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Abstract. Understanding how meteorology influences surface ozone variability is critical for interpreting trends 

and designing effective air quality policies. This study employs explainable machine learning (XML) with SHapley 

Additive exPlanations (SHAP) to interpret daily ozone variations from 2013 to 2023 across three major regions in 

eastern China: North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD). An ensemble 20 

of five machine learning models (LightGBM, XGBoost, CatBoost, Random Forest, and Extra Trees) is trained 

using 14 meteorological variables and two temporal indicators. XML reveals nonlinear, region-specific ozone-

meteorology relationships that are broadly consistent with physical understanding, while differences in SHAP 

attributions across algorithms highlight structural uncertainty arising from multicollinearity among input variables. 

We use SHAP-derived contributions to attribute warm-season ozone trends to meteorological versus non-25 

meteorological drivers. Before 2019, ozone increases are mainly associated with the temporal proxy for non-

meteorological influences (e.g., emission changes), whereas after 2019 meteorological variability dominates 

regional ozone trends. Exploiting the additive nature of SHAP, we develop a de-weathering framework that 

partitions daily ozone into a SHAP-based climatological baseline and a meteorology-induced ozone anomaly 

(MOA). Across all three regions, the magnitude of positive MOA events increases over 2013–2023, while their 30 

frequency and duration show no significant trends, indicating a strengthening meteorological amplification of 

pollution episodes rather than more frequent events. Our results demonstrate both the utility and limitations of 

XML for disentangling meteorological drivers of ozone pollution and provide new constraints on how meteorology 

shapes surface ozone under China’s clean air actions. 

 35 
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1. Introduction 

Surface ozone is a major air pollutant that threatens human health and ecosystems (Cohen et al., 2017; Fowler et 40 

al., 2009; Mills et al., 2018; Zhang et al., 2019). It is formed mainly through photochemical reactions involving 

precursors such as carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), and non-methane volatile organic 

compounds (NMVOCs) under sunlight. In China, nationwide monitoring has revealed a widespread and rapid 

increase in surface ozone levels since 2013, drawing growing attention from researchers and policymakers (Lu et 

al., 2020; Wang et al., 2017). In response, the Chinese government has implemented a series of clean air actions to 45 

reduce anthropogenic emissions of air pollutants (State Council of the People’s Republic of China, 2013; 2018). 

These measures have substantially altered precursor emission patterns and have led to complex and regionally 

varying ozone responses across eastern China. 

 

Ozone formation is highly sensitive not only to chemical precursors but also to meteorological conditions. 50 

Temperature and solar radiation control photochemical production rates, while wind speed, boundary-layer height, 

and large-scale circulation determine the dispersion, accumulation, and transport of ozone and its precursors (Fiore 

et al., 2012; Lu et al., 2019). Relative humidity, cloud cover, and precipitation further modulate ozone lifetimes and 

vertical mixing (Fu and Tian, 2019; Lu et al., 2019). Recent studies have shown that meteorological variability can 

explain a substantial fraction of interannual ozone changes in China and can even mask or amplify the effects of 55 

emission controls in some years (Liu and Wang, 2020; Liu et al., 2023; Weng et al., 2022). Thus, explicitly isolating 

and quantifying the meteorological contribution to surface ozone variability is critical for correctly interpreting 

observed ozone trends and evaluating the effectiveness of clean air policies. 

 

Conventional approaches for quantifying meteorological impacts on surface ozone include statistical models, such 60 

as multiple linear regression, generalized additive models (Bloomer et al., 2009; Gong et al., 2017), and numerical 

atmospheric models that perturb selected variables to attribute ozone changes to specific processes (e.g., Liu et al., 

2023; Liu and Wang, 2020). These approaches suggest that worsening meteorological conditions—particularly 
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higher temperatures and lower humidity—have contributed significantly to the rising surface ozone levels in 

eastern China since 2012, with impacts comparable to those of anthropogenic emissions (Liu et al., 2023; Liu and 65 

Wang, 2020). Temperature plays a particularly important role in northern China by directly enhancing ozone 

formation and increasing anthropogenic and biogenic precursor emissions (Dang et al., 2021; Wu et al., 2024), 

whereas humidity is found to be especially influential in central and southern China (Han et al., 2020; Li et al., 

