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Figure S1. Pearson correlation heat map of all 16 input variables used in the machine learning models,

revealing multicollinearity patterns.
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Figure S2. Density plots of observed and predicted MDAS ozone concentrations across three regions
for the testing dataset using five machine learning models. Colors indicate the number of data points in

30 each ppbv bin.
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Figure S3. Density plots of observed and predicted MDAS ozone concentrations across three regions
for the training set using the five machine learning models. The color indicates the number of data pairs

35 in each ppbv bin.



PBLH [m] PRECTOT [kg m2s™]
5

DOY [day]
10 5 LightGBM
XGBoost
3 3 3 3 CatBoost
g g °>ﬂ g Random Forest
o a Ugeic.™ T T TR, T T T T o —-- o Extra Trees .
< < < < " .
I I 5 T T #
2] [} v [} 2]
- 1o 5 10
0 1000 2000 3000 4000 0 100 200 300 400 0 1000 2000 3000 4000 0 02 04 06 08 1
x10%
EVAP [kgm2s™] CLDTOT [1] SWGDN [W m™3] ALBEDO [1]
4
E 3 3 E
© © «© «©
> > > >
o o o a O
< < < <
I I I I
%) %] 7] )
-4
0 02 04 06 08 1 0.1 0.2 0.3 0.4 0.5
W1OM [ms™] V850 [ms™]
3 3 3 3
«© «© © 0 —— - «©
> > > >
o o o o
< < <, <
I I I X
5] w w %]
-4
-4
0 2 4 6 8 10 20 -10 0 10 20
PS [Pa]
5 2
E E: S ok- E}
o [<] o ©
> 0 — > > >
o o o o
< < < <
I I I -2 X
[} (%] [} 2]
5
-10 -4 -15
1300 1400 1500 1600 5200 5400 5600 5800 6000 9.6 9.8 10 102 0 02 04 06 08 1

Figure S4. Dependence plots of meteorological variables and their SHAP values in NCP. Colors denote

different machine learning models.
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Figure S5. The same as Figure S4, but for the YRD region.
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Figure S6. The same as Figure S4, but for the PRD region.
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(a) Default features

(b) Same as (a) but no

SWGDN, H500, PS and EVAP

(c) Same as (b) but no DOY
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further excluding day of year (DOY). Colors denote different machine learning models.
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Figure S10. Comparison of global feature importance calculated from original SHAP values (G;) and

anomaly SHAP value (G';) after de-weathering. Error bars denote ranges across different machine

70 learning models.
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Table S1. Sensitivity of surface ozone to temperature (dO3/dT) across three regions, as estimated by the

dependence plots of SHAP values

Random
Region LightGBM XGBoost CatBoost Extra Trees
Forest
NCP 1.74 1.77 2.70 2.15 1.98
YRD 1.25 0.85 1.27 0.91 0.81
PRD 1.11 1.13 1.43 1.29 0.80

80

Table S2. Statistics of meteorology-induced ozone anomalies (MOA) during warm seasons, averaged

across five ML models. The first two columns report the mean and maximum values of positive MOA.

The third column presents the average duration of consecutive positive MOA days. The right two

85 columns show the percentage of positive MOA events lasting exactly 1 day and those exceeding 7 days.

Ranges in parentheses indicate inter-model variation.

Percentage of Percentage of
Resgion Mean MOA Max MOA Duration MOA events MOA events
g [ppbv] [ppbv] [days] lasting 1 day lasting >7 days
[Yo] [Yo]
NCP 11.7 43.3 3.1 28.1 6.9
(11.4-12.0) (41.0-46.0) (3.1-3.1) (26.9-29.7) (6.4-7.7)
YRD 11.5 37.5 34 25.1 8.4
(10.9-12.0) (35.2-39.8) (3.3-3.5) (23.9-25.9) (7.4-9.0)
PRD 15.9 52.8 43 26.2 10.8
(15.8-16.0) (51.9-54.0) (4.24.4) (24.8-29.2) (10.5-10.9)
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Table S3. Rankings of global feature importance as determined by SHAP, Gain, and Permutation

90 (Perm) methods.

NCP YRD PRD

rank SHAP Gain Perm SHAP Gain Perm SHAP Gain Perm
1 T2M M T2M T2M SWGDN T2M RH RH RH
2 UNIX SWGDN UNIX SWGDN T2M RH T2M V850 T2M
3 SWGDN H500 DOY RH RH DOY V850 T2M V850
4 DOY DOY SWGDN DOY UNIX SWGDN | PRECTOT SWGDN  ALBEDO
5 H500 UNIX V850 UNIX DOY UNIX W10M DOY W10M
6 V850 EVAP H500 PRECTOT ALBEDO ALBEDO | SWGDN W10M DOY
7 EVAP V850 RH ALBEDO W10M PS DOY ALBEDO PRECTOT
8 PRECTOT RH PRECTOT PS U850 W10M ALBEDO PRECTOT UNIX
9 RH PRECTOT EVAP W10M PS PRECTOT UNIX UNIX U850
10 ALBEDO PBLH PS U850 PRECTOT U850 U850 U850 SWGDN
11 PS U850 ALBEDO EVAP EVAP EVAP PS EVAP PS
12 W10M PS PBLH H500 V850 V850 EVAP H500 EVAP
13 U850 H850 U850 CLDTOT H500 H500 H8&50 PS H850
14 PBLH ALBEDO W10M HS850 H850 H8&50 H500 H8&50 H500
15 CLDTOT WI10M H850 V850 CLDTOT CLDTOT PBLH PBLH PBLH
16 HS850 CLDTOT CLDTOT PBLH PBLH PBLH CLDTOT CLDTOT CLDTOT
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