

1 *Supporting Information of*

2 **Nocturnal production of N₂O₅ and ClNO₂ in Delhi: driving factors and impacts**

3 Yijing Chen^{1,2}, Cheng Wu^{2*}, Epameinondas Tsiligiannis², Ravi Kant Pathak^{2,3}, Jan B.
4 C. Pettersson², Harsh Raj Mishra^{2,3†}, Gazala Habib⁴, Geetam Tiwari⁵, Kebin He¹,
5 Jingkun Jiang^{1*}, Mattias Hallquist^{2*}

6 **Affiliations:**

7 ¹State Key Laboratory of Regional Environment and Sustainability, School of
8 Environment, Tsinghua University, School of Environment, Tsinghua University;
9 Beijing, 100084, China.

10 ²Department of Chemistry and Molecular Biology, University of Gothenburg;
11 Gothenburg, 40530, Sweden.

12 ³Indo-Gangetic Plains Centre for Air Research and Education (IGP-CARE), Hamirpur,
13 Uttar Pradesh, 210301, India.

14 ⁴Transportation Research and Injury Prevention Centre, Indian Institute of Technology
15 Delhi, New Delhi, 110016, India.

16 ⁵Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi,
17 110016, India.

18 †Present address: School of Earth and Atmospheric Sciences, Queensland University
19 of Technology, Queensland, 4001, Brisbane, Australia.

20

21 ***Correspondence to:** Mattias Hallquist (hallq@chem.gu.se), Jingkun Jiang
22 (jiangjk@tsinghua.edu.cn) and Cheng Wu (cheng.wu@gu.se).

23

24

25 **This PDF file includes:**

26 Text S1 to S3

27 Figures S1 to S20

28 Tables S1 to S3

29

30

31 **Supplementary Text**

32 **Text. S1 Details of field measurements in Delhi**

33 **1.1 FIGAERO-I-CIMS configurations**

34 The reagent ions (I^- and $I\cdot H_2O^-$) were produced by passing ~ 2 lpm ultrahigh purity
35 (UHP) N_2 via a CH_3I permeation tube and through a Po-210 ion source, where it
36 interacted with the sampled air or thermally desorbed molecules from $PM_{2.5}$ in the ion-
37 molecular reactor (IMR). A constant 10 sccm of H_2O -saturated UHP was added directly
38 into the IMR to reduce the sensitivity variability with ambient RH. The IMR pressure
39 was maintained at 200-250 mbar during gas sampling and 120-140 mbar during $PM_{2.5}$
40 desorption. The relatively lower pressure during the $PM_{2.5}$ measurement was likely
41 caused by the resistance and associated pressure drop across the filters. Considering the
42 differences in IMR pressures, we conducted sensitivity calibrations for the gas- and
43 particle-phase measurements separately under conditions similar to the field
44 observations in Delhi. The average mass resolution was ~ 3500 at m/z 127.

45 For the gas-phase measurements, ambient air was drawn at 3 lpm through a 4-m-
46 long PFA tube (inner diameter, 5 mm, residence time 1.6 s) with 2 lpm pumped away,
47 and the remaining 1 lpm was diluted with 1 lpm UHP N_2 before entering the IMR to
48 avoid reagent ions titration by high levels of pollutants (e.g., HNO_3) in the ambient air.
49 The inlet was flushed with ~ 2 lpm UHP N_2 during the first and last two minutes of each
50 20-min gas-phase measurement to obtain background signals, while ambient sampling
51 was performed during the remaining period. The signals from the second zeroing period
52 were used as the background, since those from the first zeroing period may have been
53 influenced by carryover desorption signals (especially for sticky compounds) from the
54 preceding particle-phase measurement (Fig. S5). The background-subtracted and
55 dilution ratio (a factor of 2) corrected ion signals were subsequently averaged to 1-hour
56 intervals. For $PM_{2.5}$ measurements, ambient air was drawn at 3 lpm through a 4-m-long
57 copper tube (inner diameter, 5 mm) fitted with a $PM_{2.5}$ cyclone during the gas-sampling
58 period, with 2 lpm discarded and 1 lpm collected on a Teflon filter for 20 min. The filter
59 was then moved to the desorption position, where it was thermally desorbed and carried
60 into the IMR under a 2 lpm flow of UHP N_2 . The N_2 flow was gradually ramped from
61 room temperature to 200 °C in 20 min, soaked at 200 °C for 20 min, and finally cooled
62 back to room temperature in 10 min. The particle phase signal was integrated over the
63 temperature ramping and soaking period during filter desorption. The baseline was
64 determined from linear fitting of the signal between the onset of heating and the end of
65 soaking and was integrated and subtracted from the integrated desorption signals.

66 **1.2. Sensitivity calibrations of N_2O_5 , $CINO_2$ and related species**

67 N_2O_5 and $CINO_2$. N_2O_5 was prepared by mixing O_3 with excessive NO_2 to promote

68 the conversion of NO_3 to N_2O_5 . The generated N_2O_5 concentrations were determined by
69 the change in O_3 following the addition of NO_2 , and different N_2O_5 levels was achieved
70 via varying O_3 concentration (Bertram et al., 2009). The produced N_2O_5 was further
71 diluted with humidified zero air to approximate Delhi RH conditions before entering
72 the CIMS. ClNO_2 was produced by passing a known amount of N_2O_5 through a wetted
73 NaCl -slurry placed in a Teflon tube, assuming a unit conversion from N_2O_5 to ClNO_2
74 (Finlayson-Pitts, 2003). All the tubings are covered by aluminum foil to avoid NO_3
75 photolysis and were flushed with dry zero air overnight before calibration to minimize
76 potential N_2O_5 hydrolysis on the tubing surfaces. No water-dependent sensitivity
77 correction was applied for N_2O_5 and ClNO_2 , as no significant sensitivity variation was
78 observed in the range of $\text{H}_2\text{O}\cdot\text{I}^-/\text{I}^-$ ratios during the field measurements in Delhi. The
79 calibration curve for N_2O_5 and ClNO_2 are shown in **Fig. S19a-b**.

80 *HCl and chloroacetic acid.* A certified 10 ppm HCl gas cylinder (Linde Specialgas)
81 was used as the standard source, which was diluted with zero air to different mixing
82 ratios before introducing to the CIMS (**Fig. S19c**). Notably, we observed a significant
83 decrease of the HCl sensitivity at high $\text{H}_2\text{O}\cdot\text{I}^-/\text{I}^-$ ratios (**Fig. S19d**), likely due to the
84 competing effects of H_2O for clustering with iodide anion and that the reaction of HCl
85 with $\text{H}_2\text{O}\cdot\text{I}^-$ is thermodynamically less favorable compared to reacting with iodide
86 anion. The slight increase in HCl sensitivity with increasing $\text{H}_2\text{O}\cdot\text{I}^-/\text{I}^-$ ratio at low RH
87 levels may be related to the stabilization of $\text{HCl}\cdot\text{I}^-$ clusters by water vapors. Similar
88 patterns have been reported for other acids in a previous study (Lee et al., 2014).
89 Gaseous chloroacetic acid was generated by placing solid chloroacetic acid in a glass
90 vial submerged in a 30 °C water bath. The emission rate, determined by gravimetric
91 weight loss analysis, was 177.3 ng/min. No significant H_2O dependence of chloroacetic
92 acid sensitivity was observed.

93 *Levoglucosan.* A certain amount (10~90 ng) of levoglucosan dissolved in acetone
94 solutions was deposited on the filter of the CIMS, and then the droplet underwent the
95 same thermal desorption cycle as in the field measurements. The sensitivity for
96 levoglucosan was derived as the integrated background-subtracted signals divided by
97 the deposited mass.

98 **1.3. Supporting measurements and data quality control**

99 Meteorological factors, i.e., T, RH, wind speed, and wind direction, were measured
100 by an automated weather station (AWS) (Davis Vantage Pro 2, Davis Instruments
101 Corporation, USA). Trace gases, including O_3 , NO and NO_2 , CO, and SO_2 were
102 measured by on-line gas analyzers (ECOTECH Serinus). For the long-term (2017~2024)
103 hourly observation data obtained from R.K. Puram station, we applied rigorous quality

104 controls following recent studies (Vohra et al., 2025;Xie et al., 2024) with a few
 105 modifications, including (1) Remove duplicates: In sequences of five or more
 106 consecutive identical hourly values, only the first value out of the sequence is retained,
 107 (2) Remove outliers: For a 24-h running window, flag any observation as an outlier if
 108 its absolute difference from the median exceeds three times the Median Absolute
 109 Deviation (MAD, median distance between each observation and the median of all
 110 observations), (3) Remove constant data: In a 24-h running window, remove constant
 111 data values with coefficient of variation (ratio of standard deviation to the mean) less
 112 than 5%, (4) Validation of NO, NO₂ measurements by comparing with the measured
 113 NO_x: consider NO and NO₂ are reported correctly in unit of $\mu\text{g}/\text{m}^3$ and assess if NO_x
 114 calculated from these is within 2% of reported NO_x + 2.5 ppb. If not, the measured NO,
 115 NO₂, and NO_x data were omitted.

116 **Text. S2 Estimation of the N₂O₅ uptake coefficient**

117 **2.1 Inapplicability of the steady-state method**

118 The steady-state approximation of the NO₂-NO₃-N₂O₅ system is a widely applied
 119 method (Brown et al., 2003) for estimating the values for the NO₃ and N₂O₅ sinks
 120 (thereby $\gamma_{N_2O_5}$) in various atmospheric environments (Brown et al., 2006; Wang et al.,
 121 2017b; Wang et al., 2017a). This method assumes that production rate of NO₃ and N₂O₅
 122 equals the sum of the loss rates during a certain period of the night (Eq. 1), and therefore
 123 k_{NO_3} and $k_{N_2O_5}$ can be determined as the slope and intercept, respectively, of the
 124 linear fitting between $\tau_{N_2O_5}^{-1}$ and $\frac{1}{K_{eq}[NO_2]}$ (Eq. 2). However, we found no
 125 significant positive even negative correlation between $\tau_{N_2O_5}^{-1}$ and $\frac{1}{K_{eq}[NO_2]}$ during
 126 the nighttime throughout the campaign (an example is shown in **Fig. S20**). This is likely
 127 attributed to the intense and variable NO_x emissions in Delhi (avg. nighttime hourly
 128 NO_x mixing ratios of 92 ± 60 ppb) which preclude the system from approaching steady-
 129 state on the time-scale of a night. As is shown in **Fig. 2a** of the main text, N₂O₅
 130 presented a strong negative dependence on NO. The high concentrations and large
 131 fluctuations of NO dominated the variation of N₂O₅, thereby decoupling the lifetime of
 132 N₂O₅ from $\frac{1}{K_{eq}[NO_2]}$.

$$133 \quad k_{NO_2+O_3}[NO_2][O_3] = k_{NO_3}[NO_3] + k_{N_2O_5}[N_2O_5] \quad (Eq. 1)$$

$$134 \quad K_{eq} = 2.7 \times 10^{-27} \times \exp(11000/T)$$

135 Substitute $[NO_3] = \frac{[N_2O_5]}{K_{eq}[NO_2]}$ to Eq. 1, we get

136
$$\tau_{N_2O_5}^{-1} = \frac{k_{NO_2+O_3}[NO_2][O_3]}{[N_2O_5]} = \frac{k_{NO_3}}{K_{eq}[NO_2]} + k_{N_2O_5} \quad (Eq. 2)$$

137 Where k_{NO_3} and $k_{N_2O_5}$ are the pseudo-first-order loss rate constants of NO_3 and N_2O_5 ,
 138 respectively, $k_{N_2O_5} = \frac{\bar{c}\gamma}{4} S_a$, $\tau_{N_2O_5}^{-1}$ is the inverse of the N_2O_5 steady-state liftime.

