



1                   **Riverine Organic Matter Dynamics in the Headwaters of the China's Yellow River**

2                   **under Climate Change**

3                   Xiaoxiao Wang <sup>1,2</sup>, Jie Wang <sup>1</sup>, Tianqing Ren <sup>1</sup>, Jun Zhou <sup>3</sup>

4                   <sup>1</sup> School of Geographical Sciences, China West Normal University, Nanchong 637009, China

5                   <sup>2</sup> Sichuan Provincial Engineering Research Center of Monitoring and Control for Soil Erosion in  
6                   Dry Valleys, China West Normal University, Nanchong 637009, China

7                   <sup>3</sup> Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu  
8                   610213, China

9

10

11                  *Correspondence to:* Xiaoxiao Wang (wxx1989@cwnu.edu.cn)

12                  Xiaoxiao Wang and Jie Wang contributed equally to this work.



13     **Abstract:** Alpine headwater streams play a crucial role in the global carbon cycle and are  
14     particularly sensitive to climate change. Riverine organic matter (ROM) mediates the transport  
15     and transformation of terrestrial carbon across aquatic systems. However, the response of ROM in  
16     headwater streams on the Qinghai–Tibetan Plateau (QTP) to climate change remains poorly  
17     understood due to scarce in situ measurements. In this study, we used machine learning models  
18     combining satellite data and geographical variables to reconstruct historical variations in Chemical  
19     Oxygen Demand (COD, a proxy for ROM) along the Yellow River’s Headstream (YRHS), and to  
20     predict future changes under typical Shared Socioeconomic Pathways. The results indicate that  
21     COD levels in the midstream region of the YRHS, characterized by greater precipitation, higher  
22     soil organic matter, and denser vegetation, were relatively high ( $2.73 \pm 1.63 \text{ mg L}^{-1}$ ) and exhibited  
23     an increasing trend ( $+0.44 \text{ mg L}^{-1}$ ) over the past decade. Driven primarily by increasing  
24     precipitation and temperature, COD levels are projected to rise in upstream and downstream areas  
25     but decline at midstream sites under SSP126, SSP245, and SSP585 by the 2100s. The annual  
26     export of COD from the midstream of the YRHS is expected to increase from 62.5 Gg to 81.6 Gg  
27     by 2100s due to projected increase in COD concentrations and discharge. Our findings identify the  
28     midstream region of the YRHS as a critical and climate-sensitive region for organic matter  
29     dynamics. Nevertheless, substantial uncertainties remain in the future ROM changes owing to the  
30     complex interactions among precipitation, warming, and their combined effects on carbon cycles  
31     in alpine catchments. Therefore, further research is required to improve our understanding of  
32     catchment-scale carbon dynamics on the QTP in the context of climate change.

33     **Key words:** Alpine River; Carbon cycle; Climate change; Remote sensing; Machine learning



34 **1 Introduction**

35 Alpine regions represent some of the most vulnerable ecosystems to climate change, experiencing  
36 temperature increases nearly twice the global average (Aryal and Pokhrel, 2025; Kotlarski et al.,  
37 2023). Although these high-altitude environments cover only a small fraction of the Earth's  
38 surface, they provide essential ecosystem services, including freshwater supply, carbon storage,  
39 and biodiversity support (Aryal and Pokhrel, 2025; Chen et al., 2022; Hotaling et al., 2017).  
40 Among them, the Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole”, is the  
41 highest and one of the most climate-sensitive regions on Earth (Chen et al., 2022; Wang et al.,  
42 2023). In recent decades, the accelerated warming has triggered widespread environmental  
43 changes on the QTP, which are expected to significantly alter the sources, forms, and fluxes of  
44 carbon exports associated with permafrost degradation (Chen et al., 2022; Hong et al., 2025; Xu et  
45 al., 2024). Studies have shown that parts of the QTP have already shifted from carbon sinks to  
46 carbon sources and lateral transport of carbon has increased the riverine carbon fluxes on the QTP  
47 (L. Li et al., 2025). Riverine organic matter (ROM) plays a pivotal role in the biogeochemical  
48 cycles of carbon (Beusen et al., 2022; Giri, 2021; Hu et al., 2020; Regnier et al., 2022) and  
49 increase in ROM will pose threats to the water quality of rivers on the QTP. Despite growing  
50 concern regarding the ROM and its ecological consequences, our understanding of ROM  
51 dynamics across the QTP remains limited. Therefore, there is an urgent need for high spatial  
52 resolution and long-term observations of ROM dynamics and their exports on the QTP.

53 Headwater streams account for approximately 61% of total riverine ROM efflux despite  
54 representing only 34–38% of total stream surface area (Ran et al., 2021). Over recent decades,  
55 climate change has substantially influenced the ROM dynamics of headstreams on the QTP (Yao



56 et al., 2022). Long-term records show that the annual streamflow of headstreams in this region has  
57 generally increased over the past six decades (1962–2019) (Z. Zhang et al., 2024). Warming and  
58 wetting trends have contributed to higher ROM in the headwaters (Xu et al., 2024). Furthermore,  
59 climate-induced changes have intensified sediment erosion and enhanced associated ROM  
60 transport processes across the QTP (J. Li et al., 2023; Li et al., 2024; J. Li et al., 2025; Zhao et al.,  
61 2023). Nevertheless, fewer than 30% of headstreams across the QTP are consistently monitored  
62 (Li et al., 2024), leaving the responses of ROM dynamics in headwaters to climate change poorly  
63 constrained.

64 The limited understanding of ROM dynamics in alpine headwaters is largely due to the  
65 scarcity of long-term, continuous in-situ measurements, where data collection remains logically  
66 challenging. In recent years, advances in remote sensing and machine learning have provided  
67 powerful alternatives for addressing these limitations, offering new opportunities to predict water  
68 quality and infer nutrient-related parameters across extensive spatial and temporal scales (Adegun  
69 et al., 2023; Zeng et al., 2023; Zhi et al., 2024). Satellite-derived indices such as reflectance ratios,  
70 the Normalized Difference Chlorophyll Index (NDCI), the Suspended Sediment Index (SSI), etc.,  
71 have been increasingly employed to assess riverine organic matter, particularly when integrated  
72 with machine learning algorithms (Deng et al., 2024; Liu et al., 2021; Yan et al., 2025a).  
73 Consequently, integrating remote sensing data with in-situ measurements and machine learning  
74 holds significant potential for improving our understanding of ROM in headwaters and their  
75 responses to ongoing climate changing.

76 The headstreams of the Yellow River, located on the eastern QTP, constitute a crucial  
77 component of QTP's water resources and carbon cycling systems and have undergone substantial



78 environmental changes in recent decades (Wen et al., 2024). Current study indicated that  
79 approximately 35% of the Yellow River's source region serves as a net carbon source, and the  
80 lateral transport of carbon accounts for 31% of net ecosystem production in the Yellow River's  
81 source region (L. Li et al., 2025). Although numerous studies have been carried out across the  
82 broader Yellow River Basin, they have not focused on the historical and future dynamics of ROM  
83 in the source region of the Yellow River (Deng et al., 2025; Lan et al., 2025), which is largely  
84 attributable to limited monitoring network coverage in this region. Therefore, given the critical  
85 role of the Yellow River headwaters in carbon cycling and downstream water quality and its  
86 sensitivity to climate change, there is an urgent need to investigate the dynamics of riverine  
87 organic matter in the headwaters of the Yellow River under climate change.

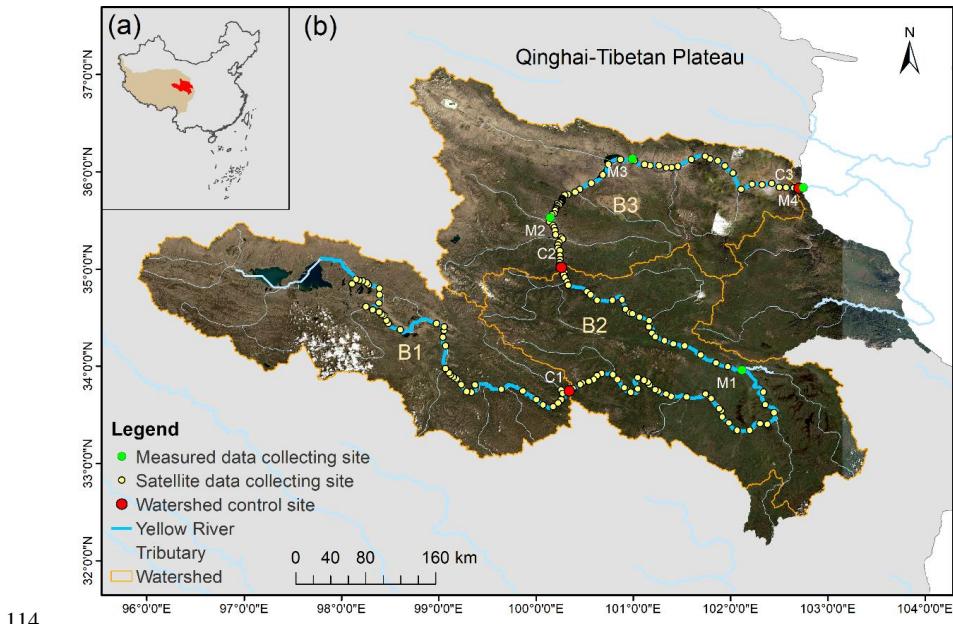
88 According to previous studies, ROM is commonly estimated using Chemical Oxygen  
89 Demand (COD) as a proxy, which reflects the amount of oxygen required to oxidize organic  
90 carbon in river water (Liu et al., 2023; Wang et al., 2026). Accordingly, we focus on the source  
91 region of the Yellow River to develop COD predictive models by combining in situ water quality  
92 observations with satellite reflectance data and to assess future changes under the SSP126,  
93 SSP245, and SSP585 scenarios. The objectives are to: (1) quantify the decadal variability of COD  
94 in the headstreams of the Yellow River and identify its driving factors; (2) predict future changes  
95 in COD under projected climate change scenarios; and (3) estimate COD exports and assess their  
96 potential impacts on downstream ecosystems. This study aims to provide a comprehensive and  
97 scalable understanding of how climate change is reshaping riverine organic matter dynamics  
98 within one of the world's most critical headwater regions.

