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10  Abstract.

Rainfall-induced landslides (RILs) pose a major hazard to infrastructure, ecosystems, and communities across Aotearoa New
Zealand, with events such as Cyclone Gabrielle underscoring the potential scale of their impacts. In this study, we develop a
relatively high-resolution national-scale RIL susceptibility model that includes both conditioning and triggering variables and
use it to assess the impacts of climate change on RIL susceptibility. The model utilises machine learning (ML) (gradient
15 boosted decision trees) to predict RIL susceptibility in response to extreme rainfall events under current and future climate
scenarios at 25m spatial resolution. We use a training dataset of observed landslides triggered by Cyclone Gabrielle in the
Hawke's Bay and Gisborne/Tairawhiti regions. Predictor variables include topographic, geologic, and environmental factors,
with rainfall intensity serving as the primary trigger. Model performance is evaluated using Shapley additive explanations
(SHAP) analysis, alongside standard error metrics, achieving a receiver operating characteristic area under the curve (ROC-
20 AUC) of 0.94. We then apply the model nationally to estimate RIL susceptibility under six current and 24 future storm
scenarios based on NIWA’s high-intensity rainfall design system (HIRDS) datasets and modelled temperature changes under
different shared socioeconomic pathways (SSPs). Results show a substantial increase in RIL susceptibility under warmer
climate futures, with susceptibility increasing disproportionately to rainfall increase. Forest cover is found to play an important
role in mitigating susceptibility. This work presents a robust framework for national-scale RIL susceptibility assessment under
25 specific storm scenarios and provides a national-scale dataset suitable to support climate-resilient land use planning and nature-

based mitigation strategies.

1.1 Introduction

Rainfall-induced landslides (RILs) are a significant natural hazard in Aotearoa New Zealand. For example, Cyclone Gabrielle
in February 2023 is estimated to have caused (NZD)$14 billion in damages, with around (NZD)$1.5 billion of that attributed
30 to landslides (McMillan et al., 2023; Wilson et al., 2023). The cost of RIL damage is primarily due to lost assets and
infrastructure, for example, productive farmland, crops, roads, and buildings. However, RILs can also impact downstream
areas through the transport and subsequent deposition of large sediment loads, which increases turbidity and can bury critical
river habitat, impacting native species. Following Cyclone Gabrielle (McMillan et al., 2023) estimated that around 300 million
tonnes of sediment were mobilised by RILs, with much of that ending up in streams and rivers. For example, in the Esk Valley,
35 they estimated 5.7 million tonnes of soil were eroded; around half of that was delivered to waterways, with 1.5 million tonnes

of sediment deposited on the floodplain to an average thickness of 80cm (McMillan et al., 2023). RIL susceptibility is
1
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influenced by a variety of topographic, geologic, and environmental factors, such as slope, rock type, soil depth and porosity,
antecedent soil moisture, land cover (vegetation), and land use (Ehsan et al., 2025). Heavy rainfall then acts as a trigger,
saturating the soil, which increases its mass and reduces shear strength, which can lead to slope failure and landslides. Thus,
40 variability in the intensity and direction of rainfall (during a given storm), in concert with local topography (e.g. aspect),
impacts where and when RILs occur (Ehsan et al., 2025). As a result of climate change, some regions are expected to
experience increases in the frequency, quantity, and intensity of precipitation received during rainfall events. This effectively
compresses the recurrence interval of extreme rainfall (storm) events; consequently, in these regions, the frequency and
intensity of RILs is likely to increase in the future (Crozier, 2010a; Gariano & Guzzetti, 2016). Accurate susceptibility maps
45  of RILs under current and future climate conditions are important tools for reducing RIL exposure to people and infrastructure,
for both existing and future development. Additionally, these products can be used to better inform land use decision-making
and facilitate the implementation of nature-based solutions, for example, retiring RIL-prone hill country pasture for more
resilient forest cover (Griffiths et al., 2020; Phillips et al., 2021; Spiekermann et al., 2022). Thus, it is critical to improve our
understanding at a national scale of what areas are most susceptible to RIL currently and how this may change under future

50 storm and climate scenarios.

To date, most of New Zealand’s RIL susceptibility mapping falls into two categories: broadscale erosion and/or landslide
susceptibility mapping relying on a mixture of heuristic and parametric statistical models, and physically based RIL modelling.
Broadscale maps delineating highly erodible land (HEL) (which includes landslide susceptibility) for New Zealand were first
developed in 2006 (Dymond et al., 2006), with the most recent update in 2023 (Dymond & Shepherd, 2023). These HEL
55 susceptibility maps were generated by applying thresholds to a series of data layers (slope, forest cover, geology) to identify
areas of high landslide (and earthflow) susceptibility at the hillslope scale. Expert knowledge is used to determine these
threshold values, and there is no trigger data (rainfall) included as part of the analysis. Critically, areas with forest cover are
delineated as low susceptibility regardless of slope and geology, when in reality, forest cover mitigates but does not eliminate
the likelihood of RIL, especially during large storm events (Fuller et al., 2016; Griffiths et al., 2020; Phillips et al., 2021).
60 Consequently, these data are suitable for mapping areas of increased landslide susceptibility but are unable to generate
predictions in response to specific storm or climate scenarios, and are of limited use in forested areas. Ex post facto analysis
of these datasets in conjunction with observed landslides attributed to specific storm events has reported accuracy of 58%
(Dymond et al., 2006) to 75% (Dymond & Shepherd, 2023) at the hillslope scale, but as low as 26% on a per-pixel basis
(Dymond et al., 2006). However, commission errors have not been reported for these datasets. The application of statistical
65 models has mostly focused on correlation and regression-type solutions at the catchment to the regional scale (De Rose, 2013;
Massey et al., 2025; Smith et al., 2021; Spiekermann et al., 2022). Rosser et al. (2021) reported on the development of a
national-scale logistic regression model for deployment as a forecasting tool, which combines conditioning factors and event
rainfall. However, forecasts are produced in response to specific rainfall events and are not provided as a national dataset.
Statistical models of earthquake-induced landslide susceptibility have also been produced (Bloom et al., 2023). Models based
70 primarily on accounting for the water content of soils as a triggering factor have shown success over smaller study areas
(Crozier, 1999; Hufschmidt & Crozier, 2008). Conversely, more complex physically based RIL modelling has been completed
for some areas of New Zealand (Claessens et al., 2007; De Sy et al., 2013; Howard et al., 2025; Wilkinson et al., 2002). These
models consider underlying conditioning and trigger factors (rainfall and earthquakes) and often integrate debris flow or runout
models to predict both the initiation point and path of landslide debris (Howard et al., 2025). However, they are computationally
75 and labour-intensive and typically rely on high-resolution digital elevation models (e.g., LIDAR), which are not yet available

with complete national coverage. Because of these limitations, they have not been deployed at a national scale. Their use has
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primarily focused on heavily populated urban regions, or areas with critical assets and infrastructure (e.g., road networks), and

where there is sufficient data and investment to support their development.

Internationally, there have been recent advances in RIL susceptibility modelling that leverage nonparametric machine learning

80 (ML) algorithms at a broad scale. (Chen et al., 2024; Ehsan et al., 2025; Mondini et al., 2023; Ngo et al., 2021; Semnani et al.,
2025; Yin et al., 2023). ML algorithms can exploit large observational datasets of RIL events, alongside myriad underlying
potential explanatory or conditioning variables (e.g., geology, topography, land cover), from which models of RIL
susceptibility can be developed. In particular, tree-based ensemble methods (e.g. random forests and numerous boosted tree
algorithms) have found widespread use and success (Ehsan et al., 2025). Tree-based ML models are particularly suited to RIL

85 modelling because they are capable of capturing non-linear interactions among predictor variables, and have been shown to
have higher predictive capability than logistic regression approaches, which assume linear relationships between predictors

and log-odds (Al-Najjar et al., 2021; Chen et al., 2017; Couronné et al., 2018). Recently, ML models have been developed that
move beyond static RIL susceptibility by combining underlying conditioning factors (e.g. topography, geology and land cover)

and event-specific rainfall (Bordoni et al., 2021; Mondini et al., 2023; Segoni et al., 2018; Shu et al., 2024). They can therefore

90 be used for dynamic RIL susceptibility mapping and potentially forecasting (Bordoni et al., 2021; Mondini et al., 2023), as
well as assessing the impact of climate change on RIL susceptibility (Han & Semnani, 2025; Semnani et al., 2025; Yin et al.,
2023). ML approaches are data-driven, with the most useful predictors identified through a combination of feature importance
metrics and model cross-validation to facilitate feature selection (Ehsan et al., 2025; Han & Semnani, 2025; Semnani et al.,
2025). Leveraging ML to map RIL susceptibility requires less expert knowledge of the underlying processes that drive RIL

