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Supplementary Text
Text. S1 Details of field measurements in Delhi

1.1 FIGAERO-I-CIMS configurations

The reagent ions (I" and I-H20") were produced by passing ~2 Ipm ultrahigh purity
(UHP) N2 via a CH3l permeation tube and through a Po-210 ion source, where it
interacted with the sampled air or thermally desorbed molecules from PMzs in the ion-
molecular reactor (IMR). A constant 10 sccm of H2O-saturated UHP was added directly
into the IMR to reduce the sensitivity variability with ambient RH. The IMR pressure
was maintained at 200-250 mbar during gas sampling and 120-140 mbar during PMas
desorption. The relatively lower pressure during the PM2s measurement was likely
caused by the resistance and associated pressure drop across the filters. Considering the
differences in IMR pressures, we conducted sensitivity calibrations for the gas- and
particle-phase measurements separately under conditions similar to the field

observations in Delhi. The average mass resolution was ~3500 at m/z 127.

For the gas-phase measurements, ambient air was drawn at 3 lpm through a 4-m-
long PFA tube (inner diameter, 5 mm, residence time 1.6 s) with 2 Ipm pumped away,
and the remaining 1 lpm was diluted with 1 Ipm UHP N2 before entering the IMR to
avoid reagent ions titration by high levels of pollutants (e.g., HNO3) in the ambient air.
The inlet was flushed with ~2 Ipm UHP N2 during the first and last two minutes of each
20-min gas-phase measurement to obtain background signals, while ambient sampling
was performed during the remaining period. The signals from the second zeroing period
were used as the background, since those from the first zeroing period may have been
influenced by carryover desorption signals (especially for sticky compounds) from the
preceding particle-phase measurement (Fig. S5). The background-subtracted and
dilution ratio (a factor of 2) corrected ion signals were subsequently averaged to 1-hour
intervals. For PM2.s measurements, ambient air was drawn at 3 Ipm through a 4-m-long
copper tube (inner diameter, 5 mm) fitted with a PMa2.s cyclone during the gas-sampling
period, with 2 Ipm discarded and 1 Ipm collected on a Teflon filter for 20 min. The filter
was then moved to the desorption position, where it was thermally desorbed and carried
into the IMR under a 2 Ipm flow of UHP Na. The N2 flow was gradually ramped from
room temperature to 200 °C in 20 min, soaked at 200 °C for 20 min, and finally cooled
back to room temperature in 10 min. The particle phase signal was integrated over the
temperature ramping and soaking period during filter desorption. The baseline was
determined from linear fitting of the signal between the onset of heating and the end of

soaking and was integrated and subtracted from the integrated desorption signals.

1.2. Sensitivity calibrations of N,Os, CINO: and related species
N20s and CINO:. N20Os was prepared by mixing O3 with excessive NOz to promote
2
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the conversion of NO3 to N2Os. The generated N2Os concentrations were determined by
the change in O3 following the addition of NO2, and different N2Os levels was achieved
via varying O3 concentration (Bertram et al., 2009). The produced N20Os was further
diluted with humidified zero air to approximate Delhi RH conditions before entering
the CIMS. CINO: was produced by passing a known amount of N2Os through a wetted
NaCl-slurry placed in a Teflon tube, assuming a unit conversion from N20s to CINO2
(Finlayson-Pitts, 2003). All the tubings are covered by aluminum foil to avoid NO3
photolysis and were flushed with dry zero air overnight before calibration to minimize
potential N2Os hydrolysis on the tubing surfaces. No water-dependent sensitivity
correction was applied for N2Os and CINOz, as no significant sensitivity variation was
observed in the range of H2O-I/I" ratios during the field measurements in Delhi. The

calibration curve for N2Os and CINOz are shown in Fig. S19a-b.

