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Abstract. Understanding how meteorology influences surface ozone variability is critical for interpreting trends
and designing effective air quality policies. This study employs explainable machine learning (XML) with SHapley
Additive exPlanations (SHAP) to interpret daily ozone variations from 2013 to 2023 across three major regions in
eastern China: North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD). An ensemble
of five machine learning models (LightGBM, XGBoost, CatBoost, Random Forest, and Extra Trees) is trained
using 14 meteorological variables and two temporal indicators. XML reveals nonlinear, region-specific ozone-
meteorology relationships that are broadly consistent with physical understanding, while differences in SHAP
attributions across algorithms highlight structural uncertainty arising from multicollinearity among input variables.
We use SHAP-derived contributions to attribute warm-season ozone trends to meteorological versus non-
meteorological drivers. Before 2019, ozone increases are mainly associated with the temporal proxy for non-
meteorological influences (e.g., emission changes), whereas after 2019 meteorological variability dominates
regional ozone trends. Exploiting the additive nature of SHAP, we develop a de-weathering framework that
partitions daily ozone into a SHAP-based climatological baseline and a meteorology-induced ozone anomaly
(MOA). Across all three regions, the magnitude of positive MOA events increases over 2013-2023, while their
frequency and duration show no significant trends, indicating a strengthening meteorological amplification of
pollution episodes rather than more frequent events. Our results demonstrate both the utility and limitations of
XML for disentangling meteorological drivers of 0zone pollution and provide new constraints on how meteorology

shapes surface ozone under China’s clean air actions.

Keywords: surface ozone, air quality, explainable machine learning, SHAP, de-weathering
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1. Introduction

Surface ozone is a major air pollutant that threatens human health and ecosystems (Cohen et al., 2017; Fowler et
al., 2009; Mills et al., 2018; Zhang et al., 2019). It is formed mainly through photochemical reactions involving
precursors such as carbon monoxide (CO), nitrogen oxides (NOx = NO + NO»), and non-methane volatile organic
compounds (NMVOCs) under sunlight. In China, nationwide monitoring has revealed a widespread and rapid
increase in surface ozone levels since 2013, drawing growing attention from researchers and policymakers (Lu et
al., 2020; Wang et al., 2017). In response, the Chinese government has implemented a series of clean air actions to
reduce anthropogenic emissions of air pollutants (State Council of the People’s Republic of China, 2013; 2018).
These measures have substantially altered precursor emission patterns and have led to complex and regionally

varying ozone responses across eastern China.

Ozone formation is highly sensitive not only to chemical precursors but also to meteorological conditions.
Temperature and solar radiation control photochemical production rates, while wind speed, boundary-layer height,
and large-scale circulation determine the dispersion, accumulation, and transport of ozone and its precursors (Fiore
etal., 2012; Lu et al., 2019). Relative humidity, cloud cover, and precipitation further modulate ozone lifetimes and
vertical mixing (Fu and Tian, 2019; Lu et al., 2019). Recent studies have shown that meteorological variability can
explain a substantial fraction of interannual ozone changes in China and can even mask or amplify the effects of
emission controls in some years (Liu and Wang, 2020; Liu et al., 2023; Weng et al., 2022). Thus, explicitly isolating
and quantifying the meteorological contribution to surface ozone variability is critical for correctly interpreting

observed ozone trends and evaluating the effectiveness of clean air policies.

Conventional approaches for quantifying meteorological impacts on surface ozone include statistical models, such
as multiple linear regression, generalized additive models (Bloomer et al., 2009; Gong et al., 2017), and numerical
atmospheric models that perturb selected variables to attribute ozone changes to specific processes (e.g., Liu et al.,