95  susceptibility, is cost-effective to scale nationally, and can provide high predictive accuracy that accounts for trigger events
(i.e. storms) (Ehsan et al., 2025). However, large observational datasets are required for model training and testing. And,
considerable thought must be put into variable and model selection, and subsampling strategies to deal with the often significant
class imbalance between landslide and non-landslide observational instances (Achu et al., 2023; Gu et al., 2024; Han &
Semnani, 2025). Post hoc analysis of model predictions can be performed using feature importance and tools such as local

100 interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016) and Shapley additive explanations (SHAP) (Lundberg
& Lee, 2017) to investigate how individual variables influence model predictions (Achu et al., 2023; Wen et al., 2025). These
tools can provide confidence in model performance (i.e. how predictions are made) and consequently elucidate further insight

into RIL processes and potentially causation (Heskes et al., 2020). Furthermore, once ML models are created, it is relatively
straightforward to generate susceptibility maps to investigate the potential impact of changes in land cover and land use

105  (Griffiths et al., 2020), and future storm/climate scenarios (Han & Semnani, 2025; Semnani et al., 2025). Despite their success
internationally, ML approaches for RIL susceptibility mapping in New Zealand have, to our knowledge, been limited to smaller
study areas. For example, Griffiths et al. (2020) used gradient boosted decision trees to model landslide susceptibility in the
Tasman region, with the model output used to assess the importance of native forest cover in reducing landslide susceptibility.
They reported excellent predictive capability when training and validating the model with landslides observed from Cyclone

110  Gita; however, this model has not been expanded nationally. More recently, Smith et al. (2021) developed both logistic
regression (parametric) and random forest (nonparametric) models to predict landslide susceptibility for a small number of
study catchments in New Zealand. They found that random forest outperformed logistic regression when validated in the same
study area, while logistic regression mostly outperformed random forest training and testing on different regions. These models

have not been deployed nationally, and the output is not publicly available.

115 In this study, we first develop a ML model (Light-Gradient Boosting Machine (LightGBM)) capable of predicting RIL
susceptibility consequent to rainfall events. To do this, we leverage a training and testing dataset of observed landslides over

the Hawke’s Bay and Gisborne/Tairawhiti regions that were triggered by Cyclone Gabrielle in mid-February 2023. Using the
3
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trained model, we then generate predictions at a national scale, for three different extreme rainfall event recurrence intervals
(10, 50, and 100 years) and for two different future climate Shared Socioeconomic Pathways (SSPs) (2-4.5, 3-7.0) (O’ Neill et
120 al., 2017; Riahi et al., 2017), at two time periods (2041-2060 and 2080-2099). We then use these outputs to assess changes in
RIL susceptibility due to different future climate pathways. The workflow developed here is designed to be transferable to

other temperate and high-intensity rainfall regions where comparable datasets are available.

2 Methods
2.1  Study Domain

125 Cyclone Gabrielle is estimated to have been a 1 in 100-year average recurrence interval (ARI) event; however, rainfall delivery
across the country was highly variable, with some areas exceeding a 250-year ARI (Massey et al., 2025). The Hawke’s Bay
and Gisborne/Tairawhiti regions (Fig. 1) on the east coast of the North Island experienced the most intense rainfall and
extensive RIL damage (Massey et al., 2025). However, even here, rainfall varied considerably depending on location.
Consequently, the observed impacts from this event represent a range of different rainfall intensities across a large geographic

130 area. Furthermore, within these regions exists a variety of topography, land cover, soils, and geology that are broadly reflective
of the North Island. While the land cover and topography of the South Island are similar to those of the North Island, geology
is markedly different. The mountainous regions of the South Island are dominated by harder metamorphic rock types (e.g.
greywacke) compared to the erosion-prone soft sedimentary rocks (mudstone and sandstone) and volcanics (e.g. basalt) of the
North Island. Consequently, their RIL susceptibility and the relative importance of the underlying conditioning factors may

135  differ markedly. Despite this potential limitation, the impact of Cyclone Gabrielle on Hawke’s Bay and Gisborne/Tairawhiti
provides an ideal scenario with which to develop a machine learning based model of RIL susceptibility that can be applied at

a national scale.

»
I Hawke's Bay Region
Gisborne/Tairawhiti Region

North Island (excluding

Hawke's Bay and Gisborne/

Tairawhiti)

South Island (including
L Rakiura/Stewart Island)

Figure 1: Study area domains.
140 2.2 RIL Mapping

To build a master dataset of RIL resulting from Cyclone Gabrielle in Hawke’s Bay and Gisborne, we acquired Sentinel 2

imagery from just before (5, 7, 10 February 2023 pre-cyclone) and immediately after the cyclone (20, 22 February 2023 post-
4
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cyclone) (scene IDs provided below), which impacted New Zealand from 11 February 2023 to 17 February 2023. Due to
patchy cloud cover in the pre-cyclone and post-cyclone imagery, we built a cloud-free mosaic by selecting the pixel with the
145  closest cloud-free date to the cyclone for each group. We then calculated the normalised difference vegetation index (NDVI)
for the pre-cyclone and post-cyclone imagery. To identify RIL pixels, we calculated the change in NDVI (ANDVI) and
empirically determined a suitable threshold value to identify transitions to bare ground between the two images. Areas with a
ANDVI value exceeding the threshold were determined to be impacted land, while ANDVI values below this were not
impacted. We then separated landslides from flood damage/silt deposition by applying a logic filter where only land with a
150 slope >10° was considered a RIL, where slope was derived from the NZSOS DEM (Columbus et al., 2011), which was
interpolated to the same 10m grid as the Sentinel 2 imagery. Technically, this method only identifies transitions to bare ground,
and there are mechanisms other than RIL that may be responsible for this, e.g. forest clearance, crop harvesting, drought,
mining, etc. However, due to the tight time bracketing between the pre-cyclone and post-cyclone imagery (~2weeks, with ~3-
5 days of storm activity), it is unlikely that processes other than RIL are responsible for extensive areas of bare ground transition
155 onland >10° during this short period. It is important to note that this method of landslide mapping identifies and includes both

the initiation point and run-out zone (where the land exceeds a 10° slope).

To refine the RIL training data set, we downloaded a secondary Cyclone Gabrielle landslide inventory from Dragonfly Data
Science (Dragonfly Data Science, 2023). They completed a landslide mapping exercise (post-Cyclone Gabrielle) using a
similar methodology for the entire North Island. However, their work utilised a longer temporal window for both the pre-
160 cyclone and post-cyclone imagery; consequently, it may include spurious results (bare ground transitions caused by non-RIL
processes). We merged these data with our own, including only RIL pixels identified in both datasets as positive results. RIL
pixels identified in only one of the datasets were classed as possible RIL. These areas were excluded from the training and
testing datasets for both RIL and no-RIL classes. This process minimises potential errors in the identification of no-RIL:RIL
in the training and test datasets. Based on this classification, we calculated that ~1% of the Hawke’s Bay and
165 Gisborne/Tairawhiti regions experienced landslide damage, which aligns with post-cyclone assessments by Manaaki
Whenua/Landcare Research (McMillan et al., 2023). Because we used 10m satellite imagery, it is probable that RILs that are
significantly smaller than this were missed in the mapping exercise and consequently could be included in the no-RIL dataset.

However, due to their low prevalence (relative to true no-RIL areas), the impacts of this are likely to be minimal.

2.3  Predictor Variables

170  Thirty potential predictor variables were collected and/or derived from various national and international datasets. The twelve
predictor variables that were used in the final model are shown in Table 1, along with their source. Datasets were resampled
to the same 25m pixel grid using bilinear interpolation. Vector datasets were rasterised to the 25m grid. Small data gaps were
present in some of the datasets; these were filled using bilinear interpolation for floating-point variables or majority filtering
for integer values. Not all datasets extended to the same coastal boundary; to remedy this, we interpolated (and filled holes)

175 beyond the coastline before clipping all data to the same boundary.

