75 

differences in responses from an array of different VOC sensors can be leveraged, via a pattern recognition algorithm, to gain 

useful information about the measured compound or mixture. This approach has been the linchpin of “electronic nose” studies 

that mostly aim to detect and classify VOC mixtures in odour detection or process control applications (Gardner and Bartlett, 

1994). However, environmental VOCs pose a particular challenge for these applications: most “electronic noses” are designed 

to measure VOCs at high mixing ratios, generally tens or hundreds of parts-per-million (ppm), many orders of magnitude 80 

higher than the parts-per-billion (ppb) levels found in the atmosphere (Cheng et al., 2021; Gardner and Bartlett, 1994). The 

challenge of these measurements is further exacerbated by the complexity of atmospheric VOC sources, compositions, and 

variations (Luo et al., 2023; Yang et al., 2022; You et al., 2022), as well as sensor sensitivities to non-VOC gases and 

environmental parameters such as relative humidity and temperature (Spinelle et al., 2017). 

A handful of past studies have attempted to obtain quantitative measurements of sub-ppm VOC pollution sources by 85 

utilizing arrays of metal oxide (MOx) sensors to quantify a single key VOC, and thus sidestepping the challenges posed by 

environmental VOC complexity. For example, methane has been an important target for several MOx sensor arrays 

(Domènech-Gil et al., 2024; Furuta et al., 2022; Taguem et al., 2021), which applied machine learning regression algorithms 

to measurements from multiple MOx sensors to estimate variations in environmental methane mixing ratios. Benzene is 

another important VOC that air sensors can detect sensitively, and ambient mixing ratios of benzene measured near a major 90 

roadway were accurately estimated by a neural network model trained on measurements from five different MOx sensors (De 

Vito et al., 2008). Similarly, Collier-Oxandale et al. (2019) used measurements from two different MOx sensors to develop 

regression models for atmospheric benzene, methane, and total VOC mixing ratios measured near an oil field. These studies 

demonstrate the potential of air sensor arrays to generate quantitative, chemically specific VOC information. However, they 

are somewhat limited in scope: they focus on only one or two target VOCs and use only one measurement technology (metal 95 

oxide sensing) to make measurements. Multiple other measurement technologies with sub-ppb VOC sensitivities are 
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commercially available (Spinelle et al., 2017), but to our knowledge, the use of sensor arrays that use a range of sensing 

technologies, aimed at characterizing a wide range of VOCs, has not been explored.  

Here, we investigate the feasibility of using an air sensor array for distinguishing and measuring ambient VOCs. We 

investigate the effectiveness of leveraging multiple different sensing technologies and examine the effects of varying 100 

operational parameters between otherwise identical sensors to obtain a larger array of distinct responses. We describe the 

simultaneous use of 12 distinct air sensors representing three different measurement technologies across multiple operational 

parameters. We also show laboratory characterization results for 10 key atmospheric VOCs (with mixing ratios from 5 to 100 

ppb), as well as data from a wide range of relative humidities and a binary mixture. Finally, we discuss these results in the 

context of practical usage of this array for environmental monitoring, and evaluate the potential for this method to provide 105 

useful, quantitative information about VOCs in realistic ambient conditions.  

2 Methods 

2.1 Sensing Principles 

Here, we investigate the simultaneous use of three different sensing technologies: metal oxide sensors (MOx), which measure 

target gas molecules that adsorb onto a metal oxide surface; photo-ionization detectors (PID), which ionize gas molecules with 110 

a small vacuum ultraviolet lamp, and amperometric electrochemical (EC) sensors, which detect gases via oxidation or 

reduction reactions. Each of these measurement techniques has at least one adjustable parameter that can be leveraged to obtain 

different VOC sensitivities between otherwise identical sensors. 

Metal oxide (MOx) sensors have long been a popular choice for sensor array applications because of their particularly 

low material cost and relatively high sensitivity to VOCs (Cheng et al., 2021). MOx sensors measure VOCs using adsorption: 115 

gas species are chemisorbed onto the sensor surface, and the resultant band-bending by these charged molecules changes the 

measured conductivity (Barsan and Weimar, 2001). MOx sensors can vary in the materials or morphologies used for the 

semiconducting sensing layer, which can greatly affect sensing properties: past studies on MOx sensor arrays, such as those 

by De Vito et al. (2008) or Collier-Oxandale et al. (2019), have relied on the use of sensors with manufactured differences 

(e.g. distinct semiconductor properties) to introduce distinctions in sensor sensitivity that can then be exploited using pattern 120 

recognition techniques. When using an array of identical sensors rather than fundamentally different ones, it is possible to 

achieve differences in sensitivity and/or selectivity by varying the operation temperature (controlled by supplied voltage) of 

each sensor, as this affects the relationship between sensor conductance and analyte gas partial pressure (Barsan and Weimar, 

2001). This technique has seen some success in electronic nose applications, such as when Liu et al. (2021) employed 

temperature modulation of MOx sensors to help detect excessive methanol emitted from liquors, but to our knowledge, this 125 

approach has never been applied in the context of environmental VOC measurements. 