HCl and chloroacetic acid. A certified 10 ppm HCIl gas cylinder (Linde Specialgas)
was used as the standard source, which was diluted with zero air to different mixing
ratios before introducing to the CIMS (Fig. S19¢). Notably, we observed a significant
decrease of the HCI sensitivity at high H2O-I/I" ratios (Fig. S19d), likely due to the
competing effects of H20 for clustering with iodide anion and that the reaction of HCI
with H2O-I" is thermodynamically less favorable compared to reacting with iodide
anion. The slight increase in HCI sensitivity with increasing H2O-I7/I" ratio at low RH
levels may be related to the stabilization of HCI-I~ clusters by water vapors. Similar
patterns have been reported for other acids in a previous study (Lee et al., 2014).
Gaseous chloroacetic acid was generated by placing solid chloroacetic acid in a glass
vial submerged in a 30 °C water bath. The emission rate, determined by gravimetric
weight loss analysis, was 177.3 ng/min. No significant H-O dependence of chloroacetic

acid sensitivity was observed.

Levoglucosan. A certain amount (10~90 ng) of levoglucosan dissolved in acetone
solutions was deposited on the filter of the CIMS, and then the droplet underwent the
same thermal desorption cycle as in the field measurements. The sensitivity for
levoglucosan was derived as the integrated background-subtracted signals divided by

the deposited mass.

1.3. Supporting measurements and data quality control

Meteorological factors, i.e., T, RH, wind speed, and wind direction, were measured
by an automated weather station (AWS) (Davis Vantage Pro 2, Davis Instruments
Corporation, USA). Trace gases, including O3, NO and NOz, CO, and SOz were
measured by on-line gas analyzers (ECOTECH Serinus). For the long-term (2017~2024)
hourly observation data obtained from R.K. Puram station, we applied rigorous quality

3
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controls following recent studies (Vohra et al., 2025;Xie et al., 2024) with a few
modifications, including (1) Remove duplicates: In sequences of five or more
consecutive identical hourly values, only the first value out of the sequence is retained,
(2) Remove outliers: For a 24-h running window, flag any observation as an outlier if
its absolute difference from the median exceeds three times the Median Absolute
Deviation (MAD, median distance between each observation and the median of all
observations), (3) Remove constant data: In a 24-h running window, remove constant
data values with coefficient of variation (ratio of standard deviation to the mean) less
than 5%, (4) Validation of NO, NO2 measurements by comparing with the measured
NOx: consider NO and NO2 are reported correctly in unit of pg/m® and assess if NOx
calculated from these is within 2% of reported NOx + 2.5 ppb. If not, the measured NO,
NO2, and NOx data were omitted.

Text. S2 Estimation of the N2Os uptake coefficient

2.1 Inapplicability of the steady-state method

The steady-state approximation of the NO2-NO3-N20s system is a widely applied
method (Brown et al., 2003) for estimating the values for the NO3 and N20s sinks
(thereby yy,0.) in various atmospheric environments (Brown et al., 2006; Wang et al.,
2017b;Wang et al., 2017a). This method assumes that production rate of NO3 and N2Os
equals the sum of the loss rates during a certain period of the night (Eq. 1), and therefore

kno, and ky,o. can be determined as the slope and intercept, respectively, of the

linear fitting between Ty,0 5_1 and (Eq. 2). However, we found no

Keq[NO3]

siginificant positive even negative correlation between TN205—1 and during

Keq[NO,]

the nighttime throughout the campaign (an example is shown in Fig. S20). This is likely
attributed to the intense and variable NOx emissions in Delhi (avg. nighttime hourly
NOx mixing ratios of 92+60 ppb) which preclude the system from approaching steady-
state on the time-scale of a night. As is in shown in Fig. 2a of the main text, N2Os
presented a strong negative dependence on NO. The high concentrations and large

flucuations of NO dominated the variation of N20Os, thereby decoupling the lifetime of
N20s fro m

Keq[NO,]
kno,+0,[NO21[03] = kyo,[NO3] + ky, 0, [N,0s] (Eq. 1)
Koo = 2.7 x 10727 X exp (11000/T)

[N205]
Keq[NO3]

Substitute [NO5] = to Eq.1, we get
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-1 _ kno,+0,[NO,][0s5] _ kno,

= = Eqg.2
205 [N,04] Ko[NOy] o5 (E4-2)

Where kyo, and ky,o  are the pseudo-first-order loss rate constants of NO3 and N2Os,

respectively, ky, o, = %Sa, TN205_1 is the inverse of the N2Os steady-state liftime.