2023; Liu and Wang, 2020). These approaches suggest that worsening meteorological conditions—particularly
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higher temperatures and lower humidity—have contributed significantly to the rising surface ozone levels in
eastern China since 2012, with impacts comparable to those of anthropogenic emissions (Liu et al., 2023; Liu and
Wang, 2020). Temperature plays a particularly important role in northern China by directly enhancing ozone
formation and increasing anthropogenic and biogenic precursor emissions (Dang et al., 2021; Wu et al., 2024),
whereas humidity is found to be especially influential in central and southern China (Han et al., 2020; Li et al.,
2020). However, both statistical and numerical models face key limitations in quantifying meteorological
contributions. Linear statistical models can approximate the dominant relationships and meteorology-driven trends
in ozone at seasonal or annual scales (e.g., Weng et al., 2022), yet they have limited flexibility to represent complex
nonlinear interactions. Process-based models, on the other hand, are computationally intensive and often exhibit
biases relative to observed ozone concentrations (Travis and Jacob, 2019; Ye et al., 2022). Moreover, they rely
heavily on emission inventories, which are typically updated on multi-year timescales, limiting their ability to
reflect recent changes in emissions and to provide a comprehensive understanding of their impacts on ozone

chemistry.

Machine learning (ML) and emerging explainable ML (XML) techniques provide a powerful framework for
capturing the complex, nonlinear relationships between observed meteorological variables and surface ozone
concentrations, thereby addressing some of the limitations of traditional statistical and process-based methods.
XML information can be broadly categorized into global and local explainability (Flora et al., 2024). Global
explainability describes how the ML model as a whole generates predictions, often by ranking input features in
terms of importance, for example using feature-importance outputs from Random Forest, which have been widely
applied to identify key meteorological drivers of surface ozone in China (Ma et al., 2021; Weng et al., 2022; Zhan
et al., 2018). In contrast, local explainability attributes individual predictions to specific input features, offering
more detailed insights into input—output dependencies at the data-point level. Recently, the SHapley Additive
exPlanation (SHAP) technique has been applied to ML models to separate meteorological, chemical, and source-

related effects on ozone in individual regions, such as Hangzhou (Yao et al., 2024; Zhang et al., 2024), Shenzhen
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(Mai et al., 2024), and Taipei (Li et al., 2025). These works demonstrate the potential of XML for ozone attribution

at the city or regional scale.

Despite recent progress, the application of XML techniques to systematically understand meteorological influences
on ozone remains limited. Key challenges include assessing XML’s ability to capture ozone—meteorology
relationships across spatiotemporal scales and evaluating the consistency of explanations across different ML
algorithms. In this study, we address these challenges by combining an ensemble of five SHAP-interpreted ML
models with a new de-weathering framework to analyze daily surface ozone across three regions in eastern China
from 2013 to 2023. Specifically, we (1) quantify nonlinear ozone—meteorology relationships and evaluate the
robustness of XML explanations across five tree-based models; (2) use SHAP values to attribute long-term warm-
season ozone trends to meteorological versus non-meteorological factors; and (3) develop a SHAP-based de-
weathering approach that partitions daily ozone into a climatological baseline and meteorology-induced ozone
anomalies (MOA), allowing trends in the intensity and occurrence of meteorology-driven ozone events to be
diagnosed. These advances enable a more comprehensive assessment of how meteorology shapes ozone variability

under China’s clean air actions.

2. Data and Methods

2.1 Surface ozone measurements and meteorology reanalysis

We use nearly 11 years of surface ozone measurements (from 1 January 2013 to 30 September 2023, 3925 days in
total) collected by the national air-quality monitoring network operated by the Chinese Ministry of Ecology and
Environment (https://air.cnemc.cn:18007, last access: 4 October 2024). The ozone exposure metric is the daily
maximum 8-hour average (MDAS), calculated for each site on each day. Data quality control procedures are applied

to remove outliers, following Lu et al. (2018). Specifically, we discard extremely high hourly ozone concentrations,
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require a sufficient number of valid hourly measurements to compute daily MDAS, and exclude sites with
substantial data gaps over the study period (Lu et al., 2018). The measurement sites are then averaged by each city
to account for air quality condition at the city level. Here, we focus our analyses on three populous regions in
eastern China: the North China Plain (NCP), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD). The

locations of the cities and the regional mean MDAS ozone concentrations are shown in Fig. 1.