2020). However, both statistical and numerical models face key limitations in quantifying meteorological 

contributions. Linear statistical models can approximate the dominant relationships and meteorology-driven trends 70 

in ozone at seasonal or annual scales (e.g., Weng et al., 2022), yet they have limited flexibility to represent complex 

nonlinear interactions. Process-based models, on the other hand, are computationally intensive and often exhibit 

biases relative to observed ozone concentrations (Travis and Jacob, 2019; Ye et al., 2022). Moreover, they rely 

heavily on emission inventories, which are typically updated on multi-year timescales, limiting their ability to 

reflect recent changes in emissions and to provide a comprehensive understanding of their impacts on ozone 75 

chemistry. 

 

Machine learning (ML) and emerging explainable ML (XML) techniques provide a powerful framework for 

capturing the complex, nonlinear relationships between observed meteorological variables and surface ozone 

concentrations, thereby addressing some of the limitations of traditional statistical and process-based methods. 80 

XML information can be broadly categorized into global and local explainability (Flora et al., 2024). Global 

explainability describes how the ML model as a whole generates predictions, often by ranking input features in 

terms of importance, for example using feature-importance outputs from Random Forest, which have been widely 

applied to identify key meteorological drivers of surface ozone in China (Ma et al., 2021; Weng et al., 2022; Zhan 

et al., 2018). In contrast, local explainability attributes individual predictions to specific input features, offering 85 

more detailed insights into input–output dependencies at the data-point level. Recently, the SHapley Additive 

exPlanation (SHAP) technique has been applied to ML models to separate meteorological, chemical, and source-

related effects on ozone in individual regions, such as Hangzhou (Yao et al., 2024; Zhang et al., 2024), Shenzhen 
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(Mai et al., 2024), and Taipei (Li et al., 2025). These works demonstrate the potential of XML for ozone attribution 

at the city or regional scale. 90 

 

Despite recent progress, the application of XML techniques to systematically understand meteorological influences 

on ozone remains limited. Key challenges include assessing XML’s ability to capture ozone–meteorology 

relationships across spatiotemporal scales and evaluating the consistency of explanations across different ML 

algorithms. In this study, we address these challenges by combining an ensemble of five SHAP-interpreted ML 95 

models with a new de-weathering framework to analyze daily surface ozone across three regions in eastern China 

from 2013 to 2023. Specifically, we (1) quantify nonlinear ozone–meteorology relationships and evaluate the 

robustness of XML explanations across five tree-based models; (2) use SHAP values to attribute long-term warm-

season ozone trends to meteorological versus non-meteorological factors; and (3) develop a SHAP-based de-

weathering approach that partitions daily ozone into a climatological baseline and meteorology-induced ozone 100 

anomalies (MOA), allowing trends in the intensity and occurrence of meteorology-driven ozone events to be 

diagnosed. These advances enable a more comprehensive assessment of how meteorology shapes ozone variability 

under China’s clean air actions. 

 

2. Data and Methods 105 

2.1 Surface ozone measurements and meteorology reanalysis 

We use nearly 11 years of surface ozone measurements (from 1 January 2013 to 30 September 2023, 3925 days in 

total) collected by the national air-quality monitoring network operated by the Chinese Ministry of Ecology and 

Environment (https://air.cnemc.cn:18007, last access: 4 October 2024). The ozone exposure metric is the daily 

maximum 8-hour average (MDA8), calculated for each site on each day. Data quality control procedures are applied 110 

to remove outliers, following Lu et al. (2018). Specifically, we discard extremely high hourly ozone concentrations, 
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require a sufficient number of valid hourly measurements to compute daily MDA8, and exclude sites with 

substantial data gaps over the study period (Lu et al., 2018). The measurement sites are then averaged by each city 

to account for air quality condition at the city level. Here, we focus our analyses on three populous regions in 

eastern China: the North China Plain (NCP), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The 115 

locations of the cities and the regional mean MDA8 ozone concentrations are shown in Fig. 1. 