Photo-ionization detectors (PIDs), pioneered by James Lovelock to measure trace vapors in the atmosphere 

(Lovelock, 1960) rely on ionization of target molecules by a vacuum ultraviolet (VUV) lamp to induce a measurable change 
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in electric potential that is proportional to the concentration of target gas. In theory, an array of PIDs, each containing miniature 

lamps of different VUV wavelengths, would be able to discriminate VOCs based on differences in ionization energy and VUV 130 

cross-sections amongst the target species. Unfortunately, PID specifications are currently limited by the state of the technology: 

lamps at only a small handful of wavelengths are commercially available, with 9.6 eV, 10.0 eV, and 10.6 eV being common 

options.  

Electrochemical (EC) sensors, also known as amperometric sensors, rely on a reduction-oxidation (redox) reaction 

between a target gas and an aqueous acid electrolyte. Due to their high sensitivity and selectivity, they have been widely used 135 

in air quality monitoring of major inorganic pollutants such as ozone and SO2 (Hagan et al., 2018; Lewis et al., 2016). The 

sensitivities of a given EC sensor to various VOCs can be adjusted via application of a bias voltage, or a potential difference 

between the working and reference electrodes (Baron and Saffell, 2017). EC sensors that measure VOCs non-specifically have 

commonly been marketed for personal protection and industrial hygiene applications; we are unaware of the use of sensitive 

VOC EC sensors used in atmospheric or air quality contexts. 140 

2.2 Sensor Array Design 

To investigate the utility of multiple VOC sensing technologies and operational parameters, we constructed a custom-built 

sensor array that includes 12 distinct VOC sensors, with a simplified schematic shown in Figure 1. The array includes three 

EC sensors, with one Alphasense ETO-B1 sensor and two Alphasense VOC-B1 sensors, one run without bias voltage and the 

other with a positive bias voltage; three PIDs, including one ION Science MiniPID 2 10.0 eV, one ION Science MiniPID 2 145 

10.6 eV, and one ION Science iniPID High Sensitivity (HS) 10.6 eV, which achieves “high sensitivity” over the normal 10.6 

PID via improvements to the sensor membrane; and six metal oxide sensors, with two different sensor models (Figaro 

TGS2602 and Figaro TGS2600, both SnO2 sensors that differ in the catalyst used in their sensing materials), each run at three 

different supply voltages (4.75 V, 5.0 V, and 5.25 V). Table 1 summarizes the sensors used in this design and any user-

controlled parameters that were applied. At the time of purchase (late 2021), the material cost of all 12 sensors was ~$2000 150 

USD, with most of this cost made up by PIDs (with an average cost of ~$540 USD each). This total cost is higher than a typical 

sensor array application but is still orders of magnitudes lower than the cost of a mass spectrometric instrument. 
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Figure 1: Schematic of the VOC air sensor array. Sample air is pulled in by a miniature diaphragm pump through custom flow cells 155 
that house 12 different VOC sensors. Several custom circuit boards manage power and sensor inputs/outputs. 

 

Table 1: Summary of VOC air sensors used in the array. 

Sensing Technology Number of 
Sensors Manufacturer Model Name User-Applied Parameters 

EC 2 Alphasense Ltd. VOC-B1 (EC Type 1) Bias Voltage (1 each at 0 
mV, +300 mV) 

EC 1 Alphasense Ltd. ETO-B1 (EC Type 2)  

PID 1 ION Science Ltd. MiniPID 2 (10.0 eV)  

PID 1 ION Science Ltd. MiniPID 2 (10.6 eV)  

PID 1 ION Science Ltd. MiniPID HS (10.0 eV)  

 
MOx 

 
3 

 
Figaro Engineering, Inc. 

 
TGS 2600  

(MOx Type 1) 

 
Supply voltage (1 each at 

4.75 V, 5.0 V, and 5.25 V) 
MOx 3 Figaro Engineering, Inc. TGS 2602 

(MOx Type 2) 
Supply voltage (1 each at 

4.75 V, 5.0 V, and 5.25 V) 
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Air is drawn into the instrument by a miniature diaphragm pump (Xavitech v200) at a user-controlled rate that can be 160 

varied from 0-400 cm3 min-1; in this study it is set at 300 cm3 min-1. Sample air travels through PFA tubing (1/4" outer diameter, 

0.190" inner diameter), into custom-made Teflon flow cells (EC flow cell has dimensions 15.0 x 3.81 x 1.90 cm, MOx/PID 

flow cell has dimensions of 13.5 x 3.81 x 1.90 cm), with flow perpendicular to the sensor surfaces. After the sample air is 

expelled from the pump, it passes through a 3D-printed enclosure containing a relative humidity (RH) and temperature (T) 

sensor (Sensiron SHT25) before being exhausted from the instrument. This enclosed flow-through system was chosen to enable 165 

direct introduction of known gases to the instrument (e.g. zero air for baseline measurements in the field) and better control of 

key environmental variables (e.g. RH), but an open system design could instead be used for passive measurements of ambient 

air. The design of this instrument maintains airtightness via O-rings that are flush against the sensor surfaces and mounting 

bolts that secure breakout circuit boards to the flow cells. Sensors are not permanently secured to either the flow cells or their 

respective breakout circuit boards, allowing for easy replacement of any single sensor. The fully assembled instrument is 170 

housed inside a container with dimensions 42.2 x 37.1 x 21.0 cm (PolyCase ZH-161407); this is much larger than necessary 

but was chosen to aid in troubleshooting this prototype instrument. 