In this study, we use 14 meteorological variables as input features: 2-m temperature (T2M), surface incoming
shortwave solar radiation (SWGDN), northward wind at 850 hPa (V850), eastward wind at 850 hPa (U850), 10-m
wind speed (W10M), geopotential heights at 500 hPa (H500) and 850 hPa (H850), surface pressure (PS), surface
evaporation (EVAP), surface relative humidity (RH), total surface precipitation flux (PRECTOT), planetary
boundary-layer height (PBLH), total cloud fraction (CLDTOT), and surface albedo (ALBEDO). These variables
are selected based on their strong correlations with daily surface ozone variations, as established in previous

modelling and statistical studies (Liu and Wang, 2020; Liu et al., 2020; Mo et al., 2020; Requia et al., 2020).

The meteorological data are obtained from the Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) reanalysis (Gelaro et al., 2017), which provides hourly global fields at 0.5° x 0.625°
resolution. To match each ozone monitoring site, we use its latitude—longitude coordinates to identify the nearest
MERRA-2 grid cell and extract the corresponding 24-hour mean meteorological variables from that grid cell for
each day. When multiple sites fall within the same MERRA-2 grid cell, they share the same meteorological inputs

at the grid scale.
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Figure 1. Locations of ozone monitoring cities and regional averaged monthly MDAS ozone concentrations analyzed
in this study. The three regions are North China Plain (NCP, blue), Yangtze River Delta (YRD, Red), and Pearl River
Delta (PRD, yellow). Numbers in brackets denote the number of cities. The right panels show monthly mean ozone

concentrations in the three regions over January 2013 to September 2023.

2.2 ML models and explainability

We apply five ML algorithms: LightGBM (Ke et al., 2017), XGBoost (Chen and Guestrin, 2016), CatBoost
(Prokhorenkova et al., 2018), Random Forest (Breiman, 2001), and Extremely Randomized Trees (Extra Trees;
Geurts et al., 2006), to predict daily variations in surface ozone. All five are tree-based ensemble models that utilize
decision trees as their basic structure. LightGBM, XGBoost, and CatBoost are gradient-boosting methods, which
iteratively train trees to correct errors from previous iterations. In contrast, Random Forest and Extra Trees employ
bagging, where multiple trees are trained independently on random subsets of the data and input features, and their
predictions are then averaged to produce the final output. We select these tree-based models because their structure
is highly compatible with SHAP-based explainability methods, which can efficiently compute feature contributions

by exploiting decision-tree ensembles.
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The output variable for all models is the daily MDAS ozone concentration. To construct the ML models, in addition
to the 14 meteorological variables introduced in Section 2.1, two temporal features are included: the day of year
(DOY), which ranges from 1 to 365 (or 366 in leap years) and captures the seasonal ozone cycle, and a UNIX time
variable, defined as a continuous, non-repeating count of days since 1 January 2013. The UNIX term serves as a
proxy for slowly varying, non-meteorological influences such as long-term changes in anthropogenic emissions
and background concentrations (Vu et al., 2019). We examine the correlations among all input variables (14
meteorological predictors, DOY, and UNIX) using a Pearson correlation matrix (Figure S1). As expected, several
variables are moderately to strongly correlated (for example, between surface temperature and solar radiation, or
among wind-related variables), reflecting the coupled nature of boundary-layer dynamics, radiation, and circulation.
We retain these correlated variables in the models because they represent physically distinct but linked processes

that can each modulate ozone formation and transport.

We train separate ML models for each region using all available monitoring sites to ensure sufficient data coverage.
The datasets are split randomly into 90% for training and 10% for testing. Hyperparameters are optimized using
five-fold cross-validation based on the coefficient of determination (R?). For explainability analysis, we use the
training data rather than the test data, as the goal is to understand how the model relies on input features rather than
its generalization performance (Flora et al., 2024; Lakshmanan et al., 2015). Therefore, after model evaluation, we

retrain each model on the full dataset before applying XML techniques.

