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13  Abstract: Alpine headwater streams play a crucial role in the global carbon cycle and are
14  particularly sensitive to climate change. Riverine organic matter (ROM) mediates the transport
15  and transformation of terrestrial carbon across aquatic systems. However, the response of ROM in
16  headwater streams on the Qinghai-Tibetan Plateau (QTP) to climate change remains poorly
17  understood due to scarce in situ measurements. In this study, we used machine learning models
18  combining satellite data and geographical variables to reconstruct historical variations in Chemical
19  Oxygen Demand (COD, a proxy for ROM) along the Yellow River’s Headstream (YRHS), and to
20  predict future changes under typical Shared Socioeconomic Pathways. The results indicate that
21 COD levels in the midstream region of the YRHS, characterized by greater precipitation, higher
22 soil organic matter, and denser vegetation, were relatively high (2.73 = 1.63 mg L™') and exhibited
23 an increasing trend (+0.44 mg L") over the past decade. Driven primarily by increasing
24 precipitation and temperature, COD levels are projected to rise in upstream and downstream areas
25  but decline at midstream sites under SSP126, SSP245, and SSP585 by the 2100s. The annual
26 export of COD from the midstream of the YRHS is expected to increase from 62.5 Gg to 81.6 Gg
27 by 2100s due to projected increase in COD concentrations and discharge. Our findings identify the
28  midstream region of the YRHS as a critical and climate-sensitive region for organic matter
29  dynamics. Nevertheless, substantial uncertainties remain in the future ROM changes owing to the
30  complex interactions among precipitation, warming, and their combined effects on carbon cycles
31  in alpine catchments. Therefore, further research is required to improve our understanding of
32 catchment-scale carbon dynamics on the QTP in the context of climate change.

33 Key words: Alpine River; Carbon cycle; Climate change; Remote sensing; Machine learning
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34 1 Introduction

35  Alpine regions represent some of the most vulnerable ecosystems to climate change, experiencing
36  temperature increases nearly twice the global average (Aryal and Pokhrel, 2025; Kotlarski et al.,
37 2023). Although these high-altitude environments cover only a small fraction of the Earth’s
38  surface, they provide essential ecosystem services, including freshwater supply, carbon storage,
39  and biodiversity support (Aryal and Pokhrel, 2025; Chen et al., 2022; Hotaling et al., 2017).
40  Among them, the Qinghai-Tibetan Plateau (QTP), often referred to as the “Third Pole”, is the
41  highest and one of the most climate-sensitive regions on Earth (Chen et al., 2022; Wang et al.,
42 2023). In recent decades, the accelerated warming has triggered widespread environmental
43 changes on the QTP, which are expected to significantly alter the sources, forms, and fluxes of
44 carbon exports associated with permafrost degradation (Chen et al., 2022; Hong et al., 2025; Xu et
45  al, 2024). Studies have shown that parts of the QTP have already shifted from carbon sinks to
46 carbon sources and lateral transport of carbon has increased the riverine carbon fluxes on the QTP
47 (L. Li et al., 2025). Riverine organic matter (ROM) plays a pivotal role in the biogeochemical
48  cycles of carbon (Beusen et al., 2022; Giri, 2021; Hu et al., 2020; Regnier et al., 2022) and
49  increase in ROM will pose threats to the water quality of rives on the QTP. Despite growing
50  concern regarding the ROM and its ecological consequences, our understanding of ROM
51  dynamics across the QTP remains limited. Therefore, there is an urgent need for high spatial
52  resolution and long-term observations of ROM dynamics and their exports on the QTP.

53 Headwater streams account for approximately 61% of total riverine ROM efflux despite
54 representing only 34-38% of total stream surface area (Ran et al., 2021). Over recent decades,

55  climate change has substantially influenced the ROM dynamics of headstreams on the QTP (Yao
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56  etal., 2022). Long-term records show that the annual streamflow of headstreams in this region has
57  generally increased over the past six decades (1962-2019) (Z. Zhang et al., 2024). Warming and
58  wetting trends have contributed to higher ROM in the headwaters (Xu et al., 2024). Furthermore,
59  climate-induced changes have intensified sediment erosion and enhanced associated ROM
60 transport processes across the QTP (J. Li et al., 2023; Li et al., 2024; J. Li et al., 2025; Zhao et al.,
61  2023). Nevertheless, fewer than 30% of headstreams across the QTP are consistently monitored
62  (Li et al., 2024), leaving the responses of ROM dynamics in headwaters to climate change poorly
63  constrained.

64 The limited understanding of ROM dynamics in alpine headwaters is largely due to the
65  scarcity of long-term, continuous in-situ measurements, where data collection remains logistically
66  challenging. In recent years, advances in remote sensing and machine learning have provided
67  powerful alternatives for addressing these limitations, offering new opportunities to predict water
68  quality and infer nutrient-related parameters across extensive spatial and temporal scales (Adegun
69 et al., 2023; Zeng et al., 2023; Zhi et al., 2024). Satellite-derived indices such as reflectance ratios,
70  the Normalized Difference Chlorophyll Index (NDCI), the Suspended Sediment Index (SSI), etc.,
71  have been increasingly employed to assess riverine organic matter, particularly when integrated
72 with machine learning algorithms (Deng et al.,, 2024; Liu et al.,, 2021; Yan et al., 2025a).
73 Consequently, integrating remote sensing data with in-situ measurements and machine learning
74 holds significant potential for improving our understanding of ROM in headwaters and their
75  responses to ongoing climate changing.

