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Abstract：Alpine headwater streams play a crucial role in the global carbon cycle and are 13 

particularly sensitive to climate change. Riverine organic matter (ROM) mediates the transport 14 

and transformation of terrestrial carbon across aquatic systems. However, the response of ROM in 15 

headwater streams on the Qinghai–Tibetan Plateau (QTP) to climate change remains poorly 16 

understood due to scarce in situ measurements. In this study, we used machine learning models 17 

combining satellite data and geographical variables to reconstruct historical variations in Chemical 18 

Oxygen Demand (COD, a proxy for ROM) along the Yellow River’s Headstream (YRHS), and to 19 

predict future changes under typical Shared Socioeconomic Pathways. The results indicate that 20 

COD levels in the midstream region of the YRHS, characterized by greater precipitation, higher 21 

soil organic matter, and denser vegetation, were relatively high (2.73 ± 1.63 mg L⁻¹) and exhibited 22 

an increasing trend (+0.44 mg L⁻¹) over the past decade. Driven primarily by increasing 23 

precipitation and temperature, COD levels are projected to rise in upstream and downstream areas 24 

but decline at midstream sites under SSP126, SSP245, and SSP585 by the 2100s. The annual 25 

export of COD from the midstream of the YRHS is expected to increase from 62.5 Gg to 81.6 Gg 26 

by 2100s due to projected increase in COD concentrations and discharge. Our findings identify the 27 

midstream region of the YRHS as a critical and climate-sensitive region for organic matter 28 

dynamics. Nevertheless, substantial uncertainties remain in the future ROM changes owing to the 29 

complex interactions among precipitation, warming, and their combined effects on carbon cycles 30 

in alpine catchments. Therefore, further research is required to improve our understanding of 31 

catchment-scale carbon dynamics on the QTP in the context of climate change. 32 
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1 Introduction 34 

Alpine regions represent some of the most vulnerable ecosystems to climate change, experiencing 35 

temperature increases nearly twice the global average (Aryal and Pokhrel, 2025; Kotlarski et al., 36 

2023). Although these high-altitude environments cover only a small fraction of the Earth’s 37 

surface, they provide essential ecosystem services, including freshwater supply, carbon storage, 38 

and biodiversity support (Aryal and Pokhrel, 2025; Chen et al., 2022; Hotaling et al., 2017). 39 

Among them, the Qinghai–Tibetan Plateau (QTP), often referred to as the “Third Pole”, is the 40 

highest and one of the most climate-sensitive regions on Earth (Chen et al., 2022; Wang et al., 41 

2023). In recent decades, the accelerated warming has triggered widespread environmental 42 

changes on the QTP, which are expected to significantly alter the sources, forms, and fluxes of 43 

carbon exports associated with permafrost degradation (Chen et al., 2022; Hong et al., 2025; Xu et 44 

al., 2024). Studies have shown that parts of the QTP have already shifted from carbon sinks to 45 

carbon sources and lateral transport of carbon has increased the riverine carbon fluxes on the QTP 46 

(L. Li et al., 2025). Riverine organic matter (ROM) plays a pivotal role in the biogeochemical 47 

cycles of carbon (Beusen et al., 2022; Giri, 2021; Hu et al., 2020; Regnier et al., 2022) and 48 

increase in ROM will pose threats to the water quality of rives on the QTP. Despite growing 49 

concern regarding the ROM and its ecological consequences, our understanding of ROM 50 

dynamics across the QTP remains limited. Therefore, there is an urgent need for high spatial 51 

resolution and long-term observations of ROM dynamics and their exports on the QTP. 52 

Headwater streams account for approximately 61% of total riverine ROM efflux despite 53 

representing only 34–38% of total stream surface area (Ran et al., 2021). Over recent decades, 54 

climate change has substantially influenced the ROM dynamics of headstreams on the QTP (Yao 55 
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et al., 2022). Long-term records show that the annual streamflow of headstreams in this region has 56 

generally increased over the past six decades (1962–2019) (Z. Zhang et al., 2024). Warming and 57 

wetting trends have contributed to higher ROM in the headwaters (Xu et al., 2024). Furthermore, 58 

climate-induced changes have intensified sediment erosion and enhanced associated ROM 59 

transport processes across the QTP (J. Li et al., 2023; Li et al., 2024; J. Li et al., 2025; Zhao et al., 60 

2023). Nevertheless, fewer than 30% of headstreams across the QTP are consistently monitored 61 

(Li et al., 2024), leaving the responses of ROM dynamics in headwaters to climate change poorly 62 

constrained. 63 

The limited understanding of ROM dynamics in alpine headwaters is largely due to the 64 

scarcity of long-term, continuous in-situ measurements, where data collection remains logistically 65 

challenging. In recent years, advances in remote sensing and machine learning have provided 66 

powerful alternatives for addressing these limitations, offering new opportunities to predict water 67 

quality and infer nutrient-related parameters across extensive spatial and temporal scales (Adegun 68 

et al., 2023; Zeng et al., 2023; Zhi et al., 2024). Satellite-derived indices such as reflectance ratios, 69 

the Normalized Difference Chlorophyll Index (NDCI), the Suspended Sediment Index (SSI), etc., 70 

have been increasingly employed to assess riverine organic matter, particularly when integrated 71 

with machine learning algorithms (Deng et al., 2024; Liu et al., 2021; Yan et al., 2025a). 72 