## 99 **2 Methods and materials**



100 **2.1 Study area**

101 The source region of the Yellow River is situated in the eastern QTP (Fig. 1a), covering  
102 approximately 195,000 km<sup>2</sup>, with elevations ranging from 2650 m to 6250 m. The mean annual  
103 temperature in this area ranges between  $-3.5$  and  $7.5$  °C. The annual average precipitation in this  
104 area ranges from 420 to 705 mm, with the highest values occurring in the midstream region (Yang  
105 et al., 2023). The dominant land cover consists of alpine meadows and alpine steppes (Fig. S1).  
106 The area covers extensive permafrost and seasonally frozen ground, together covering more than  
107 85% of the region (Z. Li et al., 2025; M. Yang et al., 2025). Under the combined influence of  
108 climate warming and anthropogenic disturbances, permafrost in the upper reaches of the Yellow  
109 River source region has shown a significant trend of degradation in recent decades (Yang et al.,  
110 2023). The headwater region of the Yellow River contains a dense network of tributaries and  
111 contributes nearly 49% of the Yellow River's total discharge, making it one of China's most  
112 important water sources. However, within the national surface water quality monitoring network,  
113 only four sites (M1–M4) are situated at the headwaters of the Yellow River (Fig. 1b).



114

115 Fig. 1 Location of the source region of the Yellow River (a), river network within the study area

116 and data collection sites along the mainstream of the Yellow River (b). B1–B3 represent the up-,  
117 mid-, and downstream region of the Yellow River's headstream. A total of 160 monitoring sites  
118 span from downstream to upstream, with Site 1 located at the basin outlet.

119

120 **2.2 Data collection**

121 **2.2.1 In-situ Water Quality Data**

122 Riverine COD data for model training were obtained from 107 monitoring sites distributed across  
123 the QTP and surrounding regions (Fig. S2), including four sites (M1–M4) positioned along the  
124 mainstream of the Yellow River (Fig. 1b). COD data for each site was obtained from the China  
125 National Environmental Monitoring Centre (CNEMC; <https://www.cnemc.cn/>) for the period  
126 2021–2023. Measurements were performed every four hours (00:00, 04:00, 08:00, 12:00, 16:00,  
127 and 20:00). Following the *Environmental Quality Standards for Surface Water* (GB 3838–2002),



128 COD was determined using the acidic potassium permanganate method, in which 50 ml water  
129 sample was oxidized by standardized KMnO<sub>4</sub> solution under controlled heating conditions. After  
130 the reaction, the residual permanganate was titrated, and COD<sub>mn</sub> was calculated from the amount  
131 of KMnO<sub>4</sub> consumed.

132 **2.2.2 Satellite Reflectance Data**

133 Surface reflectance data for model training was acquired for the 107 monitoring sites across the  
134 QTP and its surrounding areas from 2021 to 2023 using the Google Earth Engine (GEE) platform,  
135 based on Landsat-8 OLI/TIRS and Landsat-9 OLI-2/TIRS-2 imagery. For historical COD  
136 estimation in the source region of the Yellow River, surface reflectance data from Landsat-8  
137 OLI/TIRS was also collected for 2014–2024 at 160 sites located at the headwater of the Yellow  
138 River (Fig. 1b). The Landsat-8/9 OLI datasets include five visible and near-infrared (VNIR) bands  
139 and two shortwave infrared (SWIR) bands (J. Li et al., 2025). Atmospheric correction for  
140 Landsat-8 and Landsat-9 imagery was performed using the Land Surface Reflectance Code  
141 (LaSRC, version 1.5.0). Pixels affected by clouds, cloud shadows, snow, ice, or non-water  
142 surfaces were removed based on the Landsat reflectance quality assessment bands.

143 **2.2.3 Geographical Feature Data**

144 Monthly precipitation and temperature data were obtained from the 1-km *Monthly Precipitation*  
145 *Dataset for China* (1901–2024) (Peng, 2025a, 2025b). Surface soil properties, including soil  
146 texture, pH, soil organic carbon, and bulk density, were extracted from the *Harmonized World Soil*  
147 *Database* (FAO, 2021). Vegetation coverage data were sourced from the *China Regional 250-m*  
148 *Fractional Vegetation Cover Dataset* (2000–2024) (Gao et al., 2025). Land use data were derived  
149 from the *Land Use Dataset of China* (1980–2015) provided by the Resource and Environmental



150 Science Data Center, Chinese Academy of Sciences (2020). Human Activity Intensity Index (HAI)  
151 were obtained from the *Human Activity Intensity Dataset of the Qinghai–Tibet Plateau* (2000–  
152 2020) (Liu, 2023). The Human Activity Intensity Index was calculated based on key human  
153 activity data, including agricultural and animal husbandry practices, industrial and mining  
154 development, urbanization, tourism, major ecological engineering projects, and pollutant  
155 discharge. Digital Elevation Model (DEM) data were retrieved from  
156 <https://viewfinderpanoramas.org>. Historical and projected Yellow River discharge data were  
157 compiled from previously published studies (Long et al., 2024; L. Liu et al., 2025; M. Ma et al.,  
158 2023; Wang, 2024).

159 Future monthly temperature and precipitation data with spatial resolution of 1 km in the  
160 Yellow River source region were obtained from climate projections generated by the Beijing  
161 Climate Center Climate System Model, version 2 (BCC-CSM2-MR) (Hu et al., 2025). This data  
162 was generated under three Shared Socioeconomic Pathways (SSPs) aligned with climate scenarios:  
163 SSP126 (sustainability-focused, low radiative forcing), SSP245 (intermediate, moderate  
164 stabilization), and SSP585 (fossil-fueled development, high radiative forcing).

165 **2.3 Model Development for Historical COD Reconstruction**

166 **2.3.1 Matching Measured COD with Satellite Reflectance**

167 COD data and satellite reflectance data (Landsat-8 OLI/TIRS and Landsat-9 OLI-2/TIRS-2)  
168 acquired from 107 sites across the eastern QTP and adjacent regions during 2021–2023 were used  
169 for model development (Fig. S2). Since Landsat-8/9 overpasses the study region at approximately  
170 10:30 local time, COD measurements obtained at 08:00 or 12:00 on the same day were paired  
171 with corresponding satellite scenes. When multiple valid matches were available, only the 12:00



172 COD measurement was retained to ensure temporal consistency. A total of 3048 valid COD–  
173 reflectance matchups were obtained for the 107 sites during 2021–2023. These matched datasets  
174 covered a broad COD concentration range (0.25–23.2 mg L<sup>-1</sup>) and were used to develop models  
175 for COD prediction.

176 **2.3.2 Input and Prediction Variables of Models**

177 The 3048 valid COD–reflectance matchups were further processed to generate input variables.  
178 Input features included raw spectral bands and derived indices, with COD serving as the  
179 prediction variable. The raw spectral bands comprised Landsat-8/9 reflectance from Bands 1–7  
180 and selected band ratios (SR<sub>nir</sub>/SR<sub>red</sub>, SR<sub>red</sub>/SR<sub>green</sub> and SR<sub>red</sub>/SR<sub>blue</sub>). Additionally, several spectral  
181 indices known to be sensitive to organic matter were calculated (Table S1), namely the  
182 Normalized Difference Chlorophyll Index (NDCI), Organic Carbon Index (OC\_Index),  
183 Normalized Suspended Material Index (NSMI), and Hue Angle (Yan et al., 2025b). Longitude and  
184 latitude were also incorporated as input variables.

185 **2.3.3 Model Training**

186 The AutoGluon-Tabular algorithm, implemented in the Anaconda3 environment, was employed to  
187 train models for COD prediction with Landsat-derived spectral features mentioned above.  
188 AutoGluon-Tabular is an open-source automated machine learning (AutoML) framework that  
189 builds high-accuracy predictive models for tabular data through multi-layer model ensembling and  
190 stacking. AutoGluon’s *TabularPredictor* was configured in regression mode and trained using  
191 multiple base learners (e.g., Gradient Boosting Machines, Random Forests, Neural Networks).  
192 The framework automatically optimized model selection, hyperparameters, and ensemble weights.  
193 The matched dataset (3048 pairs) described in Section 2.3.2 was randomly divided into training



194 (80%) and testing (20%) subsets. A total training time limit of 600s was assigned to ensure  
195 sufficient exploration of model configurations.

196 **2.3.4 Model Evaluation**

197 Model performance was evaluated using the negative Root Mean Squared Error (RMSE) for both  
198 the validation and test datasets (Eqs. 1–2). Lower (i.e., closer-to-zero) test and validation scores  
199 indicated superior model performance. The performance metrics for all models are summarized in  
200 Table S2.

201 
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2} \quad (1)$$

202 
$$\text{Test /Validation score} = -RMSE \quad (2)$$

203 where,  $N$  denotes the size of the observations and  $y_i$  and  $\hat{y}_i$  denote the in-situ values and  
204 satellite-retrieved values, respectively.

205 The importance of different input variables affecting the prediction of COD was also  
206 assessed based on the importance scores (Eq.3).

207 
$$Importance(f_i) = M(D) - M(D_{shuffled(f_i)}) \quad (3)$$

208 where,  $M(\cdot)$ , model performance metric (e.g., accuracy, log-loss, RMSE);  $D$ , original evaluation  
209 dataset;  $D_{shuffled(f_i)}$ , same dataset, but with feature  $f_i$  randomly permuted;  $Importance(\hat{f})$ , Drop in  
210 performance when  $f_i$  is destroyed.