We use the SHAP method (Lundberg and Lee, 2017) to quantify the contribution of each input feature to ozone
variability. SHAP is grounded in cooperative game theory and provides local explainability by assigning each
feature a contribution value for individual predictions. For a given ML model, the predicted MDAS ozone

concentration on the d-th day in year y (03071, 4) can be expressed as,
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2 14
Oz0riyq =C+ Z Tshapy q; + Z Mshapy q,; )
i=1 i=1

where C is the base SHAP value, Tshap denotes SHAP values from the two temporal terms (DOY and UNIX),
and Mshap denotes SHAP values from 14 meteorological factors. SHAP values are estimated at the daily level
and are specific to each feature, thus providing local explainability. Averaging the absolute SHAP values across all

days for feature i yields its global importance G; for the entire model (Eq. (2)).
1
G;= Nz Z|shapy,d_i|, N = 3925 (days) )
y d

This dual capability, local and global interpretability, makes SHAP particularly suitable for analyzing complex

ozone—meteorology relationships.

2.3 Attributable de-weathering approach

Leveraging the additive property of SHAP values, we propose an attributable de-weathering approach to partition
daily surface ozone into two components: a climatological baseline and a meteorology-induced ozone anomaly
(MOA). This framework, presented in Eqs. (3)—(6), enables attribution of ozone variability to specific

meteorological factors on a daily basis.

i
Mshapy q, = EZ s Z Mshap, ¢ 3)
p=1 t=d-7
2 14
Oszdwy 4 =C + Z Tshap,, q4; + Z Mshapy 4, (4)
i=1 i=1
14 14
Mshap', ,; = 0307iyq — O3dwy 4 = Z(Mshapy,d,i — Mshap,, 4,) (5)
i=1 i=1
14 1 !
G'i =+ %y Ta|Mshap', |, N = 3925 (days) (6)
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We first compute the climatological mean SHAP values for each meteorological variable (Mshap) by averaging
their daily SHAP values across an 11-year period within a 15-day moving window (Eq. (3)). We adopt a 15-day
running window to define this climatological component. This window is long enough to smooth over individual
pollution episodes and day-to-day fluctuations, while short enough to preserve sub-seasonal variations in the
meteorological background. We then construct the de-weathered ozone estimate (Oz;dw) by retaining temporal
SHAP values (associated with DOY and UNIX) while replacing the meteorological SHAP values (Mshap) with
their climatological means (Eq. (4)). The resulting Oz;dw represents the ozone level under climatologically mean

meteorological conditions.

The difference between Ozori and Os;dw, denoted as the Mshap' in Eq. (5), then defines the MOA.
Additionally, we compute the global importance of MOA (G'; in Eq. (6)). Compared with Mshap and G,
Mshap' and G'; quantify how individual meteorological features contribute to anomalies relative to climatology.
Compared with previous de-weathering methods that typically estimate only total meteorological contributions or
MOA magnitudes (Vu et al., 2019; Grange and Carslaw, 2019), this framework provides feature-resolved

attribution of daily anomalies to individual meteorological drivers.

3. Results

3.1 Ozone—-meteorology relationships revealed by XML

We evaluate the performance of the five ML models using the test dataset for each region, employing the coefficient
of determination (R?), root mean square error (RMSE), and mean absolute error (MAE) as performance metrics
(Figure S2). All models reproduce daily MDAS ozone variability well, with testing R* values of 0.80-0.88 in NCP,
0.76-0.84 in YRD, and 0.78-0.86 in PRD, and with RMSE and MAE in the range of a few ppbv. Three gradient

boosting models (LightGBM, XGBoost, and CatBoost) perform slightly better (R*> 0.8, MAE < 7.1 ppbv, and

10
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RMSE < 10 ppbv) than Random Forest and Extra Trees. The NCP yields the highest R? (0.86 to 0.88), while the
YRD shows the lowest R* (0.76 to 0.81). In addition, we assess model outputs on the full training dataset to ensure
internal consistency among different ML algorithms (Figure S3). In most cases, the training R? exceeds 0.95 (with
some exceptions in YRD). As expected for supervised learning, the training R? is higher than the testing R? because
the models are optimized on the training subset. However, the differences between training and testing R* are

modest and consistent across regions and algorithms.