The entire device is powered by mains electricity (12 V AC/DC converter) and controlled using an LTE-enabled 

microcontroller (Particle B Series SoM), which is used in conjunction with its manufacturer’s evaluation circuit board (Particle 

M2EVAL). Several custom circuit boards manage sensor input and outputs, as well as associated analog-to-digital or digital-175 

to-analog conversion; there is also a power management circuit board that supplies lines at 3.3 V, 5.0 V, and two variable 

values (intended for varying MOx supply voltages) that can be adjusted from 0.64V to 5.25V via user input to a synchronous 

buck regulator (MIC24045). Total power draw of the instrument is highest on startup, where the microcontroller alone requires 

~3 W. However, during regular operation most components have negligible power draw, but there are relatively large 

requirements from the pump (~0.3 W), photo-ionization sensors (~0.3 W), microcontroller (~1 W), and metal oxide sensors 180 

(~1.5 W), resulting in < 5 W of total power draw.  

Data from all sensors are oversampled at ~100 Hz before being averaged down to 1 Hz. This is substantially faster 

than the sensor response times, but oversampling helps remove artifacts caused by electrical noise. The 1 Hz data is then 

logged to a local micro-SD card, and the 1-minute averages of the 1 Hz data are computed and transmitted via 3G LTE to the 

cloud, where they are automatically processed and stored.  185 

2.3 Laboratory Characterization Setup 

A schematic diagram of the experimental setup for characterizing sensor array responses to ppb levels of VOCs is shown in 

Figure 2a. To achieve low and reliable VOC mixing ratios, we use headspace sampling, in which a liquid VOC is placed in a 

sealed vial leaving sufficient room over the liquid, from which volatilized gas is sampled after phase equilibration. The mixing 

ratio of the VOC in the gas phase at equilibrium can be calculated using the compound’s temperature-dependent vapor pressure. 190 

We used ten VOCs, containing several different functional groups and representing VOCs from natural and anthropogenic 

sources, supplied by Sigma-Aldrich: 1-hexene (purity ≥ 99.0%), 1-octene (≥ 99.5%), 2-pentanone (≥ 99.5%), 2-heptanone (≥ 
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99.0%), acetone (≥ 99.5%), α-pinene (≥ 98.0%), chlorobenzene (≥ 99.9%), isoprene (≥ 99.0%), o-xylene (≥ 99.0%), and 

toluene (≥ 99.8%). For each experiment, we used a gas-tight syringe to obtain a headspace VOC sample at 25 °C, then placed 

the syringe into a computer-controlled syringe pump (Harvard Apparatus PHD Ultra), with the syringe needle inserted into a 195 

heated inlet maintained at 50 °C to prevent condensation onto the tubing walls. A dilution stream of zero air (AADCO Model 

737) was also supplied to the inlet at 10 lpm (with sample overflow managed by a tee fitting), and mass flow controllers (MKS) 

were used to adjust the humidity of this dilution stream by varying the ratio of dry air to air humidified by a bubbler. The 

syringe pump was then run with a preset, non-monotonic sequence of calibration levels, with each level being held for 25 

minutes. This sequence was preceded and followed by 30 minutes of zero air for baseline correction. Finally, after the 200 

calibration sequence was completed, the syringe was flushed with zero air several times before the next injection. An example 

calibration sequence, with sample sensor responses, is shown in Figure 2b.  

 
Figure 2: (a) Schematic of the experimental apparatus. The VOC calibration gas system consists of gas-phase VOC obtained via 
headspace sampling that is then loaded into a gas-tight syringe and injected using a computer-controlled syringe pump. This is then 205 
diluted by a stream of zero air that can be humidified by a bubbler. The total flow is 10 lpm, with sample air vented before reaching 
the instruments. (b) Example calibration sequence for a sample VOC (isoprene at 35% RH), with compound concentration shown 
in the top panel by the dotted black line. Sample responses from one PID (HS PID), EC (EC Type 1, no bias), and MOx (MOx Type 
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1, 5.0 V) sensor from the array are shown in the lower panels. Note that y-axes do not start at 0, and that this sequence spans 0 to 
200 ppb for demonstrative purposes. 210 
 