211 **2.3.5 Reconstruct of Historical COD and Calculation of COD Changes**

212 The model exhibiting the highest test and validation scores was applied to reconstruct COD  
213 concentrations at 160 sites located in the headwater region of the Yellow River from 2014 to 2024  
214 using Landsat-8 surface reflectance data. To evaluate model applicability and reliability, the  
215 reconstructed COD concentrations were compared with in situ measurements at two representative



216 headwater sites. Model accuracy was assessed for the two sites using the Mean Absolute  
217 Percentage Difference (MAPD), RMSE, and Bias, following the approach of Yan et al. (2025).  
218 Historical COD changes were assessed by comparing averages from 2014–2015 and 2023–2024.

219 **2.4 Prediction of Future COD and Its Changes in the Headstream of the Yellow River**

220 To predict future COD levels at 160 sites in the headwaters of the Yellow River, the machine  
221 learning approach was also employed to model the relationships between geographical variables  
222 and the satellite-based estimates of COD levels. Using the Anaconda3 platform, soil texture (sand,  
223 silt, clay), bulk density, soil organic carbon, soil pH, altitude, human activity intensity, vegetation  
224 cover, land use, and ten-year averages of annual mean precipitation and temperature for each site  
225 during 2014-2024 were used as input features, while the ten-year average COD concentration for  
226 each site during 2014-2024 served as the target variable. The best-performing model, selected  
227 based on test and validation scores, was then used to predict future COD concentrations,  
228 incorporating both static variables (e.g., soil properties, vegetation cover, land use) and dynamic  
229 variables (future annual mean precipitation and temperature), depending on data availability.

230 In order to predict the future COD using the trained model, future monthly temperature and  
231 precipitation data was collected from Hu et al., (2025). Future annual mean precipitation and  
232 temperature were then calculated for 2025-2040, 2041-2070, and 2071-2100, representing near-,  
233 mid-, and long-term horizons. Future COD changes in the Yellow River source region for  
234 2025-2040, 2041-2070, and 2071-2100 under SSP126, SSP245, and SSP585 scenarios were  
235 calculated relative to the mean values from 2014–2024.

236 **2.5 Calculation of COD flux**

237 The COD flux in the source region of the Yellow River was calculated using Eq. 4:



238 
$$F = C_i \times Q_i / 10 \quad (4)$$

239 where,  $F$  (Gg), nutrient export;  $C_i$  (mg/L), COD concentration;  $Q_i$  ( $10^8$  m $^3$ ), river discharge.

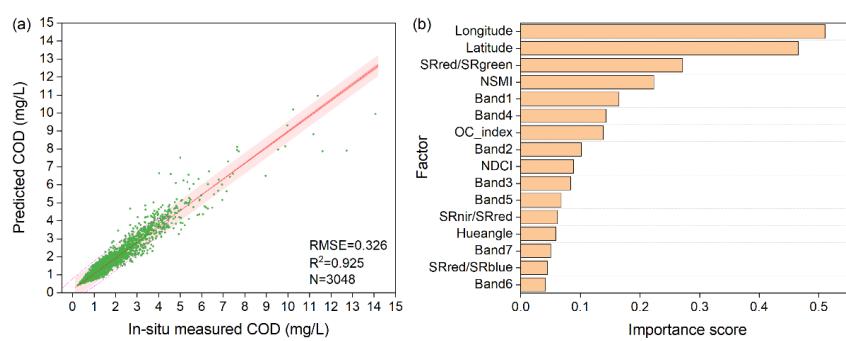
240 **3 Results**

241 **3.1 Performance of developed models**

242 **3.1.1 Predicting Historical COD Using Landsat Reflectance Data**

243 A total of 24 models were developed and evaluated on the Anaconda3 platform to predict COD  
244 levels from Landsat reflectance data, with test and validation scores summarized in Table S2. The  
245 LightGBMLarge model demonstrated the highest predictive accuracy for COD across the QTP  
246 and surrounding regions, achieving test and validation scores of  $-0.22325$  and  $-0.66913$ ,  
247 respectively. Predicted versus in-situ measured COD levels for 2021–2023 based on training  
248 dataset are shown in Fig. 2a, with RMSE and  $R^2$  of 0.326 and 0.925, respectively, indicating  
249 strong predictive performance.

250 The relative importance of input variables in the LightGBMLarge model was quantified  
251 using importance scores (Fig. 2b). The five most influential predictors were longitude, latitude,  
252 SR<sub>Red</sub>/SR<sub>Green</sub>, NSMI, and Band 1. Based on its performance, the LightGBMLarge model was  
253 selected to estimate historical COD levels in the source region of the Yellow River.



254

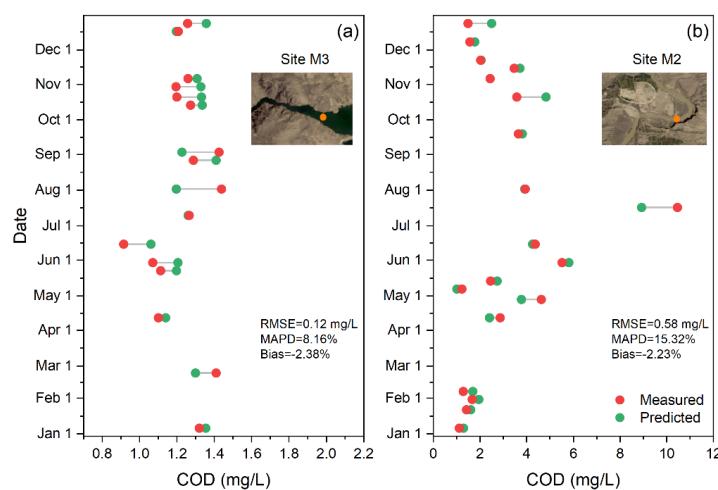
255 Fig.2 Model performance for COD prediction based on training set using Landsat 8/9 reflectance



256 data (a), and importance of input variables in COD prediction (b). Bands 1-7 are surface  
257 reflectance data produced by the Landsat 8 OLI/TIRS sensors; SR<sub>nir</sub>/SR<sub>red</sub>, SR<sub>red</sub>/SR<sub>green</sub> and  
258 SR<sub>red</sub>/SR<sub>blue</sub> are band ratios; NSMI is Normalized Suspended Material Index; OC\_Index is  
259 Organic Carbon Index; NDCI is Normalized Difference Chlorophyll Index; Hue Angle is used to  
260 reflect watercolor and water quality.

261

262 To assess model reliability in the study area, two representative sites (M2 and M3) in the  
263 Yellow River headwaters were used to compare modeled and in-situ COD time series (Fig. 3). The  
264 results indicate that the model can accurately capture both spatial and temporal variability of  
265 riverine COD in the headstreams of the Yellow River. At site M3, RMSE, MAPD, and Bias were  
266 0.12 mg L<sup>-1</sup>, 8.16%, and -2.38%, respectively, and RMSE, MAPD, and Bias at site M2 were 0.58  
267 mg L<sup>-1</sup>, 15.32%, and -2.23%, respectively.



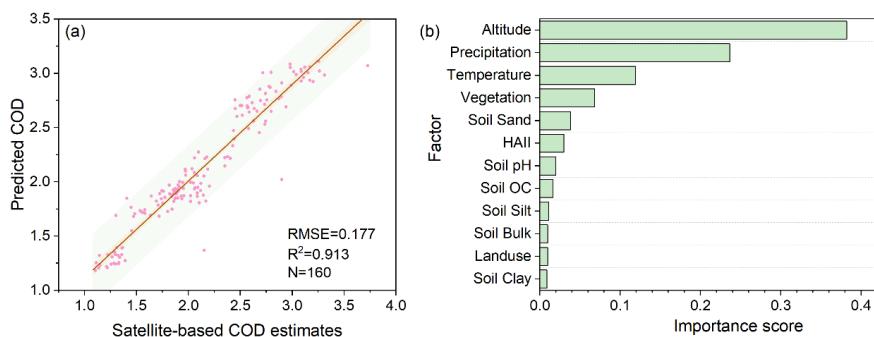
268  
269 Fig.3 Comparison between predicted and measured COD values in 2023 at sites M3 (a) and M2 (b)  
270 within the Yellow River source region. For sites M2 and M3, 24 and 20 matched data points were  
271 collected, respectively.



272

273 **3.1.2 Prediction of Future COD Using Geographical Features**

274 Models for predicting future COD based on geographical features were also developed using the  
275 Anaconda3 platform. A total of 36 models were evaluated (Table S3), and the LightGBMLarge  
276 model exhibited the highest performance, with test and validation scores of  $-0.081$  and  $-0.264$ ,  
277 respectively. Predicted versus satellite-based estimates of average COD levels based on the  
278 training dataset in the Yellow River source region are presented in Fig. 4a, achieving an  $R^2$  of  
279 0.913 and an RMSE of 0.177, indicating strong predictive capability of this model. Analysis of  
280 feature importance revealed that altitude, precipitation, temperature, and vegetation contributed  
281 most significantly to COD variability in the study area (Fig. 4b).



282

283 Fig.4 Performance of the developed model for COD prediction based on the training set using  
284 geographical feature data (a), and importance of variables in the predictive model (b). HAI is  
285 Human Activity Intensity Index; Soil OC represents soil organic carbon; Soil Bulk is soil bulk  
286 density; Soil Sand, Clay and Silt are soil texture.