76 The headstreams of the Yellow River, located on the eastern QTP, constitute a crucial

77  component of QTP’s water resources and carbon cycling systems and have undergone substantial
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78  environmental changes in recent decades (Wen et al., 2024). Current study indicated that
79  approximately 35% of the Yellow River’s source region serves as a net carbon source, and the
80 lateral transport of carbon accounts for 31% of net ecosystem production in the Yellow River’s
81  source region (L. Li et al., 2025). Although numerous studies have been carried out across the
82  broader Yellow River Basin, they have not focused on the historical and future dynamics of ROM
83  in the source region of the Yellow River (Deng et al., 2025; Lan et al., 2025), which is largely
84  attributable to limited monitoring network coverage in this region. Therefore, given the critical
85  role of the Yellow River headwaters in carbon cycling and downstream water quality and its
86  sensitivity to climate change, there is an urgent need to investigate the dynamics of riverine
87  organic matter in the headwaters of the Yellowing River under climate change.

88 According to previous studies, ROM is commonly estimated using Chemical Oxygen
89  Demand (COD) as a proxy, which reflects the amount of oxygen required to oxidize organic
90 carbon in river water (Liu et al., 2023; Wang et al., 2026). Accordingly, we focus on the source
91  region of the Yellow River to develop COD predictive models by combining in situ water quality
92  observations with satellite reflectance data and to assess future changes under the SSP126,
93  SSP245, and SSP585 scenarios. The objectives are to: (1) quantify the decadal variability of COD
94 in the headstreams of the Yellow River and identify its driving factors; (2) predict future changes
95  in COD under projected climate change scenarios; and (3) estimate COD exports and assess their
96  potential impacts on downstream ecosystems. This study aims to provide a comprehensive and
97  scalable understanding of how climate change is reshaping riverine organic matter dynamics
98  within one of the world’s most critical headwater regions.

99 2 Methods and materials



https://doi.org/10.5194/egusphere-2026-731
Preprint. Discussion started: 19 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

100 2.1 Study area

101 The source region of the Yellow River is situated in the eastern QTP (Fig. 1a), covering
102 approximately 195,000 km?, with elevations ranging from 2650 m to 6250 m. The mean annual
103  temperature in this area ranges between —3.5 and 7.5 °C. The annual average precipitation in this
104  area ranges from 420 to 705 mm, with the highest values occurring in the midstream region (Yang
105 et al, 2023). The dominant land cover consists of alpine meadows and alpine steppes (Fig. S1).
106  The area covers extensive permafrost and seasonally frozen ground, together covering more than
107 85% of the region (Z. Li et al., 2025; M. Yang et al., 2025). Under the combined influence of
108  climate warming and anthropogenic disturbances, permafrost in the upper reaches of the Yellow
109  River source region has shown a significant trend of degradation in recent decades (Yang et al.,
110  2023). The headwater region of the Yellow River contains a dense network of tributaries and
111  contributes nearly 49% of the Yellow River’s total discharge, making it one of China’s most
112 important water sources. However, within the national surface water quality monitoring network,

113 only four sites (M1-M4) are situated at the headwaters of the Yellow River (Fig. 1b).
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114

115  Fig.1 Location of the source region of the Yellow River (a), river network within the study area
116  and data collection sites along the mainstream of the Yellow River (b). B1-B3 represent the up-,
117  mid-, and downstream region of the Yellow River’s headstream. A total of 160 monitoring sites
118  span from downstream to upstream, with Site 1 located at the basin outlet.

119

120 2.2 Data collection

121 2.2.1 In-situ Water Quality Data

122 Riverine COD data for model training were obtained from 107 monitoring sites distributed across
123 the QTP and surrounding regions (Fig. S2), including four sites (M1-M4) positioned along the
124 mainstream of the Yellow River (Fig. 1b). COD data for each site was obtained from the China
125  National Environmental Monitoring Centre (CNEMC; https://www.cnemc.cn/) for the period
126 2021-2023. Measurements were performed every four hours (00:00, 04:00, 08:00, 12:00, 16:00,

127 and 20:00). Following the Environmental Quality Standards for Surface Water (GB 3838-2002),
7
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128  COD was determined using the acidic potassium permanganate method, in which 50 ml water
129  sample was oxidized by standardized KMnOs solution under controlled heating conditions. After
130  the reaction, the residual permanganate was titrated, and CODy, was calculated from the amount
131 of KMnOs consumed.