2.2 Validation of the RH parameterization method

CINO:2 yield indicates the branching ratio of H2ONO:" reacting with H20 (R4) and
chloride (R5), which is theoretically determined by the respective reaction rates shown
in Eq. 3(Bertram and Thornton, 2009).

B kgs[H,ONOZ][CL™]
fewo, = kgrs[H,ONOS1[CL™] + kra[H,ONO; [H,O0]

1
= (Eq.3)
Kga [H,0]
L s IO

Where [H20] and [CI'] are concentrations in the aqueous phase of particles derived

from thermodynamic models, kgs and kg, are reaction rate coefficients of Reaction

RS and R4. The experimentally determined values for % is 483+175 from the work
R4

of Bertram and Thornton(Bertram and Thornton, 2009) and 836+32 from Behnke et
al(Behnke et al., 1997). Due to the lack of aerosol inorganic composition (e.g., NH4",
NOs", and SO4+*) measurements during the 2023 campaign, we estimated the range of
[CI']/[H20] ratio from January to March in 2022 Delhi when ACSM measurements are
available(Ali et al., 2025) and the measured chloride level was similar to the campaign
in 2023. The estimated nocturnal (18:00~06:00) [CI']/[H20] ratio ranged from 1.8x 10
> to 0.76 with an average of 0.07, which mostly fell in the region where the
corresponding CINO: yield close to 1 (Fig. S13a). We therefore tested the validity of
the RH parameterization method by simulating the average nocturnal variation of
CINO:z constrained with the parameterized gamma, observed N20Os mixing ratios and
aerosol surface area concentrations, with the CINO: yield set to 1. The results showed
that the simulation largely overestimated the production of CINO2 from 20:00 to 00:00
(Fig. S13b) when the absolute chloride concentrations were relatively low (Fig. 1d).
By comparison, when constraining CINOz yield to 0 for the chloride-deficient period
(20:00 to 00:00) and 1 for the chloride-sufficient period (0:00 to 6:00), the modelled
CINO2 evolution well tracked the observations (Fig. S13b). The overall consistency
between modelling and observations suggest that the measured CINO2 can largely
explained by the locally heterogeneous uptake of N20s on chloride-rich particles in
Delhi and that the RH-parameterized yy, o, is a reasonable estimate, indicating the key
role of RH and thereby aerosol liquid water content in driving N2Os uptake in Delhi.
Nevetheless, comprehensive aerosol composition measurements or direct
5
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measurements of N2Os reactivity (Bertram et al., 2009;L1 et al., 2025) in future studies
are required to enable better quantification and understanding N2Os uptake processes
in Delhi.

Text. S3 Estimation of CINO: in the residual layer

The nocturnal boundary layer typically comprised a surface layer and an overlying
residual layer (RL), where the RL was isolated from ground emissions and preserved
the chemical composition of the well-mixed boundary layer from the late-afternoon. To
estimate the maximum CINO:2 produced in the RL, we used the ground-observed
average N20Os mixing ratios and aerosol surface area prior to sunset (16:00~18:00),
assuming yy,o.=0.1 and feno,=1 (Eq. 4). The calculation indicated that N2Os was

fully consumed within 1 hour.

2 Cyn,0
[CZNOZ]RL =J =
t1

SalN2O0s]opsfeivo, dt (Eq.4)
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Table S1 Summary of nocturnal peak and average (shown in the brackets) N2Os

and CINO; mixing ratios measured around the world. The unit is ppt.