287

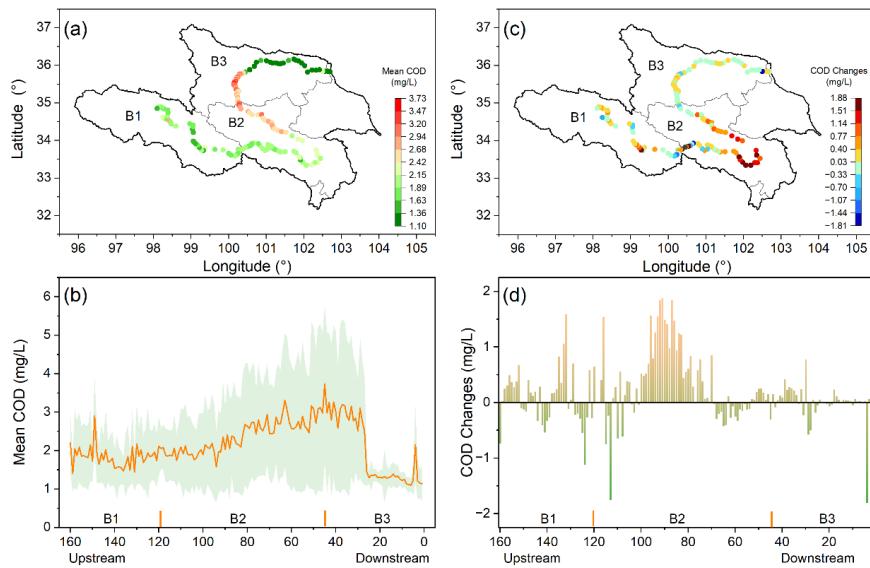
288 **3.2 Spatiotemporal Changes of COD in the Headstream of the Yellow River**

289 The developed model estimated an annual mean COD concentration of  $2.14 \pm 1.06 \text{ mg L}^{-1}$  in the  
15



290 Yellow River source region from 2014 to 2024, with pronounced spatial variability. In the  
291 upstream area, the mean COD was  $1.89 \pm 0.81 \text{ mg L}^{-1}$ , while higher concentrations were observed  
292 in the mid-downstream region ( $2.73 \pm 1.63 \text{ mg L}^{-1}$ ). The downstream area, which includes large  
293 reservoirs such as Longyangxia and Lijiaxia, exhibited significantly lower COD levels ( $1.54 \pm$   
294  $0.50 \text{ mg L}^{-1}$ ) (Fig. 5a,b).

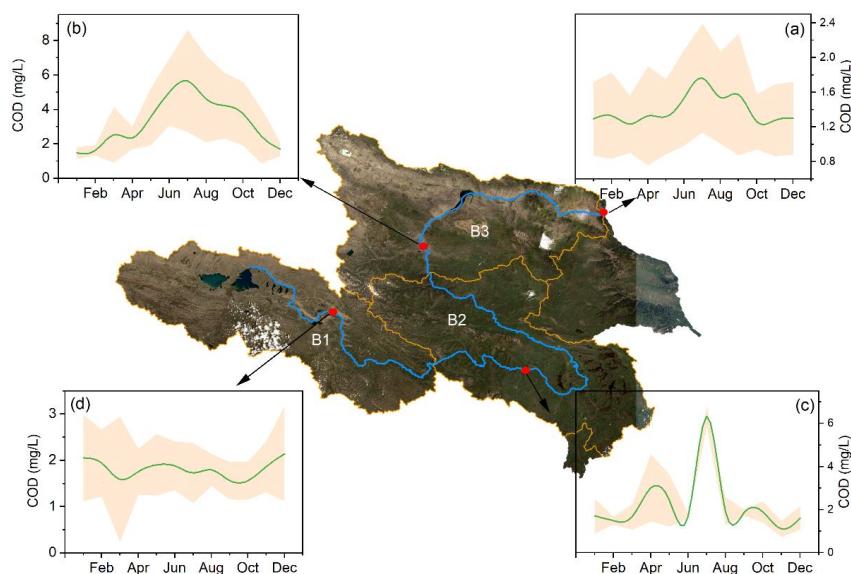
295 Over the past decade, the midstream region showed a clear increasing trend in COD, with an  
296 average rise of  $0.441 \text{ mg L}^{-1}$  (Fig. 5c,d). In contrast, the upstream area exhibited both increasing  
297 and decreasing trends, with a mean change of  $0.099 \text{ mg L}^{-1}$ , whereas COD concentrations in the  
298 downstream region remained relatively stable (mean change:  $-0.002 \text{ mg L}^{-1}$ ).



299  
300 Fig. 5 Spatial variation of mean COD and its change between 2014–2024 in the Yellow River  
301 source region. Changes were assessed by comparing averages from 2014–2015 and 2023–2024.  
302  
303 Seasonal variations of COD were also evident during our study. Average monthly COD



304 concentrations ranged from 0.8 to 8 mg L<sup>-1</sup> (Fig. 6). The downstream site maintained low (0.8-2.4  
305 mg L<sup>-1</sup>) and showed higher COD levels in summer (Fig. 6a), while the midstream site exhibited a  
306 pronounced increase from March, peaking in July (~8 mg L<sup>-1</sup>), followed by a gradual decline (Fig.  
307 6b). The upper–midstream site displayed two distinct peaks in late spring and summer, suggesting  
308 episodic organic inputs associated with ice melt and rainfall (Fig. 6c). Upstream sites remained  
309 low to moderate (1-3 mg L<sup>-1</sup>) with minimal seasonal variation (Fig. 6d).



310  
311 Fig.6 Averaged monthly variations of COD during 2014–2024 within the Yellow River source  
312 region.

313

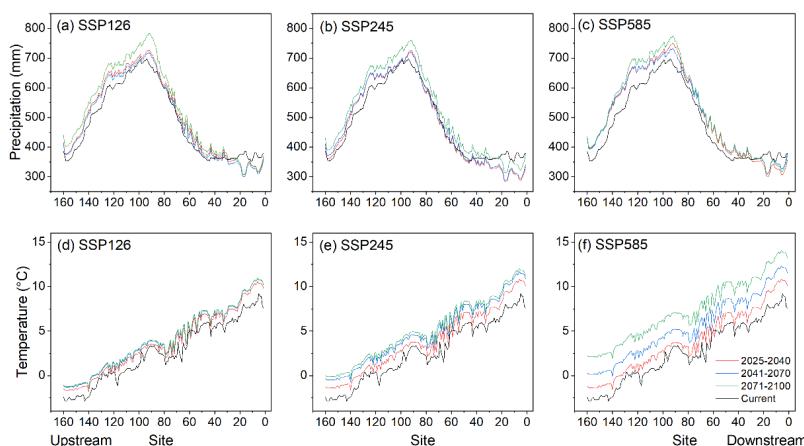
### 314 3.3 Future Climate and COD Changes in the Source Region of the Yellow River

315 Across all scenarios and periods, precipitation exhibits a consistent spatial pattern, increasing from  
316 upstream reaches to a midstream maximum and subsequently decreasing toward downstream



317 sections (Fig. 7a-c). This pattern is preserved under all SSPs, although the magnitude of  
318 precipitation varied among scenarios and time slices. Relative to current conditions, precipitation  
319 increases slightly in the midstream region under SSP126 and SSP245, particularly during the mid-  
320 and late-century periods. Under SSP585, precipitation displays enhanced increase, with higher  
321 midstream values during 2041–2070 and 2071–2100 and lower precipitation toward downstream  
322 reaches.

323 Compared with current conditions, future temperature rises across the entire study area (Fig.  
324 7d-f), with the magnitude of warming increasing over time and from SSP126 to SSP585. Under  
325 SSP126, temperature increases are relatively moderate, whereas SSP245 shows stronger warming,  
326 especially during 2071–2100. The largest temperature increases occurred under SSP585, with  
327 pronounced downstream variability during the late-century period, resulting in an amplified  
328 longitudinal temperature gradient.

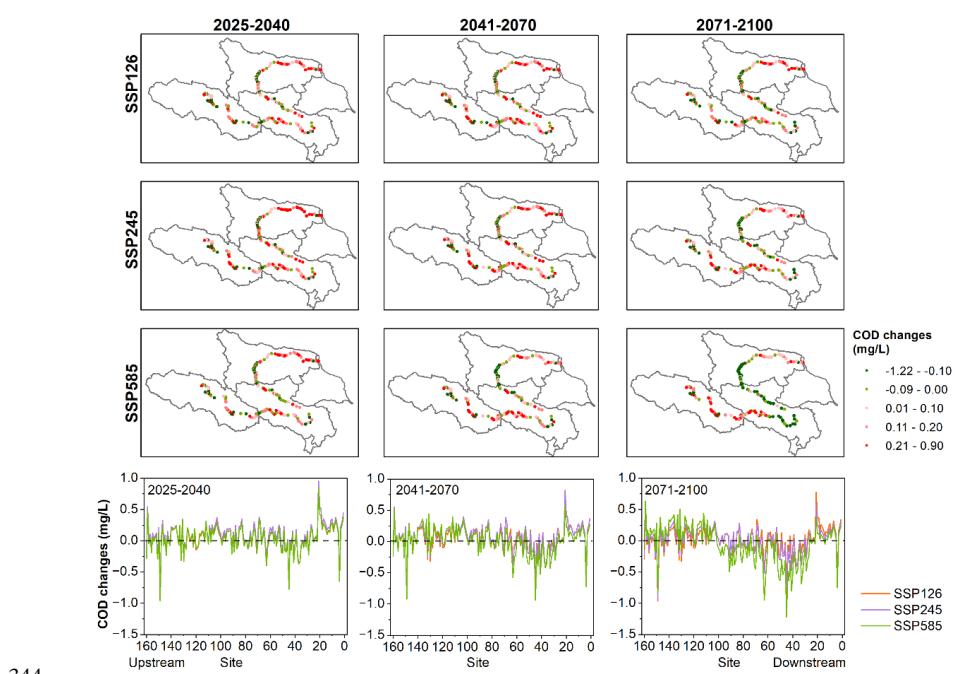


329  
330 Fig.7 Projected precipitation and temperature variations for 2025-2040, 2041-2070, and  
331 2071-2100 under SSP126, SSP245, and SSP585 scenarios based on CMIP6 data.