139 **2.2 Validation of the RH parameterization method**

140 Cl NO_2 yield indicates the branching ratio of $H_2ONO_2^+$ reacting with H_2O (R4) and
 141 chloride (R5), which is theoretically determined by the respective reaction rates shown
 142 in Eq. 3(Bertram and Thornton, 2009).

143
$$f_{ClNO_2} = \frac{k_{R5}[H_2ONO_2^+][Cl^-]}{k_{R5}[H_2ONO_2^+][Cl^-] + k_{R4}[H_2ONO_2^+][H_2O]} = \frac{1}{1 + \frac{k_{R4}}{k_{R5}} \frac{[H_2O]}{[Cl^-]}} \quad (Eq. 3)$$

144 Where $[H_2O]$ and $[Cl^-]$ are concentrations in the aqueous phase of particles derived
 145 from thermodynamic models, k_{R5} and k_{R4} are reaction rate coefficients of Reaction
 146 R5 and R4. The experimentally determined values for $\frac{k_{R5}}{k_{R4}}$ is 483 ± 175 from the work
 147 of Bertram and Thornton(Bertram and Thornton, 2009) and 836 ± 32 from Behnke et
 148 al(Behnke et al., 1997). Due to the lack of aerosol inorganic composition (e.g., NH_4^+ ,
 149 NO_3^- , and SO_4^{2-}) measurements during the 2023 campaign, we estimated the range of
 150 $[Cl^-]/[H_2O]$ ratio from January to March in 2022 Delhi when ACSM measurements are
 151 available(Ali et al., 2025) and the measured chloride level was similar to the campaign
 152 in 2023. The estimated nocturnal (18:00~06:00) $[Cl^-]/[H_2O]$ ratio ranged from 1.8×10^-5
 153 to 0.76 with an average of 0.07, which mostly fell in the region where the
 154 corresponding Cl NO_2 yield close to 1 (**Fig. S13a**). We therefore tested the validity of
 155 the RH parameterization method by simulating the average nocturnal variation of
 156 Cl NO_2 constrained with the parameterized gamma, observed N_2O_5 mixing ratios and
 157 aerosol surface area concentrations, with the Cl NO_2 yield set to 1. The results showed
 158 that the simulation largely overestimated the production of Cl NO_2 from 20:00 to 00:00
 159 (**Fig. S13b**) when the absolute chloride concentrations were relatively low (**Fig. 1d**).
 160 By comparison, when constraining Cl NO_2 yield to 0 for the chloride-deficient period
 161 (20:00 to 00:00) and 1 for the chloride-sufficient period (0:00 to 6:00), the modelled
 162 Cl NO_2 evolution well tracked the observations (**Fig. S13b**). The overall consistency
 163 between modelling and observations suggest that the measured Cl NO_2 can largely
 164 explained by the locally heterogeneous uptake of N_2O_5 on chloride-rich particles in
 165 Delhi and that the RH-parameterized $\gamma_{N_2O_5}$ is a reasonable estimate, indicating the key
 166 role of RH and thereby aerosol liquid water content in driving N_2O_5 uptake in Delhi.
 167 Nevertheless, comprehensive aerosol composition measurements or direct

168 measurements of N₂O₅ reactivity (Bertram et al., 2009; Li et al., 2025) in future studies
169 are required to enable better quantification and understanding N₂O₅ uptake processes
170 in Delhi.

171 **Text. S3 Estimation of ClNO₂ in the residual layer**

172 The nocturnal boundary layer typically comprised a surface layer and an overlying
173 residual layer (RL), where the RL was isolated from ground emissions and preserved
174 the chemical composition of the well-mixed boundary layer from the late-afternoon. To
175 estimate the maximum ClNO₂ produced in the RL, we used the ground-observed
176 average N₂O₅ mixing ratios and aerosol surface area prior to sunset (16:00~18:00),
177 assuming $\gamma_{N_2O_5}=0.1$ and $f_{ClNO_2}=1$ (Eq. 4). The calculation indicated that N₂O₅ was
178 fully consumed within 1 hour.

$$179 [ClNO_2]_{RL} = \int_{t1}^{t2} \frac{\bar{c}\gamma_{N_2O_5}}{4} S_a [N_2O_5]_{obs} f_{ClNO_2} dt \quad (\text{Eq. 4})$$

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197 **Table S1 Summary of nocturnal peak and average (shown in the brackets) N₂O₅**
 198 **and CINO₂ mixing ratios measured around the world. The unit is ppt.**

Location	Period	Type	N ₂ O ₅	CINO ₂	ref.
India Institute of Technology, Delhi	2023.2.23-3.14	urban inland	556 (16)	1340 (116)	this study
India Institute of Technology, Delhi	2019.1.11-2.5	urban inland	203 (4)	724 (48)	(Haslett et al., 2023)
Gulf of Mexico, Huston, Texas	2006.7-9	urban coastal	750	1200	(Osthoff et al., 2008)
National Oceanic and Atmospheric Administration, Boulder, Colorado	2009.2.11-2.25	urban inland	1500	440	(Thornton et al., 2010)
University of Utah, Salt Lake City, Utah	2015.12-2016.2	urban inland	1520 (76)		(Baasandorj et al., 2017)
University of Michigan, Ann Arbor, Michigan	2016.2.1-3.10	urban inland		220	(McNamara et al., 2020)
Toronto	2021.1.11-1.25	urban inland		300	(Wang et al., 2023)
Kensington	2012.7 -8	urban inland	1700	724 (84)	(Bannan et al., 2015)
Manchester	2014.10-11	urban inland		506	(Priestley et al., 2018)
Frankfurt Observatory (825 m a.s.l.)	2011.8-9	rural inland	3000	800	(Phillips et al., 2012)
China, Wangdu	2014.6-7	rural inland	500	2070	(Tham et al., 2016)
China, Wangdu	2017.12	rural inland	1000	1400	(Xia et al., 2021)
China, Wangdu	2023.2.10-3.5	rural inland		3600	(Chen et al., 2025)
China, mountain in Hong Kong (957 a.s.l.)	2013.11-12	mountain site	7700	4700	(Wang et al., 2016)
China, Heshan	2017.1.2-1.15	urban coastal	3000	8300	(Chen et al., 2023)

200 **Table S2 Campaign-averaged $\text{NO}_3\cdot$ reactivity (unit: s^{-1}) during the 2019 and 2023**
 201 **campaign.**

	$\text{NO}_3 + \text{NO}$	$\text{NO}_3 + \text{hv}$	N_2O_5 hete.	$\text{NO}_3 + \text{VOCs}$
2019.1~2	50.175	0.031	0.462	0.081
2023.2~3	15.585	0.043	0.091	0.081*

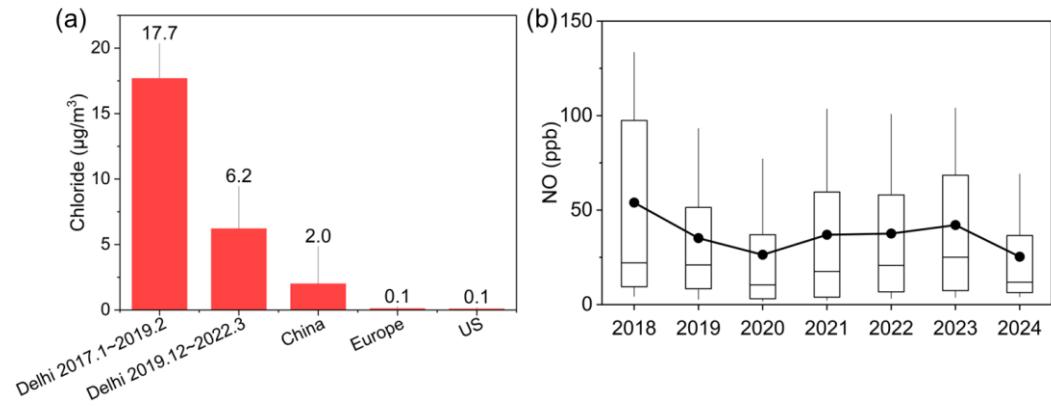
202 *assumed to be the same as those observed in 2019.

203 **Table S3 Average emission factor (g/kg fuel burned) of K, HCl, HCN, CO, and SO_2**
 204 **from biomass, biofuel, and garbage burning processes and vehicles.**

	K	HCl	HCN	SO_2	CO	HCl/CO	ref
Peat	0.004~0.0 15	-	1.00	-	38	-	(Andrea e, 2019)
Crop residues	0.48	0.18	0.42	0.8	77	2.3×10^{-3}	(Andrea e, 2019)
Rice straw	-	0.44	0.37	1.3	60	7.3×10^{-3}	(Stockw ell et al., 2014)
Biomass burning							
Wheat straw	-	0.47	0.10	0.7	39	1.2×10^{-2}	(Stockw ell et al., 2014)
Tropical forest	0.32	0.13	0.44	0.8	104	1.3×10^{-3}	(Andrea e, 2019)
Temperate forest	0.18	0.04	0.64	0.7	112	3.5×10^{-4}	(Andrea e, 2019)
Dung	0.09	0.04	1.30	0.7	89	4.3×10^{-4}	(Andrea e, 2019)
Biofuels without dung	0.13	0.08	0.39	0.5	84	8.9×10^{-4}	(Andrea e, 2019)
Biofuel burning							
Charcoal	0.75	0.11	-	0.6	207	5.3×10^{-4}	(Andrea e, 2019)
Wood	-	0.02	0.54	bld	77	2.4×10^{-4}	(Stockw ell et al., 2016)

Garbage burning	Garbage burning	0.02	2.80	0.43	0.5	66	4.2×10^{-2}	(Andrea e, 2019)
	Mixed plastic garbage	-	2.30	0.43	bld	85	2.7×10^{-2}	(Stockw ell et al., 2016)
	Two- wheeled vehicles	-	bld	0.68	bld	761	-	(Stockw ell et al., 2016)
Vehicles	Agricultur al diesel irrigation pumps	-	bld	0.12	bld	17	-	(Stockw ell et al., 2016)