Cyclone Gabrielle rainfall data were provided by the National Institute of Water and Atmospheric Research (NIWA) from the
augmented virtual climate station network (VCSN) at ~500m. We used the 72-hr period spanning 12-14 February 2023
(starting 09:00 local time), corresponding to the period of active cyclone-related rainfall over New Zealand. Statistically
resampling (i.e. ignoring local topography) to a 25m grid introduces uncertainty at local scales but still preserves the broad
180 patterns of the dataset. A potentially more accurate physically based downscaling of the rainfall products is beyond the scope
of this work. Storm rainfall as a proportion of annual rainfall was calculated against a 25m resampling of the mean annual

rainfall from the New Zealand environmental data stack V1.1 (NZEnvDS), which is provided at 100m (McCarthy et al., 2021).
5
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The topographic variables were all derived from the Forest and Buildings removed Copernicus 30m digital elevation model

(FABDEM) version 1.2 (Hawker et al., 2022; Neal & Hawker, 2023). The FABDEM was resampled to the 25m grid using
185  cubic convolution; child variables (e.g. slope, curvature, etc) were then calculated. Canopy height is a global 30m product for
2019 derived from a combination of multispectral Sentinel 2 data and spaceborne lidar from the Global Ecosystem Dynamics
Investigation (GEDI) mission (Potapov et al., 2021), and has been shown to provide suitable accuracy for broad-scale canopy
height assessment in New Zealand (Ng et al., 2025). Soil variables are taken from the New Zealand land resource inventory
(NZLRI) soils (rooting depth, depth to zone of slow permeability) (Newsome et al., 2008), and the New Zealand fundamental
190 soils layer (NZFSL) (particle size, drainage) (Barringer, 2018). It is important to note that the NZLRI layers do not provide
data for urban areas; consequently, these areas were set as null values for model training and prediction. Depth to the
hydrogeologic basement is a national dataset created by GNS Science (GNS Science, 2019; Westerhoff et al., 2019). Because
not all national rock types are present within the training area (Hawke’s Bay and Gisborne/Tairawhiti), geology could not be
used directly as a categorical predictor variable; instead, we use rock density as a proxy for rock strength. To do this, we
195 created an updated version of Tenzer et al. (2011) national rock density map, based on the most recent NZGeol250 (Heron,
2023), which fills some data gaps present in the original dataset. We do not include aspect variables (e.g. northness) because
their influence on RIL susceptibility is likely to depend on storm direction, which is unknown for future scenarios. Similarly,
we do not include antecedent soil moisture, which reflects prior rainfall and therefore antecedent soil saturation, and has been
shown to be an important control on RIL susceptibility (Crozier, 1999; Leonarduzzi et al., 2021). We omit this predictor

200 because pre-storm rainfall and soil moisture cannot be specified for future storm scenarios.

Variable

Variable Source Group

Calculated from FABDEM (Neal & Hawker, 2023)

Variable Name Variable Description

Combined profile and planimetric
land curvature

Cyclone Gabirielle total rainfall (12-
14 February) as a proportion of
annual rainfall

Cyclone Gabrielle total rainfall (12-

Curvature Topography
Cyc. Gab. Total Rain (mm) divided by mean

Cye. Gab. Rain Prop. Ann. annual rainfall (McCarthy et al., 2021)

Water

205

Cyc. Gab. Total Rain (mm)
Depth to Slow Perm. (m)
Drainage (rank)

Forest Height (m)

HGB Depth (m)

Particle Size (rank)

Rock Density (Mg/m3)
Rooting Depth (m)

Slope (deg)

Topo. Wetness Ind.

14 February) (mm)

Depth to zone of slow permeability
(m)

Soil drainage relative ranking
Height of forest canopy (m)

Depth to hydrogeological basement

Soil particle size relative ranking

Density of main rock type from
NZGeol250

Rooting depth (m)
Slope angle in degrees

Topographic Wetness Index

Cyclone Gabrielle rainfall data from NIWA VCSN

NZLRI (Newsome et al., 2008)
NZFSL (Barringer, 2018)

Potapov et al., (2021)
GNS Science, (2019)

NZFSL (Barringer, 2018)

Main rock type from NZGeol250 (Heron, 2023)
matched to rock density from Tenzer et al., (2011)

NZLRI (Newsome et al., 2008)

Calculated from FABDEM (Neal & Hawker, 2023)

Calculated from FABDEM (Neal & Hawker, 2023)

Water
Sediments

Sediments

Vegetation

Geology
Sediments
Geology
Sediments

Topography

Water

Predictors tested but not used in the final model: Canopy Cover Percentage, Catchment Area, Catchment Slope, Drop (D8), Flow

Accumulation, Forest/Not-forest, Gravel Content, Multiscale Terrain Position Index, Plan Curvature, Profile Curvature, Profile Curvature
Variability (5x5 Standard Deviation), Ranked Rock Strength, Roughness, Slope Length, Slope Variability (5x5 Standard Deviation), Soil
Induration, Terrain Ruggedness Index.

Table 1: Final set of predictor variables used in the model and their source.

LightGBM is unaffected by multicollinearity; however, the inclusion of low-quality (redundant) variables can increase model

complexity and the potential for overfitting. Thus, to help identify the most useful variables and reduce the total number of

6
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variables, we calculated a correlation matrix for all potential predictors. This identified five main groups of data: geology, land
cover, sediments, topography, and water. Variable selection aimed to retain at least one variable from each group in the final
set of predictors and minimise the use of highly correlated variables. We used this correlation analysis in conjunction with

SHAP analysis to identify the best predictor variables for use in the final model.

210 2.4  Model Development
2.4.1 Training, Validation, and Testing Data

We use the following definitions to refer to the data subsets described herein: 1) training data are a random subset of the initial
data used for model training; 2) validation data are the out of fold data from a random K-fold (10-folds) cross validation of the
training data, which is used to select predictor variables and tune hyperparameters; 3) testing data are a random subset of the
215 initial data that are held out from training and validation and used solely to assess final model performance against unseen

data.

To develop training and testing datasets from the landslide mapping dataset, we first polygonised the satellite-mapped
landslides. This serves to aggregate individual pixels into connected landslide features. From this, we randomly selected a 20%
subset of these landslide polygons for use as the holdout testing dataset. Polygonising the landslide dataset first is important,
220 as it ensures that training and testing pixels are not potentially selected from the same landslide feature. This step minimises
the likelihood (and hence impact) of spatial autocorrelation between the training and testing datasets, which can falsely inflate
model accuracy metrics due to data leakage between the training and testing datasets (Kattenborn et al., 2022; Koldasbayeva

et al., 2024).

The training dataset includes all pixels within the 80% landslide polygon subset, as well as a random selection of non-landslide
225  pixels, which were selected as follows. After identifying the landslide training features, we then randomly selected pixels from
the entire Hawke’s Bay and Gisborne/Tairawhiti regions where no landslides were identified. Pixels that were identified as
possible landslides, i.e. mapped as a landslide by one but not both mapping products (2.2 above) were excluded. A 10m buffer
was applied to the landslide and possible landslide polygons as an exclusion zone; this minimises the potential inclusion of
mixed pixels along the edges of the mapped landslide features. Due to the severe class imbalance between no-RIL and RIL
230 pixels (~99:1), no-RIL pixels were then undersampled to produce a 60:40, 55:45 and 50:50 no-RIL:RIL data ratio. Ultimately,

a 50:50 split was selected as it provided the best model performance.

For the test dataset, we combined all pixels within the 20% hold-out subset of landslide polygons (above) with a random
selection of no-RIL pixels that were not used in training, selected following the same criteria as above. Additionally, we applied
a 72m (5x5 pixel neighbourhood) buffer to the no-RIL pixels used in training. This reduces potential spatial autocorrelation

235  between the no-RIL training and testing instances. The test data set was compiled at the same ratio as observed in the event,
i.e. 99:1 (no-RIL:RIL). The final training dataset includes 358,880 25m pixel observations (50:50 ratio), with the holdout test
dataset comprising 3,898,278 25m pixel observations (99:1 ratio).

2.4.2 Model Architecture

The model was implemented in Python using LightGBM, a gradient-boosted decision tree algorithm. Hyperparameters were
240 optimised using Optuna via the LightGBMTunerCV framework with ten-fold cross-validation on the training dataset.
Optimisation minimised binary log loss. Up to 2000 boosting iterations were permitted, with early stopping after 50 rounds
without improvement. The Optuna optimisation was allowed to run for up to 12 hours. Final tuned hyperparameters are

reported in Appendix A. We calculated feature importance and SHAP values on the out-of-fold data and used this alongside
7
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correlation analysis to identify the most useful predictor variables. The least useful variables were dropped, and the workflow
245 was rerun to determine the final set of (twelve) variables (Table 1). Care was taken to minimise the use of highly correlated
variables (to minimise model complexity), but retain variables from each correlation grouping (2.3 above). We then used the

values from the Optuna hyperparameter tuning to retrain the model on the entire training dataset.