We compute SHAP values from each ML model across the three regions and average the absolute values for each
feature to obtain the global feature importance (G ; from Eq. (2)). Figure 2a—c shows the ranked feature importance
across all five models. In all regions, temperature (T2M), shortwave solar radiation (SWGDN), and relative
humidity (RH) emerge as the dominant meteorological drivers, followed by circulation and stability-related
variables such as V850, H500, and PBLH. DOY and UNIX also contribute substantially, reflecting the recurring
seasonal cycle and long-term non-meteorological changes. These identified drivers are broadly consistent with

previous ML-based studies of ozone variability in China (Weng et al., 2022; Liu et al., 2020; Li et al., 2023).

11
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Figure 2d—i shows scatter plots of individual meteorological variables against their SHAP values, providing local
explainability insights for each region. Two key variables are highlighted per region, with additional examples
shown in Figure S4-S6. Overall, the ozone—meteorology relationships revealed by XML are consistent with
established physical understanding. For instance, surface ozone levels are positively correlated with T2M and
SWGDN, and negatively correlated with RH and W10M (Wang et al., 2017; Lu et al., 2019; Archibald et al., 2020;
Fu and Tian, 2019). V850 exhibits opposite effects in NCP and PRD (Fig. S4 vs. S6). In NCP, southerly winds
(V850 > 0) tend to transport polluted air masses northward, worsening ozone pollution, whereas in PRD, they
typically bring cleaner marine air, mitigating ozone levels. The SHAP results also uncover important nonlinear
relationships. For example, the O;—T2M relationship in NCP flattens at lower temperatures, indicating that
temperature has a weaker effect on ozone variability in cold seasons than in summer. High 500 hPa geopotential
height (H500) is generally associated with elevated ozone due to stable atmospheric conditions; however, beyond
5800 m, its contribution diminishes, likely due to enhanced precipitation and humidity (Fig. S7). Furthermore, the
SHAP-derived Os—V850 (Fig. 2f) and Os;—RH (Fig. 2h) relationships exhibit a two-mode pattern that varies with

temperature (Figure S8), suggesting distinct meteorological influences in summer vs. winter.

We observe substantial discrepancies in feature attribution across the five ML models. As shown in Figure 2, the
mean SHAP values for individual input variables vary considerably across models, resulting in differences in the
global importance rankings of meteorological features. One illustrative example is the sensitivity of ozone to
temperature (dOs/dT), a key metric for assessing the ozone climate penalty (Bloomer et al., 2009; Jaffe and Zhang,
2017). We estimate dOs/dT by fitting a linear regression between summertime SHAP values and T2M values
(Figure 2d). Across the five models, dO3/dT estimates range from 1.74 to 2.70 ppbv/K in NCP, 0.81 to 1.27 ppbv/K
in YRD, and 0.80 to 1.43 ppbv/K in PRD (Table S1). These inter-model variations are comparable to the spread
observed in previous process-based modeling studies (Chen et al., 2024; Porter and Heald, 2019; Zhang et al.,

2022), underscoring the importance of model choice when interpreting climate sensitivity estimates.

13
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These discrepancies in explainability are likely driven by multicollinearity among input features. As shown in the
correlation heatmap (Figure S1), T2M is highly correlated with SWGDN, H500, surface pressure (PS), and
evaporation (EVAP) in all three regions. Different ML algorithms assign varying importance to these correlated
features. For example, in NCP, CatBoost attributes the highest global importance to T2M and the lowest to SWGDN
and H500 compared with other algorithms (Figure 2a). This is also reflected in CatBoost’s SHAP values for H500,
which are near zero when H500 is below 5700 m (Figure 2g). We further conduct a sensitivity experiment in which
SWGDN, H500, PS, and EVAP are excluded from the input features (Fig. S9). However, inter-model discrepancies
persist, primarily due to strong collinearity between T2M and DOY (Fig. S1). Removing DOY reduces these
discrepancies but degrades performance across all five models. Since our goal is to use XML to reveal underlying
physical relationships, we prioritize retaining a comprehensive set of relevant features, even if some are correlated
and may lead to overfits, so that subtle but important processes can be kept (e.g., ozone responses to H500 or

SWGDN) (Jiang et al., 2024).