205 Note: bld indicates below the limit of detection.

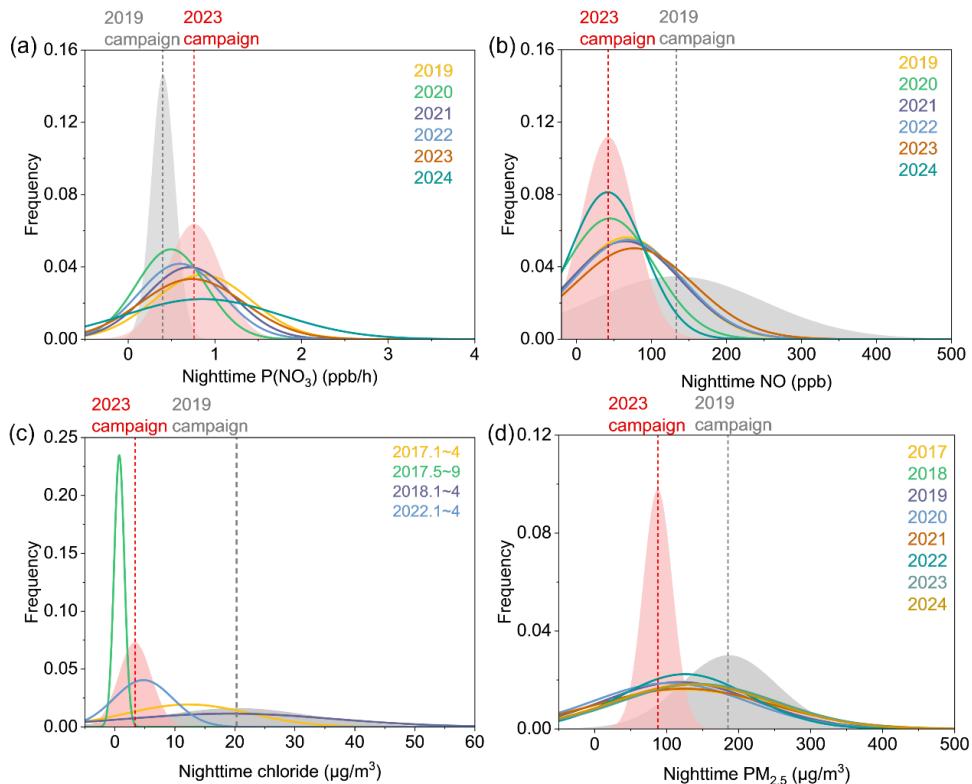

206

207 **Table S4 Summary of the bulk PM composition measured at IITD during winter**
208 **from 2017 to 2022. The unit is $\mu\text{g}/\text{m}^3$.**

Period	PM	Cl	NO_3	SO_4	NH_4	Org	ref
2017.1~2017.3	PM_1	14.2	16.1	15.8	15.7	81.0	(Gani et al., 2019)
2017.12~2018.3	PM_1	18.9	19.6	11.1	15.9	99.9	(Gani et al., 2019)
2018.1.17~1.19 2018.2.5~3.11	$\text{PM}_{2.5}$	20.4	13.3	12.0	14.3	65.3	(Lalchandani et al., 2021)
2019.1.11~2.5	PM_1	17.3	20.8	18.0	23.7	80.0	(Haslett et al., 2023)
2019.12.1~2020.1.5	$\text{PM}_{2.5}$	5.7	14.5	11.4	9.5	60.9	(Ali et al., 2023)
2020.2.1~3.20	PM_1	4.9	10.6	9.7	8.9	47.9	(Mandariya et al., 2024)
2020.12.15~12.31	$\text{PM}_{2.5}$	11.3	27.2	13.7	25.7	111.5	(Faisal et al., 2025)

2020.12.15~2021.2.23	PM _{2.5}	4.9	19.8	15.5	15.7	96.2	(Ali et al., 2023)
2021.1.1~2021.2.28	PM _{2.5}	10.1	16.1	12.1	19.0	87.0	(Faisal et al., 2025)
2022.1.12~3.31	PM _{2.5}	4.5	15.3	14.0	12.9	86.2	(Ali et al., 2025)

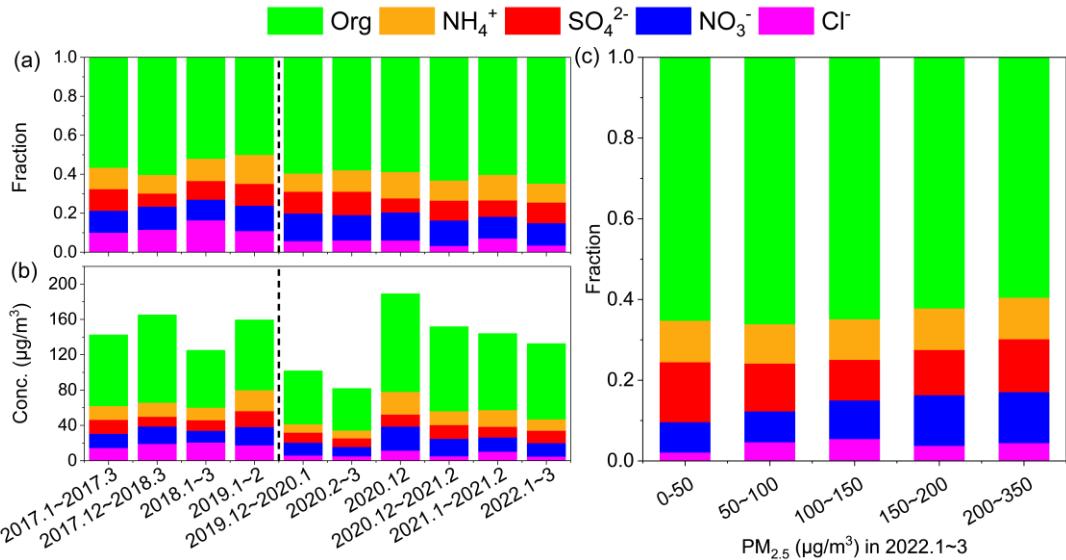
209
210


211

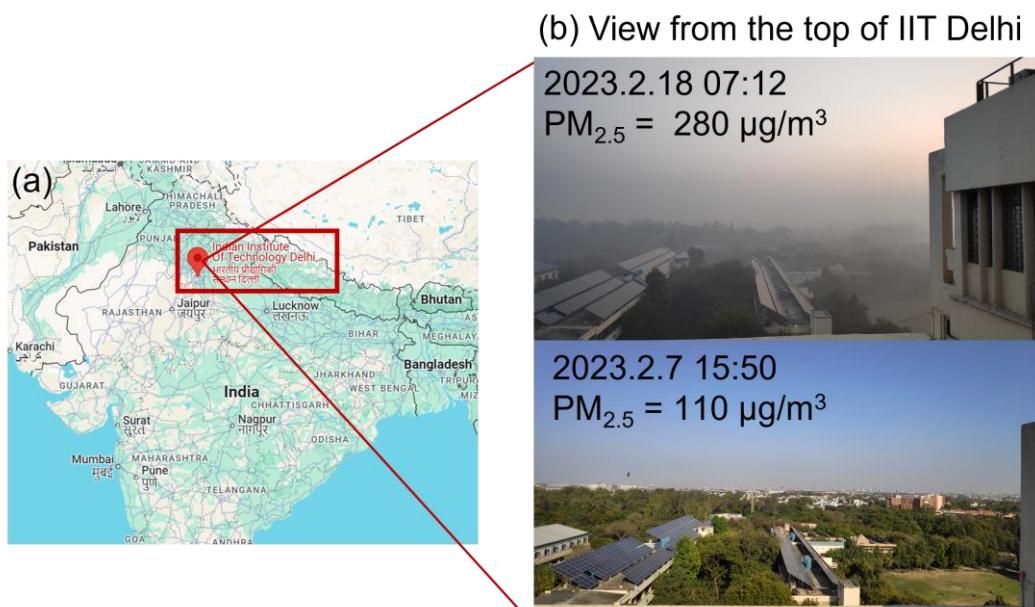
212 **Fig. S1 (a) Comparison of the observed chloride levels globally. (b) Box plots of**
213 **the annual daily averages of NO concentrations in Delhi.** The chloride
214 concentrations in Delhi (compiled from Table S4), China (Xia et al., 2021;Tham et al.,
215 2018;Xia et al., 2020), Europe (Eger et al., 2019;Lanz et al., 2010), and US (Mielke et
216 al., 2013;Sarwar et al., 2012) are campaign-average values retrieved from previous
217 studies. The whiskers in (a) represent standard deviation. The NO concentrations shown
218 in (b) were obtained from the R.K. Puram monitoring station. The boxes represent the
219 interquartile range with the whiskers extending to the 10th and 90th percentiles. The dot
220 and horizontal line within each box denote the mean and median values, respectively.