From each calibration sequence, we average the steady-state values of sensor responses and derive a calibration curve, 

or sensor signal as a function of mixing ratio. Sensor responses do not respond immediately to changes in mixing ratio, and 

calculated time constants fell within a wide range of values (0.5-10 min-1) and appear to depend on the specific compound, 

sensor, and magnitude of the mixing ratio step change. A detailed characterization of these time constants is beyond the scope 215 

of this study. Instead, we ignore the transient nature of these sensor responses by holding each mixing ratio level for at least 

20 minutes and generating points in the calibration curve by averaging the last 5 minutes of sensor responses for each mixing 

ratio. Sensor responses are described in terms of net change in signal (increase over baseline). We `prioritize characterization 

of signal changes (sensitivities) over characterization of baseline values, as we expect that most practical applications of these 

sensors will involve baseline removal prior to data analysis. Characterization of baseline changes and drift, which are expected 220 

to vary with the humidity and composition of background air (Wang et al., 2010; Wei et al., 2018), is beyond the scope of this 

work but would be a useful target for future research. In our dataset, most baseline values were removed by a simple 

background subtraction. Some experiments showed mild drift between beginning and end values (<2% of the difference 

between signal at 100 ppb and beginning background signal), usually caused by changes to relative humidity over the course 

of the experiment. In these situations, the PID and EC baseline for PIDs and ECs was identified and removed using the 225 

BaselineRemoval Python library (v1.0.5). The results from two different modified second-degree polynomial fits (ModPoly 

(Lieber and Mahadevan-Jansen, 2003) and IModPoly (Zhao et al., 2015)) were calculated, and the best of these methods was 

identified by minimizing calibration curve fit error.  

3 Results 

3.1 Sensor Array Responses to Individual VOCs 230 

Sensor responses to 10 VOCs, broadly representative of those found in the atmosphere, were obtained in the range of 5 to 100 

ppb at a constant relative humidity of 30% and a temperature of 22 °C. The sensor responses to these compounds (1-hexene, 

1-octene, 2-pentanone, 2-heptanone, acetone, α-pinene, chlorobenzene, isoprene, o-xylene, and toluene) are summarized in 

Figure 3 and Table S1 in the Supporting Information. In many cases a given sensor exhibits low (even negligible) sensitivity 

to a given VOC; in the discussion below, we consider a sensor to “detect” a compound if a calibration curve can be fit to a 235 

nonzero sensitivity with at least 1σ confidence. 

All photo-ionization detectors (PIDs) consistently exhibited a linear signal-to-mixing ratio response across this range 

of mixing ratios, and this linearity is consistent with the results of prior studies on these sensors (Freedman, 1980; Lovelock, 

1960). The “high-sensitivity” (HS) PID (10.6 eV) was able to detect all 10 compounds, with sensitivities ranging from 5.0×10-

2 (± 1.5×10-3) mV/ppb for o-xylene to 1.8 (± 4.6×10-2) mV/ppb for acetone. (All reported confidence intervals are ±1σ.) 240 
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Sensitivities for the other two PIDs (ION science MiniPID 10.0 and 10.6 eV sensors) were substantially lower, with a range 

of 6.0×10-4 (± 3.0×10-4) to 3.3×10-2 (± 7.2×10-3) mV/ppb for the 10.0 eV PID, and 1.7×10-3 (± 3.0×10-4) to 8.1×10-2 (± 2.0×10-

3) mV/ppb for the 10.6 eV PID. Unlike the high-sensitivity PID, neither sensor detected the full set of compounds.  

 

 245 
Figure 3: Summary of sensor responses (in mV over baseline) to various VOC mixing ratios between 5-100 ppb at 30% RH. Dotted 
lines represent the linear least-squares regression (PID and EC) or the power-law fit (MOx) of the measured values, denoted by 
triangles. Note that y-axes are not shared across panels, reflecting the wide range of sensitivities across sensors. If a compound is 
missing from a sensor’s subplot, as is the case with EC sensors (second row), it means that the sensor does not exhibit sensitivity to 
that compound above its baseline noise. Error bars denote the standard deviation of measurements taken for each data point. 250 

Signals from the EC sensors were also linear with mixing ratio, as reported previously (Mead et al., 2013). However, 

in contrast to PIDs, they detected only a subset of compounds and exhibited lower sensitivities. EC Type 1 (Alphasense VOC-

B1 EC sensor) detected five compounds, with sensitivities ranging from 6.6×10-4 (± 3.6×10-4) mV/ppb (toluene) to 1.0×10-2 

(± 1.2×10-3) mV/ppb (isoprene). Application of a positive bias voltage generally increased sensor sensitivity to detected 

compounds: for example, the sensitivity of the biased sensor to isoprene was determined to be 2.7×10-2 (± 8.0×10-3) mV/ppb, 255 

nearly triple the value of the unbiased sensor. However, the biased sensor exhibited substantial baseline drift, leading to larger 

uncertainties in sensitivities and potentially masking the sensor response to some compounds (1-hexene and o-xylene) that the 

unbiased sensor was able to detect reliably. The second EC type in our array (Alphasense ETO-B1), measured three compounds 

with sensitivities ranging from 1.1 × 10-3 (± 2.2 × 10-4) mV/ppb (1-octene) to 1.1 × 10-2 (± 6.4 × 10-4) mV/ppb (isoprene). The 

VOC sensitivities of these Type 2 sensors are very close in absolute value to the sensitivities of the unbiased Type 1 sensor, 260 

but the Type 2 sensor detects fewer compounds than the unbiased Type 1 sensor does. 