Consequently, integrating remote sensing data with in-situ measurements and machine learning 73 

holds significant potential for improving our understanding of ROM in headwaters and their 74 

responses to ongoing climate changing. 75 

The headstreams of the Yellow River, located on the eastern QTP, constitute a crucial 76 

component of QTP’s water resources and carbon cycling systems and have undergone substantial 77 
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environmental changes in recent decades (Wen et al., 2024). Current study indicated that 78 

approximately 35% of the Yellow River’s source region serves as a net carbon source, and the 79 

lateral transport of carbon accounts for 31% of net ecosystem production in the Yellow River’s 80 

source region (L. Li et al., 2025). Although numerous studies have been carried out across the 81 

broader Yellow River Basin, they have not focused on the historical and future dynamics of ROM 82 

in the source region of the Yellow River (Deng et al., 2025; Lan et al., 2025), which is largely 83 

attributable to limited monitoring network coverage in this region. Therefore, given the critical 84 

role of the Yellow River headwaters in carbon cycling and downstream water quality and its 85 

sensitivity to climate change, there is an urgent need to investigate the dynamics of riverine 86 

organic matter in the headwaters of the Yellowing River under climate change. 87 

According to previous studies, ROM is commonly estimated using Chemical Oxygen 88 

Demand (COD) as a proxy, which reflects the amount of oxygen required to oxidize organic 89 

carbon in river water (Liu et al., 2023; Wang et al., 2026). Accordingly, we focus on the source 90 

region of the Yellow River to develop COD predictive models by combining in situ water quality 91 

observations with satellite reflectance data and to assess future changes under the SSP126, 92 

SSP245, and SSP585 scenarios. The objectives are to: (1) quantify the decadal variability of COD 93 

in the headstreams of the Yellow River and identify its driving factors; (2) predict future changes 94 

in COD under projected climate change scenarios; and (3) estimate COD exports and assess their 95 

potential impacts on downstream ecosystems. This study aims to provide a comprehensive and 96 

scalable understanding of how climate change is reshaping riverine organic matter dynamics 97 

within one of the world’s most critical headwater regions. 98 

2 Methods and materials 99 

https://doi.org/10.5194/egusphere-2026-731
Preprint. Discussion started: 19 February 2026
c© Author(s) 2026. CC BY 4.0 License.



6 

2.1 Study area 100 

The source region of the Yellow River is situated in the eastern QTP (Fig. 1a), covering 101 

approximately 195,000 km², with elevations ranging from 2650 m to 6250 m. The mean annual 102 

temperature in this area ranges between −3.5 and 7.5 °C. The annual average precipitation in this 103 

area ranges from 420 to 705 mm, with the highest values occurring in the midstream region (Yang 104 

et al., 2023). The dominant land cover consists of alpine meadows and alpine steppes (Fig. S1). 105 

The area covers extensive permafrost and seasonally frozen ground, together covering more than 106 

85% of the region (Z. Li et al., 2025; M. Yang et al., 2025). Under the combined influence of 107 

climate warming and anthropogenic disturbances, permafrost in the upper reaches of the Yellow 108 

River source region has shown a significant trend of degradation in recent decades (Yang et al., 109 

2023). The headwater region of the Yellow River contains a dense network of tributaries and 110 

contributes nearly 49% of the Yellow River’s total discharge, making it one of China’s most 111 

important water sources. However, within the national surface water quality monitoring network, 112 

only four sites (M1–M4) are situated at the headwaters of the Yellow River (Fig. 1b). 113 
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 114 

Fig.1 Location of the source region of the Yellow River (a), river network within the study area 115 

and data collection sites along the mainstream of the Yellow River (b). B1–B3 represent the up-, 116 

mid-, and downstream region of the Yellow River’s headstream. A total of 160 monitoring sites 117 

span from downstream to upstream, with Site 1 located at the basin outlet. 118 

 119 

2.2 Data collection 120 

2.2.1 In-situ Water Quality Data 121 

Riverine COD data for model training were obtained from 107 monitoring sites distributed across 122 

the QTP and surrounding regions (Fig. S2), including four sites (M1–M4) positioned along the 123 

mainstream of the Yellow River (Fig. 1b). COD data for each site was obtained from the China 124 

National Environmental Monitoring Centre (CNEMC; https://www.cnemc.cn/) for the period 125 

2021–2023. Measurements were performed every four hours (00:00, 04:00, 08:00, 12:00, 16:00, 126 

and 20:00). Following the Environmental Quality Standards for Surface Water (GB 3838–2002), 127 
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COD was determined using the acidic potassium permanganate method, in which 50 ml water 128 

sample was oxidized by standardized KMnO₄ solution under controlled heating conditions. After 129 

the reaction, the residual permanganate was titrated, and CODₘₙ was calculated from the amount 130 

of KMnO₄ consumed. 131 

2.2.2 Satellite Reflectance Data 132 

Surface reflectance data for model training was acquired for the 107 monitoring sites across the 133 

QTP and its surrounding areas from 2021 to 2023 using the Google Earth Engine (GEE) platform, 134 

based on Landsat-8 OLI/TIRS and Landsat-9 OLI-2/TIRS-2 imagery. For historical COD 135 

estimation in the source region of the Yellow River, surface reflectance data from Landsat-8 136 

OLI/TIRS was also collected for 2014–2024 at 160 sites located at the headwater of the Yellow 137 

River (Fig. 1b). The Landsat-8/9 OLI datasets include five visible and near-infrared (VNIR) bands 138 

and two shortwave infrared (SWIR) bands (J. Li et al., 2025). Atmospheric correction for 139 