132 2.2.2 Satellite Reflectance Data

133 Surface reflectance data for model training was acquired for the 107 monitoring sites across the
134 QTP and its surrounding areas from 2021 to 2023 using the Google Earth Engine (GEE) platform,
135 based on Landsat-8 OLI/TIRS and Landsat-9 OLI-2/TIRS-2 imagery. For historical COD
136  estimation in the source region of the Yellow River, surface reflectance data from Landsat-8
137 OLI/TIRS was also collected for 2014-2024 at 160 sites located at the headwater of the Yellow
138  River (Fig. 1b). The Landsat-8/9 OLI datasets include five visible and near-infrared (VNIR) bands
139  and two shortwave infrared (SWIR) bands (J. Li et al., 2025). Atmospheric correction for
140  Landsat-8 and Landsat-9 imagery was performed using the Land Surface Reflectance Code
141 (LaSRC, version 1.5.0). Pixels affected by clouds, cloud shadows, snow, ice, or non-water
142 surfaces were removed based on the Landsat reflectance quality assessment bands.

143 2.2.3 Geographical Feature Data

144 Monthly precipitation and temperature data were obtained from the 1-km Monthly Precipitation
145  Dataset for China (1901-2024) (Peng, 2025a, 2025b). Surface soil properties, including soil
146 texture, pH, soil organic carbon, and bulk density, were extracted from the Harmonized World Soil
147  Database (FAO, 2021). Vegetation coverage data were sourced from the China Regional 250-m
148  Fractional Vegetation Cover Dataset (2000-2024) (Gao et al., 2025). Land use data were derived

149  from the Land Use Dataset of China (1980-2015) provided by the Resource and Environmental
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150  Science Data Center, Chinese Academy of Sciences (2020). Human Activity Intensity Index (HAII)
151  were obtained from the Human Activity Intensity Dataset of the Qinghai—Tibet Plateau (2000—
152 2020) (Liu, 2023). The Human Activity Intensity Index was calculated based on key human
153  activity data, including agricultural and animal husbandry practices, industrial and mining
154  development, urbanization, tourism, major ecological engineering projects, and pollutant
155  discharge. Digital Elevation = Model (DEM) data  were retrieved from
156  https://viewfinderpanoramas.org. Historical and projected Yellow River discharge data were
157  compiled from previously published studies (Long et al., 2024; L. Liu et al., 2025; M. Ma et al.,
158  2023; Wang, 2024).

159 Future monthly temperature and precipitation data with spatial resolution of 1 km in the
160  Yellow River source region were obtained from climate projections generated by the Beijing
161  Climate Center Climate System Model, version 2 (BCC-CSM2-MR) (Hu et al., 2025). This data
162  was generated under three Shared Socioeconomic Pathways (SSPs) aligned with climate scenarios:
163 SSP126 (sustainability-focused, low radiative forcing), SSP245 (intermediate, moderate
164  stabilization), and SSP585 (fossil-fueled development, high radiative forcing).

165 2.3 Model Development for Historical COD Reconstruction

166  2.3.1 Matching Measured COD with Satellite Reflectance

167 COD data and satellite reflectance data (Landsat-8 OLI/TIRS and Landsat-9 OLI-2/TIRS-2)
168  acquired from 107 sites across the eastern QTP and adjacent regions during 2021-2023 were used
169  for model development (Fig. S2). Since Landsat-8/9 overpasses the study region at approximately
170 10:30 local time, COD measurements obtained at 08:00 or 12:00 on the same day were paired

171  with corresponding satellite scenes. When multiple valid matches were available, only the 12:00
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172 COD measurement was retained to ensure temporal consistency. A total of 3048 valid COD-
173 reflectance matchups were obtained for the 107 sites during 2021-2023. These matched datasets
174  covered a broad COD concentration range (0.25-23.2 mg L") and were used to develop models
175  for COD prediction.

176  2.3.2 Input and Prediction Variables of Models

177  The 3048 valid COD-reflectance matchups were further processed to generate input variables.
178  Input features included raw spectral bands and derived indices, with COD serving as the
179  prediction variable. The raw spectral bands comprised Landsat-8/9 reflectance from Bands 1-7
180  and selected band ratios (SRuir/SRred, SRred/SRgreen and SRrea/SRoue). Additionally, several spectral
181  indices known to be sensitive to organic matter were calculated (Table S1), namely the
182  Normalized Difference Chlorophyll Index (NDCI), Organic Carbon Index (OC_Index),
183  Normalized Suspended Material Index (NSMI), and Hue Angle (Yan et al., 2025b). Longitude and
184  latitude were also incorporated as input variables.

185  2.3.3 Model Training

186  The AutoGluon-Tabular algorithm, implemented in the Anaconda3 environment, was employed to
187  train models for COD prediction with Landsat-derived spectral features mentioned above.
188  AutoGluon-Tabular is an open-source automated machine learning (AutoML) framework that
189  builds high-accuracy predictive models for tabular data through multi-layer model ensembling and
190  stacking. AutoGluon’s TabularPredictor was configured in regression mode and trained using
191  multiple base learners (e.g., Gradient Boosting Machines, Random Forests, Neural Networks).
192  The framework automatically optimized model selection, hyperparameters, and ensemble weights.

193  The matched dataset (3048 pairs) described in Section 2.3.2 was randomly divided into training

10
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194  (80%) and testing (20%) subsets. A total training time limit of 600s was assigned to ensure
195  sufficient exploration of model configurations.

196  2.3.4 Model Evaluation

197  Model performance was evaluated using the negative Root Mean Squared Error (RMSE) for both
198  the validation and test datasets (Eqs. 1-2). Lower (i.e., closer-to-zero) test and validation scores
199  indicated superior model performance. The performance metrics for all models are summarized in
200  Table S2.