 

In this study, we use 14 meteorological variables as input features: 2-m temperature (T2M), surface incoming 

shortwave solar radiation (SWGDN), northward wind at 850 hPa (V850), eastward wind at 850 hPa (U850), 10-m 

wind speed (W10M), geopotential heights at 500 hPa (H500) and 850 hPa (H850), surface pressure (PS), surface 120 

evaporation (EVAP), surface relative humidity (RH), total surface precipitation flux (PRECTOT), planetary 

boundary-layer height (PBLH), total cloud fraction (CLDTOT), and surface albedo (ALBEDO). These variables 

are selected based on their strong correlations with daily surface ozone variations, as established in previous 

modelling and statistical studies (Liu and Wang, 2020; Liu et al., 2020; Mo et al., 2020; Requia et al., 2020). 

 125 

The meteorological data are obtained from the Modern-Era Retrospective Analysis for Research and Applications, 

version 2 (MERRA-2) reanalysis (Gelaro et al., 2017), which provides hourly global fields at 0.5° × 0.625° 

resolution. To match each ozone monitoring site, we use its latitude–longitude coordinates to identify the nearest 

MERRA-2 grid cell and extract the corresponding 24-hour mean meteorological variables from that grid cell for 

each day. When multiple sites fall within the same MERRA-2 grid cell, they share the same meteorological inputs 130 

at the grid scale. 
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Figure 1. Locations of ozone monitoring cities and regional averaged monthly MDA8 ozone concentrations analyzed 

in this study. The three regions are North China Plain (NCP, blue), Yangtze River Delta (YRD, Red), and Pearl River 

Delta (PRD, yellow). Numbers in brackets denote the number of cities. The right panels show monthly mean ozone 135 

concentrations in the three regions over January 2013 to September 2023. 

 

2.2 ML models and explainability 

We apply five ML algorithms: LightGBM (Ke et al., 2017), XGBoost (Chen and Guestrin, 2016), CatBoost 

(Prokhorenkova et al., 2018), Random Forest (Breiman, 2001), and Extremely Randomized Trees (Extra Trees; 140 

Geurts et al., 2006), to predict daily variations in surface ozone. All five are tree-based ensemble models that utilize 

decision trees as their basic structure. LightGBM, XGBoost, and CatBoost are gradient-boosting methods, which 

iteratively train trees to correct errors from previous iterations. In contrast, Random Forest and Extra Trees employ 

bagging, where multiple trees are trained independently on random subsets of the data and input features, and their 

predictions are then averaged to produce the final output. We select these tree-based models because their structure 145 

is highly compatible with SHAP-based explainability methods, which can efficiently compute feature contributions 

by exploiting decision-tree ensembles. 
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The output variable for all models is the daily MDA8 ozone concentration. To construct the ML models, in addition 

to the 14 meteorological variables introduced in Section 2.1, two temporal features are included: the day of year 150 

(DOY), which ranges from 1 to 365 (or 366 in leap years) and captures the seasonal ozone cycle, and a UNIX time 

variable, defined as a continuous, non-repeating count of days since 1 January 2013. The UNIX term serves as a 

proxy for slowly varying, non-meteorological influences such as long-term changes in anthropogenic emissions 

and background concentrations (Vu et al., 2019). We examine the correlations among all input variables (14 

meteorological predictors, DOY, and UNIX) using a Pearson correlation matrix (Figure S1). As expected, several 155 

variables are moderately to strongly correlated (for example, between surface temperature and solar radiation, or 

among wind-related variables), reflecting the coupled nature of boundary-layer dynamics, radiation, and circulation. 

We retain these correlated variables in the models because they represent physically distinct but linked processes 

that can each modulate ozone formation and transport. 

 160 

We train separate ML models for each region using all available monitoring sites to ensure sufficient data coverage. 

The datasets are split randomly into 90% for training and 10% for testing. Hyperparameters are optimized using 

five-fold cross-validation based on the coefficient of determination (R2). For explainability analysis, we use the 

training data rather than the test data, as the goal is to understand how the model relies on input features rather than 

its generalization performance (Flora et al., 2024; Lakshmanan et al., 2015). Therefore, after model evaluation, we 165 

retrain each model on the full dataset before applying XML techniques. 