Landsat-8 and Landsat-9 imagery was performed using the Land Surface Reflectance Code 140 

(LaSRC, version 1.5.0). Pixels affected by clouds, cloud shadows, snow, ice, or non-water 141 

surfaces were removed based on the Landsat reflectance quality assessment bands. 142 

2.2.3 Geographical Feature Data 143 

Monthly precipitation and temperature data were obtained from the 1-km Monthly Precipitation 144 

Dataset for China (1901–2024) (Peng, 2025a, 2025b). Surface soil properties, including soil 145 

texture, pH, soil organic carbon, and bulk density, were extracted from the Harmonized World Soil 146 

Database (FAO, 2021). Vegetation coverage data were sourced from the China Regional 250-m 147 

Fractional Vegetation Cover Dataset (2000–2024) (Gao et al., 2025). Land use data were derived 148 

from the Land Use Dataset of China (1980–2015) provided by the Resource and Environmental 149 
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Science Data Center, Chinese Academy of Sciences (2020). Human Activity Intensity Index (HAII) 150 

were obtained from the Human Activity Intensity Dataset of the Qinghai–Tibet Plateau (2000–151 

2020) (Liu, 2023). The Human Activity Intensity Index was calculated based on key human 152 

activity data, including agricultural and animal husbandry practices, industrial and mining 153 

development, urbanization, tourism, major ecological engineering projects, and pollutant 154 

discharge. Digital Elevation Model (DEM) data were retrieved from 155 

https://viewfinderpanoramas.org. Historical and projected Yellow River discharge data were 156 

compiled from previously published studies (Long et al., 2024; L. Liu et al., 2025; M. Ma et al., 157 

2023; Wang, 2024).  158 

Future monthly temperature and precipitation data with spatial resolution of 1 km in the 159 

Yellow River source region were obtained from climate projections generated by the Beijing 160 

Climate Center Climate System Model, version 2 (BCC-CSM2-MR) (Hu et al., 2025). This data 161 

was generated under three Shared Socioeconomic Pathways (SSPs) aligned with climate scenarios: 162 

SSP126 (sustainability-focused, low radiative forcing), SSP245 (intermediate, moderate 163 

stabilization), and SSP585 (fossil-fueled development, high radiative forcing). 164 

2.3 Model Development for Historical COD Reconstruction 165 

2.3.1 Matching Measured COD with Satellite Reflectance  166 

COD data and satellite reflectance data (Landsat-8 OLI/TIRS and Landsat-9 OLI-2/TIRS-2) 167 

acquired from 107 sites across the eastern QTP and adjacent regions during 2021–2023 were used 168 

for model development (Fig. S2). Since Landsat-8/9 overpasses the study region at approximately 169 

10:30 local time, COD measurements obtained at 08:00 or 12:00 on the same day were paired 170 

with corresponding satellite scenes. When multiple valid matches were available, only the 12:00 171 
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COD measurement was retained to ensure temporal consistency. A total of 3048 valid COD–172 

reflectance matchups were obtained for the 107 sites during 2021–2023. These matched datasets 173 

covered a broad COD concentration range (0.25–23.2 mg L⁻¹) and were used to develop models 174 

for COD prediction. 175 

2.3.2 Input and Prediction Variables of Models  176 

The 3048 valid COD–reflectance matchups were further processed to generate input variables. 177 

Input features included raw spectral bands and derived indices, with COD serving as the 178 

prediction variable. The raw spectral bands comprised Landsat-8/9 reflectance from Bands 1–7 179 

and selected band ratios (SRnir/SRred, SRred/SRgreen and SRred/SRblue). Additionally, several spectral 180 

indices known to be sensitive to organic matter were calculated (Table S1), namely the 181 

Normalized Difference Chlorophyll Index (NDCI), Organic Carbon Index (OC_Index), 182 

Normalized Suspended Material Index (NSMI), and Hue Angle (Yan et al., 2025b). Longitude and 183 

latitude were also incorporated as input variables. 184 

2.3.3 Model Training 185 

The AutoGluon-Tabular algorithm, implemented in the Anaconda3 environment, was employed to 186 

train models for COD prediction with Landsat-derived spectral features mentioned above. 187 

AutoGluon-Tabular is an open-source automated machine learning (AutoML) framework that 188 

builds high-accuracy predictive models for tabular data through multi-layer model ensembling and 189 

stacking. AutoGluon’s TabularPredictor was configured in regression mode and trained using 190 

multiple base learners (e.g., Gradient Boosting Machines, Random Forests, Neural Networks). 191 

The framework automatically optimized model selection, hyperparameters, and ensemble weights. 192 

The matched dataset (3048 pairs) described in Section 2.3.2 was randomly divided into training 193 
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(80%) and testing (20%) subsets. A total training time limit of 600s was assigned to ensure 194 

sufficient exploration of model configurations.  195 

2.3.4 Model Evaluation  196 

Model performance was evaluated using the negative Root Mean Squared Error (RMSE) for both 197 

the validation and test datasets (Eqs. 1–2). Lower (i.e., closer-to-zero) test and validation scores 198 

indicated superior model performance. The performance metrics for all models are summarized in 199 

Table S2. 200 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑛
𝑖=1                    (1) 201 