The model was trained on a 50:50 (majority undersampled) distribution of no-RIL:RIL, when in reality the positive case (RIL)
has a much lower prevalence (approximately 1%, 99:1 noRIL:RIL). Thus, the probabilities output from the model may require
250 calibration and/or scaling (e.g. prior probability adjustment) before they can be interpreted as real-world probabilities for
quantitative exposure assessment (Pozzolo et al., 2015; Saerens et al., 2002). We assessed model calibration on a 50:50
distribution subsample of the test dataset and compared raw model output with both sigmoid and isotonic calibration to ensure
stable prediction frequency across the probability range (Fig. B1). The raw model output was already well calibrated, and
neither sigmoid nor isotonic calibration meaningfully improved model quality. To adjust the raw model probabilities (under
255 the 50:50 training prevalence) to the observed event prevalence (99:1 no-RIL:RIL), we applied a prior-probability (scaling)
adjustment following Saerens et al., (2002) using Eq. (1). Thus, the final probabilities reported here (and provided in associated

datasets) represent event-conditional RIL probability for a specified storm scenario.

P . P real
model Pt B
Pcorrected = P T 1-P
P . ~real + (1 —P ) . real
model P, R model 1— P, .
train train

()
260 Where: Poder: raw model output probability from the classifier trained on a 50:50 dataset
Puain = 0.5: event prevalence in the training data
Preat = 0.01: observed event prevalence (Cyclone Gabrielle; 99:1 no-RIL:RIL)

Peorrected: prevalence-adjusted probability used for thresholding/exposure calculations

265 Finally, we reran the model on the holdout test data, calculated error metrics and completed SHAP analysis to assess real-
world deployment performance. SHAP was used to interpret the fitted model’s feature attributions (predictive explanations)
rather than to infer causal effects. SHAP analysis, receiver operating characteristic (ROC) and precision-recall curves were
calculated on the raw (unscaled) model output. The other error metrics (Brier score, F1, precision, recall, and accuracy) were
calculated on the scaled probabilities. Test data were not seen in the model training phase, and through the polygonised

270 randomisation process of RIL pixels, test data cannot be selected from the same landslide feature as the training data. Similarly,
the buffering of non-RIL pixels minimises the effect of data leakage due to spatial autocorrelation. Finally, the test data
represent the true class distribution ratio of non-RIL to RIL (99:1); thus, the accuracy metrics reported for this analysis are
representative of absolute model accuracy for the Hawke’s Bay and Gisborne/Tairawhiti regions in relation to Cyclone

Gabrielle.
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275 2.5  Predicting RIL susceptibility due to future storms

To predict RIL susceptibility at the national scale, we used data from the NIWA high-intensity rainfall design system (HIRDS)
(Carey-Smith et al., 2018). HIRDS is a national scale model output of rainfall depths (mm) for a range of different storm
durations (10 minutes to 120 hours) and recurrence intervals (1.58-250 years), with 144 different scenarios output at 2000m
spatial resolution. For this study, we used a 24-hour and 72-hour storm duration, with a recurrence interval of 10, 50, and 100

280 years (3 scenarios). We statistically resampled the HIRDS data to the 25m study grid using bilinear interpolation and calculated
storm rainfall proportional to annual rainfall calculated from the NZEnvDSV1.1, which was also statistically resampled from
100m to 25m (McCarthy et al., 2021). We then reran the model, replacing the Cyclone Gabrielle precipitation variables (storm
total precipitation and storm total precipitation as a proportion of annual precipitation) with each of the HIRDS-derived
datasets. Model outputs were generated at the national scale, i.e. extending outside of the initial training and testing geographic

285 domain (Hawke’s Bay and Gisborne/Tairawhiti). To provide confidence in this approach, we compared the predictor data
distributions for Hawke’s Bay and Gisborne/Tairawhiti with the rest of the North Island and the South Island (including
Rakiura/Stewart Island) (Appendix C).

HIRDS data can also be used to estimate rainfall under future climate scenarios by applying a percentage change factor per
degree of warming (Table 2) (Carey-Smith et al., 2018). Where temperature change is calculated as a national scale mean for
290 different climate scenarios (Table 3). In this case, we used two SSP (2-4.5, 3-7.0) scenarios for the time periods 2041-2060
and 2080-2099. Temperature change data comes from the most recent downscaled climate projections for New Zealand
produced by NIWA (NIWA, 2025) from a subset (six) of global models (Bodeker et al., 2022; Ministry for the Environment,
2018). The same three 24-hour and 72-hour storm durations and recurrence intervals (10, 50, 100 years) were run for each
SSP. Thus, a total of 6 current climate and 24 future climate RIL prediction layers were created, relating to each storm, climate,

295 and recurrence scenario. These output datasets comprise the main data asset contribution of this work.

A statistical analysis of the potential increased RIL susceptibility due to a warming climate was then completed. First, we
calculated the total land area in each New Zealand region with prevalence-adjusted RIL susceptibility exceeding 5% threshold
(t = 0.05) for each storm and climate scenario, denoted A, (true positive (TP) + false positive (FP)). To estimate the total
area likely to actually experience a RIL event for a given scenario, we applied a first-order correction based on the confusion

300 matrix at the same threshold t, converting the thresholded susceptibility area (TP +FP) into an expected impacted area (TP +
false negative (FN)) using precision and recall estimated from the holdout test region. Because these error rates were derived
for the training/test domain and may vary across regions and scenarios, we interpret the corrected values only as screening-
level estimates suitable for national comparison.

precision x Apreq

Aimp recall
305 (@)
Where: Apeq = area above threshold (TP + FP)
Aimp = estimated impacted area (TP + FN)
Precision and recall are evaluated on the holdout test set at threshold t
We then calculated the total number of buildings and total length and area of the road network exposed to RIL susceptibility

310 exceeding a 5% threshold, using the Land Information New Zealand (LINZ) NZ Building Outlines product (LINZ, 2025a),
9
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and NZ Road Centrelines (LINZ, 2025b), respectively. The building outlines product includes all structures that are mapped
through feature extraction of national aerial imagery, and thus includes higher value structures, e.g. houses, hospitals, schools,
high rises, and low-cost structures, e.g. small sheds, garages, and greenhouses. These are mostly undifferentiated; therefore,
building counts cannot be directly equated with financial exposure. To identify buildings that are potentially exposed to RIL,
315  we simply counted all building footprints that fell within or intersected the RIL susceptibility areas exceeding 5% probability.
To assess the potential impact of modelled RIL scenarios on the national road network, we first buffered the road centrelines
product by the typical New Zealand road lane width (3.5m), and the number of lanes, i.e. road lane width (3.5m) multiplied
by half the number of road lanes. We then intersected this layer with the areas of RIL susceptibility exceeding a 5% probability

to identify the impacted road area; finally we intersected this layer with the road centrelines to calculate the impacted road

320 length.
ARI 10yr ARI 50yr ARI 100yr
24hr 8.10 8.40 8.60
24hr 2-4.5 2041-2060 10.47 10.86 11.12
24hr 2-4.5 2080-2099 17.34 17.98 18.41
24hr 3-7.0 2041-2060 12.58 13.04 13.35
24hr 3-7.0 2080-2099 25.69 26.65 27.28
72hr 6.50 6.80 6.90
72hr 2-4.5 2041-2060 8.40 8.79 8.92
72hr 2-4.5 2080-2099 13.91 14.56 14.77
72hr 3-7.0 2041-2060 10.09 10.56 10.71
72hr 3-7.0 2080-2099 20.62 21.57 21.89

Table 2: HIRDS change factor percentages applied for each storm length (hrs) and recurrence interval (yr) (in bold). Values
extracted from Carey-Smith et al., (2018). HIRDS change factor applied for each scenario (italics) based on multiplication with the
325 projected change in mean national air temperature (Table 3) (NIWA, 2025).

Climate Mean Tair

Scenario change (°C)
2-4.5 2041-2060 1.29
2-4.5 2080-2099 214
3-7.0 2041-2060 1.55
3-7.0 2080-2099 3.17

Table 3: Mean temperature change for each SSP scenario, national mean calculated from NIWA projections (NIWA, 2025).

330 3  Results
3.1 Model Accuracy and Predictor Variable Importance

Table 4 shows several different error metrics calculated for the model and for different probability thresholds. The model

produces well-calibrated probabilities, with Brier scores of 0.018 (training) and 0.010 (testing) and log loss of 0.088 (training)

10
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and 0.040 (testing), reflecting improved calibration on the real-world, imbalanced (99:1) testing dataset. Precision, recall and
335 accuracy metrics are included for three threshold values (1%, 5%, 10%), with balanced accuracy (which accounts for class

imbalance) ranging from 75-86% depending on the threshold applied.