 

We use the SHAP method (Lundberg and Lee, 2017) to quantify the contribution of each input feature to ozone 

variability. SHAP is grounded in cooperative game theory and provides local explainability by assigning each 

feature a contribution value for individual predictions. For a given ML model, the predicted MDA8 ozone 170 

concentration on the d-th day in year y (𝑂!𝑜𝑟𝑖	#,%) can be expressed as, 
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𝑂!𝑜𝑟𝑖	#,% = 𝐶 +(𝑇𝑠ℎ𝑎𝑝#,%,&

'

&()

+(𝑀𝑠ℎ𝑎𝑝#,%,&

)*

&()

(1)	

where	𝐶 is the base SHAP value, 𝑇𝑠ℎ𝑎𝑝 denotes SHAP values from the two temporal terms (DOY and UNIX), 

and 𝑀𝑠ℎ𝑎𝑝 denotes SHAP values from 14 meteorological factors. SHAP values are estimated at the daily level 

and are specific to each feature, thus providing local explainability. Averaging the absolute SHAP values across all 175 

days for feature i yields its global importance 𝐺	& for the entire model (Eq. (2)).  

𝐺	& =
1
𝑁
((5𝑠ℎ𝑎𝑝#,%,&5

%#

, 𝑁 = 3925	(𝑑𝑎𝑦𝑠) (2) 

This dual capability, local and global interpretability, makes SHAP particularly suitable for analyzing complex 

ozone–meteorology relationships. 

 180 

2.3 Attributable de-weathering approach 

Leveraging the additive property of SHAP values, we propose an attributable de-weathering approach to partition 

daily surface ozone into two components: a climatological baseline and a meteorology-induced ozone anomaly 

(MOA). This framework, presented in Eqs. (3)–(6), enables attribution of ozone variability to specific 

meteorological factors on a daily basis.  185 

𝑀𝑠ℎ𝑎𝑝#,%,+============== =
1
11(

1
15 ( 𝑀𝑠ℎ𝑎𝑝,,-,&

-(%./

-(%0/

))

,()
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'
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(𝑀𝑠ℎ𝑎𝑝1#,%,&

)*

&()
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(5) 

𝐺1& =
)
2
∑ ∑ B𝑀𝑠ℎ𝑎𝑝1#,%,&B%# , 𝑁 = 3925	(𝑑𝑎𝑦𝑠) (6)  

 190 
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We first compute the climatological mean SHAP values for each meteorological variable (𝑀𝑠ℎ𝑎𝑝=========) by averaging 

their daily SHAP values across an 11-year period within a 15-day moving window (Eq. (3)). We adopt a 15-day 

running window to define this climatological component. This window is long enough to smooth over individual 

pollution episodes and day-to-day fluctuations, while short enough to preserve sub-seasonal variations in the 

meteorological background. We then construct the de-weathered ozone estimate (𝑂!𝑑𝑤) by retaining temporal 195 

SHAP values (associated with DOY and UNIX) while replacing the meteorological SHAP values (𝑀𝑠ℎ𝑎𝑝) with 

their climatological means (Eq. (4)). The resulting 𝑂!𝑑𝑤 represents the ozone level under climatologically mean 

meteorological conditions.  

 

The difference between 𝑂!𝑜𝑟𝑖  and 𝑂!𝑑𝑤 , denoted as the 𝑀𝑠ℎ𝑎𝑝′  in Eq. (5), then defines the MOA. 200 

Additionally, we compute the global importance of MOA (𝐺′&  in Eq. (6)). Compared with 𝑀𝑠ℎ𝑎𝑝 and 𝐺	& , 

𝑀𝑠ℎ𝑎𝑝′ and 𝐺′& quantify how individual meteorological features contribute to anomalies relative to climatology. 

Compared with previous de-weathering methods that typically estimate only total meteorological contributions or 

MOA magnitudes (Vu et al., 2019; Grange and Carslaw, 2019), this framework provides feature-resolved 

attribution of daily anomalies to individual meteorological drivers. 205 

 

3. Results 

3.1 Ozone–meteorology relationships revealed by XML 

We evaluate the performance of the five ML models using the test dataset for each region, employing the coefficient 

of determination (R2), root mean square error (RMSE), and mean absolute error (MAE) as performance metrics 210 

(Figure S2). All models reproduce daily MDA8 ozone variability well, with testing R2 values of 0.80-0.88 in NCP, 