Test /Validation score=－RMSE                 (2) 202 

where, N denotes the size of the observations and yi and 𝑦̂𝑖  denote the in-situ values and 203 

satellite-retrieved values, respectively.  204 

The importance of different input variables affecting the prediction of COD was also 205 

assessed based on the importance scores (Eq.3). 206 

Importance (fᵢ) = M(D) - M(D_shuffled(fᵢ))           (3) 207 

where, M(⋅), model performance metric (e.g., accuracy, log-loss, RMSE); D, original evaluation 208 

dataset; Dshuffled(fi), same dataset, but with feature fi  randomly permuted; Importance(fi), Drop in 209 

performance when fi is destroyed.  210 

2.3.5 Reconstruct of Historical COD and Calculation of COD Changes 211 

The model exhibiting the highest test and validation scores was applied to reconstruct COD 212 

concentrations at 160 sites located in the headwater region of the Yellow River from 2014 to 2024 213 

using Landsat-8 surface reflectance data. To evaluate model applicability and reliability, the 214 

reconstructed COD concentrations were compared with in situ measurements at two representative 215 
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headwater sites. Model accuracy was assessed for the two sites using the Mean Absolute 216 

Percentage Difference (MAPD), RMSE, and Bias, following the approach of Yan et al. (2025). 217 

Historical COD changes were assessed by comparing averages from 2014–2015 and 2023–2024. 218 

2.4 Prediction of Future COD and Its Changes in the Headstream of the Yellow River 219 

To predict future COD levels at 160 sites in the headwaters of the Yellow River, the machine 220 

learning approach was also employed to model the relationships between geographical variables 221 

and the satellite-based estimates of COD levels. Using the Anaconda3 platform, soil texture (sand, 222 

silt, clay), bulk density, soil organic carbon, soil pH, altitude, human activity intensity, vegetation 223 

cover, land use, and ten-year averages of annual mean precipitation and temperature for each site 224 

during 2014-2024 were used as input features, while the ten-year average COD concentration for 225 

each site during 2014-2024 served as the target variable. The best-performing model, selected 226 

based on test and validation scores, was then used to predict future COD concentrations, 227 

incorporating both static variables (e.g., soil properties, vegetation cover, land use) and dynamic 228 

variables (future annual mean precipitation and temperature), depending on data availability.  229 

In order to predict the future COD using the trained model, future monthly temperature and 230 

precipitation data was collected from Hu et al., (2025). Future annual mean precipitation and 231 

temperature were then calculated for 2025-2040, 2041-2070, and 2071-2100, representing near-, 232 

mid-, and long-term horizons. Future COD changes in the Yellow River source region for 233 

2025-2040, 2041-2070, and 2071-2100 under SSP126, SSP245, and SSP585 scenarios were 234 

calculated relative to the mean values from 2014–2024. 235 

2.5 Calculation of COD flux 236 

The COD flux in the source region of the Yellow River was calculated using Eq. 4: 237 
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𝐹 = 𝐶𝑖 × 𝑄𝑖 10⁄        (4) 238 

where, F (Gg), nutrient export; Ci (mg/L), COD concentration; Qi (108 m³), river discharge. 239 

3 Results 240 

3.1 Performance of developed models 241 

3.1.1 Predicting Historical COD Using Landsat Reflectance Data 242 

A total of 24 models were developed and evaluated on the Anaconda3 platform to predict COD 243 

levels from Landsat reflectance data, with test and validation scores summarized in Table S2. The 244 

LightGBMLarge model demonstrated the highest predictive accuracy for COD across the QTP 245 

and surrounding regions, achieving test and validation scores of –0.22325 and –0.66913, 246 

respectively. Predicted versus in-situ measured COD levels for 2021–2023 based on training 247 

dataset are shown in Fig. 2a, with RMSE and R² of 0.326 and 0.925, respectively, indicating 248 

strong predictive performance. 249 

The relative importance of input variables in the LightGBMLarge model was quantified 250 

using importance scores (Fig. 2b). The five most influential predictors were longitude, latitude, 251 

SRRed/SRGreen, NSMI, and Band 1. Based on its performance, the LightGBMLarge model was 252 

selected to estimate historical COD levels in the source region of the Yellow River. 253 

 254 

Fig.2 Model performance for COD prediction based on training set using Landsat 8/9 reflectance 255 
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data (a), and importance of input variables in COD prediction (b). Bands 1-7 are surface 256 

reflectance data produced by the Landsat 8 OLI/TIRS sensors; SRnir/SRred, SRred/SRgreen and 257 

SRred/SRblue are band ratios; NSMI is Normalized Suspended Material Index; OC_Index is 258 

Organic Carbon Index; NDCI is Normalized Difference Chlorophyll Index; Hue Angle is used to 259 

reflect watercolor and water quality. 260 

 261 

To assess model reliability in the study area, two representative sites (M2 and M3) in the 262 

Yellow River headwaters were used to compare modeled and in-situ COD time series (Fig. 3). The 263 

results indicate that the model can accurately capture both spatial and temporal variability of 264 

riverine COD in the headstreams of the Yellow River. At site M3, RMSE, MAPD, and Bias were 265 

0.12 mg L⁻¹, 8.16%, and –2.38%, respectively, and RMSE, MAPD, and Bias at site M2 were 0.58 266 

mg L⁻¹, 15.32%, and –2.23%, respectively.  267 

 268 

Fig.3 Comparison between predicted and measured COD values in 2023 at sites M3 (a) and M2 (b) 269 

within the Yellow River source region. For sites M2 and M3, 24 and 20 matched data points were 270 

collected, respectively. 271 
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 272 