10% 5% 1%
Probability | Probability | Probability
Training Testing Threshold | Threshold | Threshold
ROC AUC (RIL) NA 0.940 NA NA NA
ROC AUC (No-RIL) NA 0.940 NA NA NA
PR AUC (RIL) NA 0.276 NA NA NA
PR AUC (No-RIL) NA 0.999 NA NA NA 340
Binary Log Loss 0.088 0.040 NA NA NA
Brier Score 0.018 0.010 NA NA NA
Precision NA NA 0.202 0.145 0.072
Recall NA NA 0.531 0.650 0.849
F1 Score NA NA 0.293 0.237 0.132
RIL Accuracy NA NA 53.1% 65.0% 84.9%
No-RIL Accuracy NA NA 97.6% 95.7% 87.5%
Accuracy NA NA 97.1% 95.3% 87.5%
Balanced Accuracy NA NA 75.4% 80.3% 86.2%345

Table 4: Selected error metrics. ROC AUC = Receiver operating characteristic area under curve; PR AUC = Precision recall area
under curve.

350 ROC curves for the holdout test dataset are presented in Fig. 2a. An area under curve (AUC) value of 0.94 is reported for both
the RIL and no-RIL classes (where a value of 1 is perfect prediction and 0.5 is no better than random), which indicates that
the model has high predictive capability; however, for highly imbalanced classes, ROC-AUC alone can be misleading. Figure
2b shows the precision-recall (PR) curve for both classes, along with the baseline precision for a model that predicted all
instances as true for each class (i.e. a majority and a minority baseline classifier is included). No-RIL PR-AUC is very high at

355 0.999 and exceeds the baseline AUC of 0.989. However, for the (positive) RIL class, PR-AUC is only 0.276. This lower value
is because the RIL class (positive case) is a minority in the testing dataset (99:1); thus, for a specific probability threshold, a
relatively small percentage error for the no-RIL class equates to a large total number of pixels being misclassified. For example,
at a 5% probability threshold (Fig. 3), false positives are just 4.3%; however, this results in 166,808 pixels being misclassified,
considerably exceeding the true positives at 28,353 pixels. This is expected when there is extreme class imbalance (99:1).

360 Selecting a suitable threshold for binary classification thus depends on the intended application (e.g. screening versus
intervention) and the cost and benefits associated with false positives versus false negatives. Despite this low absolute
precision-recall AUC value, the model significantly exceeds the baseline AUC of 0.011 (i.e., it performs ~26 times better than
the baseline), confirming that it has strong predictive power for both classes. In real-world applications, this means that the
model tends to be over-predictive, whereby large areas are identified as susceptible to RIL, but they may not actually

365 experience a RIL consequent to a specific precipitation event. Together, these results indicate that the final model has strong
predictive power in identifying both high and low-susceptibility RIL areas on unseen real-world data over the training area

(Hawke’s Bay and Gisborne/Tairawhiti).

11
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370 Figure 2: Receiver operating characteristic (ROC) curves (a) and precision-recall curves (b) for the test dataset.
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Figure 3: Confusion matrix for the test dataset at 5% probability threshold.

375

A bee swarm plot of SHAP feature importance for the test data is presented in Fig. 4, with the three most important variables

being identified as: storm precipitation as a proportion of annual precipitation, slope, and forest height. SHAP values are used

here to interpret the fitted model by quantifying each predictor’s contribution to the predicted landslide probability. These

attributions describe associations within the model and dataset, not causal effects, especially where predictors are correlated.

380

On the x-axis, a more negative SHAP value indicates a lower RIL probability, while a more positive SHAP value indicates

increased RIL probability. The bee swarm plots are coloured by the variable magnitude (red is higher, blue is lower). Figure 4

shows that high precipitation as a proportion of annual precipitation, steep slopes, and low forest height increase the likelihood
of the model predicting that a pixel is susceptible to RIL.

12
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Figure 4: Bee swarm plot of SHAP values for the test dataset. Abbreviations: Cyc. Gab. Rain Prop. Ann. = Cyclone Gabrielle rain

385 proportional to annual rainfall; Cyc. Gab. Total Rain (mm) = Cyclone Gabrielle total rainfall (mm); Depth to Slow Perm. = Depth
to zone of slow permeability; HGB Depth (m) = Depth to hydrogeologic basement (m); Topo. Wetness Ind. = Topographic wetness
index.

The SHAP dependence plots (Fig. 5) elucidate further insight into the relationships between model decisions of RIL probability
390 inrelation to the predictor variables. However, they do not assess causality, especially when predictors may be correlated (e.g.
slope and curvature). The SHAP value is plotted on the y-axis and the predictor value on the x-axis; points are coloured by the
strongest interacting feature for the x-axis predictor, as identified using SHAP interaction ranking. These plots show that the
relationship between modelled RIL susceptibility and precipitation as a proportion of annual rainfall is linear, and that steep
slopes with high rainfall have increased RIL susceptibility (variable interaction). Slope exhibits a non-linear (logarithmic)
395 relationship to landslide susceptibility. Increasing rapidly from 0-15°, with a more gradual increase in RIL susceptibility for
slopes greater than 15°. Note, the reduced landslide susceptibility for slopes less than 10° may also be a consequence of the
RIL mapping exercise, where slopes under 10° that transitioned to bare ground were not classified as RIL. Forest height is the
third most important predictor variable, where areas with trees over ~5 m tall have lower RIL susceptibility, and the highest
susceptibility areas have steep slopes and short/no trees. Interestingly, the lowest susceptibility areas are areas with tall trees
400 and steep slopes, possibly because these are the areas with the most intact native forest cover. Negative slope curvature values
are more likely to experience RIL, where negative values identify zones of convergence, i.e. plan and/or profile concavity,
while positive curvature areas (zones of divergence) have lower susceptibility. Zones of convergence with high proportional
precipitation have the highest susceptibility, while zones of divergence with high proportional precipitation have the lowest
RIL susceptibility. Increasing depth to the hydrogeologic basement decreases RIL susceptibility because deeper sediments are
405 found in the valley floors. Conversely, increasing rooting depth and the depth to the zone of permeability (which essentially
describes the soil thickness) increases RIL susceptibility, presumably because more surface sediment is susceptible to sliding.
However, where depth to the zone of slow permeability is at its maximum (>2.25 m), RIL susceptibility is low; these areas are
valley floors. Rooting depths' highest interacting feature is forest height, where tall trees and deep soils have elevated RIL
susceptibility, and tall trees in shallow soils have reduced RIL susceptibility. Both small and large particle sizes have an

410 increased probability of RIL; these correspond to clays (class 1) and loose gravels (class 5), with the greatest risk for larger

13
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particles. For areas with rock density exceeding ~2.1 Mg/m?, RIL susceptibility reduces with increasing rock density; below
~2.1 Mg/m?, RIL susceptibility is noticeably lower (step change). This counterintuitive relationship is likely due to the lowest-
density geologies (e.g. unconsolidated sand) being only present in the valley floors, where RIL susceptibility is low. Areas
with higher topographic wetness index values and steeper slopes generally have an elevated RIL susceptibility. Drainage is
415 the least important predictor variable; areas with the lowest RIL susceptibility are ‘very poorly drained’ (class 1), which is
counterintuitive. However, again, this is likely because clay-type substrates with poor drainage are predominantly located in

valley floors with low slopes.
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Figure 5: SHAP dependence plots for each predictor variable on the test set, coloured by the highest interacting variable.

420  Abbreviations: Cyc. Gab. Rain Prop. Ann. = Cyclone Gabrielle rain proportional to annual rainfall; Cyc. Gab. Total Rain (mm) =
Cyclone Gabrielle total rainfall (mm); Depth to Slow Perm. = Depth to zone of slow permeability; HGB Depth (m) = Depth to
hydrogeologic basement (m); Topo. Wetness Ind. = Topographic wetness index.