221

222

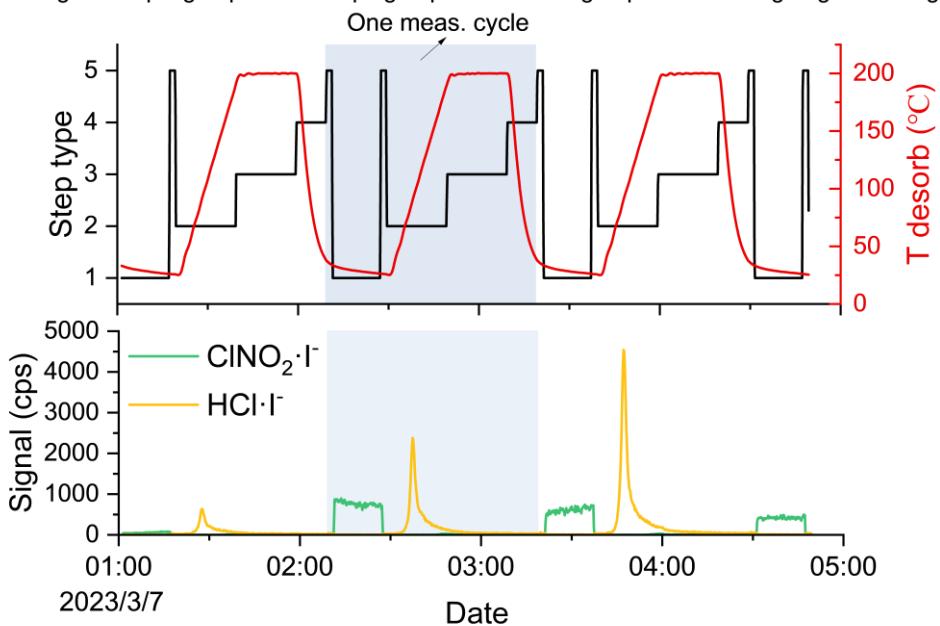

223

224

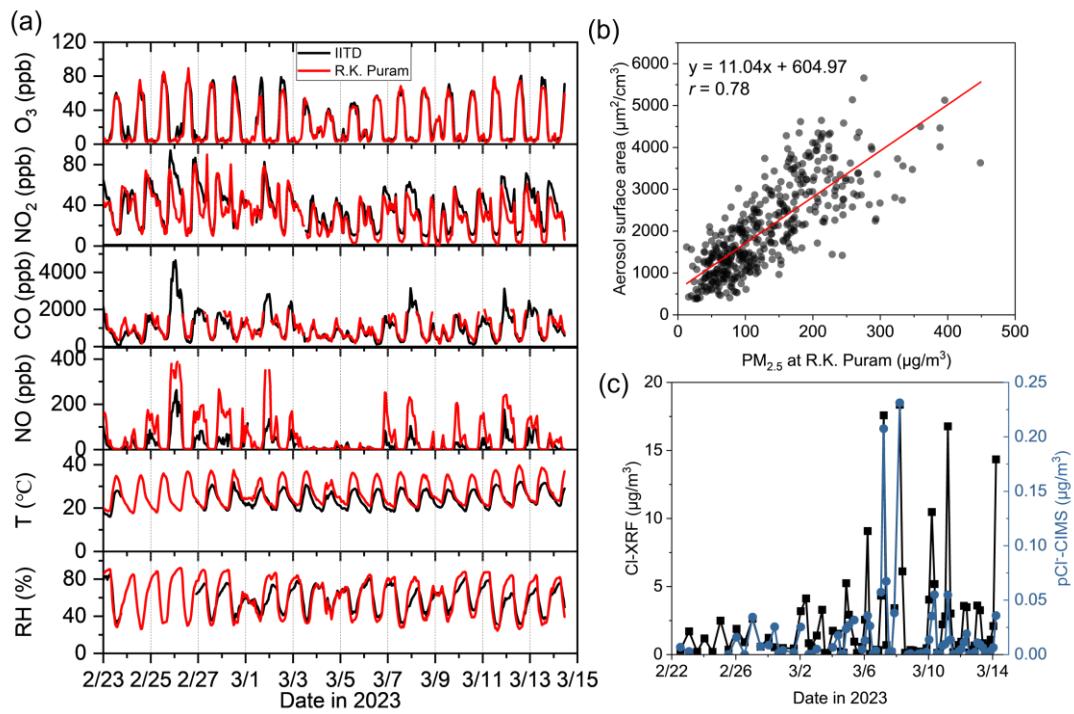

225 **Fig. S2 Representativeness of the two field-campaigns in Delhi.** Gaussian-fitted
 226 frequency distributions of nightly (a) $P(NO_3)$, (b) NO, (c) chloride, and (d) $PM_{2.5}$
 227 concentrations from 2017 to 2024. The nighttime is defined as 20:00~04:00 throughout
 228 the years. The data for $P(NO_3)$, NO, and $PM_{2.5}$, are obtained from the R.K. Puram
 229 monitoring station. Chloride concentrations were unavailable at the station and are
 230 retrieved from previous studies (Gani et al., 2019; Ali et al., 2025). The gray and red
 231 shaded area denote the respective pollutant distribution during the 2019 and 2023
 232 campaign and the dashed lines indicate the campaign averages.

233

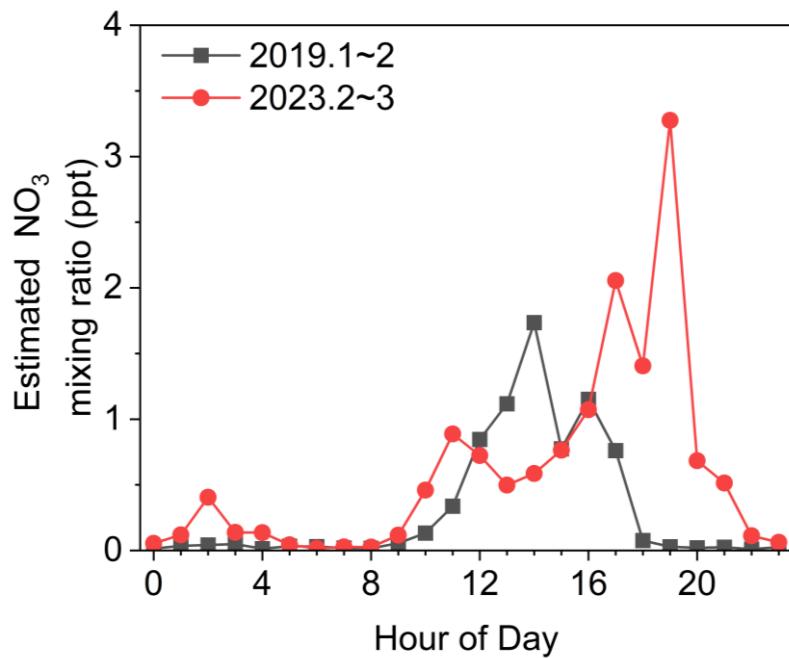
234


235 **Fig. S3 (a-b) Temporal trends in bulk PM composition measured at IITD during**
 236 **winter from 2017 to 2022. (c) Variations of the composition fractions under**
 237 **varying $\text{PM}_{2.5}$ ranges.** The original data for (a-b) was compiled from previous studies
 238 based on ACSM or AMS measurements and shown in **Table S3.** The dashed vertical
 239 line in (a-b) indicates the end of 2019. The $\text{PM}_{2.5}$ composition data in (c) was retrieved
 240 from Ali et al (Ali et al., 2025). and the corresponding $\text{PM}_{2.5}$ mass concentrations were
 241 obtained from the nearby R.K. Puram station.

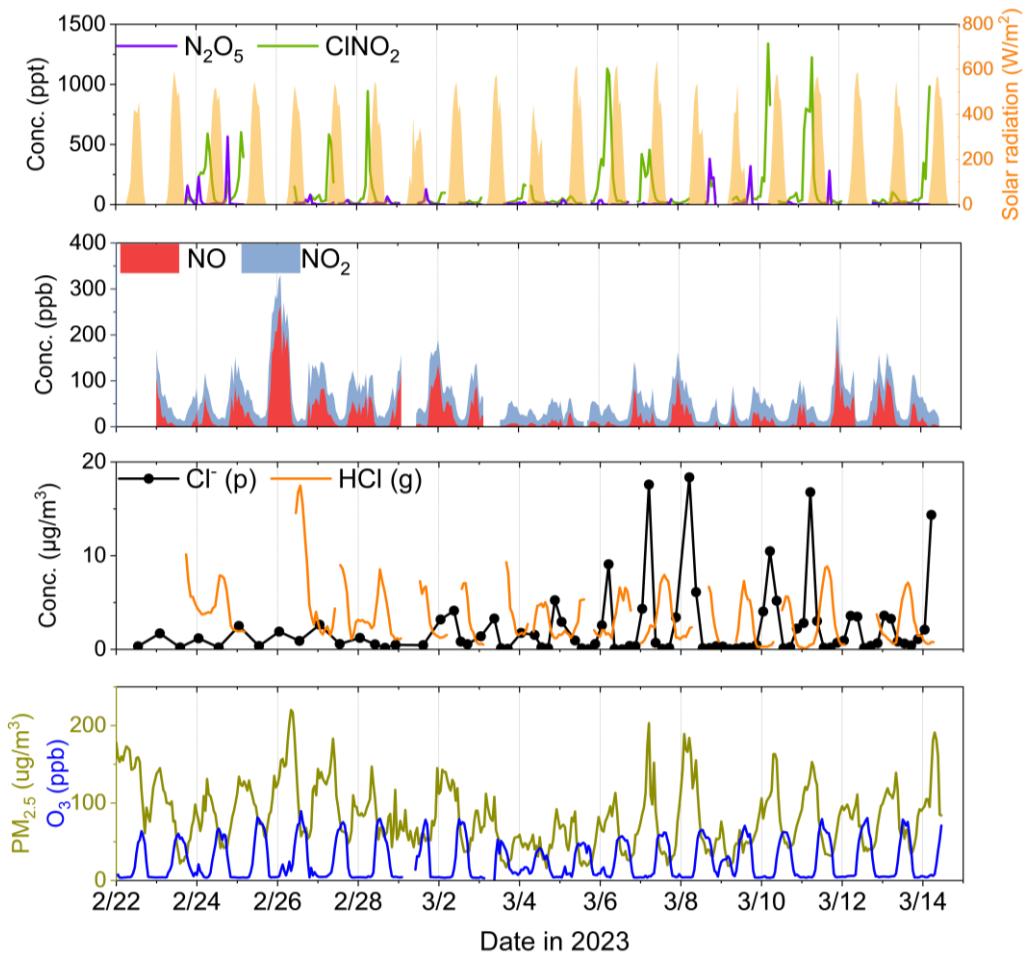
242


243 **Fig. S4 (a) The locations and (b) a zoom-in view of the sampling site.** The two photos
 244 in (b) were taken during the early morning and late afternoon hours, respectively. Map
 245 data © Google Maps 2026.

1: gas sampling 2: particle ramping 3: particle soaking 4: particle cooling 5: gas zeroing


246

247 **Fig. S5 An example of the measurement cycle.**


248

249 **Fig. S6 Intercomparison of the measured species and estimation of aerosol surface**
 250 **area. (a) Comparison of the time series of trace gases and meteorological parameters**
 251 **measured at IIT Delhi and the R.K. Puram station in 2023 campaign. (b) Correlation**
 252 **between the measured aerosol surface area at IIT Delhi(Gani et al., 2020) and $\text{PM}_{2.5}$ at**
 253 **R.K. Puram station from February to March in 2018. (c) Time series of particulate Cl**
 254 **measured by XRF and CIMS.**

255

256 **Fig. S7 estimated NO_3 - mixing ratios.** The NO_3 mixing ratio was estimated by using
 257 the observed N_2O_5 and NO_2 mixing ratio and the temperature-dependent equilibrium
 258 constant between NO_2 , NO_3 , and N_2O_5 .

259

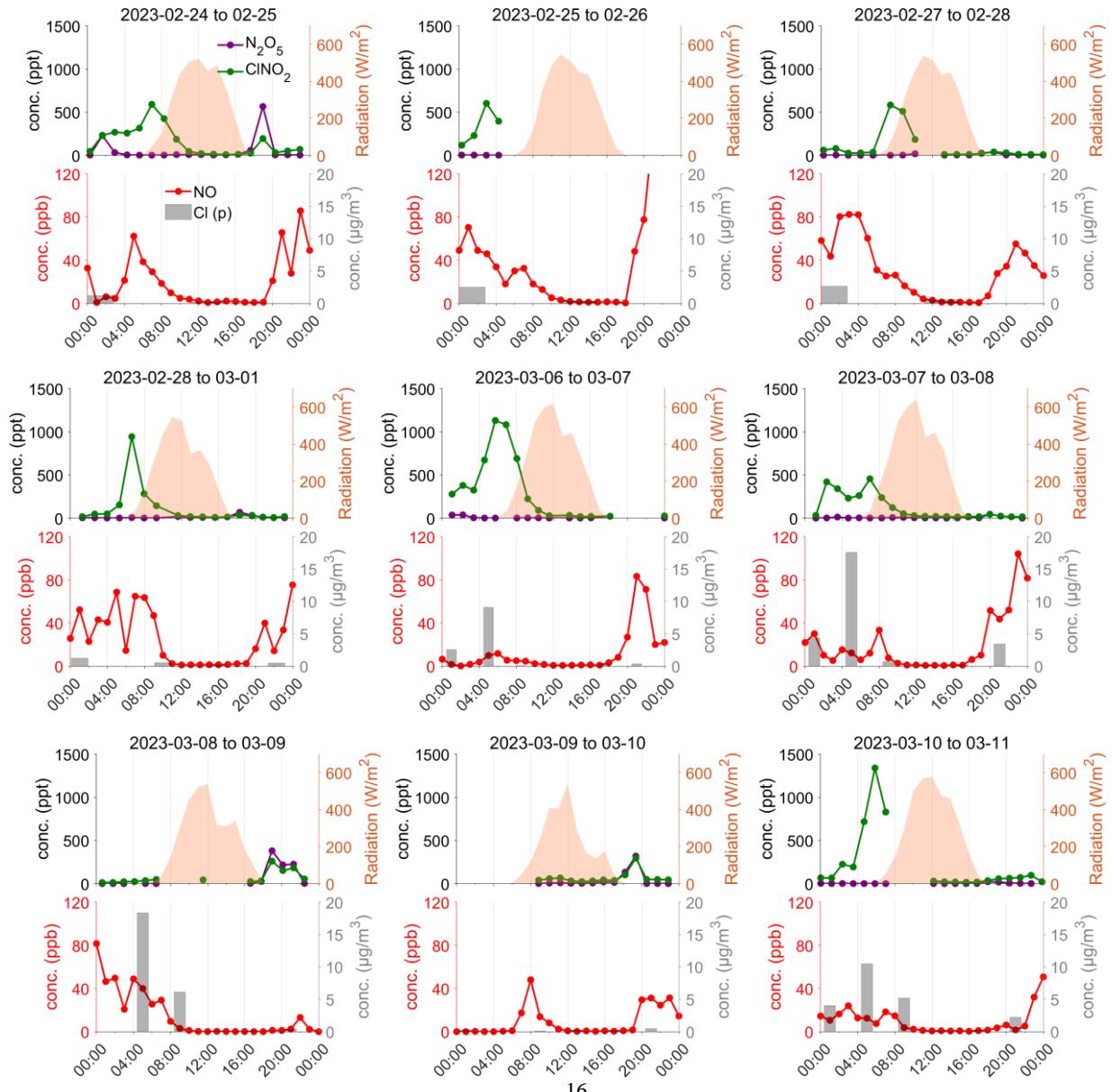
260 **Fig. S8 Overview of the field observations.** Time series of N_2O_5 , ClNO_2 , solar
 261 radiation, NO, NO_2 , gaseous HCl , $\text{PM}_{2.5}$, and O_3 , and Cl element concentrations in
 262 $\text{PM}_{2.5}$.