0.76-0.84 in YRD, and 0.78-0.86 in PRD, and with RMSE and MAE in the range of a few ppbv. Three gradient 

boosting models (LightGBM, XGBoost, and CatBoost) perform slightly better (R2 > 0.8, MAE < 7.1 ppbv, and 
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RMSE < 10 ppbv) than Random Forest and Extra Trees. The NCP yields the highest R2 (0.86 to 0.88), while the 

YRD shows the lowest R2 (0.76 to 0.81). In addition, we assess model outputs on the full training dataset to ensure 215 

internal consistency among different ML algorithms (Figure S3). In most cases, the training R2 exceeds 0.95 (with 

some exceptions in YRD). As expected for supervised learning, the training R2 is higher than the testing R2 because 

the models are optimized on the training subset. However, the differences between training and testing R2 are 

modest and consistent across regions and algorithms. 

 220 

We compute SHAP values from each ML model across the three regions and average the absolute values for each 

feature to obtain the global feature importance (𝐺	& from Eq. (2)). Figure 2a–c shows the ranked feature importance 

across all five models. In all regions, temperature (T2M), shortwave solar radiation (SWGDN), and relative 

humidity (RH) emerge as the dominant meteorological drivers, followed by circulation and stability-related 

variables such as V850, H500, and PBLH. DOY and UNIX also contribute substantially, reflecting the recurring 225 

seasonal cycle and long-term non-meteorological changes. These identified drivers are broadly consistent with 

previous ML-based studies of ozone variability in China (Weng et al., 2022; Liu et al., 2020; Li et al., 2023). 
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Figure 2. (a)–(c): Global feature importance for the three regions: North China Plain (NCP, left column), Yangtze 230 

River Delta (YRD, middle column), and Pearl River Delta (PRD, right column), calculated by averaging the absolute 

SHAP values across all days. (d–i): Scatter plots of selected meteorological variables versus their SHAP values, 

illustrating local explainability. Each point represents a daily observation, and different colors correspond to different 

ML models. 

 235 
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Figure 2d–i shows scatter plots of individual meteorological variables against their SHAP values, providing local 

explainability insights for each region. Two key variables are highlighted per region, with additional examples 

shown in Figure S4–S6. Overall, the ozone–meteorology relationships revealed by XML are consistent with 

established physical understanding. For instance, surface ozone levels are positively correlated with T2M and 240 

SWGDN, and negatively correlated with RH and W10M (Wang et al., 2017; Lu et al., 2019; Archibald et al., 2020; 

Fu and Tian, 2019). V850 exhibits opposite effects in NCP and PRD (Fig. S4 vs. S6). In NCP, southerly winds 

(V850 > 0) tend to transport polluted air masses northward, worsening ozone pollution, whereas in PRD, they 

typically bring cleaner marine air, mitigating ozone levels. The SHAP results also uncover important nonlinear 

relationships. For example, the O3–T2M relationship in NCP flattens at lower temperatures, indicating that 245 

temperature has a weaker effect on ozone variability in cold seasons than in summer. High 500 hPa geopotential 

height (H500) is generally associated with elevated ozone due to stable atmospheric conditions; however, beyond 

5800 m, its contribution diminishes, likely due to enhanced precipitation and humidity (Fig. S7). Furthermore, the 

SHAP-derived O3–V850 (Fig. 2f) and O3–RH (Fig. 2h) relationships exhibit a two-mode pattern that varies with 

temperature (Figure S8), suggesting distinct meteorological influences in summer vs. winter. 250 

 

We observe substantial discrepancies in feature attribution across the five ML models. As shown in Figure 2, the 

mean SHAP values for individual input variables vary considerably across models, resulting in differences in the 

global importance rankings of meteorological features. One illustrative example is the sensitivity of ozone to 

temperature (dO3/dT), a key metric for assessing the ozone climate penalty (Bloomer et al., 2009; Jaffe and Zhang, 255 

2017). We estimate dO3/dT by fitting a linear regression between summertime SHAP values and T2M values 

(Figure 2d). Across the five models, dO3/dT estimates range from 1.74 to 2.70 ppbv/K in NCP, 0.81 to 1.27 ppbv/K 

in YRD, and 0.80 to 1.43 ppbv/K in PRD (Table S1). These inter-model variations are comparable to the spread 

observed in previous process-based modeling studies (Chen et al., 2024; Porter and Heald, 2019; Zhang et al., 