3.1.2 Prediction of Future COD Using Geographical Features 273 

Models for predicting future COD based on geographical features were also developed using the 274 

Anaconda3 platform. A total of 36 models were evaluated (Table S3), and the LightGBMLarge 275 

model exhibited the highest performance, with test and validation scores of –0.081 and –0.264, 276 

respectively. Predicted versus satellite-based estimates of average COD levels based on the 277 

training dataset in the Yellow River source region are presented in Fig. 4a, achieving an R² of 278 

0.913 and an RMSE of 0.177, indicating strong predictive capability of this model. Analysis of 279 

feature importance revealed that altitude, precipitation, temperature, and vegetation contributed 280 

most significantly to COD variability in the study area (Fig. 4b).  281 

 282 

Fig.4 Performance of the developed model for COD prediction based on the training set using 283 

geographical feature data (a), and importance of variables in the predictive model (b). HAII is 284 

Human Activity Intensity Index; Soil OC represents soil organic carbon; Soil Bulk is soil bulk 285 

density; Soil Sand, Clay and Silt are soil texture. 286 

 287 

3.2 Spatiotemporal Changes of COD in the Headstream of the Yellow River 288 

The developed model estimated an annual mean COD concentration of 2.14 ± 1.06 mg L⁻¹ in the 289 

https://doi.org/10.5194/egusphere-2026-731
Preprint. Discussion started: 19 February 2026
c© Author(s) 2026. CC BY 4.0 License.



16 

Yellow River source region from 2014 to 2024, with pronounced spatial variability. In the 290 

upstream area, the mean COD was 1.89 ± 0.81 mg L⁻¹, while higher concentrations were observed 291 

in the mid-downstream region (2.73 ± 1.63 mg L⁻¹). The downstream area, which includes large 292 

reservoirs such as Longyangxia and Lijiaxia, exhibited significantly lower COD levels (1.54 ± 293 

0.50 mg L⁻¹) (Fig. 5a,b).  294 

Over the past decade, the midstream region showed a clear increasing trend in COD, with an 295 

average rise of 0.441 mg L⁻¹ (Fig. 5c,d). In contrast, the upstream area exhibited both increasing 296 

and decreasing trends, with a mean change of 0.099 mg L⁻¹, whereas COD concentrations in the 297 

downstream region remained relatively stable (mean change: –0.002 mg L⁻¹).  298 

 299 

Fig.5 Spatial variation of mean COD and its change between 2014–2024 in the Yellow River 300 

source region. Changes were assessed by comparing averages from 2014–2015 and 2023–2024. 301 

 302 

Seasonal variations of COD were also evident during our study. Average monthly COD 303 
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concentrations ranged from 0.8 to 8 mg L⁻¹ (Fig. 6). The downstream site maintained low (0.8-2.4 304 

mg L⁻¹) and showed higher COD levels in summer (Fig. 6a), while the midstream site exhibited a 305 

pronounced increase from March, peaking in July (~8 mg L⁻¹), followed by a gradual decline (Fig. 306 

6b). The upper–midstream site displayed two distinct peaks in late spring and summer, suggesting 307 

episodic organic inputs associated with ice melt and rainfall (Fig. 6c). Upstream sites remained 308 

low to moderate (1-3 mg L⁻¹) with minimal seasonal variation (Fig. 6d).  309 

 310 

Fig.6 Averaged monthly variations of COD during 2014–2024 within the Yellow River source 311 

region. 312 

 313 

3.3 Future Climate and COD Changes in the Source Region of the Yellow River 314 

Across all scenarios and periods, precipitation exhibits a consistent spatial pattern, increasing from 315 

upstream reaches to a midstream maximum and subsequently decreasing toward downstream 316 
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sections (Fig. 7a-c). This pattern is preserved under all SSPs, although the magnitude of 317 

precipitation varied among scenarios and time slices. Relative to current conditions, precipitation 318 

increases slightly in the midstream region under SSP126 and SSP245, particularly during the mid- 319 

and late-century periods. Under SSP585, precipitation displays enhanced increase, with higher 320 

midstream values during 2041–2070 and 2071–2100 and lower precipitation toward downstream 321 

reaches. 322 

Compared with current conditions, future temperature rises across the entire study area (Fig. 323 

7d-f), with the magnitude of warming increasing over time and from SSP126 to SSP585. Under 324 

SSP126, temperature increases are relatively moderate, whereas SSP245 shows stronger warming, 325 

especially during 2071–2100. The largest temperature increases occurred under SSP585, with 326 

pronounced downstream variability during the late-century period, resulting in an amplified 327 

longitudinal temperature gradient. 328 

 329 

Fig.7 Projected precipitation and temperature variations for 2025-2040, 2041-2070, and 330 

2071-2100 under SSP126, SSP245, and SSP585 scenarios based on CMIP6 data. 331 

 332 

https://doi.org/10.5194/egusphere-2026-731
Preprint. Discussion started: 19 February 2026
c© Author(s) 2026. CC BY 4.0 License.