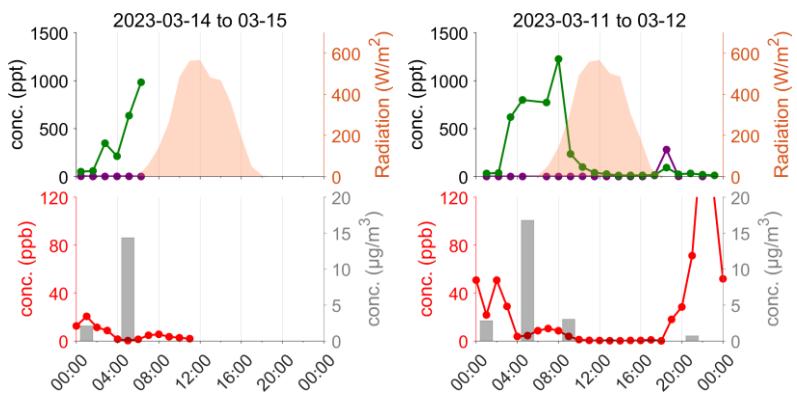
263

264

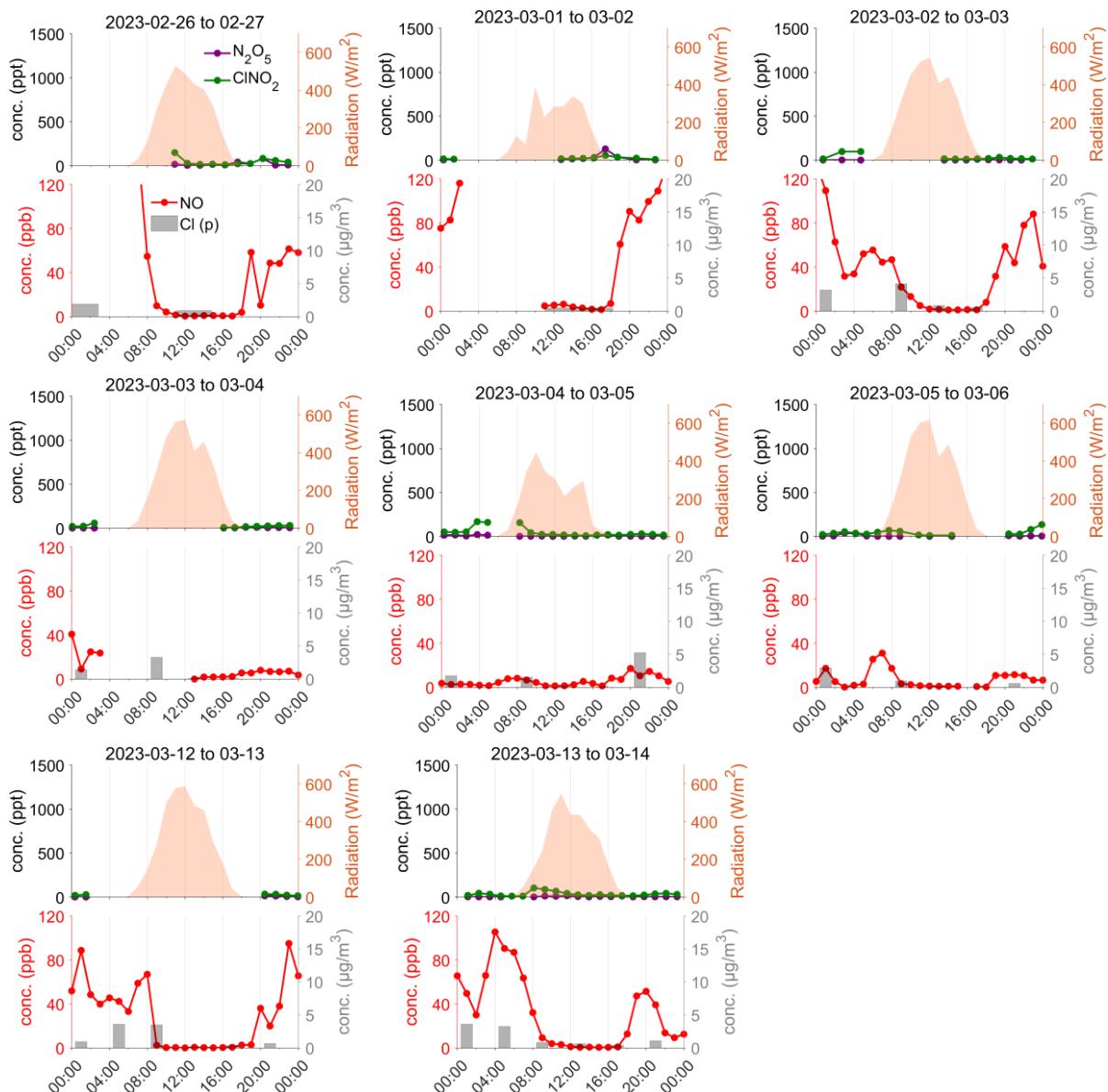
265

266

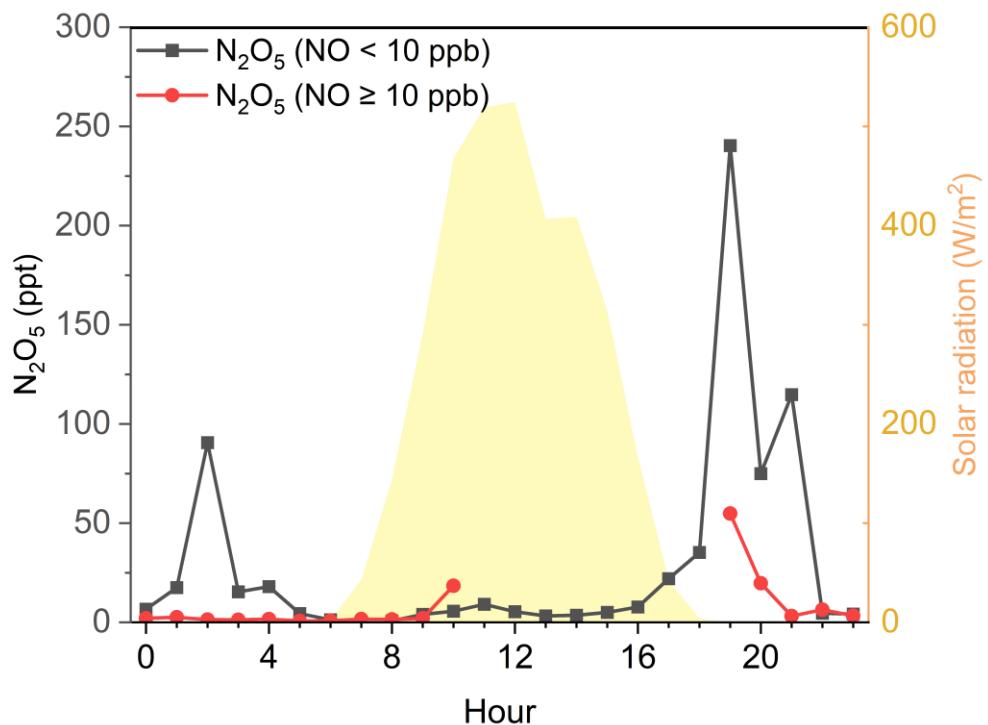

267


268

269

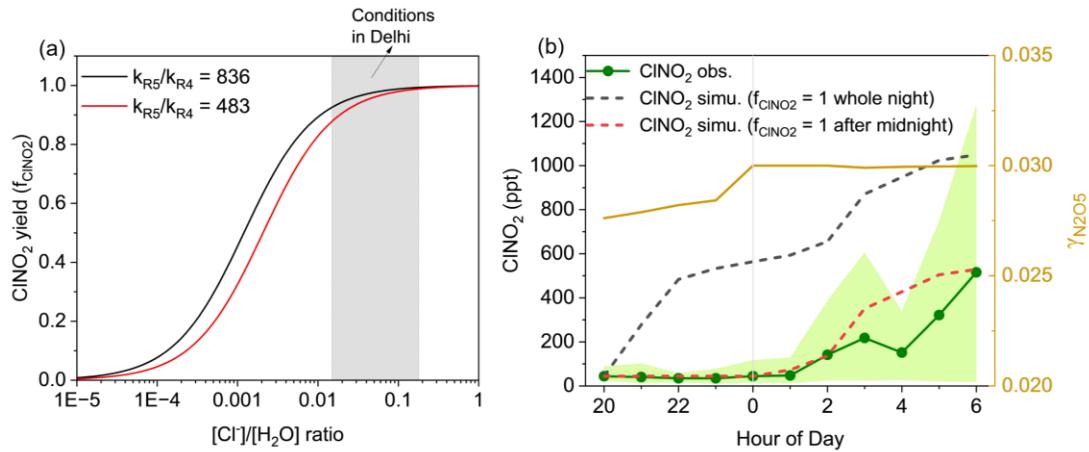

270

271 **Fig. S9 Dependence of nocturnal ClNO_2 on chloride and NO during the (a) 2023
272 and (b) 2019 campaign.** ClNO_2 and NO were stratified by chloride concentration
273 intervals. Boxes and whiskers represent 25th and 75th, 10th and 90th percentiles,
274 respectively. The dots and lines inside the box denote average and median values.