2022), underscoring the importance of model choice when interpreting climate sensitivity estimates. 260 
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These discrepancies in explainability are likely driven by multicollinearity among input features. As shown in the 

correlation heatmap (Figure S1), T2M is highly correlated with SWGDN, H500, surface pressure (PS), and 

evaporation (EVAP) in all three regions. Different ML algorithms assign varying importance to these correlated 

features. For example, in NCP, CatBoost attributes the highest global importance to T2M and the lowest to SWGDN 265 

and H500 compared with other algorithms (Figure 2a). This is also reflected in CatBoost’s SHAP values for H500, 

which are near zero when H500 is below 5700 m (Figure 2g). We further conduct a sensitivity experiment in which 

SWGDN, H500, PS, and EVAP are excluded from the input features (Fig. S9). However, inter-model discrepancies 

persist, primarily due to strong collinearity between T2M and DOY (Fig. S1). Removing DOY reduces these 

discrepancies but degrades performance across all five models. Since our goal is to use XML to reveal underlying 270 

physical relationships, we prioritize retaining a comprehensive set of relevant features, even if some are correlated 

and may lead to overfits, so that subtle but important processes can be kept (e.g., ozone responses to H500 or 

SWGDN) (Jiang et al., 2024). 

 

3.2 The impacts of meteorology on surface ozone trends over 2013–2023 275 

We assess the contribution of meteorology to long-term ozone trends by calculating linear trends in warm-season 

(April-September) SHAP values for each input variable using a parametric regression method (Lu et al., 2020). We 

divide the study period into two phases (pre-2019 and post-2019) since 2019 marks a turning point in the ozone 

trend, transitioning from rapid increases to stabilization or decline (Fig. 3). SHAP values enable attribution of 

observed ozone trends to individual meteorological variables and two temporal features. DOY captures the seasonal 280 

cycle, and UNIX reflects non-meteorological influences such as emission changes (see Section 2.3). The observed 

warm-season ozone trends (dashed line in Figure 3) are 3.5, 2.1, and 1.8 ppbv/yr for NCP, YRD, and PRD, 

respectively, before 2019, and -0.66, 0.14, and 0.06 ppbv/yr after 2019. The five ML models reproduce these trends 

reasonably well, with some discrepancies, particularly in PRD, where Random Forest and Extra Trees 

underestimate the pre-2019 increase and overestimate the post-2019 trend. 285 
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Figure 3. Attribution of warm-season (April to September) surface ozone trends to meteorological and temporal 

variables for the periods 2013–2019 (top panels) and 2019–2023 (bottom panels) in three Chinese regions (NCP, YRD, 

and PRD). Results from the five ML models (LightGBM, XGBoost, CatBoost, Random Forest, and Extra Trees) are 

presented as individual bars, with colors representing contributions from specific meteorological and temporal (UNIX 290 

and DOY) variables. Hatches denote statistically certain trends (p<0.05). 

 

We find that meteorological and non-meteorological factors show contrasting roles in shaping surface ozone trends 

before and after 2019. In NCP and YRD, all five ML models indicate that the UNIX variable accounts for over half 

of the 2013–2019 ozone increases, whereas its influence is weak during 2019–2023, when meteorological factors 295 
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become the primary drivers. In PRD, results from LightGBM, XGBoost, and CatBoost indicate that the UNIX term 

explains nearly 46% of the pre-2019 ozone increase but shifts to a negative influence after 2019, offsetting the 

positive effects of meteorology. By contrast, Random Forest and Extra Trees attribute only ~28% of the pre-2019 

ozone rise to the UNIX term and show almost no influence over 2019–2023, reflecting weaker ozone–UNIX 

relationships in these models (Figure S6). These findings align with previous studies showing that China’s clean 300 

air actions contributed to rising ozone levels during Phase 1 (2013–2017) but led to slight declines during Phase 2 

(2018–2020) as coordinated controls of NMVOCs and NOx were implemented (Liu et al., 2023; Wang et al., 2023). 

Our XML results support these findings, demonstrating that the UNIX variable, a proxy for non-meteorological 

influences such as emissions, plays distinct roles in the evolution of ozone concentrations before and after 2019. 