Each metal oxide (MOx) sensor detected all ten compounds, but with distinctly nonlinear calibration curves. A power-

law relationship describes the observed signals well, and is consistent with MOx physical sensing principles which predict a 

power law relationship based on the kinetics of MOx surface reactions and a balance on the availability of surface sites (Barsan 
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and Weimar, 2001).  The observed responses, in terms of change in voltage over baseline, can be expressed as DV = A[VOC]β, 265 

where A is a measure of sensitivity (in mV ppb-β) and β is a dimensionless power-law parameter. Averaged MOx calibration 

points were fit to this expression using a nonlinear least-squares regression. Many MOx sensor studies report signal in terms 

of a resistance ratio R/R0, where R is the sensor resistance to a target gas and R0 is the baseline resistance of the sensor in clean 

air; we choose to report output voltage to stay consistent with the other sensors in the array. The relationship between output 

voltage and the resistance ratio can be generally described with R/R0 ∝ Vc/Vout – 1, where Vout is the output voltage and Vc is 270 

the measurement circuit voltage (equal to 5 V for all our sensors).  

The two models of metal oxide sensors have very different sensitivity ranges to the VOCs tested: MOx Type 1 

(TGS2600) responses was most sensitive to isoprene, with a sensitivity of 22 (± 5.1) mV ppb-β (with β = 0.70 ± 0.040), while 

MOx Type 2 (TGS2602) was most sensitive to α-pinene, with a sensitivity of 140 (± 29) mV ppb-β (β = 0.67 ± 0.040).  Further 

differences in sensitivity were achieved by varying the circuit voltage applied to individual sensors, which changes the 275 

operating temperature of each sensor. We observe that both the sensitivity A and the power law parameter β vary among 

sensors, but we are unable to generalize the relationship between these parameters and applied voltage across all compounds. 

This finding is consistent with the results of Wang et al. (Wang et al., 2010), who observed that the dependence of MOx VOC 

sensitivities on operating temperature is non-monotonic and compound-specific. 

Figure 4 summarizes the responses of the array to all ten compounds at 10 ppb, with signals normalized to each 280 

sensor’s maximum observed response (DV) across all VOCs tested (note that the relative scaling of sensor responses is 

impacted by the high measurement error from the biased EC Type 1 sensor). In general, we observe that all ten compounds 

are detected by sensors that represent at least two distinct sensor types. Across compound types, there are some clear 

differences in overall array sensitivity: for example, alkenes are well-detected, while aromatics are not. Moreover, each 

compound has a unique “fingerprint” of relative sensor responses, even when compounds are chemically similar: for example, 285 

the array’s response to 1-hexene can clearly be distinguished from the response to 1-octene. Fig. 4 indicates that different 

sensing technologies, as well as variations within the same sensing technology, exhibit different responses to VOCs, with each 

of the 12 sensors exhibiting their own unique sensitivities to various VOCs. From this dataset, we are unable to identify broad 

patterns in sensor array response for different VOCs, due in part to the relatively limited set of VOCs tested. Nonetheless, 

Figure 3 shows that an array of “broadband” sensor responses can indeed be used to distinguish different VOCs. 290 
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Figure 4: Summary of sensor responses to 10 different VOCs at 10 ppb. Sensitivities are given as a percentage of the maximum 
observed response for each individual sensor across all VOCs tested. Error bars are calculated using propagation of the 1σ 
measurement errors shown in Figure 3: if a sensor has a response of x + Δx mV to a certain compound, and has a maximum response 
of y + Δy mV, then the error Δz of the fractional response z = x/y is calculated from Δz = z[(Δx/x)2 + (Δy/y)2]1/2. 295 

3.2 Sensor Array Responses as a Function of Relative Humidity 

Environmental parameters (temperature and relative humidity) are known to impact air sensor VOC measurements. 

Characterizing sensor responses to changing environmental temperature is beyond the scope of this study, as ambient 

temperature does not have a large effect on EC sensor or PID responses (Adamia et al., 1991; Hitchman and Saffell, 2021), 

though it could impact the baseline responses of MOx sensors (Figaro USA Inc., 2013; Figaro USA Inc., 2015; Wang et al., 300 

2010). To explore the effects of relative humidity (RH) on sensor responses, we obtained calibration curves between 5 and 

100 ppb for two VOCs (α-pinene and isoprene) across a wide range of RH values (0%-90%).  Results are shown in Figures 5 

and 6. 
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 305 

Figure 5: Sensitivities (in mV/ppb) of 3 PIDs (top row) and (b) 3 EC sensors (bottom row) to isoprene and α-pinene as a function of 
RH. Vertical bars denote 1σ confidence intervals. Note that each panel features different y-axes. 