19 

Projected changes in COD across the study area show pronounced spatial and temporal 333 

variability under all three SSP scenarios (Fig. 8). During the near-term period (2025–2040), COD 334 

changes are generally modest, with most monitoring sites exhibiting values close to zero. In the 335 

mid-term period (2041–2070), the COD changes show an overall increase, with mean value of 336 

0.05 mg L⁻¹. Specifically, midstream sites more frequently experience decreases in COD, whereas 337 

upstream and downstream regions display a mixture of small increases and decreases. By the 338 

late-century period (2071–2100), the average change in COD is -0.01 mg L⁻¹. COD shows a 339 

pronounced decrease trend in the midstream area (-0.12 mg L⁻¹) under SSP585. Upstream and 340 

downstream areas show a higher occurrence of positive COD changes. Overall, COD shows a 341 

slight increasing trend across the three scenarios over different periods, with 877 positive changes 342 

(61%) and 563 negative changes (39%). 343 

 344 

Fig.8 Projected spatial variation of COD changes in the Yellow River source region for 2025-2040, 345 
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2041-2070, and 2071-2100 under SSP126, SSP245, and SSP585 scenarios. COD changes were 346 

calculated relative to the mean values from 2014–2024. 347 

 348 

3.4 Historical and Future COD Exports in the Source Region of the Yellow River 349 

Based on the annual average discharge at control site C3 (1987–2021), approximately 28.1 Gg of 350 

COD was exported from the entire study area. In contrast, the annual mean COD export at site M2 351 

was 62.5 Gg, indicating that approximately 34 Gg of COD was either deposited or decomposed 352 

between C3 and M2 along the downstream of the Yellow River’s source region. The export of 353 

COD primarily occurred during the wet season (June–October) (Fig. 9a), which contributes 354 

substantially to the annual COD export from the source region (Fig. 9b). Additionally, the 355 

observed increase in COD export between sites M1 and M2 highlights the midstream region as a 356 

major source of COD (Fig. 9b).  357 

Affected by the increase in the projected runoff (Fig. 9c), future projections at site M2 358 

indicate a slight declining trend in COD export from 2025 to 2100 under SSP126 scenarios, and 359 

an increase trend under SSP245 and SSP585 scenarios (Fig. 9d). By 2100, the average COD 360 

export at M2 under different scenarios is expected to increase from 62.5 to 81.6 Gg. 361 
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 362 

Fig.9 Monthly average COD export during 2014-2024 at sites M2 and C3 (a); comparison of 363 

annual average COD export and flood-season COD export during 2014-2024 among sub-basins 364 

(b); projected annual runoff (c) and COD export at M2 for 2025-2040, 2041-2070, and 2071-2100 365 

under SSP126, SSP245, and SSP585 scenarios (d). C1–C3 are the control sites for sub-basins B1–366 

B3, respectively. Historical annual and seasonal runoff was obtained from L. Liu et al. (2025) and 367 

Wang (2024). The projected runoff under SSP126 was derived from M. Ma et al. (2023), while the 368 

runoff under SSP245 and SSP585 was calculated using data from Long et al. (2024). Different 369 

sources of runoff data may result in discrepancies in the predicted COD exports across scenarios.  370 

 371 

4 Discussion 372 

4.1 Factors Driving COD Dynamics in the Headstream of the Yellow River 373 

4.1.1 Spatial Variations 374 

Primary sources of riverine organic carbon include losses from soils, plant litter, root exudates in 375 
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grasslands, and permafrost thaw via surface runoff (Yan et al., 2023). In this study, precipitation, 376 

temperature, vegetation, and soil texture were identified as key drivers of COD variation (Fig. 4b). 377 

Notably, the overall soil organic carbon, vegetation cover, fine particle content, and precipitation 378 

are higher in the midstream region of the headwater (Fig. S3), providing abundant carbon sources 379 

and facilitating transport to nearby rivers, resulting in elevated COD levels and fluxes in the 380 

mid-downstream areas (Figs. 5a, 9a,b). Additionally, bare land in the mid-downstream areas of the 381 

headstream may also contribute to the soil erosion and the associated organic carbon losses (Fig. 382 

S1). L. Li (2025) identified the higher lateral fluxes of river organic matter in the midstream area 383 

of the Yellow River’ s source region. Consequently, the midstream area represents a critical source 384 

of organic carbon for the Yellow River headwaters. 385 

In contrast, COD levels decreased markedly in the downstream region (Figs. 5a,b). This 386 

decline is likely driven by damming, as three large reservoirs, Longyangxia, Laxiwa, and Lijiaxia 387 

have been constructed in the downstream headwater region since the 1970s. Reservoirs increase 388 

water residence time, promoting deposition and decomposition of organic carbon, greenhouse gas 389 

emissions, and uptake by aquatic plants (Maavara et al., 2017, 2020). Therefore, the deposition or 390 

decomposition of organic matter along the downstream areas may contribute to the decline of 391 

COD levels. The deposition of riverine organic matter can be inferred from the decrease in COD 392 

fluxes at the outlet (C3) of the study area relative to Site M2 (Figs. 9a, b). L. Li et al. (2025) also 393 

reported negative dissolved organic matter fluxes in the main channels of the Yellow River’s 394 

headstreams. Additionally, the decomposition of the deposited organic matter is evidenced by CO₂ 395 

outgassing from the river water. Previous study has found that CO2 outgassing from the cascade 396 

reservoirs of Yellow River’s source region was estimated at 131.02 ± 156.77 mmol m⁻² d⁻¹ in dry 397 
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seasons and 466.10 ± 366.67 mmol m⁻² d⁻¹ in flood seasons (Wang et al., 2022). Therefore, these 398 

observations suggest that the sedimentation and degradation of organic matter contributes to lower 399 