201 RMSE = /ﬁz:’:l(yi —9)? (1)

202 Test /Validation score=—RMSE 2)

203  where, N denotes the size of the observations and y; and J; denote the in-situ values and
204  satellite-retrieved values, respectively.

205 The importance of different input variables affecting the prediction of COD was also
206  assessed based on the importance scores (Eq.3).

207 Importance (f;) = M(D) - M(D shupedgsy) 3)

208  where, M(:), model performance metric (e.g., accuracy, log-loss, RMSE); D, original evaluation
209  dataset; Dgngreaqn, same dataset, but with feature f; randomly permuted; Importance(fi), Drop in
210  performance when f; is destroyed.

211 2.3.5 Reconstruct of Historical COD and Calculation of COD Changes

212 The model exhibiting the highest test and validation scores was applied to reconstruct COD
213 concentrations at 160 sites located in the headwater region of the Yellow River from 2014 to 2024
214  using Landsat-8 surface reflectance data. To evaluate model applicability and reliability, the

215  reconstructed COD concentrations were compared with in situ measurements at two representative

11
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216  headwater sites. Model accuracy was assessed for the two sites using the Mean Absolute
217  Percentage Difference (MAPD), RMSE, and Bias, following the approach of Yan et al. (2025).
218  Historical COD changes were assessed by comparing averages from 2014-2015 and 2023-2024.
219 2.4 Prediction of Future COD and Its Changes in the Headstream of the Yellow River

220  To predict future COD levels at 160 sites in the headwaters of the Yellow River, the machine
221  learning approach was also employed to model the relationships between geographical variables
222  and the satellite-based estimates of COD levels. Using the Anaconda3 platform, soil texture (sand,
223 silt, clay), bulk density, soil organic carbon, soil pH, altitude, human activity intensity, vegetation
224 cover, land use, and ten-year averages of annual mean precipitation and temperature for each site
225  during 2014-2024 were used as input features, while the ten-year average COD concentration for
226  each site during 2014-2024 served as the target variable. The best-performing model, selected
227  based on test and validation scores, was then used to predict future COD concentrations,
228  incorporating both static variables (e.g., soil properties, vegetation cover, land use) and dynamic
229  variables (future annual mean precipitation and temperature), depending on data availability.

230 In order to predict the future COD using the trained model, future monthly temperature and
231  precipitation data was collected from Hu et al., (2025). Future annual mean precipitation and
232 temperature were then calculated for 2025-2040, 2041-2070, and 2071-2100, representing near-,
233  mid-, and long-term horizons. Future COD changes in the Yellow River source region for
234 2025-2040, 2041-2070, and 2071-2100 under SSP126, SSP245, and SSP585 scenarios were
235  calculated relative to the mean values from 2014-2024.

236 2.5 Calculation of COD flux

237  The COD flux in the source region of the Yellow River was calculated using Eq. 4:

12



https://doi.org/10.5194/egusphere-2026-731
Preprint. Discussion started: 19 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

238 F=C(;xQ;/10 4

239  where, F(Gg), nutrient export; C; (mg/L), COD concentration; Q; (103 m?), river discharge.

240 3 Results

241 3.1 Performance of developed models

242  3.1.1 Predicting Historical COD Using Landsat Reflectance Data

243 A total of 24 models were developed and evaluated on the Anaconda3 platform to predict COD
244 levels from Landsat reflectance data, with test and validation scores summarized in Table S2. The
245  LightGBMLarge model demonstrated the highest predictive accuracy for COD across the QTP
246  and surrounding regions, achieving test and validation scores of —0.22325 and —0.66913,
247  respectively. Predicted versus in-situ measured COD levels for 2021-2023 based on training
248  dataset are shown in Fig. 2a, with RMSE and R? of 0.326 and 0.925, respectively, indicating
249  strong predictive performance.

250 The relative importance of input variables in the LightGBMLarge model was quantified
251  using importance scores (Fig. 2b). The five most influential predictors were longitude, latitude,
252 SRRred/SRGreen, NSMI, and Band 1. Based on its performance, the LightGBMLarge model was

253 selected to estimate historical COD levels in the source region of the Yellow River.
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255  Fig.2 Model performance for COD prediction based on training set using Landsat 8/9 reflectance
13
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256  data (a), and importance of input variables in COD prediction (b). Bands 1-7 are surface

257  reflectance data produced by the Landsat 8 OLI/TIRS sensors; SRni/SRred, SRred/SRgreen and

258  SRred/SRpluc are band ratios; NSMI is Normalized Suspended Material Index; OC_Index is

259  Organic Carbon Index; NDCI is Normalized Difference Chlorophyll Index; Hue Angle is used to
260  reflect watercolor and water quality.