Figure 5 shows the effect of RH on sensitivity for PID and EC sensors, both of which have linear calibration curves. 

The top row demonstrates the dramatic effect water vapor can have on PID responses. This decrease in sensor signal is likely 

explained by the absorption of UV radiation by water vapor, which reduces ionization efficiency (Liess and Leonhardt, 2003). 310 

While it has been reported that RH can also increase PID responses via water contamination of the sensor’s electrodes, leading 

to an artificially high signal output due to short-circuiting (Scott, 2020), our results suggest that the PIDs in our array do not 

experience this effect. Instead, sensor responses generally decrease in a monotonic and nonlinear fashion with increasing RH. 

Moreover, the RH-induced decrease in sensitivity is larger for isoprene than it is for α-pinene, indicating that this effect is 

compound-specific. Unfortunately, the nonlinear and compound-specific relationship between PID sensitivity and RH does 315 

not seem to be easily parameterizable. Ultimately, while our PIDs may involve technologies that aim to prevent sensitivity 

decreases under high humidity conditions, these results suggest that PID responses can still be strongly and unpredictably 

dependent on RH. 

The bottom row of Figure 5 shows EC sensitivity to isoprene and α-pinene as a function of RH. Unlike the PID 

sensors, EC sensors do not show clear trends with increasing RH for either compound. This is in contrast to previous work, 320 

which found that exposure to water vapor can affect responses because of RH-induced changes in the sensor electrolyte that 

affect the kinetics and thermodynamics of electro-oxidation (Farquhar et al., 2021). Water vapor has also been found to affect 

long-term EC responses (Hitchman and Saffell, 2021), but this is beyond the scope of this study. EC signals were generally 
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much noisier than other sensors, and thus any trends in sensitivity might be partially obscured by this high noise level. 

However, these results suggest that, without considering long-term effects, RH does not have a clear impact on EC sensitivity 325 

to these VOCs. 

The effects of RH on MOx sensor responses are more complicated, due to changes in both the power law response 

parameters. Figure 6 shows responses of one Type 1 and one Type 2 MOx (both operated at 5.25V) to isoprene and α-pinene 

at different RH values, in terms of the response parameters A and β (the associated calibration curves are shown in Figure S1 

in the Supporting Information). For MOx sensors, an increase in humidity can cause decreased resistance and an increase in 330 

electron affinity, which induces compound-specific changes in response (Fine et al., 2010). This effect is dependent on the 

sensor’s operating temperature, and should be less pronounced at higher temperatures (Bârsan and Weimar, 2003; Korotcenkov 

et al., 2007). We were particularly interested to see if changes in MOx response caused by RH changes could be parameterized 

in terms of the sensitivity A and the power-law coefficient β, as prior work suggests that SnO2 sensors measuring certain 

organic compounds obey a simple relationship (log(A) ~ β) under changing humidity (Chabanis et al., 2003). For MOx type 2 335 

(right panel of Figure 6), this relationship holds across relative humidity and compounds; moreover, in most cases an increase 

in RH causes an increase in the power law coefficient and a logarithmic decrease in the sensitivity. This suggests that, with 

more data, it may be possible to accurately predict the effect of changing RH on MOx Type 2 responses to VOCs; though this 

is expected to be heavily compound-specific, as certain VOCs do not exhibit this response behaviour (Chabanis et al., 2003). 

However, the relationship between fit parameters is markedly less clear for MOx type 1 (left panel of Fig. 5), as there does not 340 

appear to be a consistent relationship between increasing RH and β.  

 
Figure 6: MOx responses to isoprene (circles) and α-pinene (triangles), plotted in the parameter space of the power-law parameter 
β (dimensionless) vs. sensitivity A (mV/ppbβ). The dotted black line gives the best fit line for all data measured for MOx Type 2. 
 345 
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3.3 Sensor Array Responses to Binary Mixtures 

Real-world environmental VOCs are almost always present within complex mixtures, which poses a measurement problem 

for non-specific VOC sensors such as the ones examined here. Additivity of air sensor responses to mixture components would 

help to simplify this problem, but because of the potential for cross-interferences between VOCs such additivity is not a given. 

To investigate this, we exposed the sensor array to two binary mixtures of 1-hexene and 1-octene, with molar ratios of 1:1 and 350 

3:1.  