3.2 Model Predictions and Climate Projections

425 Model outputs for New Zealand (Wigmore, 2026) under the two storm durations, three recurrence intervals, and four SSP
scenarios/periods are shown in Fig. 6. The figures show that as storm precipitation increases, so too does RIL susceptibility,
which is expected due to the two rainfall-related variables being the first and fifth most important predictor variables in the

SHAP analysis Fig. 4. For the different SSP scenarios, the results indicate that a warmer climate increases RIL susceptibility,
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with the greatest susceptibility posed under scenario 3-7.0 at 2080-2099 (the warmest temperature scenario modelled here).
430 Figure 7 presents a close-up view of the model output for Banks Peninsula for a 24-hour storm under several of the different
modelled scenarios. These results show the increasing RIL susceptibility for a 24-hour storm from a 10-100-year recurrence
interval; of particular interest is the much larger area of susceptible land under the highest temperature future modelled here
(SSP 3-7.0, 2080-2099). Figure 8 shows a close-up of Hawke’s Bay for a 72-hour storm. Again, we can clearly see the
considerable increase in the extent of susceptible land under the warmest future climate scenario, where storm events are
435 projected to deliver the greatest increase in precipitation. Of note is the much lower increase in susceptible areas where there

is a well-established native forest, e.g. Te Urewera.
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Figure 6: Model output of all storm lengths, recurrence intervals, and SSPs. Rows denote the different storm lengths and ARI, and
columns show the different SSPs for each row (Wigmore, 2026).
440
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Figure 7: Close-up of selected model outputs for Banks Peninsula. Basemap imagery is a Sentinel 2 national mosaic 2023-2024
445  compiled by Land Information New Zealand and distributed under a CC-BY 4.0 license.
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Figure 8: Close-up of selected model outputs for Hawke’s Bay. Basemap imagery is a Sentinel 2 national mosaic 2023-2024 compiled
by Land Information New Zealand and distributed under a CC-BY 4.0 license.

450

Figure 9 shows the total area at or exceeding a 5% RIL probability under each of the modelled storm and climate scenarios,
broken down by the sixteen administrative regions of New Zealand. The white dots show the estimated total land area that is

likely to actually experience a RIL event under each scenario when accounting for model true positives and false negatives.
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470

475

Canterbury, Marlborough, Otago, Hawke’s Bay, and Gisborne/Tairawhiti have the highest RIL exposure under each of the
scenarios. The area of susceptible land increases under each of the modelled climate futures, with the largest increase under
SSP 3-7.0 at 2080-2099, the warmest scenario explored here. This is expected because the HIRDS rainfall projections increase
in response to temperature. Figure 10 shows the percentage change in total corrected RIL area (accounting for true positives
and false negatives) relative to the baseline exposure of current conditions aggregated at the national scale. The largest increase
is for a 24-hour 50-year storm under SSP370 2080-2099, where the RIL impacted area is estimated to increase by 272%. For
this scenario, the minimum increase is 93% for a 72-hour 100-year storm. In all cases, the shorter-duration 24-hour storms
experience a larger increase in RIL-impacted area compared to 72-hour storms. There is at least a 34% (and up to 84%) increase
in RIL-impacted area by 2041-2060 under all the scenarios modelled here. However, an important finding is that for all
scenarios, the percentage increase in RIL impacted area in 2080-2099 under a lower emission scenario (SSP2-4.5) is almost
half what it is under the higher emission scenario (SSP3-7.0). Figure 11 shows the total length of road (centreline) and the
number of buildings that are modelled as impacted by the different modelled scenarios. For all scenarios, the impacted road
length and number of buildings are approximately double what they are currently under SSP3-7.0 2080-2099. It is notable that
the percentage increase in land area and assets exposed is disproportionate to the modelled increase in rainfall consequent to
warmer temperatures. For example, for a 72-hour 100-year storm scenario, the susceptible area (Fig. 10), road length, and
number of buildings (Fig. 11) roughly double under SSP 3-7.0 2080-2099; however, the percentage increase in storm
precipitation is only 21.89% (HIRDS change factor Table 2)
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Figure 9: Bar plot of total land area at or exceeding 5% RIL probability for each storm scenario, broken down by region. Individual
coloured bars correspond to the different climate SSPs. White dots (Area TP+FN) show the corrected total area likely to experience
a RIL using confusion-matrix error propagation to account for both TP and false negatives FN at the 5% probability threshold.
Regional abbreviations are as follows: AKL: Auckland, BOP: Bay of Plenty, CAN: Canterbury, GIS: Gisborne/Tairawhiti, HKB:
Hawke’s Bay, MBH: Marlborough, MWT: Manawatu, NSN: Nelson, NTL: Northland, OTA: Otago, STL: Southland, TAS:
Tasman, TKI: Taranaki, WGN: Wellington, WKO: Waikato, WTC: West Coast.
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4

Model Insights

4.1

The model was able to predict RIL susceptibility with a ROC AUC of 0.94. This is similar to the ROC AUC value of 0.93

reported by Griffiths et al. (2020) for their model in the Tasman region, trained on Cyclone Gita observations. At a 5%

490

probability threshold, the model has a 65.0% accuracy of predicting RILs and 95.7% accuracy of no-RIL prediction (class

balanced accuracy 80.3%); at a 1% probability threshold, accuracy is 84.9% for RIL and 87.5% for no-RIL (class balanced

accuracy 86.2%). Given the significant class imbalance (99:1 no-RIL:RIL), there are large areas that are predicted as

susceptible, which may not actually experience a RIL under a given storm scenario. However, these results are a considerable
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495 improvement on the existing national erosion susceptibility maps (which includes landslides), which have been shown to have
an accuracy of only 26% at the pixel level (Dymond et al., 2006) and 58-75% at the hillslope scale (Dymond et al., 2006;
Dymond & Shepherd, 2023) (false positive rates are not reported). Importantly, the model accounts for rainfall intensity as a
triggering factor and provides not just a simple binary classification but RIL probability for each specified storm. It is necessary
to note that the training dataset, model, and resultant susceptibility maps do not separate the RIL initiation point from the

500 debris run-out zone; consequently, neither is explicitly modelled. Because some of the predictor variables describe pixel
neighbourhoods (e.g. TWI and curvature), in many cases, both the initiation point and run-out zone are included in the mapped
RIL probability area. However, it is possible that the impacted downslope area extends beyond the defined RIL susceptible

area.

Under the highest emissions scenario modelled in this study (SSP 3-7.0 at 2080-2099), New Zealand’s mean annual air
505 temperature is projected to increase by 3.17°C compared to the 1986-2005 mean (NIWA, 2025). This results in a 27.3% (24-
hour storm) and 21.9% (72-hour storm) increase in the precipitation received in a 1 in 100-year storm. Because of this increased
precipitation, we model a disproportionate increase in the land area likely to be impacted by RIL (accounting for true positives
and false negatives), in this case, a 248% (24-hour storm) and 94% (72-hour storm) increase, respectively. This percentage
increase is reduced for the lower emission SSP 2-4.5 scenario, which highlights the importance of reducing emissions to
510 mitigate amplification of RIL susceptibility, and minimise potential asset exposure and loss of life. Studies in Southwest China
(Yin et al., 2023) and California (Semnani et al., 2025) have identified a similar relationship between higher emissions
scenarios (warmer temperatures) and increased RIL susceptibility. In New Zealand, Neverman et al., (2023) have shown that
warmer temperatures are likely to increase river sediment loads, which is driven in part by increased RIL activity. Similarly,
Crozier (2010) showed that observationally, RIL frequency increased non-linearly with mean rainfall. And posited that climate
515 change was likely to increase RIL frequency because of increased frequency and intensity of rainfall and significant storm

events.

SHAP analysis allows us to better interpret the black box of ML and gain insight into how the different variables influence
model predictions. We showed that many of these relationships are non-linear and have important and informative interactions.
This illustrates the suitability of gradient boosted decision trees for RIL susceptibility modelling, due to their robustness to
520 both non-linearity and multicollinearity. Leveraging SHAP analysis, we can hypothesise potential mechanisms for these
relationships. For example, previous research has documented the importance of tree cover in reducing landslide susceptibility,
and is driving calls for nature-based solutions in the form of reforestation to mitigate this risk (Griffiths et al., 2020; Phillips
et al., 2021; Spiekermann et al., 2022). The model indicates that tree height is the third most important predictor variable
(behind rainfall and slope). We show consistently lower RIL susceptibility over areas with extensive and established native
525  forest cover (where tree height exceeds 5Sm), despite other risk factors (steep slopes, high rainfall, and weak geology), e.g. Te
Uruwera (Fig. 8), even under the most extreme storm and climate scenarios modelled here. This is consistent with earlier work
by (Griffiths et al., 2020), who found that landcover was the most important determinant of landslide susceptibility in the
Tasman region of New Zealand, where limiting clear-fell forestry and increasing permanent forest cover could substantially
reduce landslide susceptibility. Crozier (2010), argued for the importance of considering human factors, notably deforestation,
530 in driving landslide risk, with this being of potentially greater significance than climate change. To further explore the impact
of forest cover and the potential impact of afforestation to reduce RIL susceptibility, the model could be rerun with synthetic
(adjusted) tree height data; however, this is outside of the scope of this paper. The relatively high resolution and national scale
of the work presented herein may be useful in targeting catchment-scale reforestation interventions where they are likely to

have the most benefit.
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535 Importantly, despite the reduced susceptibility of RIL in forested areas, the probability is not zero, because RIL susceptibility
depends on both the canopy height and the intensity of precipitation received. The only currently available national landslide
susceptibility assessment (Dymond & Shepherd, 2023) does not include either of these variables, and simply classifies forested
areas as ‘no risk’. Hence, the modelling efforts presented herein are a significant advance in our understanding of the nuanced
and variable reduction in RIL susceptibility that is provided by forest cover. This improved understanding of potential RIL

540 susceptibility in forested areas is critical for managing biodiversity in these regions, understanding potential exposure of river
ecosystems to landslide-derived sediment deposition, and exposure of assets and infrastructure within these areas, e.g. roads,
buildings, huts, campsites, track networks, etc. Furthermore, the ability to quantitatively assess the likely recurrence frequency

of landslide damage can facilitate better-informed planning and decision-making with respect to asset management.