261

262 To assess model reliability in the study area, two representative sites (M2 and M3) in the
263 Yellow River headwaters were used to compare modeled and in-situ COD time series (Fig. 3). The
264  results indicate that the model can accurately capture both spatial and temporal variability of
265  riverine COD in the headstreams of the Yellow River. At site M3, RMSE, MAPD, and Bias were
266 0.12 mg L, 8.16%, and —2.38%, respectively, and RMSE, MAPD, and Bias at site M2 were 0.58

267  mgL™, 15.32%, and —2.23%, respectively.
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268
269 Fig.3 Comparison between predicted and measured COD values in 2023 at sites M3 (a) and M2 (b)

270  within the Yellow River source region. For sites M2 and M3, 24 and 20 matched data points were

271  collected, respectively.
14
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272

273 3.1.2 Prediction of Future COD Using Geographical Features

274 Models for predicting future COD based on geographical features were also developed using the
275  Anaconda3 platform. A total of 36 models were evaluated (Table S3), and the LightGBMLarge
276  model exhibited the highest performance, with test and validation scores of —0.081 and —0.264,
277  respectively. Predicted versus satellite-based estimates of average COD levels based on the
278  training dataset in the Yellow River source region are presented in Fig. 4a, achieving an R? of
279  0.913 and an RMSE of 0.177, indicating strong predictive capability of this model. Analysis of
280  feature importance revealed that altitude, precipitation, temperature, and vegetation contributed

281  most significantly to COD variability in the study area (Fig. 4b).

35 )
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° o HAIL{ ]
o % seilpH{]
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282

283  Fig.4 Performance of the developed model for COD prediction based on the training set using
284  geographical feature data (a), and importance of variables in the predictive model (b). HAII is
285  Human Activity Intensity Index; Soil OC represents soil organic carbon; Soil Bulk is soil bulk
286  density; Soil Sand, Clay and Silt are soil texture.

287

288 3.2 Spatiotemporal Changes of COD in the Headstream of the Yellow River

289  The developed model estimated an annual mean COD concentration of 2.14 + 1.06 mg L™! in the
15
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Yellow River source region from 2014 to 2024, with pronounced spatial variability. In the

upstream area, the mean COD was 1.89 + 0.81 mg L', while higher concentrations were observed

in the mid-downstream region (2.73 £+ 1.63 mg L™"). The downstream area, which includes large

reservoirs such as Longyangxia and Lijiaxia, exhibited significantly lower COD levels (1.54 +

0.50 mg L") (Fig. 5a,b).

Over the past decade, the midstream region showed a clear increasing trend in COD, with an

average rise of 0.441 mg L' (Fig. 5c,d). In contrast, the upstream area exhibited both increasing

and decreasing trends, with a mean change of 0.099 mg L', whereas COD concentrations in the

downstream region remained relatively stable (mean change: —0.002 mg L ™).
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Fig.5 Spatial variation of mean COD and its change between 2014-2024 in the Yellow River

source region. Changes were assessed by comparing averages from 2014-2015 and 2023-2024.

Seasonal variations of COD were also evident during our study. Average monthly COD
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concentrations ranged from 0.8 to 8 mg L! (Fig. 6). The downstream site maintained low (0.8-2.4
mg L) and showed higher COD levels in summer (Fig. 6a), while the midstream site exhibited a
pronounced increase from March, peaking in July (~8 mg L"), followed by a gradual decline (Fig.
6b). The upper—midstream site displayed two distinct peaks in late spring and summer, suggesting
episodic organic inputs associated with ice melt and rainfall (Fig. 6¢). Upstream sites remained

low to moderate (1-3 mg L™') with minimal seasonal variation (Fig. 6d).
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Fig.6 Averaged monthly variations of COD during 2014-2024 within the Yellow River source

region.

3.3 Future Climate and COD Changes in the Source Region of the Yellow River
Across all scenarios and periods, precipitation exhibits a consistent spatial pattern, increasing from

upstream reaches to a midstream maximum and subsequently decreasing toward downstream
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317  sections (Fig. 7a-c). This pattern is preserved under all SSPs, although the magnitude of
318  precipitation varied among scenarios and time slices. Relative to current conditions, precipitation
319  increases slightly in the midstream region under SSP126 and SSP245, particularly during the mid-
320  and late-century periods. Under SSP58S5, precipitation displays enhanced increase, with higher
321  midstream values during 2041-2070 and 2071-2100 and lower precipitation toward downstream
322 reaches.

323 Compared with current conditions, future temperature rises across the entire study area (Fig.
324  7d-f), with the magnitude of warming increasing over time and from SSP126 to SSP585. Under
325  SSP126, temperature increases are relatively moderate, whereas SSP245 shows stronger warming,
326  especially during 2071-2100. The largest temperature increases occurred under SSP585, with
327  pronounced downstream variability during the late-century period, resulting in an amplified

328  longitudinal temperature gradient.
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330  Fig.7 Projected precipitation and temperature variations for 2025-2040, 2041-2070, and
331 2071-2100 under SSP126, SSP245, and SSP585 scenarios based on CMIP6 data.
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Projected changes in COD across the study area show pronounced spatial and temporal
variability under all three SSP scenarios (Fig. 8). During the near-term period (2025-2040), COD
changes are generally modest, with most monitoring sites exhibiting values close to zero. In the
mid-term period (2041-2070), the COD changes show an overall increase, with mean value of
0.05 mg L™". Specifically, midstream sites more frequently experience decreases in COD, whereas
upstream and downstream regions display a mixture of small increases and decreases. By the
late-century period (2071-2100), the average change in COD is -0.01 mg L™'. COD shows a
pronounced decrease trend in the midstream area (-0.12 mg L") under SSP585. Upstream and
downstream areas show a higher occurrence of positive COD changes. Overall, COD shows a
slight increasing trend across the three scenarios over different periods, with 877 positive changes

(61%) and 563 negative changes (39%).
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Fig.8 Projected spatial variation of COD changes in the Yellow River source region for 2025-2040,
19



https://doi.org/10.5194/egusphere-2026-731
Preprint. Discussion started: 19 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

346 2041-2070, and 2071-2100 under SSP126, SSP245, and SSP585 scenarios. COD changes were
347  calculated relative to the mean values from 2014-2024.