332



333       Projected changes in COD across the study area show pronounced spatial and temporal  
334       variability under all three SSP scenarios (Fig. 8). During the near-term period (2025–2040), COD  
335       changes are generally modest, with most monitoring sites exhibiting values close to zero. In the  
336       mid-term period (2041–2070), the COD changes show an overall increase, with mean value of  
337       0.05 mg L<sup>-1</sup>. Specifically, midstream sites more frequently experience decreases in COD, whereas  
338       upstream and downstream regions display a mixture of small increases and decreases. By the  
339       late-century period (2071–2100), the average change in COD is -0.01 mg L<sup>-1</sup>. COD shows a  
340       pronounced decrease trend in the midstream area (-0.12 mg L<sup>-1</sup>) under SSP585. Upstream and  
341       downstream areas show a higher occurrence of positive COD changes. Overall, COD shows a  
342       slight increasing trend across the three scenarios over different periods, with 877 positive changes  
343       (61%) and 563 negative changes (39%).



345       Fig.8 Projected spatial variation of COD changes in the Yellow River source region for 2025-2040,  
19



346 2041–2070, and 2071–2100 under SSP126, SSP245, and SSP585 scenarios. COD changes were

347 calculated relative to the mean values from 2014–2024.

348

### 349 **3.4 Historical and Future COD Exports in the Source Region of the Yellow River**

350 Based on the annual average discharge at control site C3 (1987–2021), approximately 28.1 Gg of

351 COD was exported from the entire study area. In contrast, the annual mean COD export at site M2

352 was 62.5 Gg, indicating that approximately 34 Gg of COD was either deposited or decomposed

353 between C3 and M2 along the downstream of the Yellow River’s source region. The export of

354 COD primarily occurred during the wet season (June–October) (Fig. 9a), which contributes

355 substantially to the annual COD export from the source region (Fig. 9b). Additionally, the

356 observed increase in COD export between sites M1 and M2 highlights the midstream region as a

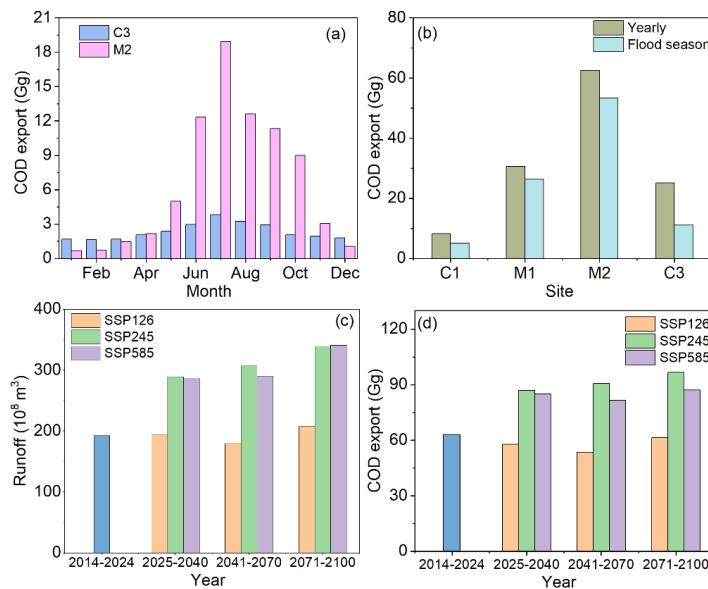
357 major source of COD (Fig. 9b).

358 Affected by the increase in the projected runoff (Fig. 9c), future projections at site M2

359 indicate a slight declining trend in COD export from 2025 to 2100 under SSP126 scenarios, and

360 an increase trend under SSP245 and SSP585 scenarios (Fig. 9d). By 2100, the average COD

361 export at M2 under different scenarios is expected to increase from 62.5 to 81.6 Gg.



362

363 Fig.9 Monthly average COD export during 2014-2024 at sites M2 and C3 (a); comparison of  
364 annual average COD export and flood-season COD export during 2014-2024 among sub-basins  
365 (b); projected annual runoff (c) and COD export at M2 for 2025-2040, 2041-2070, and 2071-2100  
366 under SSP126, SSP245, and SSP585 scenarios (d). C1-C3 are the control sites for sub-basins B1-  
367 B3, respectively. Historical annual and seasonal runoff was obtained from L. Liu et al. (2025) and  
368 Wang (2024). The projected runoff under SSP126 was derived from M. Ma et al. (2023), while the  
369 runoff under SSP245 and SSP585 was calculated using data from Long et al. (2024). Different  
370 sources of runoff data may result in discrepancies in the predicted COD exports across scenarios.

371

## 372 **4 Discussion**

### 373 **4.1 Factors Driving COD Dynamics in the Headstream of the Yellow River**

#### 374 **4.1.1 Spatial Variations**

375 Primary sources of riverine organic carbon include losses from soils, plant litter, root exudates in



376 grasslands, and permafrost thaw via surface runoff (Yan et al., 2023). In this study, precipitation,  
377 temperature, vegetation, and soil texture were identified as key drivers of COD variation (Fig. 4b).  
378 Notably, the overall soil organic carbon, vegetation cover, fine particle content, and precipitation  
379 are higher in the midstream region of the headwater (Fig. S3), providing abundant carbon sources  
380 and facilitating transport to nearby rivers, resulting in elevated COD levels and fluxes in the  
381 mid-downstream areas (Figs. 5a, 9a,b). Additionally, bare land in the mid-downstream areas of the  
382 headstream may also contribute to the soil erosion and the associated organic carbon losses (Fig.  
383 S1). L. Li (2025) identified the higher lateral fluxes of river organic matter in the midstream area  
384 of the Yellow River's source region. Consequently, the midstream area represents a critical source  
385 of organic carbon for the Yellow River headwaters.

386 In contrast, COD levels decreased markedly in the downstream region (Figs. 5a,b). This  
387 decline is likely driven by damming, as three large reservoirs, Longyangxia, Laxiwa, and Lijiaxia  
388 have been constructed in the downstream headwater region since the 1970s. Reservoirs increase  
389 water residence time, promoting deposition and decomposition of organic carbon, greenhouse gas  
390 emissions, and uptake by aquatic plants (Maavara et al., 2017, 2020). Therefore, the deposition or  
391 decomposition of organic matter along the downstream areas may contribute to the decline of  
392 COD levels. The deposition of riverine organic matter can be inferred from the decrease in COD  
393 fluxes at the outlet (C3) of the study area relative to Site M2 (Figs. 9a, b). L. Li et al. (2025) also  
394 reported negative dissolved organic matter fluxes in the main channels of the Yellow River's  
395 headstreams. Additionally, the decomposition of the deposited organic matter is evidenced by CO<sub>2</sub>  
396 outgassing from the river water. Previous study has found that CO<sub>2</sub> outgassing from the cascade  
397 reservoirs of Yellow River's source region was estimated at  $131.02 \pm 156.77 \text{ mmol m}^{-2} \text{ d}^{-1}$  in dry



398 seasons and  $466.10 \pm 366.67$  mmol m<sup>-2</sup> d<sup>-1</sup> in flood seasons (Wang et al., 2022). Therefore, these  
399 observations suggest that the sedimentation and degradation of organic matter contributes to lower  
400 COD concentrations in the downstream area.

401 The COD concentration remained relatively stable along the upper to middle reaches of the  
402 Yellow River's headwaters. This region is characterized by permafrost and seasonally frozen  
403 ground, with low precipitation and limited runoff (Yang et al., 2023). Surface runoff in this area  
404 primarily originates from precipitation, snowmelt, and glacier melt (G. Li et al., 2025).  
405 Consequently, due to the relatively uniform and stable runoff and land cover, COD levels  
406 exhibited a homogeneous spatial distribution along the upper to middle reaches of the Yellow  
407 River's headwaters.

408 **4.1.2 Temporal Variations**

409 Climate-driven changes in runoff and temperature strongly influence catchment-scale carbon  
410 dynamics, altering riverine organic matter fluxes globally (Costa et al., 2023). Over the past  
411 decade, air temperature in the source region of the Yellow River has shown an increasing trend,  
412 with a basin-averaged increase of 0.67 °C, and the precipitation also presented an over increase  
413 trend though decrease slightly after 2019 (Fig. S4). The study area is particularly sensitive to  
414 warming-induced permafrost thaw, glacier melting, soil erosion, and intensified human activities  
415 over recent decades (Chen et al., 2022; Deng et al., 2025; Lan et al., 2025), which modify ROM  
416 sources and lateral transport between terrestrial and aquatic systems, affecting ROM levels and  
417 fluxes in rivers (Chen et al., 2022; Wang et al., 2020, 2025). Previous studies highlighted that  
418 permafrost thaw was projected to release  $129.39 \pm 21.02$  Tg soil organic carbon annually (Lan et  
419 al., 2025). Glacier melting contributes an estimated 0.19 Tg C yr<sup>-1</sup> as dissolved organic carbon



420 (Chen et al., 2022). Intensified rainfall has increased soil erosion by 42% over the past four  
421 decades, resulting in an average soil carbon loss of  $4 \pm 1.2 \text{ Tg C yr}^{-1}$  (Deng et al., 2025).

422 Therefore, affected by the increased temperature and precipitation, COD concentrations in  
423 the source region of the Yellow River exhibited an overall increasing trend over the past decade,  
424 with an average rise of  $0.186 \text{ mg L}^{-1}$  (Figs. 5c,d). Especially the midstream region experienced the  
425 most pronounced increase ( $0.441 \text{ mg L}^{-1}$ ). The higher precipitation combined with increased  
426 runoff likely enhance organic matter leaching from grasslands, contributing to the rise of riverine  
427 COD in the midstream area (Chen et al., 2025; Yang et al., 2023).