3.2 The impacts of meteorology on surface ozone trends over 2013-2023

We assess the contribution of meteorology to long-term ozone trends by calculating linear trends in warm-season
(April-September) SHAP values for each input variable using a parametric regression method (Lu et al., 2020). We
divide the study period into two phases (pre-2019 and post-2019) since 2019 marks a turning point in the ozone
trend, transitioning from rapid increases to stabilization or decline (Fig. 3). SHAP values enable attribution of
observed ozone trends to individual meteorological variables and two temporal features. DOY captures the seasonal
cycle, and UNIX reflects non-meteorological influences such as emission changes (see Section 2.3). The observed
warm-season ozone trends (dashed line in Figure 3) are 3.5, 2.1, and 1.8 ppbv/yr for NCP, YRD, and PRD,
respectively, before 2019, and -0.66, 0.14, and 0.06 ppbv/yr after 2019. The five ML models reproduce these trends
reasonably well, with some discrepancies, particularly in PRD, where Random Forest and Extra Trees

underestimate the pre-2019 increase and overestimate the post-2019 trend.

14
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Figure 3. Attribution of warm-season (April to September) surface ozone trends to meteorological and temporal

variables for the periods 2013-2019 (top panels) and 2019-2023 (bottom panels) in three Chinese regions (NCP, YRD,

and PRD). Results from the five ML models (LightGBM, XGBoost, CatBoost, Random Forest, and Extra Trees) are

presented as individual bars, with colors representing contributions from specific meteorological and temporal (UNIX

and DOY) variables. Hatches denote statistically certain trends (p<0.05).

We find that meteorological and non-meteorological factors show contrasting roles in shaping surface ozone trends

before and after 2019. In NCP and YRD, all five ML models indicate that the UNIX variable accounts for over half

of the 2013-2019 ozone increases, whereas its influence is weak during 2019-2023, when meteorological factors

15
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become the primary drivers. In PRD, results from LightGBM, XGBoost, and CatBoost indicate that the UNIX term
explains nearly 46% of the pre-2019 ozone increase but shifts to a negative influence after 2019, offsetting the
positive effects of meteorology. By contrast, Random Forest and Extra Trees attribute only ~28% of the pre-2019
ozone rise to the UNIX term and show almost no influence over 2019-2023, reflecting weaker ozone—-UNIX
relationships in these models (Figure S6). These findings align with previous studies showing that China’s clean
air actions contributed to rising ozone levels during Phase 1 (2013-2017) but led to slight declines during Phase 2
(2018-2020) as coordinated controls of NMVOCs and NOx were implemented (Liu et al., 2023; Wang et al., 2023).
Our XML results support these findings, demonstrating that the UNIX variable, a proxy for non-meteorological

influences such as emissions, plays distinct roles in the evolution of ozone concentrations before and after 2019.

We analyze the influence of specific meteorological variables on ozone trends using SHAP values. Temperature
(T2M) is the most critical factor before 2019, with all five ML models consistently identifying its significant
contribution to ozone trends (p < 0.05) across the three regions. In NCP, temperature is particularly important,
contributing to ozone increases of 0.53-0.93 ppbv/yr across models during 2013-2019, followed by ozone declines
after 2019. Such shifts in meteorological influences around 2019 in NCP have also been reported in a recent study
that attributed them to reversed changes in meteorological variables (Wang et al., 2024). In YRD, the combined
effects of temperature, solar radiation, and humidity contribute to ozone increases of ~0.54 ppbv/yr during 2013—
2019. After 2019, although changes in temperature and humidity moderately enhance ozone levels, their effects are
largely offset by other meteorological variables. In PRD, temperature, humidity, and wind conditions (V850 and
W10M), along with other meteorological factors, collectively enhance surface ozone before 2019, whereas RH