348

349 3.4 Historical and Future COD Exports in the Source Region of the Yellow River

350  Based on the annual average discharge at control site C3 (1987-2021), approximately 28.1 Gg of
351  COD was exported from the entire study area. In contrast, the annual mean COD export at site M2
352  was 62.5 Gg, indicating that approximately 34 Gg of COD was either deposited or decomposed
353  between C3 and M2 along the downstream of the Yellow River’s source region. The export of
354  COD primarily occurred during the wet season (June—October) (Fig. 9a), which contributes
355  substantially to the annual COD export from the source region (Fig. 9b). Additionally, the
356  observed increase in COD export between sites M1 and M2 highlights the midstream region as a
357  major source of COD (Fig. 9b).

358 Affected by the increase in the projected runoff (Fig. 9c), future projections at site M2
359  indicate a slight declining trend in COD export from 2025 to 2100 under SSP126 scenarios, and
360 an increase trend under SSP245 and SSP585 scenarios (Fig. 9d). By 2100, the average COD

361  export at M2 under different scenarios is expected to increase from 62.5 to 81.6 Gg.
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362
363  Fig.9 Monthly average COD export during 2014-2024 at sites M2 and C3 (a); comparison of

364  annual average COD export and flood-season COD export during 2014-2024 among sub-basins
365  (b); projected annual runoff (c) and COD export at M2 for 2025-2040, 2041-2070, and 2071-2100
366  under SSP126, SSP245, and SSP585 scenarios (d). C1-C3 are the control sites for sub-basins B1—
367 B3, respectively. Historical annual and seasonal runoff was obtained from L. Liu et al. (2025) and
368  Wang (2024). The projected runoff under SSP126 was derived from M. Ma et al. (2023), while the
369  runoff under SSP245 and SSP585 was calculated using data from Long et al. (2024). Different
370  sources of runoff data may result in discrepancies in the predicted COD exports across scenarios.
371

372 4 Discussion

373 4.1 Factors Driving COD Dynamics in the Headstream of the Yellow River

374 4.1.1 Spatial Variations

375  Primary sources of riverine organic carbon include losses from soils, plant litter, root exudates in
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376 grasslands, and permafrost thaw via surface runoff (Yan et al., 2023). In this study, precipitation,
377  temperature, vegetation, and soil texture were identified as key drivers of COD variation (Fig. 4b).
378  Notably, the overall soil organic carbon, vegetation cover, fine particle content, and precipitation
379  are higher in the midstream region of the headwater (Fig. S3), providing abundant carbon sources
380 and facilitating transport to nearby rivers, resulting in elevated COD levels and fluxes in the
381  mid-downstream areas (Figs. 5a, 9a,b). Additionally, bare land in the mid-downstream areas of the
382  headstream may also contribute to the soil erosion and the associated organic carbon losses (Fig.
383  S1). L. Li (2025) identified the higher lateral fluxes of river organic matter in the midstream area
384  of the Yellow River’ s source region. Consequently, the midstream area represents a critical source
385  of organic carbon for the Yellow River headwaters.

386 In contrast, COD levels decreased markedly in the downstream region (Figs. 5a,b). This
387  decline is likely driven by damming, as three large reservoirs, Longyangxia, Laxiwa, and Lijiaxia
388  have been constructed in the downstream headwater region since the 1970s. Reservoirs increase
389  water residence time, promoting deposition and decomposition of organic carbon, greenhouse gas
390  emissions, and uptake by aquatic plants (Maavara et al., 2017, 2020). Therefore, the deposition or
391  decomposition of organic matter along the downstream areas may contribute to the decline of
392  COD levels. The deposition of riverine organic matter can be inferred from the decrease in COD
393  fluxes at the outlet (C3) of the study area relative to Site M2 (Figs. 9a, b). L. Li et al. (2025) also
394  reported negative dissolved organic matter fluxes in the main channels of the Yellow River’s
395  headstreams. Additionally, the decomposition of the deposited organic matter is evidenced by CO-
396  outgassing from the river water. Previous study has found that CO» outgassing from the cascade

397  reservoirs of Yellow River’s source region was estimated at 131.02 £ 156.77 mmol m2 d™! in dry
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398  seasons and 466.10 £ 366.67 mmol m2 d! in flood seasons (Wang et al., 2022). Therefore, these
399  observations suggest that the sedimentation and degradation of organic matter contributes to lower
400  COD concentrations in the downstream area.