COD concentrations in the downstream area. 400 

The COD concentration remained relatively stable along the upper to middle reaches of the 401 

Yellow River’s headwaters. This region is characterized by permafrost and seasonally frozen 402 

ground, with low precipitation and limited runoff (Yang et al., 2023). Surface runoff in this area 403 

primarily originates from precipitation, snowmelt, and glacier melt (G. Li et al., 2025). 404 

Consequently, due to the relatively uniform and stable runoff and land cover, COD levels 405 

exhibited a homogeneous spatial distribution along the upper to middle reaches of the Yellow 406 

River’s headwaters. 407 

4.1.2 Temporal Variations 408 

Climate-driven changes in runoff and temperature strongly influence catchment-scale carbon 409 

dynamics, altering riverine organic matter fluxes globally (Costa et al., 2023). Over the past 410 

decade, air temperature in the source region of the Yellow River has shown an increasing trend, 411 

with a basin–averaged increase of 0.67 °C, and the precipitation also presented an over increase 412 

trend though decrease slightly after 2019 (Fig. S4). The study area is particularly sensitive to 413 

warming-induced permafrost thaw, glacier melting, soil erosion, and intensified human activities 414 

over recent decades (Chen et al., 2022; Deng et al., 2025; Lan et al., 2025), which modify ROM 415 

sources and lateral transport between terrestrial and aquatic systems, affecting ROM levels and 416 

fluxes in rivers (Chen et al., 2022; Wang et al., 2020, 2025). Previous studies highlighted that 417 

permafrost thaw was projected to release 129.39 ± 21.02 Tg soil organic carbon annually (Lan et 418 

al., 2025). Glacier melting contributes an estimated 0.19 Tg C yr⁻¹ as dissolved organic carbon 419 
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(Chen et al., 2022). Intensified rainfall has increased soil erosion by 42% over the past four 420 

decades, resulting in an average soil carbon loss of 4 ± 1.2 Tg C yr⁻¹ (Deng et al., 2025).  421 

Therefore, affected by the increased temperature and precipitation, COD concentrations in 422 

the source region of the Yellow River exhibited an overall increasing trend over the past decade, 423 

with an average rise of 0.186 mg L⁻¹ (Figs. 5c,d). Especially the midstream region experienced the 424 

most pronounced increase (0.441 mg L⁻¹). The higher precipitation combined with increased 425 

runoff likely enhance organic matter leaching from grasslands, contributing to the rise of riverine 426 

COD in the midstream area (Chen et al., 2025; Yang et al., 2023).  427 

In addition to climate effects, growing human activities such as land use changes, grazing, 428 

and construction on the QTP also influence carbon mobilization (Chen et al., 2022). 429 

Human-induced land-use changes, grassland degradation, construction activities, and overgrazing 430 

can lead to organic matter losses in the study area. In addition, the construction and urbanization 431 

of natural and agricultural ecosystems may further accelerate organic matter losses within the 432 

watershed. All these human activities may contribute to the rising of COD in the headstream of the 433 

Yellow River. 434 

4.2 Future Changes in COD under Climate Change 435 

Rapid climate change in alpine regions is altering carbon cycling in both terrestrial and aquatic 436 

ecosystems (Chen et al., 2022). As carbon dynamics are highly sensitive to climatic variations, 437 

warming and wetting trends are expected to influence the stability of riverine organic matter in 438 

alpine catchments. Numerous studies indicate that precipitation and temperature on the QTP are 439 

projected to increase throughout this century, particularly in high-elevation areas (Karim et al., 440 

2025; Meng et al., 2023). Our projections also suggest an overall increase in precipitation, 441 
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especially in the up-midstream area of the Yellow River source region (Fig. 7), and significant 442 

warming is projected in the whole study area by 2100, especially under SSP 245 and SSP585. 443 

Climate-driven changes are expected to induce the largest variability in COD concentrations 444 

in the midstream region (Fig. 8). COD levels are projected to increase in most parts of the source 445 

region of the Yellow River, and annual average COD exports will increase from 62.5 Gg to 81.6 446 

Gg (Fig. 9d). ROM dynamics are jointly regulated by organic matter supply and hydrological 447 

processes within catchments (Li et al., 2022; Wu et al., 2024). Increased precipitation can enhance 448 

surface runoff, leading to losses of organic matter from the catchment, even though COD 449 

concentrations may be diluted as discharge continues to increase (Li et al., 2022; Wu et al., 2024). 450 

The projected warming in the headwater area of the Yellow River will lead to the continuing 451 

permafrost degradation, promoting the loss of organic matter within the catchment and leading to 452 

the increase of the COD level in the headstreams (Z. Li et al., 2025). In addition, damming 453 

prolongs water residence time, promoting organic matter deposition in cascade reservoirs in the 454 

downstream area of the Yellow River’s source region. Under warm conditions, the degradation of 455 

deposited organic matter in the bottom of the reservoir may be enhanced, releasing additional 456 

organic carbon from reservoir sediments and contributing to the rise of COD levels in the 457 

downstream area (Battin et al., 2023; Vachon et al., 2021). 458 

However, the extent to which organic matter reaches rivers depends on hydrological 459 

processes and connectivity between the source region and river channels. The characteristics of 460 

rainfall events may shift the ROM response to storms from transport-limited to supply-limited, 461 

thereby reducing ROM levels (Li et al., 2022). Consequently, the projected increase in 462 

precipitation by the 2100s is expected to lead to a decrease in COD levels within the midstream 463 
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areas (Fig. 8). In addition, permafrost thaw induced by the warming can also alter runoff pathways, 464 

promoting subsurface flow and potentially reducing surface discharge to rivers (Yang et al., 2023). 465 