becomes the primary driver of ozone increases afterward.
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3.3 Meteorology-induced o0zone anomaly
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Figure 4. Schematic diagram of the attributable de-weathering approach, using an event of 14 July 2020 in the PRD
region as diagnosed by the LightGBM model. (a) Steps for deriving the climatological mean ozone and the
meteorology-induced ozone anomaly (MOA) on 14 July 2020. (b) MOA values in PRD from 29 June to 24 July 2020,

with identified MOA events highlighted.

We now apply the attributable de-weathering approach described in Section 2.3 to decompose daily ozone into a
climatological mean and meteorology-induced ozone anomaly (MOA). Figure 4a shows a pollution event in PRD,
with regional mean surface ozone peaking on 14 July 2020. The observed MDAS ozone reached 77.6 ppbv on 14
July 2020, while the five ML models estimated similar values ranging from 76.4 to 77.5 ppbv (only the LightGBM
result is shown for clarity). After de-weathering, the climatological ozone level is estimated to be ~45 ppbv. Several
meteorological variables, such as RH, V850, and PRECTOT, negatively contribute to this climatology, reflecting

the influence of 15-day running averages (Eq. (3)) in mid-July. Subtracting it from the total ozone yields the MOA
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being as high as 32 ppbv on that day. All five models identify V850 as the most influential meteorological factor,
accounting for about one-third of the MOA. Additional important factors include RH, T2M, PRECTOT, SWGDN,

and 10-m wind speed (W10M), all enhancing the MOA during this pollution event (Fig. 4b).

We focus on positive MOA events during warm seasons, and calculate the average magnitude and duration for each
event (e.g., Figure 4b). Figure 5 shows their interannual variations and trends from 2013 to 2023. Averaged across
five ML models, the mean magnitudes of positive MOA values are 11.7 ppbv in NCP, 11.5 ppbv in YRD, and 15.9
ppbv in PRD (Table S2). Our analysis reveals significant increasing trends (p < 0.05) in MOA magnitude across
all three regions, with annual rates of 0.36, 0.28, and 0.43 ppbv/year in NCP, YRD, and PRD, respectively. After
2019, the magnitude of MOA events becomes more variable. For instance, in 2021, MOA values in NCP were
notably low, mainly due to the reduced T2M influences. In contrast, PRD experienced a sharp peak in MOA in
2022, reaching nearly 20 ppbv, largely driven by decreased RH. Figure S10 compares the global importance of
original SHAP values with those based on anomalies. In NCP, although T2M is less dominant in anomaly-based
importance compared to the original ranking, it remains the most influential factor in explaining ozone anomalies.
In YRD, the importance of temperature drops from first in the original ranking to third in the anomaly-based
ranking, where it contributes comparably to RH and SWGDN. Moreover, the relative importance of V850 increases

in both NCP and PRD, indicating enhanced influence of synoptic-scale transport on daily ozone variability.

In contrast to the increasing trend in MOA magnitude, none of the five ML models indicates significant trends in
the duration of MOA events over the study period (Figure 5). However, the MOA duration in PRD shows notable
interannual variability. On average, positive MOA events last 3.1 days in NCP, 3.4 days in YRD, and 4.3 days in
PRD. Notably, a prolonged positive MOA event lasting over 30 days was recorded in PRD from 27 August to 26
September 2022. XML results suggest that this event was mainly driven by sustained anomalies in RH, T2M, and
V850 (Figure S11). The extended duration of positive MOA in PRD relative to NCP and YRD may be attributed

to persistent weather systems such as the subtropical high and typhoons (Chen et al., 2022; Wang et al., 2018). We
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also analyze the annual counts of positive MOA events and find no significant trends in any of the three regions
(Figure 5). These findings suggest that the intensified meteorological influence on surface ozone in China from
2013 to 2023 is primarily due to increasing MOA magnitudes, rather than more frequent or longer-lasting episodes

360 of unfavorable meteorological conditions.
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Figure 5. Left column: Magnitude of positive MOA events during warm seasons from 2013 to 2023 for NCP (top),
YRD (middle), and PRD (bottom). Bars represent contributions from individual meteorological variables. Trends in
365 unit of ppbv/year are shown inset. Right column: Duration and count of positive MOA events over the same period.