401 The COD concentration remained relatively stable along the upper to middle reaches of the
402  Yellow River’s headwaters. This region is characterized by permafrost and seasonally frozen
403  ground, with low precipitation and limited runoff (Yang et al., 2023). Surface runoff in this area
404  primarily originates from precipitation, snowmelt, and glacier melt (G. Li et al., 2025).
405  Consequently, due to the relatively uniform and stable runoff and land cover, COD levels
406  exhibited a homogeneous spatial distribution along the upper to middle reaches of the Yellow
407  River’s headwaters.

408  4.1.2 Temporal Variations

409  Climate-driven changes in runoftf and temperature strongly influence catchment-scale carbon
410  dynamics, altering riverine organic matter fluxes globally (Costa et al., 2023). Over the past
411  decade, air temperature in the source region of the Yellow River has shown an increasing trend,
412 with a basin—averaged increase of 0.67 °C, and the precipitation also presented an over increase
413  trend though decrease slightly after 2019 (Fig. S4). The study area is particularly sensitive to
414  warming-induced permafrost thaw, glacier melting, soil erosion, and intensified human activities
415 over recent decades (Chen et al., 2022; Deng et al., 2025; Lan et al., 2025), which modify ROM
416  sources and lateral transport between terrestrial and aquatic systems, affecting ROM levels and
417  fluxes in rivers (Chen et al., 2022; Wang et al., 2020, 2025). Previous studies highlighted that
418  permafrost thaw was projected to release 129.39 + 21.02 Tg soil organic carbon annually (Lan et

419  al, 2025). Glacier melting contributes an estimated 0.19 Tg C yr! as dissolved organic carbon
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420  (Chen et al., 2022). Intensified rainfall has increased soil erosion by 42% over the past four
421  decades, resulting in an average soil carbon loss of 4 = 1.2 Tg C yr! (Deng et al., 2025).

422 Therefore, affected by the increased temperature and precipitation, COD concentrations in
423  the source region of the Yellow River exhibited an overall increasing trend over the past decade,
424  with an average rise of 0.186 mg L' (Figs. 5c,d). Especially the midstream region experienced the
425  most pronounced increase (0.441 mg L™'). The higher precipitation combined with increased
426  runoff likely enhance organic matter leaching from grasslands, contributing to the rise of riverine
427  COD in the midstream area (Chen et al., 2025; Yang et al., 2023).

428 In addition to climate effects, growing human activities such as land use changes, grazing,
429  and construction on the QTP also influence carbon mobilization (Chen et al., 2022).
430  Human-induced land-use changes, grassland degradation, construction activities, and overgrazing
431  can lead to organic matter losses in the study area. In addition, the construction and urbanization
432  of natural and agricultural ecosystems may further accelerate organic matter losses within the
433  watershed. All these human activities may contribute to the rising of COD in the headstream of the
434 Yellow River.

435 4.2 Future Changes in COD under Climate Change

436  Rapid climate change in alpine regions is altering carbon cycling in both terrestrial and aquatic
437  ecosystems (Chen et al., 2022). As carbon dynamics are highly sensitive to climatic variations,
438  warming and wetting trends are expected to influence the stability of riverine organic matter in
439  alpine catchments. Numerous studies indicate that precipitation and temperature on the QTP are
440  projected to increase throughout this century, particularly in high-elevation areas (Karim et al.,

441  2025; Meng et al.,, 2023). Our projections also suggest an overall increase in precipitation,
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442 especially in the up-midstream area of the Yellow River source region (Fig. 7), and significant
443  warming is projected in the whole study area by 2100, especially under SSP 245 and SSP585.

444 Climate-driven changes are expected to induce the largest variability in COD concentrations
445  in the midstream region (Fig. 8). COD levels are projected to increase in most parts of the source
446  region of the Yellow River, and annual average COD exports will increase from 62.5 Gg to 81.6
447  Gg (Fig. 9d). ROM dynamics are jointly regulated by organic matter supply and hydrological
448  processes within catchments (Li et al., 2022; Wu et al., 2024). Increased precipitation can enhance
449  surface runoff, leading to losses of organic matter from the catchment, even though COD
450  concentrations may be diluted as discharge continues to increase (Li et al., 2022; Wu et al., 2024).
451  The projected warming in the headwater area of the Yellow River will lead to the continuing
452  permafrost degradation, promoting the loss of organic matter within the catchment and leading to
453  the increase of the COD level in the headstreams (Z. Li et al., 2025). In addition, damming
454 prolongs water residence time, promoting organic matter deposition in cascade reservoirs in the
455  downstream area of the Yellow River’s source region. Under warm conditions, the degradation of
456  deposited organic matter in the bottom of the reservoir may be enhanced, releasing additional
457  organic carbon from reservoir sediments and contributing to the rise of COD levels in the
458 downstream area (Battin et al., 2023; Vachon et al., 2021).