Figure 7 shows binary mixture responses of PID and EC sensors to the two binary mixtures; for simplicity, results for 

only the most sensitive sensors are shown. Table S2 in the Supporting Information summarizes the fitted sensitivities to each 

mixture. For the high-sensitivity PID, the mixture measurement is consistent with linear additivity: sensitivity is 2.5 × 10-1 (± 

4.2 × 10-3) mV/ppb to 1-hexene and 1.2 × 10-1 (±  2.1 × 10-3)  mV/ppb to 1-octene, and the observed sensitivity to the 1:1 355 

mixture is 1.7 × 10-1 ± (2.3 × 10-3)  mV/ppb (expected 1.8 × 10-1 mV/ppb), while the observed sensitivity to the 3:1 mixture is 

2.0 × 10-1 (± 3.4 × 10-3)  mV/ppb (expected 2.1 × 10-1 mV/ppb). The 10.0 eV also showed a proportional response to the 1:1 

mixture, and the observed 3:1 sensitivity falls close to the expected value.  The EC sensor signals (bottom panels of Figure 7) 

also obey additivity within uncertainty, though the high measurement noise makes the EC mixture response uncertainties much 

higher than those of PIDs. The observed linearly additive nature of these sensor responses to mixtures is consistent with 360 

expectations based on the principles of operation of PID and EC sensors (Baron and Saffell, 2017; Freedman, 1980). 
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Figure 7: Sensor responses to 1:1 (purple) and 3:1 (magenta) mixtures of 1-hexene (red) and 1-octene (blue), for (a) two PIDs and 
(b) two EC sensors. Solid lines indicate the best fit line for each of the points, and the shaded area indicates the 1σ confidence interval; 365 
dotted lines indicate the expected signal assuming additivity. The mixing ratio (x axis) refers to the total amount of VOC (i.e., both 
components of the mixtures) introduced to the sensors. Note that for EC Type 1, the dashed 3:1 mix line partially obscures the 
respective dotted line. EC measurements of the 1:1 mixture are missing due to issues with the EC power supply. 

 

The response of MOx sensors to binary mixtures is more complex. Figure 8 shows the response of two MOx sensors 370 

to the same binary mixtures (1:1 and 3:1 molar ratios of 1-hexene and 1-octene), as well as the expected results of linearly 

combining the power law response curves. For both sensors, the observed mixture response is far below this predicted sum, at 

least at higher mixing ratios (>10 ppb). This indicates that different VOCs can interact with each other on the MOx sensor, 
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leading to a response that is not a linear combination of the individual power law response curves. This is consistent with the 

work of Llobet et al. (1998), who showed that linear addition was an acceptable approximation at low mixing ratios, but found 375 

that MOx responses at higher mixing ratios required the inclusion of an interaction term for each gas pair from the total sum 

of responses. Llobet et al. found that the response of a MOx sensor to a binary mix of VOC1 and VOC2 could be represented 

as A1[VOC1]β1 + A2[VOC2]β2 – A12[VOC1] β1 [VOC2] β2 (Llobet et al., 1998). We applied this equation to our own mixture 

data, calculating a coefficient A12 that represents the interaction between 1-hexene and 1-octene. Calculated values of A12 were 

found to be consistent across the different mixture proportions: for the MOx type 1 sensor, we found A12 = 2.9 × 10-3 (± 1.3 × 380 

10-4) and A12 = 3.4 × 10-3 (± 2.0 × 10-4) for the 1:1 and 3:1 mixtures, respectively; for the MOx type 2 sensor, A12 = 5.3 × 10-4 

(± 1.3 × 10-4) and A12 = 5.7 × 10-4 ( ± 2.0 × 10-4) for the 1:1 and 3:1 mixtures, respectively. Our results suggest that while the 

MOx signals may be additive at low levels of VOC (10 ppb or lower), the additivity approximation is inaccurate at higher 

levels, and that the inclusion of VOC-VOC interaction terms (Llobet et al., 1998) is necessary for accurate estimates of VOC 

levels. 385 

 
Figure 8: MOx responses to 1:1 (purple) and 3:1 (magenta) mixtures of 1-hexene (red) and 1-octene (blue). Solid lines: best fit of 
each VOC or mixture; dotted lines: the predicted mixture signal, assuming additivity; dashed lines: predicted mixture signal that 
includes a fitted interaction term (Llobet et al., 1998). The mixing ratio (x axis) refers to the total amount of VOC (i.e., both 
components of the mixtures) introduced to the sensors. 390 

https://doi.org/10.5194/egusphere-2026-8
Preprint. Discussion started: 15 January 2026
c© Author(s) 2026. CC BY 4.0 License.



18 
 

4 Discussion 

Figure 4 highlights the potential of the sensor-array approach for characterizing VOCs: for ten different VOCs at 

relatively low (10 ppb) mixing ratios, the responses from an array of broadband sensors provides unique information about the 

given VOC. However, our work on RH effects and mixture responses highlights major challenges for transferring laboratory 

results to the practical application of this approach, as both effects are substantial and difficult to parameterize. In a real 395 

atmospheric environment where such a sensor array might be used, RH will likely fluctuate, and the VOCs being sampled will 

almost certainly be present in complex mixtures. Thus, it is important to understand the limitations of this sensor-array 

measurement approach, and possible ways to mitigate the challenges posed by mixtures and RH. 