Results are averaged across five ML models, with error bars indicating the range among models.
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4. Conclusions and uncertainty analyses

In summary, we have applied the SHAP technique to the outputs of five ML models to analyze the impact of
meteorology on surface ozone in three Chinese regions. All five models consistently identify important
meteorological drivers of ozone variability, including temperature, solar radiation, humidity, wind, and geopotential
height. The XML results also reveal their nonlinear relationships with ozone, which generally align well with
established physical understanding. Our results highlight a temporal shift in the dominant drivers of ozone trends
over the past decade. During the early phase of China’s clean air actions (prior to 2019), rising ozone levels were
largely attributed to emission changes, while in the later phase (post-2019), meteorological variability become
prominent. Among meteorological factors, temperature is identified as the most influential variable, with significant
contributions to pre-2019 ozone trends in all three regions across all five models. Furthermore, the SHAP-based
de-weathering approach shows a clear increase in the magnitude of positive meteorology-induced ozone anomaly

(MOA) events in recent years.

Our work highlights not only the valuable insights that XML can offer but also the potential challenges associated
with its application to ozone attribution and broader environmental analysis. One major challenge is the presence
of multicollinearity among meteorological variables, which complicates the interpretation of individual variable
contributions. Machine learning models may arbitrarily assign higher importance to one correlated variable over
another, leading to potentially misleading conclusions. This issue is particularly relevant when using XML outputs
for policy-relevant assessments, such as estimating the ozone climate penalty (i.e., dO3/dT). More broadly, the
collinearity among input variables can introduce uncertainty in explaining the relative importance of different
drivers. In our case, only the UNIX and DOY terms are included as non-meteorological indicators due to their weak
correlations with meteorological variables (Figure S8). However, incorporating additional inputs, such as

concentrations of other pollutants, would likely increase the model’s complexity and hinder interpretability.

Second, inconsistencies in XML results may arise from two sources: variations in feature attributions across
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different models and differences in the models’ predictive performance. Disentangling these two sources of
uncertainty is inherently difficult. For instance, in our study, the contribution of the UNIX variable to ozone trends
in PRD, as identified by Random Forest and Extra Trees, differs significantly from that identified by the other
algorithms (Figure 3). This discrepancy could be due to weaker modeled relationships between ozone and UNIX
in the two models, larger biases compared to observational data, or a combination of both factors. In practice,

models with higher predictive performance tend to provide more reliable explanations identifying the key features.

Finally, our analyses rely exclusively on the SHAP technique due to its ability to provide local explainability
information. However, the use of alternative XML methods may introduce additional layers of uncertainty in
interpretation. For example, Table S3 compares global feature importance rankings generated by three different
XML approaches, SHAP, Gain, and Permutation, for the LightGBM model. The inconsistencies among these
importance rankings suggest that only general features, such as which variables are influential and which are not,
can be reliably inferred. This highlights the need for future work to develop standardized evaluation metrics that
can help distinguish more reliable and consistent explanations from the diverse outputs of multiple XML methods,

such as those evaluated by Krishna et al. (2022).

Data availability

Surface ozone observations from the national air quality monitoring network are operated by the China Ministry
of Ecology and Environment (https://air.cnemc.cn). MERRA-2 meteorological reanalysis data are available from
the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) at https://disc.gsfc.nasa.gov/.

All derived data products used in this study are available from the corresponding author upon request.

Code availability

The machine-learning and SHAP analyses were implemented using standard open-source libraries
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(https://github.com/microsoft/FLAML,; https://github.com/shap/shap). The scripts used in this study are available

from the corresponding author upon request.
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