 305 

We analyze the influence of specific meteorological variables on ozone trends using SHAP values. Temperature 

(T2M) is the most critical factor before 2019, with all five ML models consistently identifying its significant 

contribution to ozone trends (p < 0.05) across the three regions. In NCP, temperature is particularly important, 

contributing to ozone increases of 0.53-0.93 ppbv/yr across models during 2013–2019, followed by ozone declines 

after 2019. Such shifts in meteorological influences around 2019 in NCP have also been reported in a recent study 310 

that attributed them to reversed changes in meteorological variables (Wang et al., 2024). In YRD, the combined 

effects of temperature, solar radiation, and humidity contribute to ozone increases of ~0.54 ppbv/yr during 2013–

2019. After 2019, although changes in temperature and humidity moderately enhance ozone levels, their effects are 

largely offset by other meteorological variables. In PRD, temperature, humidity, and wind conditions (V850 and 

W10M), along with other meteorological factors, collectively enhance surface ozone before 2019, whereas RH 315 

becomes the primary driver of ozone increases afterward. 
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3.3 Meteorology-induced ozone anomaly 

 
Figure 4. Schematic diagram of the attributable de-weathering approach, using an event of 14 July 2020 in the PRD 320 

region as diagnosed by the LightGBM model. (a) Steps for deriving the climatological mean ozone and the 

meteorology-induced ozone anomaly (MOA) on 14 July 2020. (b) MOA values in PRD from 29 June to 24 July 2020, 

with identified MOA events highlighted. 

 

We now apply the attributable de-weathering approach described in Section 2.3 to decompose daily ozone into a 325 

climatological mean and meteorology-induced ozone anomaly (MOA). Figure 4a shows a pollution event in PRD, 

with regional mean surface ozone peaking on 14 July 2020. The observed MDA8 ozone reached 77.6 ppbv on 14 

July 2020, while the five ML models estimated similar values ranging from 76.4 to 77.5 ppbv (only the LightGBM 

result is shown for clarity). After de-weathering, the climatological ozone level is estimated to be ~45 ppbv. Several 

meteorological variables, such as RH, V850, and PRECTOT, negatively contribute to this climatology, reflecting 330 

the influence of 15-day running averages (Eq. (3)) in mid-July. Subtracting it from the total ozone yields the MOA 
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being as high as 32 ppbv on that day. All five models identify V850 as the most influential meteorological factor, 

accounting for about one-third of the MOA. Additional important factors include RH, T2M, PRECTOT, SWGDN, 

and 10-m wind speed (W10M), all enhancing the MOA during this pollution event (Fig. 4b). 

 335 

We focus on positive MOA events during warm seasons, and calculate the average magnitude and duration for each 

event (e.g., Figure 4b). Figure 5 shows their interannual variations and trends from 2013 to 2023. Averaged across 

five ML models, the mean magnitudes of positive MOA values are 11.7 ppbv in NCP, 11.5 ppbv in YRD, and 15.9 

ppbv in PRD (Table S2). Our analysis reveals significant increasing trends (p < 0.05) in MOA magnitude across 

all three regions, with annual rates of 0.36, 0.28, and 0.43 ppbv/year in NCP, YRD, and PRD, respectively. After 340 

2019, the magnitude of MOA events becomes more variable. For instance, in 2021, MOA values in NCP were 

notably low, mainly due to the reduced T2M influences. In contrast, PRD experienced a sharp peak in MOA in 

2022, reaching nearly 20 ppbv, largely driven by decreased RH. Figure S10 compares the global importance of 

original SHAP values with those based on anomalies. In NCP, although T2M is less dominant in anomaly-based 

importance compared to the original ranking, it remains the most influential factor in explaining ozone anomalies. 345 

In YRD, the importance of temperature drops from first in the original ranking to third in the anomaly-based 

ranking, where it contributes comparably to RH and SWGDN. Moreover, the relative importance of V850 increases 

in both NCP and PRD, indicating enhanced influence of synoptic-scale transport on daily ozone variability. 