Increased vegetation cover can also reduce transport of organic matter through reducing soil 466 

erosion and surface runoff (Liu et al., 2024; W. Ma et al., 2023). Therefore, these factors may 467 

jointly contribute to the decrease of riverine organic matter at some specific sites on the 468 

headstream of the Yellow River. 469 

4.3 Uncertainty in Riverine Organic Matter Dynamics on the QTP 470 

Understanding riverine organic matter dynamics is essential for assessing aquatic ecosystem 471 

feedback to climate change. Ongoing warming and wetting on the QTP are expected to alter 472 

carbon stability, increasing uncertainty in watershed organic matter losses (Bai et al., 2025). For 473 

instance, increased precipitation may enhance surface runoff (Li et al., 2022), however, rising 474 

temperatures can also decrease catchment runoff by enhancing evaporation. The influence of 475 

hydrological processes on ROM dynamics depends on the characteristics of the catchment (Li et 476 

al., 2022). Previous studies have predicted both increasing and decreasing streamflow trends on 477 

the QTP under future climate scenarios (G. Li et al., 2025; San et al., 2025; Yang et al., 2023). 478 

Increased streamflow may elevate COD in rivers, or dilute COD due to higher streamflow. 479 

Conversely, reduced streamflow may decrease organic matter transport to rivers or concentrate 480 

COD in river water.  481 

Additionally, warming-induced permafrost thaw may accelerate topsoil organic matter 482 

mobilization, stimulate microbial activity, and promote soil organic matter decomposition, 483 

releasing more dissolved organic matter (Z. Li et al., 2025). However, the frozen ground 484 

degradation can also result in the decreased surface runoff by increasing the subsurface runoff 485 

https://doi.org/10.5194/egusphere-2026-731
Preprint. Discussion started: 19 February 2026
c© Author(s) 2026. CC BY 4.0 License.



27 

(Yang et al., 2023). Vegetation greening on the QTP may both enhance soil carbon storage and 486 

reduce organic matter losses to river networks through mitigating soil erosion (Deng et al., 2025). 487 

Therefore, climate change can further differentially affect terrestrial carbon stocks and carbon 488 

losses, introducing additional complexity and uncertainty in catchment-scale organic matter 489 

sources and transport (Chen et al., 2022; Liu et al., 2024; W. Ma et al., 2023). 490 

In-stream carbon biogeochemical processes are also highly complex under changing climatic 491 

conditions. Organic matter decomposition depends on temperature, redox conditions, hydrology, 492 

microbial activity, and organic matter characteristics (Battin et al., 2023). The climate change is 493 

projected to change the hydrological processes and the associated biogeochemical processes, 494 

further altering the carbon cycling in the alpine rivers. However, interactions among these factors 495 

are not fully understood in alpine rivers, making predictions of alpine river metabolism and carbon 496 

budget under climate change uncertain (L. Li et al., 2025). 497 

Anthropogenic activities on the QTP further contribute to uncertainty. Warming and wetting 498 

may expand farming, increasing soil erosion and carbon losses (Chen et al., 2022). Future dam 499 

construction alters organic matter transport by promoting deposition, influencing greenhouse gas 500 

emissions, and facilitating organic matter degradation (Battin et al., 2023). Conversely, ecological 501 

restoration, such as afforestation, can increase soil organic matter accumulation and litterfall 502 

(Chen et al., 2022; Yan et al., 2023), leading to increase in organic matter and the COD levels in 503 

the nearby headwaters of the Yellow River. 504 

In this study, we project a general increase in levels and fluxes of COD based on modeled 505 

temperature, precipitation, and discharge. However, future climatic trends may deviate from 506 

current projections, and the predicted temperature and precipitation may not represent the actual 507 
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future patterns. Furthermore, our developed model does not incorporate changes in land covers, 508 

soil carbon stocks, hydrological processes, or in-stream carbon biogeochemistry, all of which may 509 

significantly influence riverine carbon cycling. Therefore, future research should integrate these 510 

factors to develop more precise, process-based models and improve understanding of carbon 511 

dynamics in alpine river catchments. 512 

5 Conclusions 513 

In this study, LightGBM-Large models were developed to reconstruct the historical variations of 514 

COD in the source region of the Yellow River and to predict its future changes. Our findings 515 

identify the midstream region of the Yellow River’s headstream, with higher COD levels (2.73 ± 516 

1.63 mg L⁻¹), is sensitive to climate change and exhibited an increasing trend of COD (+0.44 mg 517 

L⁻¹) in the past decade. Precipitation and temperature were identified as the key factors 518 

influencing COD dynamics in the headwaters of the Yellow River. Future projections suggest that 519 

increased precipitation and temperature may lead to an overall rise of COD levels, with decrease 520 

in some specific sites. The export of organic matter from the headwaters of the Yellow River is 521 

also projected to increase based on the anticipated increase in COD levels and discharge. However, 522 

the limited spatial and temporal resolution of Landsat data and lack of geophysical data, still poses 523 

challenges for accurately capturing rapid variations in riverine COD in the source region of the 524 

Yellow River. Therefore, future research should focus on developing more robust models by 525 

integrating higher-quality satellite observations and incorporating a broader range of 526 

environmental variables. 527 
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