428 In addition to climate effects, growing human activities such as land use changes, grazing,  
429 and construction on the QTP also influence carbon mobilization (Chen et al., 2022).  
430 Human-induced land-use changes, grassland degradation, construction activities, and overgrazing  
431 can lead to organic matter losses in the study area. In addition, the construction and urbanization  
432 of natural and agricultural ecosystems may further accelerate organic matter losses within the  
433 watershed. All these human activities may contribute to the rising of COD in the headstream of the  
434 Yellow River.

#### 435 **4.2 Future Changes in COD under Climate Change**

436 Rapid climate change in alpine regions is altering carbon cycling in both terrestrial and aquatic  
437 ecosystems (Chen et al., 2022). As carbon dynamics are highly sensitive to climatic variations,  
438 warming and wetting trends are expected to influence the stability of riverine organic matter in  
439 alpine catchments. Numerous studies indicate that precipitation and temperature on the QTP are  
440 projected to increase throughout this century, particularly in high-elevation areas (Karim et al.,  
441 2025; Meng et al., 2023). Our projections also suggest an overall increase in precipitation,



442 especially in the up-midstream area of the Yellow River source region (Fig. 7), and significant  
443 warming is projected in the whole study area by 2100, especially under SSP 245 and SSP585.

444 Climate-driven changes are expected to induce the largest variability in COD concentrations  
445 in the midstream region (Fig. 8). COD levels are projected to increase in most parts of the source  
446 region of the Yellow River, and annual average COD exports will increase from 62.5 Gg to 81.6  
447 Gg (Fig. 9d). ROM dynamics are jointly regulated by organic matter supply and hydrological  
448 processes within catchments (Li et al., 2022; Wu et al., 2024). Increased precipitation can enhance  
449 surface runoff, leading to losses of organic matter from the catchment, even though COD  
450 concentrations may be diluted as discharge continues to increase (Li et al., 2022; Wu et al., 2024).

451 The projected warming in the headwater area of the Yellow River will lead to the continuing  
452 permafrost degradation, promoting the loss of organic matter within the catchment and leading to  
453 the increase of the COD level in the headstreams (Z. Li et al., 2025). In addition, damming  
454 prolongs water residence time, promoting organic matter deposition in cascade reservoirs in the  
455 downstream area of the Yellow River's source region. Under warm conditions, the degradation of  
456 deposited organic matter in the bottom of the reservoir may be enhanced, releasing additional  
457 organic carbon from reservoir sediments and contributing to the rise of COD levels in the  
458 downstream area (Battin et al., 2023; Vachon et al., 2021).

459 However, the extent to which organic matter reaches rivers depends on hydrological  
460 processes and connectivity between the source region and river channels. The characteristics of  
461 rainfall events may shift the ROM response to storms from transport-limited to supply-limited,  
462 thereby reducing ROM levels (Li et al., 2022). Consequently, the projected increase in  
463 precipitation by the 2100s is expected to lead to a decrease in COD levels within the midstream



464 areas (Fig. 8). In addition, permafrost thaw induced by the warming can also alter runoff pathways,  
465 promoting subsurface flow and potentially reducing surface discharge to rivers (Yang et al., 2023).  
466 Increased vegetation cover can also reduce transport of organic matter through reducing soil  
467 erosion and surface runoff (Liu et al., 2024; W. Ma et al., 2023). Therefore, these factors may  
468 jointly contribute to the decrease of riverine organic matter at some specific sites on the  
469 headstream of the Yellow River.

#### 470 **4.3 Uncertainty in Riverine Organic Matter Dynamics on the QTP**

471 Understanding riverine organic matter dynamics is essential for assessing aquatic ecosystem  
472 feedback to climate change. Ongoing warming and wetting on the QTP are expected to alter  
473 carbon stability, increasing uncertainty in watershed organic matter losses (Bai et al., 2025). For  
474 instance, increased precipitation may enhance surface runoff (Li et al., 2022), however, rising  
475 temperatures can also decrease catchment runoff by enhancing evaporation. The influence of  
476 hydrological processes on ROM dynamics depends on the characteristics of the catchment (Li et  
477 al., 2022). Previous studies have predicted both increasing and decreasing streamflow trends on  
478 the QTP under future climate scenarios (G. Li et al., 2025; San et al., 2025; Yang et al., 2023).  
479 Increased streamflow may elevate COD in rivers, or dilute COD due to higher streamflow.  
480 Conversely, reduced streamflow may decrease organic matter transport to rivers or concentrate  
481 COD in river water.

482 Additionally, warming-induced permafrost thaw may accelerate topsoil organic matter  
483 mobilization, stimulate microbial activity, and promote soil organic matter decomposition,  
484 releasing more dissolved organic matter (Z. Li et al., 2025). However, the frozen ground  
485 degradation can also result in the decreased surface runoff by increasing the subsurface runoff



486 (Yang et al., 2023). Vegetation greening on the QTP may both enhance soil carbon storage and  
487 reduce organic matter losses to river networks through mitigating soil erosion (Deng et al., 2025).

488 Therefore, climate change can further differentially affect terrestrial carbon stocks and carbon  
489 losses, introducing additional complexity and uncertainty in catchment-scale organic matter  
490 sources and transport (Chen et al., 2022; Liu et al., 2024; W. Ma et al., 2023).

491 In-stream carbon biogeochemical processes are also highly complex under changing climatic  
492 conditions. Organic matter decomposition depends on temperature, redox conditions, hydrology,  
493 microbial activity, and organic matter characteristics (Battin et al., 2023). The climate change is  
494 projected to change the hydrological processes and the associated biogeochemical processes,  
495 further altering the carbon cycling in the alpine rivers. However, interactions among these factors  
496 are not fully understood in alpine rivers, making predictions of alpine river metabolism and carbon  
497 budget under climate change uncertain (L. Li et al., 2025).

498 Anthropogenic activities on the QTP further contribute to uncertainty. Warming and wetting  
499 may expand farming, increasing soil erosion and carbon losses (Chen et al., 2022). Future dam  
500 construction alters organic matter transport by promoting deposition, influencing greenhouse gas  
501 emissions, and facilitating organic matter degradation (Battin et al., 2023). Conversely, ecological  
502 restoration, such as afforestation, can increase soil organic matter accumulation and litterfall  
503 (Chen et al., 2022; Yan et al., 2023), leading to increase in organic matter and the COD levels in  
504 the nearby headwaters of the Yellow River.

505 In this study, we project a general increase in levels and fluxes of COD based on modeled  
506 temperature, precipitation, and discharge. However, future climatic trends may deviate from  
507 current projections, and the predicted temperature and precipitation may not represent the actual



508 future patterns. Furthermore, our developed model does not incorporate changes in land covers,  
509 soil carbon stocks, hydrological processes, or in-stream carbon biogeochemistry, all of which may  
510 significantly influence riverine carbon cycling. Therefore, future research should integrate these  
511 factors to develop more precise, process-based models and improve understanding of carbon  
512 dynamics in alpine river catchments.

513 **5 Conclusions**

514 In this study, LightGBM-Large models were developed to reconstruct the historical variations of  
515 COD in the source region of the Yellow River and to predict its future changes. Our findings  
516 identify the midstream region of the Yellow River's headstream, with higher COD levels ( $2.73 \pm$   
517  $1.63 \text{ mg L}^{-1}$ ), is sensitive to climate change and exhibited an increasing trend of COD ( $+0.44 \text{ mg$   
518  $\text{L}^{-1}$ ) in the past decade. Precipitation and temperature were identified as the key factors  
519 influencing COD dynamics in the headwaters of the Yellow River. Future projections suggest that  
520 increased precipitation and temperature may lead to an overall rise of COD levels, with decrease  
521 in some specific sites. The export of organic matter from the headwaters of the Yellow River is  
522 also projected to increase based on the anticipated increase in COD levels and discharge. However,  
523 the limited spatial and temporal resolution of Landsat data and lack of geophysical data, still poses  
524 challenges for accurately capturing rapid variations in riverine COD in the source region of the  
525 Yellow River. Therefore, future research should focus on developing more robust models by  
526 integrating higher-quality satellite observations and incorporating a broader range of  
527 environmental variables.

528 **Data availability**

529 The data will be available upon request.



530 **Author contributions**

531 XW: Conceptualization, Methodology, Writing—original draft, Funding acquisition; JW:  
532 Methodology, Data curation, Review and editing; TR: Investigation, Formal analysis, Validation;  
533 JZ: Validation, Conceptualization, Review and editing.

534 **Competing interests**

535 The authors declare that they have no conflict of interest.

536 **Acknowledgments**

537 We thank the National Tibetan Plateau / Third Pole Environment Data Center and Google Earth  
538 Engine for providing data.

539 **Financial support**

540 This work was funded by China West Normal University (22kA001, 17E040, CXTD2020-3).

541 **References**

542 Adegun, A., Viriri, S., Tapamo, J.-R., 2023. Review of deep learning methods for remote sensing  
543 satellite images classification: experimental survey and comparative analysis. *Journal of Big  
544 Data* 10. <https://doi.org/10.1186/s40537-023-00772-x>

545 Aryal, S., Pokhrel, Y., 2025. Spatio-temporal heterogeneities in hydrologic dynamics across the  
546 Asian Water Tower. *Journal of Hydrology* 662, 133951.  
547 <https://doi.org/10.1016/j.jhydrol.2025.133951>

548 Bai, Y., Peng, Y., Zhang, D., Yang, G., Chen, L., Kang, L., Zhou, W., Wei, B., Xie, Y., Yang, Y.,  
549 2025. Heating up the roof of the world: tracing the impacts of in-situ warming on carbon  
550 cycle in alpine grasslands on the Tibetan Plateau. *National Science Review* 12, nwae371.