One potential solution to the RH and mixture problems is to carry out a complete, prescriptive laboratory study that 

exhaustively determines sensor sensitivity responses as a function of RH and the VOC in question, as well as MOx interaction 400 

terms for many different gas pairings. However, such a characterization is not easily scalable: the real atmosphere contains far 

too many VOCs, with too many RH conditions and possible VOC mixture compositions, for such prescriptive lab 

characterization to be feasible. Consider the hypothetical case of fully characterizing sensor responses to 30 important 

environmental VOCs (a conservative number given the complexity of ambient air). Sensor characterization at three 

concentrations and three RH values (low, medium, high) would require a minimum of 270 individual measurements, and if 405 

binary MOx interaction terms were desired the number of experiments would drastically increase due to the 435 possible 

unique pairings. This assumes that the MOx interaction terms are binary only; if sensitivity is also affected by interactions 

among three or more VOCs, this number of experiments becomes much larger still. 

Alternatively, it is possible to limit the effects of RH on sensor measurements by choosing practical applications 

without large RH variance. Our laboratory results suggest that RH extremes pose the largest challenge to the sensor array. At 410 

low values of RH (between 0 and 30%), the effect of RH on PID and MOx sensitivities is large and highly nonlinear, and EC 

sensors will also experience gradual dehydration (Hitchman and Saffell, 2021). At high RH, sensor sensitivity becomes far 

less dependent on RH, though degradation of PID and MOx sensors could occur after prolonged exposure. To avoid these RH-

related issues, an ideal use case for this instrument would involve measurements of air either maintained at a constant and 

moderate RH level, or limited to a narrow range of moderate RH values (e.g. 40-60% RH). For example, a sensor array could 415 

be used to make measurements of VOCs in indoor environments, which are generally maintained at this moderate RH range. 

If measurements of outdoor VOCs are desired, the sensor array could potentially be placed downstream of humidity-removal 

techniques that remove water while preserving water-soluble sample VOCs (Beghi and Guillot, 2006; Lee et al., 2019, 2023),   

The problem posed by VOC mixtures could potentially be addressed by carrying out calibrations that are specifically 

tailored to environmental applications: for example, calibrations could focus on characterizing the array’s responses to 420 

mixtures that are representative of realistic atmospheric VOC sources, such as biomass burning and traffic. Calibration could 

also be carried out via sensor co-location with reference instruments, a technique that has been used in air sensor studies to 

effectively calibrate key pollutants such as SO2 (Hagan et al., 2018), NO2 (Zamora et al., 2023), and PM (Zusman et al., 2020). 
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Co-location has many advantages: the reference instruments are sensitive, specific, reliable, and regularly calibrated. Such a 

calibration for VOC measurements would be challenging, but is possible through the co-location of sensors with a research-425 

grade instrument that measures multiple VOCs (e.g., GC-MS or PTR-MS), and the novel application of data analysis 

techniques that directly interpret air sensor measurements made in the field.   

5 Conclusion 

We investigated the feasibility of using an array of air sensors to make measurements of VOCs. This array consists 

of 12 total PID, MOx, and EC sensors, each with their own unique sensitivities to VOCs. We investigated the array’s responses 430 

to 10 representative VOCs between 5-100 ppb in a controlled laboratory environment, and results highlight the potential of 

such a sensor array in making measurements of VOCs: the entire array of responses clearly gives us unique information about 

the VOC being measured (Figure 4). We also explored the effects of changing RH: PIDs showed a consistent but VOC-specific 

decrease in sensitivity with increasing RH, EC sensor sensitivities changed only slightly or in a predictable manner, and one 

type of MOx sensor saw changes in its signal fit parameters that were consistent across different RH values, but the other MOx 435 

type saw substantial and unpredictable changes in signal due to RH. For a simple binary mixture, we found that PIDs and EC 

signals showed additivity, while MOx sensors did not. All obtained results are consistent with our expectations based on prior 

studies and physical sensing principles. RH and mixture effects on sensor responses do pose some problems for practical usage 

of this measurement approach, but these effects can likely be mitigated by limiting RH variability or employing alternative 

calibration techniques, such as co-location with a reference instrument. 440 

Our results have focused on key aspects of the sensor array’s responses, but there are other attributes of sensor 

responses that should be characterized in the future. We did not investigate the transient behaviour of these sensors (e.g., signal 

response and decay times) in detail, nor did we quantify baseline drift caused by ambient temperature changes or sensor aging. 

These aspects of sensor responses are important areas for future work to address. In addition, this study focuses on a single 

combination of commercially available sensors and operational parameters, but as new VOC air sensors become available, 445 

these too could be incorporated into future studies, potentially leading to an even larger matrix of distinct responses.  

In summary, our laboratory results demonstrate a proof-of-principle for future applications of VOC air sensor arrays. 

Although environmental applications pose unique challenges that cannot all be prescriptively addressed in the laboratory, we 

show that this approach has promise for yielding quantitative, chemically specific information about VOCs. Ultimately such 

an approach could enable lower-cost, distributed VOC measurements, which in turn will contribute to our fundamental 450 

understanding of atmospheric chemical composition and human exposure to air pollutants across a wide range of scales. 
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