459 However, the extent to which organic matter reaches rivers depends on hydrological
460  processes and connectivity between the source region and river channels. The characteristics of
461  rainfall events may shift the ROM response to storms from transport-limited to supply-limited,
462  thereby reducing ROM levels (Li et al.,, 2022). Consequently, the projected increase in

463  precipitation by the 2100s is expected to lead to a decrease in COD levels within the midstream
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464  areas (Fig. 8). In addition, permafrost thaw induced by the warming can also alter runoff pathways,
465  promoting subsurface flow and potentially reducing surface discharge to rivers (Yang et al., 2023).
466  Increased vegetation cover can also reduce transport of organic matter through reducing soil
467 erosion and surface runoff (Liu et al., 2024; W. Ma et al., 2023). Therefore, these factors may
468  jointly contribute to the decrease of riverine organic matter at some specific sites on the
469  headstream of the Yellow River.

470 4.3 Uncertainty in Riverine Organic Matter Dynamics on the QTP

471  Understanding riverine organic matter dynamics is essential for assessing aquatic ecosystem
472  feedback to climate change. Ongoing warming and wetting on the QTP are expected to alter
473 carbon stability, increasing uncertainty in watershed organic matter losses (Bai et al., 2025). For
474  instance, increased precipitation may enhance surface runoff (Li et al., 2022), however, rising
475  temperatures can also decrease catchment runoff by enhancing evaporation. The influence of
476  hydrological processes on ROM dynamics depends on the characteristics of the catchment (Li et
477  al., 2022). Previous studies have predicted both increasing and decreasing streamflow trends on
478 the QTP under future climate scenarios (G. Li et al., 2025; San et al., 2025; Yang et al., 2023).
479  Increased streamflow may elevate COD in rivers, or dilute COD due to higher streamflow.
480  Conversely, reduced streamflow may decrease organic matter transport to rivers or concentrate
481  COD in river water.

482 Additionally, warming-induced permafrost thaw may accelerate topsoil organic matter
483  mobilization, stimulate microbial activity, and promote soil organic matter decomposition,
484  releasing more dissolved organic matter (Z. Li et al., 2025). However, the frozen ground

485  degradation can also result in the decreased surface runoff by increasing the subsurface runoff
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486  (Yang et al., 2023). Vegetation greening on the QTP may both enhance soil carbon storage and
487  reduce organic matter losses to river networks through mitigating soil erosion (Deng et al., 2025).
488  Therefore, climate change can further differentially affect terrestrial carbon stocks and carbon
489  losses, introducing additional complexity and uncertainty in catchment-scale organic matter
490 sources and transport (Chen et al., 2022; Liu et al., 2024; W. Ma et al., 2023).

491 In-stream carbon biogeochemical processes are also highly complex under changing climatic
492  conditions. Organic matter decomposition depends on temperature, redox conditions, hydrology,
493  microbial activity, and organic matter characteristics (Battin et al., 2023). The climate change is
494  projected to change the hydrological processes and the associated biogeochemical processes,
495  further altering the carbon cycling in the alpine rivers. However, interactions among these factors
496  are not fully understood in alpine rivers, making predictions of alpine river metabolism and carbon
497  budget under climate change uncertain (L. Li et al., 2025).

498 Anthropogenic activities on the QTP further contribute to uncertainty. Warming and wetting
499  may expand farming, increasing soil erosion and carbon losses (Chen et al., 2022). Future dam
500  construction alters organic matter transport by promoting deposition, influencing greenhouse gas
501  emissions, and facilitating organic matter degradation (Battin et al., 2023). Conversely, ecological
502 restoration, such as afforestation, can increase soil organic matter accumulation and litterfall
503  (Chen et al., 2022; Yan et al., 2023), leading to increase in organic matter and the COD levels in
504  the nearby headwaters of the Yellow River.

505 In this study, we project a general increase in levels and fluxes of COD based on modeled
506  temperature, precipitation, and discharge. However, future climatic trends may deviate from

507  current projections, and the predicted temperature and precipitation may not represent the actual
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508  future patterns. Furthermore, our developed model does not incorporate changes in land covers,
509  soil carbon stocks, hydrological processes, or in-stream carbon biogeochemistry, all of which may
510  significantly influence riverine carbon cycling. Therefore, future research should integrate these
511  factors to develop more precise, process-based models and improve understanding of carbon
512  dynamics in alpine river catchments.

513 5 Conclusions

514  In this study, LightGBM-Large models were developed to reconstruct the historical variations of
515  COD in the source region of the Yellow River and to predict its future changes. Our findings
516  identify the midstream region of the Yellow River’s headstream, with higher COD levels (2.73 +
517 1.63 mg L"), is sensitive to climate change and exhibited an increasing trend of COD (+0.44 mg
518 L") in the past decade. Precipitation and temperature were identified as the key factors
519  influencing COD dynamics in the headwaters of the Yellow River. Future projections suggest that
520  increased precipitation and temperature may lead to an overall rise of COD levels, with decrease
521  in some specific sites. The export of organic matter from the headwaters of the Yellow River is
522  also projected to increase based on the anticipated increase in COD levels and discharge. However,
523  the limited spatial and temporal resolution of Landsat data and lack of geophysical data, still poses
524  challenges for accurately capturing rapid variations in riverine COD in the source region of the
525  Yellow River. Therefore, future research should focus on developing more robust models by
526  integrating higher-quality satellite observations and incorporating a broader range of
527  environmental variables.

528  Data availability

529  The data will be available upon request.
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