551 Battin, T.J., Lauerwald, R., Bernhardt, E.S., Bertuzzo, E., Gener, L.G., Hall, R.O., Hotchkiss, E.R.,



552 Maavara, T., Pavelsky, T.M., Ran, L., Raymond, P., Rosentreter, J.A., Regnier, P., 2023. River  
553 ecosystem metabolism and carbon biogeochemistry in a changing world. *Nature* 613, 449–  
554 459. <https://doi.org/10.1038/s41586-022-05500-8>

555 Chen, H., Ju, P., Zhu, Q., Xu, X., Wu, N., Gao, Y., Feng, X., Tian, J., Niu, S., Zhang, Y., 2022.  
556 Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. *Nature Reviews Earth &*  
557 *Environment* 3, 701–716.

558 Chen, Z., Su, B., Fohrer, N., Huang, J., Zhao, M., Wen, S., Jiang, T., 2025. Response of discharge  
559 in the Upper Yellow River Basin to changing climate over the long time period (1850–2023).  
560 *Journal of Water and Climate Change* 16, 655–674.

561 Chinese Academy of Sciences Resource and Environmental Science Data Center, 2020. Landuse  
562 dataset in China (1980-2015). National Tibetan Plateau Data Center.

563 Costa, D., Sutter, C., Shepherd, A., Jarvie, H., Wilson, H., Elliott, J., Liu, J., Macrae, M., 2023.  
564 Impact of climate change on catchment nutrient dynamics: insights from around the world.  
565 *Environ. Rev.* 31, 4–25. <https://doi.org/10.1139/er-2021-0109>

566 Deng, R., Li, D., Zhao, Y., Walling, D.E., Panagos, P., Borrelli, P., Ciais, P., Huang, Y., Bai, Y.,  
567 Chalov, S., Golosov, V.N., Fu, X., Miao, C., Wei, J., Ni, J., 2025. Intensified rainfall  
568 overrides vegetation greening in driving erosion and carbon loss on the Tibetan Plateau.  
569 *Science Bulletin*. <https://doi.org/10.1016/j.scib.2025.09.005>

570 Deng, Y., Zhang, Y., Pan, D., Yang, S.X., Gharabaghi, B., 2024. Review of Recent Advances in  
571 Remote Sensing and Machine Learning Methods for Lake Water Quality Management.  
572 *Remote Sensing* 16. <https://doi.org/10.3390/rs16224196>

573 Food and Agriculture Organization of the United Nations, I.I. for A.S.A., 2021. China soil map



574 based harmonized world soil database (HWSD) (v1.1) (2009). National Tibetan Plateau Data  
575 Center.  
576 Gao, J., Shi, Y., Zhang, H., Chen, X., Zhang, W., Shen, W., Xiao, T., Zhang, Y., 2025. China  
577 regional 250m fractional vegetation cover data set (2000-2024). National Tibetan Plateau  
578 Data Center. <https://doi.org/10.11888/Terre.tpdc.300330>  
579 Hong, J., Pang, B., Zhao, L., Shu, S., Feng, P., Liu, F., Du, Z., Wang, X., 2025. Soil phosphorus  
580 crisis in the Tibetan alpine permafrost region. Nat Commun 16.  
581 <https://doi.org/10.1038/s41467-025-61501-x>  
582 Hotaling, S., Finn, D.S., Joseph Giersch, J., Weisrock, D.W., Jacobsen, D., 2017. Climate change  
583 and alpine stream biology: progress, challenges, and opportunities for the future. Biological  
584 Reviews 92, 2024–2045. <https://doi.org/10.1111/brv.12319>  
585 Hu, X., Shi, S., Zhou, B., Ni, J. (2025). A 1 km monthly dataset of historical and future climate  
586 changes over China (1991-2100). National Tibetan Plateau / Third Pole Environment Data  
587 Center. <https://doi.org/10.57760/sciencedb.13546>.  
588 Karim, R., Li, S., Su, T., Ayugi, B.O., Babaousmail, H., Xiao, S., 2025. Future Climate Changes  
589 on the Qinghai–Tibetan Plateau Under CMIP6 Global Climate Models. International Journal  
590 of Climatology e70005.  
591 Kotlarski, S., Gobiet, A., Morin, S., Olefs, M., Rajczak, J., Samacoïts, R., 2023. 21st Century  
592 alpine climate change. Clim Dyn 60, 65–86. <https://doi.org/10.1007/s00382-022-06303-3>  
593 Lan, T., Ma, Q., Lai, Y., Zhang, M., Harbor, J., Luo, X., 2025. Quantifying the water contributions  
594 and carbon consequences of permafrost degradation on the Tibetan Plateau. Science Bulletin.  
595 <https://doi.org/10.1016/j.scib.2025.09.029>



596 Li, G., Li, Zongxing, Zhang, B., Li, Zongjie, 2025. Changes in runoff from major alpine  
597 watersheds on the Qinghai-Tibetan plateau: A review. *Journal of Hydrology: Regional*  
598 *Studies* 60, 102514. <https://doi.org/10.1016/j.ejrh.2025.102514>

599 Li, J., Wang, G., Li, K., Li, Y., Guo, L., Song, C., 2023. Impacts of climate change and freeze–  
600 thaw cycles on water and sediment fluxes in the headwater region of the Yangtze River,  
601 Qinghai–Tibet Plateau. *CATENA* 227, 107112. <https://doi.org/10.1016/j.catena.2023.107112>

602 Li, J., Wang, G., Song, C., Sun, S., Ma, J., Wang, Y., Guo, L., Li, D., 2024. Recent intensified  
603 erosion and massive sediment deposition in Tibetan Plateau rivers. *Nat Commun* 15, 722.  
604 <https://doi.org/10.1038/s41467-024-44982-0>

605 Li, J., Wang, G., Sun, S., Ma, J., Guo, L., Song, C., Lin, S., 2025. Mapping and reconstruct  
606 suspended sediment dynamics (1986–2021) in the source region of the Yangtze River,  
607 Qinghai-Tibet Plateau using Google Earth Engine. *Remote Sensing of Environment* 317,  
608 114533. <https://doi.org/10.1016/j.rse.2024.114533>

609 Li, L., Wang, T., Yang, J., Yang, H., Tang, L., Yang, D., 2025. Revealing the Long-Term  
610 Catchment-Scale Carbon Budget Dynamics on the Permafrost-Dominated Eastern Tibetan  
611 Plateau. *Global Biogeochemical Cycles* 39, e2025GB008743.  
612 <https://doi.org/10.1029/2025GB008743>

613 Li, X., Wang, J., Lin, J., Yin, W., Shi, Y.Y., Wang, L., Xiao, H.B., Zhong, Z.M., Jiang, H., Shi,  
614 Z.H., 2022. Hysteresis analysis reveals dissolved carbon concentration – discharge  
615 relationships during and between storm events. *Water Research* 226, 119220.  
616 <https://doi.org/10.1016/j.watres.2022.119220>

617 Li, Ziliang, Kang, L., Wang, L., Wanek, W., Zhang, D., Wang, G., Lambers, H., Peñuelas, J., Jiang,



618 M., Yang, Y., 2025. Accelerated soil phosphorus cycling upon abrupt permafrost thaw. *Nat.*  
619 *Clim. Chang.* <https://doi.org/10.1038/s41558-025-02445-4>

620 Li, Z., Zhou, H., Zhang, B., Fa, D., Xue, J., 2023. Hydrologic connectivity between water in  
621 permafrost active layer and river water in a small alpine catchment in the northeastern  
622 Tibetan Plateau. *Applied Geochemistry* 154, 105686.  
623 <https://doi.org/10.1016/j.apgeochem.2023.105686>

624 Li, Z., Liu, F., Li, H., Liu, M., Li, Zongxing, Feng, Q., Xu, B., Liu, X., 2025. Driving forces of the  
625 spatiotemporal supply pattern of runoff in the source region of Yellow River. *Journal of*  
626 *Hydrology: Regional Studies* 60, 102515. <https://doi.org/10.1016/j.ejrh.2025.102515>

627 Liu, D., Jiang, X., Duan, M., Yu, S., Bai, Y., 2023. Human and natural activities regulate organic  
628 matter transport in Chinese rivers. *Water Research* 245, 120622.  
629 <https://doi.org/10.1016/j.watres.2023.120622>

630 Liu, G., Li, S., Song, K., Wang, X., Wen, Z., Kutser, T., Jacinthe, P.-A., Shang, Y., Lyu, L., Fang,  
631 C., Yang, Y., Yang, Q., Zhang, B., Cheng, S., Hou, J., 2021. Remote sensing of CDOM and  
632 DOC in alpine lakes across the Qinghai-Tibet Plateau using Sentinel-2A imagery data.  
633 *Journal of Environmental Management* 286, 112231.  
634 <https://doi.org/10.1016/j.jenvman.2021.112231>

635 Liu, H., 2023. Human activity intensity dataset of the Qinghai-Tibet Plateau (2000-2020).  
636 National Tibetan Plateau Data Center. <https://doi.org/10.3974/geodb.2023.07.08.V1>

637 Liu, L., Yang, S., Wang, S., Hu, J., Li, C., Yi, Y., 2025. Influence of the cascade reservoir  
638 operation of the Yellow River on the hydrological regime of the mainstream of the Yellow  
639 River. *Yellow River* 47, 42-47+77.



640 Liu, P., Zeng, H., Qi, L., Degen, A.A., Boone, R.B., Luo, B., Huang, M., Peng, Z., Qi, T., Wang,  
641 W., 2024. Vegetation redistribution is predicted to intensify soil organic carbon loss under  
642 future climate changes on the Tibetan Plateau. *Science of The Total Environment* 932,  
643 173034.