 

In contrast to the increasing trend in MOA magnitude, none of the five ML models indicates significant trends in 350 

the duration of MOA events over the study period (Figure 5). However, the MOA duration in PRD shows notable 

interannual variability. On average, positive MOA events last 3.1 days in NCP, 3.4 days in YRD, and 4.3 days in 

PRD. Notably, a prolonged positive MOA event lasting over 30 days was recorded in PRD from 27 August to 26 

September 2022. XML results suggest that this event was mainly driven by sustained anomalies in RH, T2M, and 

V850 (Figure S11). The extended duration of positive MOA in PRD relative to NCP and YRD may be attributed 355 

to persistent weather systems such as the subtropical high and typhoons (Chen et al., 2022; Wang et al., 2018). We 
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also analyze the annual counts of positive MOA events and find no significant trends in any of the three regions 

(Figure 5). These findings suggest that the intensified meteorological influence on surface ozone in China from 

2013 to 2023 is primarily due to increasing MOA magnitudes, rather than more frequent or longer-lasting episodes 

of unfavorable meteorological conditions. 360 

 

 
Figure 5. Left column: Magnitude of positive MOA events during warm seasons from 2013 to 2023 for NCP (top), 

YRD (middle), and PRD (bottom). Bars represent contributions from individual meteorological variables. Trends in 

unit of ppbv/year are shown inset. Right column: Duration and count of positive MOA events over the same period. 365 

Results are averaged across five ML models, with error bars indicating the range among models. 
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4. Conclusions and uncertainty analyses 

In summary, we have applied the SHAP technique to the outputs of five ML models to analyze the impact of 

meteorology on surface ozone in three Chinese regions. All five models consistently identify important 370 

meteorological drivers of ozone variability, including temperature, solar radiation, humidity, wind, and geopotential 

height. The XML results also reveal their nonlinear relationships with ozone, which generally align well with 

established physical understanding. Our results highlight a temporal shift in the dominant drivers of ozone trends 

over the past decade. During the early phase of China’s clean air actions (prior to 2019), rising ozone levels were 

largely attributed to emission changes, while in the later phase (post-2019), meteorological variability become 375 

prominent. Among meteorological factors, temperature is identified as the most influential variable, with significant 

contributions to pre-2019 ozone trends in all three regions across all five models. Furthermore, the SHAP-based 

de-weathering approach shows a clear increase in the magnitude of positive meteorology-induced ozone anomaly 

(MOA) events in recent years.  

 380 

Our work highlights not only the valuable insights that XML can offer but also the potential challenges associated 

with its application to ozone attribution and broader environmental analysis. One major challenge is the presence 

of multicollinearity among meteorological variables, which complicates the interpretation of individual variable 

contributions. Machine learning models may arbitrarily assign higher importance to one correlated variable over 

another, leading to potentially misleading conclusions. This issue is particularly relevant when using XML outputs 385 

for policy-relevant assessments, such as estimating the ozone climate penalty (i.e., dO3/dT). More broadly, the 

collinearity among input variables can introduce uncertainty in explaining the relative importance of different 

drivers. In our case, only the UNIX and DOY terms are included as non-meteorological indicators due to their weak 

correlations with meteorological variables (Figure S8). However, incorporating additional inputs, such as 

concentrations of other pollutants, would likely increase the model’s complexity and hinder interpretability. 390 

 

Second, inconsistencies in XML results may arise from two sources: variations in feature attributions across 
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different models and differences in the models’ predictive performance. Disentangling these two sources of 

uncertainty is inherently difficult. For instance, in our study, the contribution of the UNIX variable to ozone trends 

in PRD, as identified by Random Forest and Extra Trees, differs significantly from that identified by the other 395 

algorithms (Figure 3). This discrepancy could be due to weaker modeled relationships between ozone and UNIX 

in the two models, larger biases compared to observational data, or a combination of both factors. In practice, 

models with higher predictive performance tend to provide more reliable explanations identifying the key features. 

 

Finally, our analyses rely exclusively on the SHAP technique due to its ability to provide local explainability 400 

information. However, the use of alternative XML methods may introduce additional layers of uncertainty in 

interpretation. For example, Table S3 compares global feature importance rankings generated by three different 

XML approaches, SHAP, Gain, and Permutation, for the LightGBM model. The inconsistencies among these 

importance rankings suggest that only general features, such as which variables are influential and which are not, 

can be reliably inferred. This highlights the need for future work to develop standardized evaluation metrics that 405 

can help distinguish more reliable and consistent explanations from the diverse outputs of multiple XML methods, 

such as those evaluated by Krishna et al. (2022). 

Data availability 
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