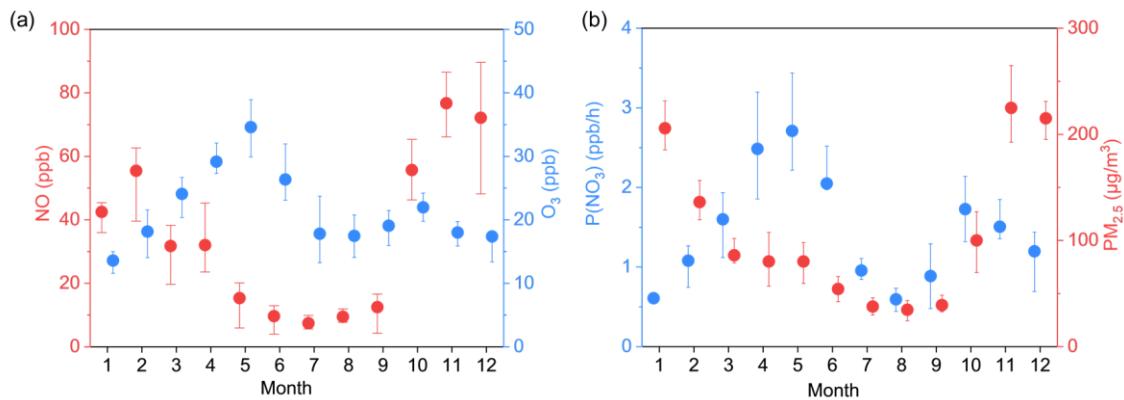


275 **Fig. S10 Day by day plots of the enhanced cases observed in 2023.** An enhanced
 276 case is identified by a pronounced nighttime increase in either N_2O_5 or ClNO_2 .
 277

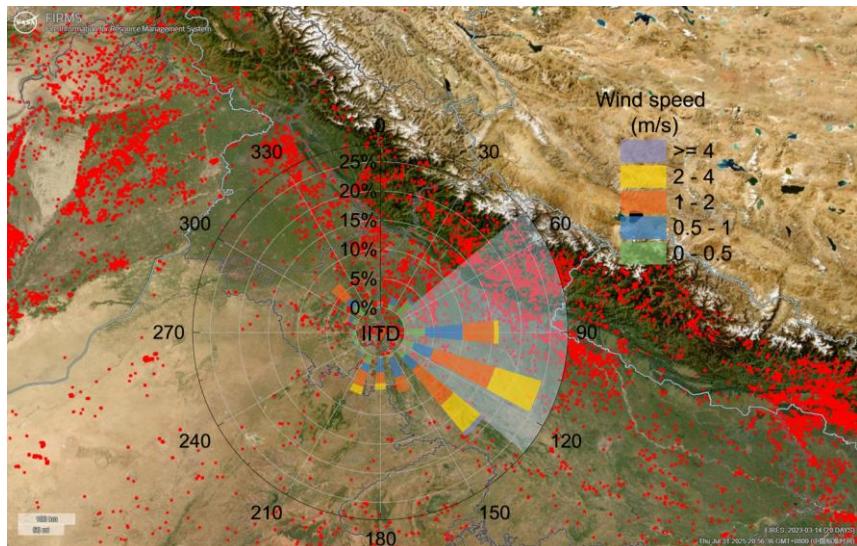
278
 279 **Fig. S11 Day by day plots of the non-enhanced cases observed in 2023.** A non-


280 enhanced case is identified when neither N_2O_5 nor ClNO_2 shows a pronounced
281 nighttime increase.

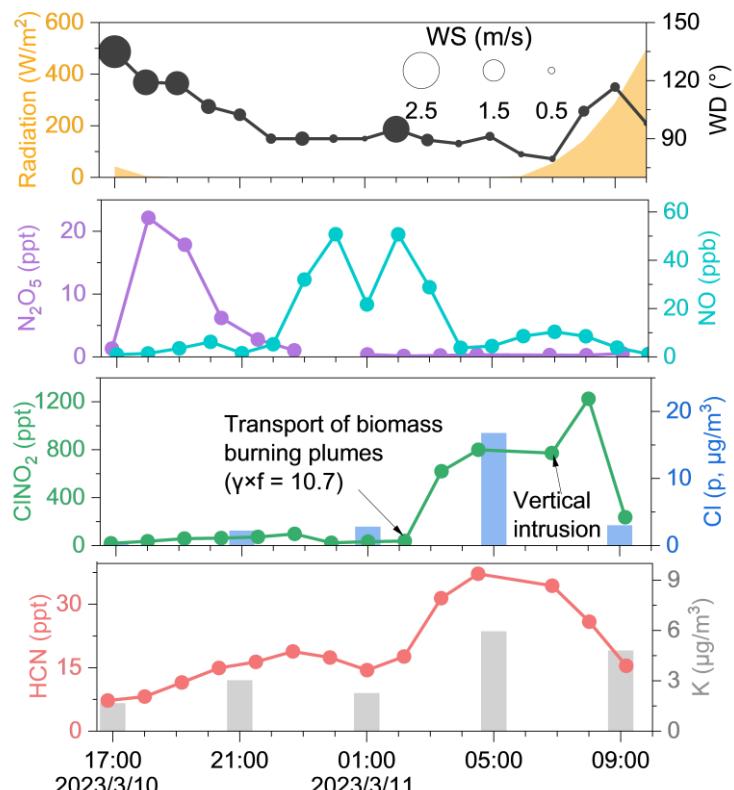
282
283 **Fig. S12 Average diurnal variations of (a) N_2O_5 under low- and high-NO conditions**
284 **(b) $\text{PM}_{2.5}$, total measured gaseous and particulate organics in 2023.** A 10 ppb of NO
285 threshold was applied to ensure statistically robust and comparable datasets. As all NO
286 concentrations were below 10 ppb between 11:00 and 18:00, no N_2O_5 data are available
287 for the high-NO condition during this period. The right axis in (b) shows the average
288 solar radiation in 2023.


289

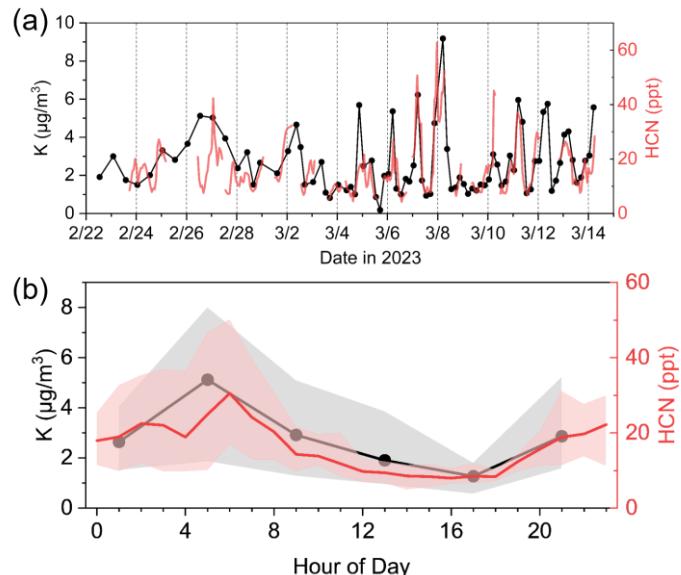
290


291

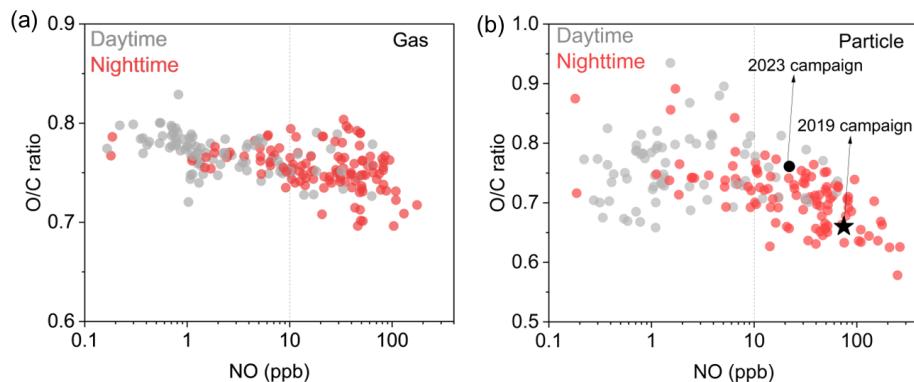
292 **Fig. S13 (a) Parameterization of ClNO₂ yield and (b) simulation of the nocturnal**
 293 **ClNO₂ variations.** The lines in (a) correspond to ClNO₂ yield calculated using Eq. 3
 294 with different reported reaction rate constant ratios. The grey shaded area indicates the
 295 10th and 90th percentiles of the calculated [Cl⁻]/[H₂O] ratios using ISOROPPIA from
 296 January to March of 2022 in Delhi(Ali et al., 2025). The green shaded area in (b)
 297 represents the 10th and 90th percentiles of the observed average nocturnal ClNO₂ mixing
 298 ratios. The dashed lines in (b) are the simulated ClNO₂ mixing ratios and the average
 299 RH parameterized N₂O₅ uptake coefficient is shown in the right axis of (b).


300

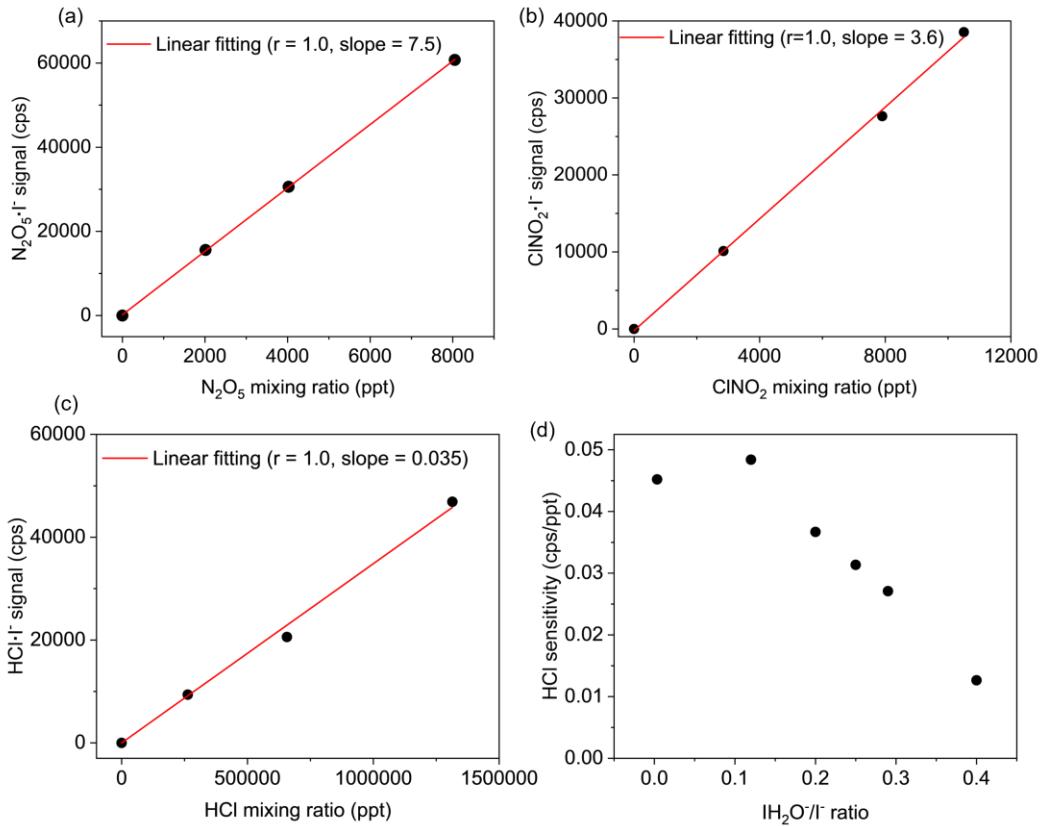
301 **Fig. S14 Monthly variations of NO, O₃, P(NO₃), and PM_{2.5} in Delhi.** Average
 302 monthly variations of (a) NO and O₃ and (b) P(NO₃) and PM_{2.5} from 2017 to 2024. The
 303 dots represent the averages and the whiskers denote the 25th to 75th percentile ranges.
 304 All data were obtained from the R.K. Puram national monitoring station.