644 Long, J., Wang, L., Chen, D., Li, N., Zhou, J., Li, X., Guo, X., Liu, H., Chai, C., Fan, X., 2024.  
645 Hydrological Projections in the Third Pole Using Artificial Intelligence and an Observation -  
646 Constrained Cryosphere - Hydrology Model. *Earth 's Future* 12, e2023EF004222.  
647 <https://doi.org/10.1029/2023EF004222>

648 Ma, M., Wang, Z., Zang, H., Wang, W., Wei, M., Cui, H., 2023. Runoff Simulation and Prediction  
649 in the Source Region of the Yellow River Based on SSP Scenarios. *Journal of North China*  
650 *University of Water Resources and Electric Power (Natural Science Edition)* 44, 31–40.  
651 <https://doi.org/10.19760/j.ncwu.zk.2023054>

652 Ma, W., Wu, T., Wu, X., Yang, S., Li, R., Zhou, S., Li, X., Zhu, X., Hao, J., Ni, J., 2023. Carbon  
653 budgets and environmental controls in alpine ecosystems on the Qinghai-Tibet Plateau.  
654 *Catena* 229, 107224.

655 Maavara, T., Chen, Q., Van Meter, K., Brown, L.E., Zhang, J., Ni, J., Zarfl, C., 2020. River dam  
656 impacts on biogeochemical cycling. *Nature Reviews Earth & Environment* 1, 103–116.

657 Maavara, T., Lauerwald, R., Regnier, P., Van Cappellen, P., 2017. Global perturbation of organic  
658 carbon cycling by river damming. *Nature communications* 8, 15347.

659 Meng, Y., Duan, K., Shi, P., Shang, W., Li, S., Cheng, Y., Xing, L., Chen, R., He, J., 2023.  
660 Sensitive temperature changes on the Tibetan Plateau in response to global warming.  
661 *Atmospheric Research* 294, 106948.



662 Peng, S., 2025a. 1-km monthly mean temperature dataset for china (1901-2024). National Tibetan  
663 Plateau Data Center. <https://doi.org/10.11888/Meteoro.tpdc.270961>

664 Peng, S., 2025b. 1-km monthly precipitation dataset for China (1901-2024). National Tibetan  
665 Plateau Data Center. <https://doi.org/10.5281/zenodo.3114194>

666 Ran, L., Butman, D.E., Battin, T.J., Yang, X., Tian, M., Duvert, C., Hartmann, J., Geeraert, N., Liu,  
667 S., 2021. Substantial decrease in CO<sub>2</sub> emissions from Chinese inland waters due to global  
668 change. *Nat Commun* 12, 1730. <https://doi.org/10.1038/s41467-021-21926-6>

669 San, M., Jia, S., Yang, C., Liu, J., Yu, Z., Fang, W., Shang, J., Ming, B., Guo, Y., Cheng, L., 2025.  
670 Runoff Prediction in the Source Region of the Yellow River Basin Based on the CMIP6  
671 Climate Model. *Soil and Water Conservation in China* 71-77+89.  
672 <https://doi.org/CNKI:SUN:ZGSB.0.2025-07-020>

673 Vachon, D., Sponseller, R.A., Karlsson, J., 2021. Integrating carbon emission, accumulation and  
674 transport in inland waters to understand their role in the global carbon cycle. *Global Change  
675 Biology* 27, 719–727. <https://doi.org/10.1111/gcb.15448>

676 Wang, J., Wu, W., Zhou, X., Li, J., 2022. Carbon dioxide (CO<sub>2</sub>) partial pressure and emission  
677 from the river-reservoir system in the upper Yellow River, northwest China. *Environ Sci  
678 Pollut Res* 30, 19410–19426. <https://doi.org/10.1007/s11356-022-23489-5>

679 Wang, L., 2024. Difference and causes of runoff in different sections above Tangnaihai in the  
680 source region of the Yellow River. *Journal of Qinghai Normal University (Natural Science  
681 Edition)* 40, 99-104+112. <https://doi.org/10.16229/j.cnki.issn1001-7542.2024313>

682 Wang, M., Sun, K., Jia, J., Yu, G., Gao, Y., 2026. Unraveling the carbon fraction heterogeneity in  
683 China's Rivers: Hydrology, nutrients, and dam regulation. *Water Research* 288, 124591.



684 https://doi.org/10.1016/j.watres.2025.124591

685 Wang, S., Benoit, G., Raymond, P.A., Yu, G., Zhou, F., Liu, S., Miao, C., Sun, K., Li, Z., Jia, J.,

686 2025. Dissolved carbon storage and flux dynamics in China's inland waters over the past 30

687 years. National Science Review nwaf229.

688 Wang, T., Yang, D., Yang, Y., Piao, S., Li, X., Cheng, G., Fu, B., 2020. Permafrost thawing puts

689 the frozen carbon at risk over the Tibetan Plateau. Science Advances 6, eaaz3513.

690 https://doi.org/10.1126/sciadv.aaz3513

691 Wang, W., Zhong, J., Li, S.-L., Ulloa-Cedamanos, F., Xu, Sen, Chen, S., Lai, M., Xu, Sheng, 2023.

692 Constraining the sources and cycling of dissolved inorganic carbon in an alpine river, eastern

693 Qinghai-Tibet Plateau. Science of The Total Environment 901, 166262.

694 https://doi.org/10.1016/j.scitotenv.2023.166262

695 Wang, X., Ma, H., Li, R., Song, Z., Wu, J., 2012. Seasonal fluxes and source variation of organic

696 carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze)

697 River. Global Biogeochemical Cycles 26. https://doi.org/10.1029/2011GB004130

698 Wen, W., Gao, L., Cheng, H., Xiao, L., Zhang, S., Li, S., Jiang, X., Xia, X., 2024. Legacy and

699 alternative perfluoroalkyl acids in the Yellow River on the Qinghai-Tibet Plateau: Levels,

700 spatiotemporal characteristics, and multimedia transport processes. Water Research 262,

701 122095. https://doi.org/10.1016/j.watres.2024.122095

702 Wu, Y., Su, H., Cheng, L., Qin, S., Zou, K., Liu, Y., Zhou, J., Liu, P., Zhang, L., 2024. Exploring

703 hydrological controls on dissolved organic carbon export dynamics in a typical flash flood

704 catchment using a process-based model. Science of The Total Environment 921, 171139.

705 https://doi.org/10.1016/j.scitotenv.2024.171139



706 Xu, S., Li, S.-L., Bufe, A., Klaus, M., Zhong, J., Wen, H., Chen, S., Li, L., 2024. Escalating  
707 Carbon Export from High-Elevation Rivers in a Warming Climate. *Environ. Sci. Technol.* 58,  
708 7032–7044. <https://doi.org/10.1021/acs.est.3c06777>

709 Yan, N., Qiu, Z., Zhang, C., Liu, J., Liu, D., 2025a. Observing water turbidity in Chinese rivers  
710 using Landsat series data over the past 40 years. *Journal of Cleaner Production* 494, 145001.  
711 <https://doi.org/10.1016/j.jclepro.2025.145001>

712 Yan, N., Qiu, Z., Zhang, C., Yan, Y., Liu, D., 2025b. Landsat monitoring reveals the history of  
713 river organic pollution across China during 1984–2023. *Water Research* 275, 123210.  
714 <https://doi.org/10.1016/j.watres.2025.123210>

715 Yan, Y., Lauerwald, R., Wang, X., Regnier, P., Ciais, P., Ran, L., Gao, Y., Huang, L., Zhang, Y.,  
716 Duan, Z., 2023. Increasing riverine export of dissolved organic carbon from China. *Global  
717 Change Biology* 29, 5014–5032.

718 Yang, J., Wang, T., Yang, D., Yang, Y., 2023. Insights into runoff changes in the source region of  
719 Yellow River under frozen ground degradation. *Journal of Hydrology* 617, 128892.  
720 <https://doi.org/10.1016/j.jhydrol.2022.128892>

721 Yang, M., Li, S., Wang, S., Huang, Q., Shen, Q., Kang, Y., Shi, M., Zhang, Y., Luo, D., 2025.  
722 Latitudinal gradient and environmental drivers of soil organic carbon in permafrost regions of  
723 the Headwater Area of the Yellow River. *Carbon Neutrality* 4, 16.

724 Yao, T., Bolch, T., Chen, D., Gao, J., Immerzeel, W., Piao, S., Su, F., Thompson, L., Wada, Y.,  
725 Wang, L., Wang, T., Wu, G., Xu, B., Yang, W., Zhang, G., Zhao, P., 2022. The imbalance of  
726 the Asian water tower. *Nat Rev Earth Environ* 3, 618–632.  
727 <https://doi.org/10.1038/s43017-022-00299-4>



728 Zeng, F., Song, C., Cao, Z., Xue, K., Lu, S., Chen, T., Liu, K., 2023. Monitoring inland water via  
729 Sentinel satellite constellation: A review and perspective. *ISPRS Journal of Photogrammetry*  
730 and *Remote Sensing* 204, 340–361. <https://doi.org/10.1016/j.isprsjprs.2023.09.011>

731 Zhang, X., Liu, H., Xing, Z., 2011. Challenges and Solutions for Sustainable Land Use in  
732 Ruoergai-the Highest Altitude Peatland in Qinhai-Tibetan Plateau, China. *Energy Procedia* 5,  
733 1019–1025. <https://doi.org/10.1016/j.egypro.2011.03.180>

734 Zhang, Z., Zhang, L., Liu, Y., Jin, M., 2024. Responses of annual streamflow variability to annual  
735 precipitation, extreme climate events and large-scale climate phenomena in the Qinghai-Tibet  
736 Plateau. *Journal of Hydrology* 632, 130969. <https://doi.org/10.1016/j.jhydrol.2024.130969>

737 Zhao, W., Cheng, Y., Jian, J., Jiao, J., Cheng, C., Li, J., Chen, T., 2023. Water erosion changes on  
738 the Qinghai-Tibet Plateau and its response to climate variability and human activities during  
739 1982–2015. *CATENA* 229, 107207. <https://doi.org/10.1016/j.catena.2023.107207>

740 Zhi, W., Appling, A.P., Golden, H.E., Podgorski, J., Li, L., 2024. Deep learning for water quality.  
741 *Nat Water* 2, 228–241. <https://doi.org/10.1038/s44221-024-00202-z>