4.2  Applications and Limitations

545  The output model predictions provide a first-of-their-kind national dataset of RIL susceptibility for New Zealand, which
considers precipitation (event trigger) under different storm scenarios and climate futures (SSPs), and provides prevalence-
scaled event-conditional RIL probability for each specified storm. It is at a suitable scale (25m) for national planning and to
guide the targeted acquisition of more intensive studies (e.g. geotechnical assessments, and fine-scale physically based
modelling) of landslide susceptibility as required. However, there are important caveats to consider. The most important being

550 the limited geographical scale of the training and testing dataset, which was only taken from Hawke’s Bay and
Gisborne/Tairawhiti. At a national scale, Hawke’s Bay and Gisborne/Tairawhiti regions can be considered as likely having
elevated RIL susceptibility due to the presence of steep unforested slopes, deep soils, and relatively weak geology comprised
primarily of sandstone and mudstone (Heron, 2023). In the model, we account for a full range of precipitation intensities, forest
cover, topography and soil depth variables; however, geology is only constrained through the rock density variable (Fig. C1-

555  2). Higher rock densities are correlated with rock types that are less susceptible to landslides, so this is an efficient manner of
numerically quantifying this variable; however, it does not directly address the relationship between geology and RIL
susceptibility. Another approach could be to either use simplified geology as a categorical variable or to score geology types
with respect to their RIL susceptibility. The former was not possible because not all geology classes are present within the
training region, while the latter is somewhat subjective and depends on not just the rock type but also on the determination of

560 slope failure angles. Finally, while the highest rock densities are present in the training and testing region (i.e. the model is not
predicting out of range), they are less prevalent there than in the South Island, and particularly the Southern Alps. The Southern
Alps are dominated by hard (and dense) metamorphic rocks; whether the rock density RIL susceptibility relationship modelled
here remains the same for these different lithologies is unproven. Furthermore, mass wasting in much of the Southern Alps
tends to be dominated by active scree/talus slopes, rock avalanches, and large deep-seated landslides (often earthquake-

565 induced) compared with the frequent RIL, shallow slips and slumps of the North Island (particularly the East Coast and
Northland) (Allen et al., 2011; Crozier, 2010b; Hales & Roering, 2005; Korup, 2006). Consequently, the interpretation of RIL
susceptibility maps for the Southern Alps should be undertaken cautiously. In the future, the model could be tested against
observational data collected after a strong, widespread storm event over the South Island and potentially retrained with the

inclusion of this data.

570 A secondary caveat is that the training precipitation data comes from a single storm, which may not be reflective of the national
predictions of future storm events (HIRDS data), i.e. because Cyclone Gabrielle came from the northeast. We minimised the
influence of this by not including directionally dependent predictor variables (e.g. aspect), which have been shown to be strong
predictor variables in other similar studies (Chen et al., 2024). Fortunately, the rainfall distribution during Cyclone Gabrielle

was highly heterogeneous. Therefore, the training dataset has a broad range of values that cover the data range of all future

21



https://doi.org/10.5194/egusphere-2026-768
Preprint. Discussion started: 17 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

575 storm and climate scenarios modelled herein, thus we are not predicting out of range. Antecedent rainfall and consequent
antecedent soil moisture are also not included as predictor variables, because it is not possible to predict these as an input for
future climate/storm scenarios. The Hawke’s Bay and Gisborne/Tairawhiti training regions had experienced significant rainfall
in the preceding weeks, and soil moisture was uniformly high (Massey et al., 2025). Previous research has documented the
importance of high antecedent soil moisture as a contributor to RIL occurrence (Crozier, 1999). Consequently, it is possible

580 that the model developed herein over-predicts RIL susceptibility. However, Massey et al. (2025) found that in the case of
Cyclone Gabrielle, where rainfall intensities were sufficiently high (e.g. much of Hawke’s Bay and Gisborne/Tairawhiti),
antecedent soil moisture had minimal influence on landslide occurrence. Regardless, the potential overprediction of landslide

susceptibility should be considered when interpreting these results or using the output datasets of this work.

Finally, it is important to consider the spatial scale, temporal context, and accuracy of the predictor variables used in this study.
585 We use a 25m satellite-derived bare earth DEM (resampled from 30m) (Hawker et al., 2022; Neal & Hawker, 2023) to derive
topographic metrics (slope, TWI, curvature). However, RIL triggering processes are likely to be driven by finer resolution
topography than this. Superior results could be achieved through the utilisation of a higher accuracy and/or higher resolution
DEM, e.g. national LiDAR when it is eventually completed. However, working at a higher resolution increases computational
requirements. Additionally, the DEM, while generally of high quality, does include both relative and absolute elevation errors.
590 Consequently, there are likely to be on-the-ground errors in RIL susceptibility driven by DEM errors; i.e. the model is
predicting correctly, but the underlying DEM variables (slope, TWI, curvature) are incorrect, producing poor on-the-ground
results. Rainfall variables (both those for training and prediction) were statistically downscaled (bilinear interpolation) from
coarser 500m (training and testing) and 2000m grids (HIRDS prediction) to 25m pixels. This does not account for local
influences (e.g. topography) on rainfall distribution. Improvements could potentially be made by considering more elegant
595 methods for rainfall downscaling. Forest height is a satellite-derived product derived in 2019 (Potapov et al., 2021), which
precedes Cyclone Gabrielle by approximately four years. During this time, changes in forest height are likely to have occurred,
particularly in commercial forestry land, where large-scale planting and clear felling may have occurred, the timing of which
can significantly impact RIL susceptibility (Phillips et al., 2024). This may confound the model through the inclusion of noise
in the predictor variable signal. Because tree height was the third most important predictor variable in the model, it is important
600 to consider potential changes in tree height between the training data (2019), the present day, and future land cover. For
example, an area with tall trees in the training data that has since been clear-felled has likely experienced an increase in RIL
susceptibility compared to the model output. Conversely, a bare ground area in the training data with high RIL susceptibility

that has been reforested has likely experienced a reduction in RIL susceptibility.

Internationally, RIL susceptibility mapping has increasingly aimed to integrate static conditioning factors with event-specific
605 rainfall scenarios, with the aim of improving understanding of recurrence frequency, storm-specific forecasting (Bordoni et
al., 2021; Fumagalli et al., 2025; Mondini et al., 2023; Rosser et al., 2021; Segoni et al., 2018), and the impacts of climate
change (Han & Semnani, 2025; Semnani et al., 2025; Yin et al., 2023). This can support planning applications and potentially
the development of early warning systems, potentially reducing RIL hazard exposure. Our workflow could be applied to other
temperate or high-intensity rainfall locations, provided that a suitable RIL inventory is available for training and that suitable
610 conditioning variable layers and rainfall products exist. The primary contribution of this study is a national-scale
implementation for New Zealand that combines ML RIL susceptibility modelling with scenario-specific rainfall events.
Quantifies the impact of climate change on RIL susceptibility and assesses potential infrastructure exposure across these

scenarios.
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5 Conclusion

615 This study presents a national-scale model for assessing RIL susceptibility across Aotearoa New Zealand that includes both
conditioning and triggering factors. By leveraging a robust training dataset derived from Cyclone Gabrielle's impacts in the
Hawke’s Bay and Gisborne/Tairawhiti regions, the model demonstrates high predictive capability (ROC AUC = 0.94). Key
predictors such as storm precipitation intensity, slope, and forest height were identified as critical determinants of RIL
susceptibility through comprehensive SHAP analysis. The model's application to a suite of current and future storm scenarios,