305

306 **Fig. S15 Satellite observations of active fire hotspots and wind rose plot during the**
 307 **2023 campaign.** The map of the fire-points was downloaded from <https://earthdata.nasa.gov/firms>. The measurement site (IIT Delhi) was indicated as IITD. The
 308 light blue shaded area indicates the dominant wind-direction (50~130°) when the
 309 extremely high values of the uptake parameter ($\gamma \times f$) exceeding 0.1 were measured.
 310


311

312 **Fig. S16 A case study indicating the influence of transport on the observed ClNO₂**
 313 **levels.** An exceptionally high $\gamma \times f$ value (10.7) observed at 2023/3/11 2:10 is also noted.


314

315 **Fig. S17 (a) Time series and (b) average diurnal pattern of element K and gaseous**
 316 **HCN during the 2023 campaign.** The shaded areas indicates 10th and 90th percentiles
 317 and the lines represent the campaign-averaged values. Hourly CIMS measurements
 318 were shown for HCN. The highest K and HCN concentrations on 3/7 and 3/8 were
 319 likely driven by large-scale bonfires involving wood and leaves burning during the
 320 Holika Dahan festival (3/6 16:00~3/8).

321

322 **Fig. S18 NO dependence of the gaseous and particulate bulk O/C ratio in Delhi.**
 323 Scatter plots showing the relationship between ambient NO levels and concentration-
 324 weighted bulk O/C ratios in the (a) gas and (b) particle phases.

325


326

327

328

329

Fig. S19 Sensitivity calibration of gaseous (a) N_2O_5 , (b) ClNO_2 , and (c) HCl and (d) water dependency of HCl sensitivity. Multi-point calibrations for N_2O_5 and ClNO_2 were performed under RH conditions corresponding to an $\text{IH}_2\text{O}^-/\text{I}^-$ ratio of 0.42 ± 0.02 , while the calibration curve at an $\text{IH}_2\text{O}^-/\text{I}^-$ ratio of 0.19 was shown for HCl .

330

331

Fig. S20 An example of the steady-state analysis of the $\text{NO}_2\text{-NO}_3\text{-N}_2\text{O}_5$ system.

332 **References**

333 Ali, U., Faisal, M., Ganguly, D., Kumar, M., and Singh, V.: Analysis of aerosol liquid
334 water content and its role in visibility reduction in Delhi, *Science of The Total
335 Environment*, 867, 161484, <https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161484>, 2023.

336 Ali, U., Singh, V., Faisal, M., Kumar, M., and Gani, S.: Exploring the influence of
337 physical and chemical factors on new particle formation in a polluted megacity,
338 *Environmental Science: Atmospheres*, 5, 25-47, <https://doi.org/10.1039/D4EA00114A>,
339 2025.

340 Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an
341 updated assessment, *Atmos. Chem. Phys.*, 19, 8523-8546, <https://doi.org/10.5194/acp-19-8523-2019>, 2019.

342 Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin,
343 R., Kelly, K., Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I.
344 C., and Sohl, J.: Coupling between Chemical and Meteorological Processes under
345 Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM_{2.5} Pollution Events
346 and N₂O₅ Observations in Utah's Salt Lake Valley, *Environmental Science &
347 Technology*, 51, 5941-5950, <https://doi.org/10.1021/acs.est.6b06603>, 2017.

348 Bannan, T. J., Booth, A. M., Bacak, A., Muller, J. B. A., Leather, K. E., Le Breton, M.,
349 Jones, B., Young, D., Coe, H., Allan, J., Visser, S., Slowik, J. G., Furger, M., Prévôt, A.
350 S. H., Lee, J., Dunmore, R. E., Hopkins, J. R., Hamilton, J. F., Lewis, A. C., Whalley,
351 L. K., Sharp, T., Stone, D., Heard, D. E., Fleming, Z. L., Leigh, R., Shallcross, D. E.,
352 and Percival, C. J.: The first UK measurements of nitryl chloride using a chemical
353 ionization mass spectrometer in central London in the summer of 2012, and an
354 investigation of the role of Cl atom oxidation, *Journal of Geophysical Research: Atmospheres*, 120, 5638-5657, <https://doi.org/10.1002/2014jd022629>, 2015.

355 Behnke, W., George, C., Scheer, V., and Zetzs, C.: Production and decay of ClNO₂
356 from the reaction of gaseous N₂O₅ with NaCl solution: Bulk and aerosol experiments,
357 *Journal of Geophysical Research: Atmospheres*, 102, 3795-3804,
358 <https://doi.org/https://doi.org/10.1029/96JD03057>, 1997.

359 Bertram, T. H., and Thornton, J. A.: Toward a general parameterization of N₂O₅
360 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate
361 and chloride, *Atmos. Chem. Phys.*, 9, 8351-8363, <https://doi.org/10.5194/acp-9-8351-2009>, 2009.

362 Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the
363 direct measurement of N₂O₅ reactivity on ambient particles, *Atmos. Meas. Tech.*, 2, 231-
364 242, <https://doi.org/10.5194/amt-2-231-2009>, 2009.

365 Brown, S. S., Stark, H., and Ravishankara, A. R.: Applicability of the steady state
366 approximation to the interpretation of atmospheric observations of NO₃ and N₂O₅,
367 *Journal of Geophysical Research: Atmospheres*, 108, 108,
368 <https://doi.org/https://doi.org/10.1029/2003JD003407>, 2003.

369

370

371

372

373 Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P.,
374 Weber, R. J., Dubé, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and
375 Ravishankara, A. R.: Variability in Nocturnal Nitrogen Oxide Processing and Its Role
376 in Regional Air Quality, *Science*, 311, 67-70,
377 <https://doi.org/doi:10.1126/science.1120120>, 2006.

378 Chen, X., Xia, M., Wang, W., Yun, H., Yue, D., and Wang, T.: Fast near-surface ClNO₂
379 production and its impact on O₃ formation during a heavy pollution event in South
380 China, *Sci Total Environ*, 858, 159998, <https://doi.org/10.1016/j.scitotenv.2022.159998>,
381 2023.

382 Chen, X., Jiang, Y., Zong, Z., Wang, Y., Sun, W., Wang, Y., Xia, M., Guan, L., Liu, P.,
383 Zhang, C., Chen, J., Mu, Y., and Wang, T.: Atmospheric Reactive Halogens Reshaped
384 by the Clean Energy Policy and Agricultural Activity in a Rural Area of the North China
385 Plain, *Environmental Science & Technology*, <https://doi.org/10.1021/acs.est.4c13986>,
386 2025.

387 Eger, P. G., Friedrich, N., Schuladen, J., Shenolikar, J., Fischer, H., Tadic, I., Harder,
388 H., Martinez, M., Rohloff, R., Tauer, S., Drewnick, F., Fachinger, F., Brooks, J.,
389 Darbyshire, E., Sciare, J., Pikridas, M., Lelieveld, J., and Crowley, J. N.: Shipborne
390 measurements of ClNO₂ in the Mediterranean Sea and around the Arabian Peninsula
391 during summer, *Atmospheric Chemistry and Physics*, 19, 12121-12140,
392 <https://doi.org/10.5194/acp-19-12121-2019>, 2019.

393 Faisal, M., Ali, U., Kumar, A., Kumar, M., and Singh, V.: Unveiling PM2.5 sources:
394 Double and tracer conjugate PMF approaches for high-resolution organic, BC, and
395 inorganic PM2.5 data, *Atmospheric Environment*, 343, 121011,
396 <https://doi.org/https://doi.org/10.1016/j.atmosenv.2024.121011>, 2025.

397 Finlayson-Pitts, B. J.: The Tropospheric Chemistry of Sea Salt: A Molecular-Level
398 View of the Chemistry of NaCl and NaBr, *Chemical Reviews*, 103, 4801-4822,
399 <https://doi.org/10.1021/cr020653t>, 2003.

400 Gani, S., Bhandari, S., Seraj, S., Wang, D. S., Patel, K., Soni, P., Arub, Z., Habib, G.,
401 Hildebrandt Ruiz, L., and Apte, J. S.: Submicron aerosol composition in the world's
402 most polluted megacity: the Delhi Aerosol Supersite study, *Atmos. Chem. Phys.*, 19,
403 6843-6859, <https://doi.org/10.5194/acp-19-6843-2019>, 2019.

404 Gani, S., Bhandari, S., Patel, K., Seraj, S., Soni, P., Arub, Z., Habib, G., Hildebrandt
405 Ruiz, L., and Apte, J. S.: Particle number concentrations and size distribution in a
406 polluted megacity: the Delhi Aerosol Supersite study, *Atmos. Chem. Phys.*, 20, 8533-
407 8549, <https://doi.org/10.5194/acp-20-8533-2020>, 2020.

408 Haslett, S. L., Bell, D. M., Kumar, V., Slowik, J. G., Wang, D. S., Mishra, S., Rastogi,
409 N., Singh, A., Ganguly, D., Thornton, J., Zheng, F., Li, Y., Nie, W., Liu, Y., Ma, W., Yan,
410 C., Kulmala, M., Daellenbach, K. R., Hadden, D., Baltensperger, U., Prevot, A. S. H.,
411 Tripathi, S. N., and Mohr, C.: Nighttime NO emissions strongly suppress chlorine and
412 nitrate radical formation during the winter in Delhi, *Atmos. Chem. Phys.*, 23, 9023-9036,
413 <https://doi.org/10.5194/acp-23-9023-2023>, 2023.

414 Lalchandani, V., Kumar, V., Tobler, A., M. Thamban, N., Mishra, S., Slowik, J. G.,

415 Bhattu, D., Rai, P., Satish, R., Ganguly, D., Tiwari, S., Rastogi, N., Tiwari, S., Močnik,
416 G., Prévôt, A. S. H., and Tripathi, S. N.: Real-time characterization and source
417 apportionment of fine particulate matter in the Delhi megacity area during late winter,
418 *Science of The Total Environment*, 770, 145324,
419 <https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145324>, 2021.