Location Period Type N2Os CINO, ref.
India Institute of . 556 1340 ]
. 2023.2.23-3.14  urban inland this study
Technology, Delhi (16)  (116)
India Institute  of _ 203 724  (Haslett et al,
. 2019.1.11-2.5 urban inland 2023
Technology, Delhi 4) (48) )
Gulf of Mexico, urban (Osthoff et al.,
2006.7-9 750 1200 2008
Huston, Texas coastal )
National ~ Oceanic
and Atmospheric . (Thornton et al.,
. . 2009.2.11-2.25 urbaninland 1500 440
Administration, 2010)
Boulder, Colorado
University of Utah, . 1520 (Baasandorj et
. 2015.12-2016.2 urban inland
Salt Lake City, Utah (76) al., 2017)
University of
o . (McNamara et
Michigan, Ann 2016.2.1-3.10 urban inland 220
L al., 2020)
Arbor, Michigan
. (Wang et al,
Toronto 2021.1.11-1.25 urban inland 300
2023)
. . 724 (Bannan et al.,
Kensington 2012.7 -8 urban inland 1700
(84) 2015)
. (Priestley et al.,
Manchester 2014.10-11 urban inland 506
2018)
Frankfurt o
. (Phillips et al.,
Observatory (825 m 2011.8-9 rural inland 3000 800 2012)
as.l)
. . (Tham et al,
China, Wangdu 2014.6-7 rural inland 500 2070
2016)
China, Wangdu 2017.12 rural inland 1000 1400 (Xia et al., 2021)
) ) (Chen et al,
China, Wangdu 2023.2.10-3.5 rural inland 3600
2025)
China, mountain in )
mountain (Wang et al,
Hong Kong (957 2013.11-12 . 7700 4700
site 2016)
a.s.l.)
] urban (Chen et al,
China, Heshan 2017.1.2-1.15 3000 8300
coastal 2023)
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Table S2 Campaign-averaged NO3- reactivity (unit: s'') during the 2019 and 2023

campaign.

NOs + NO NOs3 + hv N20s hete. NO3 + VOCs
2019.1~2 50.175 0.031 0.462 0.081
2023.2~3 15.585 0.043 0.091 0.081"

*assumed to be the same as those observed in 2019.

Table S3 Average emission factor (g/kg fuel burned) of K, HCl, HCN, CO, and SO,
from biomass, biofuel, and garbage burning processes and vehicles.

K HCI HCN SO, CO HCI/CO ref
0.004~0.0 (Andrea
Peat - 1.00 - 38 -
15 e, 2019)
Crop (Andrea
. 0.48 0.18 0.42 0.8 77 2.3x10°
residues e, 2019)
Stockw
(

Rice straw - 0.44 0.37 1.3 60  7.3x10° elletal.,
Biomass 2014)
burning (Stockw

Wheat

- 0.47 0.10 0.7 39 1.2x102 elletal,,
straw
2014)
Tropical (Andrea
0.32 0.13 0.44 0.8 104  1.3x10°
forest e, 2019)
Temperate (Andrea
0.18 0.04 0.64 0.7 112 3.5x10*
forest e, 2019)
(Andrea

Dung 0.09 0.04 1.30 0.7 89 4.3x10*

e, 2019)

Biofuels

. (Andrea
without 0.13 0.08 0.39 0.5 84  8.9x10*
e, 2019)
Biofuel dung
burning (Andrea

Charcoal 0.75 0.11 - 0.6 207 5.3x10*

e, 2019)
(Stockw
Wood - 0.02 0.54 bld 77 2.4x10* elletal.,

2016)
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Garbage (Andrea
] 0.02 2.80 0.43 0.5 66  4.2x107
burning e, 2019)
Garbage
burning Mixed (Stockw
plastic - 2.30 0.43 bld 85  2.7x10? elletal.,
garbage 2016)
Two- (Stockw
wheeled elletal.,
vehicles - bld 0.68 bld 761 2016)
Vehicles  agricultur
al diesel (Stockw
S elletal.,
irrigation
pumps : bld 012  bld 17 2016)

Note: bld indicates below the limit of detection.

Table S4 Summary of the bulk PM composition measured at IITD during winter
from 2017 to 2022. The unit is pg/m3.