620 informed by NIWA’s HIRDS dataset and SSP scenarios, reveals a consistent and significant increase in RIL susceptibility
under warmer climate futures. We find that even for the shortest timelines (2041-2060), there is at least a 34% (and up to 84%)
increase in RIL-impacted area for all the climate and storm scenarios modelled here. Furthermore, we estimate a 93-272%
increase in the RIL-impacted land under the highest temperature future climate scenario modelled here (SSP3-7.0 2080-2099).
The lower emission SSP scenario (SSP2-4.5 2080-2099) roughly halves this increase, emphasising the importance of reducing

625 greenhouse gas emissions. This underscores the urgent need for climate-adaptive land use planning and the implementation of
nature-based solutions, particularly reforestation in erosion-prone areas. The model highlights the protective role of established
native forest cover, which consistently reduces RIL susceptibility even under extreme precipitation scenarios. Despite its
strengths, the model has limitations, including the geographic concentration of training and testing data, limited geological
classification, and potentially the exclusion of antecedent soil moisture. Furthermore, some of the predictor datasets may be

630 out of date (e.g. forest height) or inaccurate. Future research should aim to expand the training dataset to include diverse
geological settings, incorporate more accurate and temporally coincident forest height data, and utilise accurate high-resolution
topographic data, i.e. the national lidar DEM, which is nearing completion. Overlaying the model's output with socio-economic
exposure data can enhance its utility for disaster risk reduction and infrastructure planning. Overall, this work provides a
scalable and interpretable framework for national RIL susceptibility assessment and offers valuable insights for policymakers,

635 conservation planners, and emergency management agencies in building climate resilience.

6  Appendix A

Model hyperparameters were tuned with Optuna using 10-fold cross-validation on the training dataset with early stopping after

50 rounds. The final tuned model parameters were:
e  Objective: binary
640 e Metric: binary log loss
e Boosting type: gbdt
e Number of leaves (num_leaves): 249
e  Feature fraction: 1.0
e Bagging fraction: 0.952
645 e Bagging frequency (bagging_freq): 1

e LI regularisation (lambda_11): 0.499
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e L2 regularisation (lambda_12): 1.07 x 10~°
e  Minimum child samples (min_child_samples): 5
e  Early stopping rounds: 50

650 e  Maximum boosting rounds: 2000

All other parameters were left at LightGBM defaults.

7  Appendix B

Model calibration was assessed on a random subset of the holdout test dataset, sampled at 50:50 distribution (to match the
training data distribution). Sigmoid and isotonic calibration were compared against the raw model probabilities. The raw model
655 probabilities showed stable prediction frequency across the probability range, with no meaningful improvements using either

sigmoid or isotonic calibration. Raw model probabilities were therefore used to calculate the prevalence-adjusted probabilities.

1.0+ —e— Model o 250004 RIL 1.0
—-- Perfectly calibrated No-RIL

0.8 20000

15000

Count

10000 -

Observed fraction of positives
Cumulative fraction of positives

5000 -

0.0 0.2 04 0.6 0.8 10 0.0 0.2 0.4 0.6 08 10 0.0 02 0.4 0.6 08 1.0
Predicted probability Predicted probability Predicted probability

Figure B1: Calibration plots for the trained model, on a 50:50 distribution subset of the holdout test dataset. Calibration reliability
curve (left); Probability histogram (centre); Cumulative fraction of RIL (right).

660 8  Appendix C

The model was trained and tested on RIL observation from across the Hawke’s Bay and Gisborne/Tairawhiti regions of New
Zealand’s North Island and then run across the entire country. Figures C1 and C2 compare the data distribution for the ten
non-rainfall predictor variables for the training/testing domain (Hawke’s Bay and Gisborne/Tairawhiti), the rest of the North
Island, and the South Island (including Rakiura/Stewart Island). The plots were generated from a 1% random sample of the
665 data. For all variables, the training/testing data ranges are the same as those on which predictions are made, i.e. the model is
not being run outside its training range. Data distributions for most variables are relatively similar; however, the South Island
has generally higher rock densities and shallower rooting depths. These plots provide greater confidence in the findings when

the model is run outside its training and testing domain.
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670 Figure C1: Step density histograms for the ten non-rainfall predictor variables. HKB/GIS = Hawke’s Bay and Gisborne/Tairawhiti,
i.e. the model training and testing domain. NI no HKB/GIS = all regions in the North Island of New Zealand excluding Hawke’s Bay
and Gisborne/Tairawhiti, i.e. North Island areas outside the training and testing domain. SI = South Island (including
Rakiura/Stewart Island), which are also outside the training and testing domain. Vertical dashed lines mark the 5%, 50 (median),
and 95™ percentiles per region.
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Figure C2: Empirical cumulative distribution function (ECDF) for the ten non-rainfall predictor variables, separated by region.

HKB/GIS = Hawke’s Bay and Gisborne/Tairawhiti, i.e. the model training and testing domain. NI no HKB/GIS = all regions in the

North Island of New Zealand excluding Hawke’s Bay and Gisborne/Tairawhiti, i.e. North Island areas outside the training and

testing domain. SI = South Island (including Rakiura/Stewart Island), which is also outside the training and testing domain. Vertical
680 dashed lines mark the 5, 50" (median), and 95" percentiles per region.

Data Availability
RIL predictions for all SSP scenarios are available here:

Wigmore, O. (2026). National Rainfall-Induced Landslide Susceptibility Maps (25 m) for Extreme Rainfall Scenarios under
685  Present-Day and Future Shared Socioeconomic Pathways (SSPs), New Zealand (Version 1.0.0) [Dataset]. Zenodo.
https://doi.org/10.5281/zenodo.17850323
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access to support the peer review process.

Sentinel 2 Data Strip IDs used for Cyclone Gabrielle RIL mapping.

5/02/2023 (NZDT date) — pre-cyclone

S2B_MSIL2A_20230204T221559_N0510_R129_T60HWD_20240731T061234.SAFE
S2B_MSIL2A_20230204T221559_N0510_R129_T60HXD_20240731T061234.SAFE
S2B_MSIL2A_20230204T221559_N0510_R129_T60HWC_20240731T061234.SAFE
S2B_MSIL2A_20230204T221559_N0510_R129_T60HXC_20240731T061234.SAFE
S2B_MSIL2A_20230204T221559_N0510_R129_T60HVB_20240731T061234.SAFE
S2B_MSIL2A_20230204T221559_N0510_R129_T60HWB_20240731T061234.SAFE
S2B_MSIL2A_20230204T221559_N0510_R129_T60GVA_20240731T061234.SAFE

7/02/2023 (NZDT date) — pre-cyclone

S2A_MSIL2A_20230206T220621_N0511_R086_T60HWD_20250806T055140.SAFE
S2A_MSIL2A_20230206T220621_N0511_R086_T60HXD_20250806T055140.SAFE
S2A_MSIL2A_20230206T220621_N0511_R086_T60HWC_20250806T055140.SAFE
S2A_MSIL2A_20230206T220621_N0511_R086_T60HXC_20250806T055140.SAFE
S2A_MSIL2A _20230206T220621_N0511_R086_T60HVB_20250806T055140.SAFE
S2A_MSIL2A_20230206T220621_N0511_R086_T60HWB_20250806T055140.SAFE
S2A_MSIL2A_20230206T220621_N0511_R086_T60GVA_20250806T055140.SAFE

10/02/2023 (NZDT date) — pre-cyclone

S2A_MSIL2A_20230209T221601_N0510_R129_T60HXD_20240801T113458.SAFE
S2A_MSIL2A_20230209T221601_N0510_R129_T60HWD_20240801T113458.SAFE
S2A_MSIL2A_20230209T221601_N0510_R129_T60HXC_20240801T113458.SAFE
S2A_MSIL2A_20230209T221601_N0510_R129_T60HWC_20240801T113458.SAFE
S2A_MSIL1C_20230209T221601_N0510_R129_T60HVC_20240801T090929.SAFE
S2A_MSIL2A _20230209T221601_N0510_R129_T60HWB_20240801T113458.SAFE
S2A_MSIL1C_20230209T221601_N0510_R129_T60HVB_20240801T090929.SAFE

20/02/2023 (NZDT date) — post-cyclone

S2A_MSIL2A_20230219T221601_N0510_R129_T60HXD_20240729T200132.SAFE
S2A_MSIL2A_20230219T221601_N0510_R129_T60HWD_20240729T200132.SAFE
S2A_MSIL2A_20230219T221601_N0510_R129_TB0HXC_20240729T200132.SAFE
S2A_MSIL2A_20230219T221601_N0510_R129_TEOHWC_20240729T200132.SAFE
S2A_MSIL2A_20230219T221601_N0510_R129_T60HVC_20240729T200132.SAFE
S2A_MSIL2A_20230219T221601_N0510_R129_T60HWB_20240729T200132.SAFE
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