420 Lanz, V. A., Prévôt, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C., DeCarlo, P. F.,
421 Gianini, M. F. D., Hueglin, C., Schneider, J., Favez, O., D'Anna, B., George, C., and
422 Baltensperger, U.: Characterization of aerosol chemical composition with aerosol mass
423 spectrometry in Central Europe: an overview, *Atmos. Chem. Phys.*, 10, 10453-10471,
424 <https://doi.org/10.5194/acp-10-10453-2010>, 2010.

425 Lee, B. H., Lopez-Hilfiker, F. D., Mohr, C., Kurten, T., Worsnop, D. R., and Thornton,
426 J. A.: An iodide-adduct high-resolution time-of-flight chemical-ionization mass
427 spectrometer: application to atmospheric inorganic and organic compounds, *Environ
428 Sci Technol*, 48, 6309-6317, <https://doi.org/10.1021/es500362a>, 2014.

429 Li, J., Zhai, T., Chen, X., Wang, H., Xie, S., Chen, S., Li, C., Gong, Y., Dong, H., and
430 Lu, K.: Direct measurement of N₂O₅ heterogeneous uptake coefficients on atmospheric
431 aerosols in southwestern China and evaluation of current parameterizations, *Atmos.
432 Chem. Phys.*, 25, 6395-6406, <https://doi.org/10.5194/acp-25-6395-2025>, 2025.

433 Mandariya, A. K., Ahlawat, A., Haneef, M., Baig, N. A., Patel, K., Apte, J., Hildebrandt
434 Ruiz, L., Wiedensohler, A., and Habib, G.: Measurement report: Hygroscopicity of size-
435 selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of
436 chloride aerosol, *Atmos. Chem. Phys.*, 24, 3627-3647, <https://doi.org/10.5194/acp-24-3627-2024>, 2024.

438 McNamara, S. M., Kolesar, K. R., Wang, S., Kirpes, R. M., May, N. W., Gunsch, M. J.,
439 Cook, R. D., Fuentes, J. D., Hornbrook, R. S., Apel, E. C., China, S., Laskin, A., and
440 Pratt, K. A.: Observation of Road Salt Aerosol Driving Inland Wintertime Atmospheric
441 Chlorine Chemistry, *ACS Cent Sci*, 6, 684-694,
442 <https://doi.org/10.1021/acscentsci.9b00994>, 2020.

443 Mielke, L. H., Stutz, J., Tsai, C., Hurlock, S. C., Roberts, J. M., Veres, P. R., Froyd, K.
444 D., Hayes, P. L., Cubison, M. J., Jimenez, J. L., Washenfelder, R. A., Young, C. J.,
445 Gilman, J. B., Gouw, J. A., Flynn, J. H., Grossberg, N., Lefer, B. L., Liu, J., Weber, R.
446 J., and Osthoff, H. D.: Heterogeneous formation of nitryl chloride and its role as a
447 nocturnal NO_x reservoir species during CalNex - LA 2010, *Journal of Geophysical
448 Research: Atmospheres*, 118, 10638-10652, <https://doi.org/10.1002/jgrd.50783>, 2013.

449 Osthoff, H. D., Roberts, J. M., Ravishankara, A. R., Williams, E. J., Lerner, B. M.,
450 Sommariva, R., Bates, T. S., Coffman, D., Quinn, P. K., Dibb, J. E., Stark, H.,
451 Burkholder, J. B., Talukdar, R. K., Meagher, J., Fehsenfeld, F. C., and Brown, S. S.:
452 High levels of nitryl chloride in the polluted subtropical marine boundary layer, *Nature
453 Geoscience*, 1, 324-328, <https://doi.org/10.1038/ngeo177>, 2008.

454 Phillips, G. J., Tang, M. J., Thieser, J., Brickwedde, B., Schuster, G., Bohn, B.,
455 Lelieveld, J., and Crowley, J. N.: Significant concentrations of nitryl chloride observed
456 in rural continental Europe associated with the influence of sea salt chloride and

457 anthropogenic emissions, *Geophysical Research Letters*, 39, n/a-n/a,
458 <https://doi.org/10.1029/2012gl051912>, 2012.

459 Priestley, M., le Breton, M., Bannan, T. J., Worrall, S. D., Bacak, A., Smedley, A. R. D.,
460 Reyes-Villegas, E., Mehra, A., Allan, J., Webb, A. R., Shallcross, D. E., Coe, H., and
461 Percival, C. J.: Observations of organic and inorganic chlorinated compounds and their
462 contribution to chlorine radical concentrations in an urban environment in northern
463 Europe during the wintertime, *Atmospheric Chemistry and Physics*, 18, 13481-13493,
464 <https://doi.org/10.5194/acp-18-13481-2018>, 2018.

465 Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the impact of
466 heterogeneous nitryl chloride production on air quality across the United States, *Atmos.*
467 *Chem. Phys.*, 12, 6455-6473, <https://doi.org/10.5194/acp-12-6455-2012>, 2012.

468 Stockwell, C. E., Yokelson, R. J., Kreidenweis, S. M., Robinson, A. L., DeMott, P. J.,
469 Sullivan, R. C., Reardon, J., Ryan, K. C., Griffith, D. W. T., and Stevens, L.: Trace gas
470 emissions from combustion of peat, crop residue, domestic biofuels, grasses, and other
471 fuels: configuration and Fourier transform infrared (FTIR) component of the fourth Fire
472 Lab at Missoula Experiment (FLAME-4), *Atmos. Chem. Phys.*, 14, 9727-9754,
473 <https://doi.org/10.5194/acp-14-9727-2014>, 2014.

474 Stockwell, C. E., Christian, T. J., Goetz, J. D., Jayarathne, T., Bhave, P. V., Praveen, P.
475 S., Adhikari, S., Maharjan, R., DeCarlo, P. F., Stone, E. A., Saikawa, E., Blake, D. R.,
476 Simpson, I. J., Yokelson, R. J., and Panday, A. K.: Nepal Ambient Monitoring and
477 Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing
478 carbon from wood and dung cooking fires, garbage and crop residue burning, brick
479 kilns, and other sources, *Atmos. Chem. Phys.*, 16, 11043-11081,
480 <https://doi.org/10.5194/acp-16-11043-2016>, 2016.

481 Tham, Y. J., Wang, Z., Li, Q., Yun, H., Wang, W., Wang, X., Xue, L., Lu, K., Ma, N.,
482 Bohn, B., Li, X., Kecorius, S., Größ, J., Shao, M., Wiedensohler, A., Zhang, Y., and
483 Wang, T.: Significant concentrations of nitryl chloride sustained in the morning:
484 investigations of the causes and impacts on ozone production in a polluted region of
485 northern China, *Atmospheric Chemistry and Physics*, 16, 14959-14977,
486 <https://doi.org/10.5194/acp-16-14959-2016>, 2016.

487 Tham, Y. J., Wang, Z., Li, Q., Wang, W., Wang, X., Lu, K., Ma, N., Yan, C., Kecorius,
488 S., Wiedensohler, A., Zhang, Y., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient
489 and production yield of CINO₂ in polluted northern China: roles of aerosol water
490 content and chemical composition, *Atmos. Chem. Phys.*, 18, 13155-13171,
491 <https://doi.org/10.5194/acp-18-13155-2018>, 2018.

492 Thornton, J. A., Kercher, J. P., Riedel, T. P., Wagner, N. L., Cozic, J., Holloway, J. S.,
493 Dube, W. P., Wolfe, G. M., Quinn, P. K., Middlebrook, A. M., Alexander, B., and Brown,
494 S. S.: A large atomic chlorine source inferred from mid-continental reactive nitrogen
495 chemistry, *Nature*, 464, 271-274, <https://doi.org/10.1038/nature08905>, 2010.

496 Vohra, K., S, M., Chakraborty, A., Shah, H., As, B., and Pakki, J.: Urgent issues
497 regarding real-time air quality monitoring data in India: Unveiling solutions and
498 implications for policy and health, *Atmospheric Environment: X*, 25, 100308,

499 <https://doi.org/https://doi.org/10.1016/j.aoea.2024.100308>, 2025.

500 Wang, C., Liggio, J., Wentzell, J. J. B., Jorga, S., Folkerson, A., and Abbatt, J. P. D.:
501 Chloramines as an important photochemical source of chlorine atoms in the urban
502 atmosphere, *Proceedings of the National Academy of Sciences*, 120, e2220889120,
503 <https://doi.org/doi:10.1073/pnas.2220889120>, 2023.

504 Wang, T., Brown, S. S., Dubé, W. P., Tham, Y. J., Zha, Q., Xue, L., Poon, S., Wang, Z.,
505 Blake, D. R., Tsui, W., and Parrish, D. D.: Observations of nitryl chloride and modeling
506 its source and effect on ozone in the planetary boundary layer of southern China,
507 *Journal of Geophysical Research: Atmospheres*, 121, 2457-2475,
508 <https://doi.org/10.1002/2015jd024566>, 2016.

509 Wang, X., Wang, H., Xue, L., Wang, T., Wang, L., Gu, R., Wang, W., Tham, Y. J., Wang,
510 Z., Yang, L., Chen, J., and Wang, W.: Observations of N₂O₅ and ClNO₂ at a polluted
511 urban surface site in North China: High N₂O₅ uptake coefficients and low ClNO₂
512 product yields, *Atmospheric Environment*, 156, 125-134,
513 <https://doi.org/10.1016/j.atmosenv.2017.02.035>, 2017a.

514 Wang, Z., Wang, W., Tham, Y. J., Li, Q., Wang, H., Wen, L., Wang, X., and Wang, T.:
515 Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and industrial
516 plumes observed in the nocturnal residual layer over the North China Plain, *Atmos.
517 Chem. Phys.*, 17, 12361-12378, <https://doi.org/10.5194/acp-17-12361-2017>, 2017b.

518 Xia, M., Peng, X., Wang, W., Yu, C., Sun, P., Li, Y., Liu, Y., Xu, Z., Wang, Z., Xu, Z.,
519 Nie, W., Ding, A., and Wang, T.: Significant production of ClNO₂ and possible source
520 of Cl₂ from N₂O₅ uptake at a suburban site in eastern China, *Atmospheric Chemistry
521 and Physics*, 20, 6147-6158, <https://doi.org/10.5194/acp-20-6147-2020>, 2020.

522 Xia, M., Peng, X., Wang, W., Yu, C., Wang, Z., Tham, Y. J., Chen, J., Chen, H., Mu, Y.,
523 Zhang, C., Liu, P., Xue, L., Wang, X., Gao, J., Li, H., and Wang, T.: Winter ClNO₂
524 formation in the region of fresh anthropogenic emissions: seasonal variability and
525 insights into daytime peaks in northern China, *Atmospheric Chemistry and Physics*, 21,
526 15985-16000, <https://doi.org/10.5194/acp-21-15985-2021>, 2021.

527 Xie, Y., Zhou, M., Hunt, K. M. R., and Mauzerall, D. L.: Recent PM_{2.5} air quality
528 improvements in India benefited from meteorological variation, *Nature Sustainability*,
529 <https://doi.org/10.1038/s41893-024-01366-y>, 2024.

530