Period PM Cl NOs SO, NH,4 Org ref
(Gani et al.,

2017.1~2017.3 PM; 14.2 16.1 15.8 15.7 81.0
2019)
(Gani et al.,

2017.12~2018.3 PM; 18.9 19.6 111 15.9 99.9
2019)
2018.1.17~1.19 (Lalchandani

PM.s 204 13.3 12.0 14.3 65.3
2018.2.5~3.11 etal., 2021)
(Haslett et

2019.1.11~2.5 PM; 17.3 20.8 18.0 23.7 80.0
al., 2023)
(Alietal.,

2019.12.1~2020.1.5 PM2s 5.7 145 114 9.5 60.9
2023)
(Mandariya

2020.2.1~3.20 PM1 4.9 10.6 9.7 8.9 47.9
etal., 2024)
(Faisal et al.,

2020.12.15~12.31 PM.s 113 27.2 13.7 25.7 111

2025)
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(Alietal.,

2020.12.15~2021.2.23 PMa2s 49 19.8 96.2
2023)
(Faisal et al.,
2021.1.1~2021.2.28 PM2s 10.1 16.1 87.
2025)
(Ali etal.,
2022.1.12~3.31 PM2s 45 15.3 86.2
2025)
(a) 177 (b)150
204
100+
o
g
o
< 504

2018 2019 2020 2021 2022 2023 2024

Fig. S1 (a) Comparison of the observed chloride levels globally. (b) Box plots of

the annual daily averages of NO concentrations in Delhi. The chloride
concentrations in Delhi (compiled from Table S4), China (Xia et al., 2021;Tham et al.,
2018;Xia et al., 2020), Europe (Eger et al., 2019;Lanz et al., 2010), and US (Mielke et

al., 2013;Sarwar et al., 2012) are campaign-average values retrieved from previous

studies. The whiskers in (a) represent standard deviation. The NO concentrations shown

in (b) were obtained from the R.K. Puram monitoring station. The boxes represent the

interquartile range with the whiskers extending to the 10" and 90" percentiles. The dot

and horizontal line within each box denote the mean and median values, respectively.
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(a) 0.16 campaign campaign (b) 0.16 campaign campaign
2020 ggg?
2021
0.12 0.12 o0
2022 2022
> 2023 = 2023
<) 2024 Q 2024
0] @
> 0.08 > 0.08
o o
o [
i fr
0.04 - 0.04
0.00 54— : : 0.00 :
0 1 2 3 4 400 500
Nighttime P(NO3) (ppb/h) Nighttime NO (ppb)
2023 2019 2023 2019
(C) 0.25 campaign campaign (d)O 12 campaign campaign
2017.5~9 2018
0.20 2018.1~4 : : 2019
2022.1~4 0.08 2020
-0 H : 2021
> > | :
g0.15 % ' ' 2022
S 3 2023
g g o
£ 0.10 i cUen
0.04+
0.05
0.00 0.00— L - ; ‘
o] 10 20 30 40 50 60 0 100 200 300 400 500
Nighttime chloride (ug/m®) Nighttime PM, 5 (pg/m®)

Fig. S2 Representativeness of the two field-campaigns in Delhi. Gaussian-fitted
frequency distributions of nightly (a) P(NOs), (b) NO, (c) chloride, and (d) PM2s
concentrations from 2017 to 2024. The nighttime is defined as 20:00~04:00 throughout
the years. The data for P(NO3), NO, and PMas, are obtained from the R.K. Puram
monitoring station. Chloride concentrations were unavailable at the station and are
retrieved from previous studies (Gani et al., 2019;Ali et al., 2025). The gray and red
shaded area denote the respective pollutant distribution during the 2019 and 2023

campaign and the dashed lines indicate the campaign averages.

11



234

235
236
237
238
239
240
241

242

243
244
245

[ Org NH," [l so,” Il NO, [l CI

(a) 10 (c) 1.0-
0.8
_5 0.6 0.84
7
S 04
[
0.2 06
o
0.0 £
(®) 500! : 2
: % 0.4
e 160
S 120 IE
g o] . :.
9 .
O 40 ! .
R I I I N
NSNS N O e o N S .
AN AT a0t of e’ o A £ o
qp'\ 0\1 0\% 010 ,Lg'l
L L v PM, ; (g/m®) in 2022.1~3

Fig. S3 (a-b) Temporal trends in bulk PM composition measured at IITD during
winter from 2017 to 2022. (¢) Variations of the composition fractions under
varying PM: s ranges. The original data for (a-b) was compiled from previous studies
based on ACSM or AMS measurements and shown in Table S3. The dashed vertical
line in (a-b) indicates the end of 2019. The PM2.5s composition data in (c) was retrieved
from Ali et al(Ali et al., 2025). and the corresponding PM2 .5 mass concentrations were

obtained from the nearby R.K. Puram station.

(b) View from the top of IIT Delhi
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Fig. S4 (a) The locations and (b) a zoom-in view of the sampling site. The two photos
in (b) were taken during the early morning and late afternoon hours, respectively. Map
data © Google Maps 2026.
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Fig. SS An example of the measurement cycle.

1: gas sampling 2: particle ramping 3: particle soaking 4: particle cooling 5: gas zeroing
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Fig. S6 Intercomparison of the measured species and estimation of aerosol surface

area. (a) Comparison of the time series of trace gases and meteorological parameters

measured at IIT Delhi and the R.K. Puram station in 2023 campaign. (b) Correlation
between the measured aerosol surface area at II'T Delhi(Gani et al., 2020) and PM2:s at
R.K. Puram station from February to March in 2018. (c) Time series of particulate CI
measured by XRF and CIMS.
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Fig. S7 estimated NO3- mixing ratios. The NO3 mixing ratio was estimated by using

the observed N20s and NO2 mixing ratio and the temperature-dependent equilibrium
constant between NO2, NO3, and N20:s.
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274  respectively. The dots and lines inside the box denote average and median values.
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Fig. S10 Day by day plots of the enhanced cases observed in 2023. An enhanced

case is identified by a pronounced nighttime increase in either N2Os or CINOz.
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280 enhanced case is identified when neither N2Os nor CINO: shows a pronounced
281  nighttime increase.
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283  Fig. S12 Average diurnal variations of (a) N2Os under low- and high-NO conditions
284  (b) PM1s, total measured gaseous and particulate organics in 2023. A 10 ppb of NO
285  threshold was applied to ensure statistically robust and comparable datasets. As all NO
286  concentrations were below 10 ppb between 11:00 and 18:00, no N20s data are available
287  for the high-NO condition during this period. The right axis in (b) shows the average
288  solar radiation in 2023.
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Fig. S13 (a) Parameterization of CINO; yield and (b) simulation of the nocturnal
CINO; variations. The lines in (a) correspond to CINOz2 yield calculated using Eq. 3
with different reported reaction rate constant ratios. The grey shaded area indicates the
10" and 90" percentiles of the calculated [C17]/[H20] ratios using ISOROPPIA from
January to March of 2022 in Delhi(Ali et al., 2025). The green shaded area in (b)
represents the 10" and 90 percentiles of the observed average nocturnal CINO2 mixing
ratios. The dashed lines in (b) are the simulated CINO: mixing ratios and the average
RH parameterized N2Os uptake coefficient is shown in the right axis of (b).
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305

306  Fig. S15 Satellite observations of active fire hotspots and wind rose plot during the
307 2023 campaign. The map of the fire-points was downloaded from https://
308 earthdata.nasa.gov/firms. The measurement site (IIT Delhi) was indicated as IITD. The
309 light blue shaded area indicates the dominant wind-direction (50~130°) when the

310  extremely high values of the uptake parameter (yxf) exceeding 0.1 were measured.
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312  Fig. S16 A case study indicating the influence of transport on the observed CINO;
313  levels. An exceptionally high yxfvalue (10.7) observed at 2023/3/11 2:10 is also noted.
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Fig. S17 (a) Time series and (b) average diurnal pattern of element K and gaseous
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and the lines represent the campaign-averaged values. Hourly CIMS measurements
were shown for HCN. The highest K and HCN concentrations on 3/7 and 3/8 were
likely driven by large-scale bonfires involving wood and leaves burning during the
Holika Dahan festival (3/6 16:00~3/8).
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Fig. S20 An example of the steady-state analysis of the NOz-NO3-N,Os system.
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