

1

2 Synoptic drivers of the August 2024 record-breaking rainfall in the
3 Chadian Sahara: Dynamics, thermodynamics, and socio-economic
4 consequences

5

6 Claudin Wamba Tchinda¹· Frédéric Saha^{2,3}· Alain T. Tamoffo⁴

7

8

9 ¹Climate Laboratory for Environmental Modeling and Atmospheric Physics (LEMAP), Faculty
10 of Science, University of Yaoundé 1, Yaoundé, Cameroon

11 ²Faculty of Arts, Letters and Social Sciences, University of Yaoundé 1, Yaoundé, Cameroon

12 ³Community Resilience Association (RESCOM-Tchad), Moundou, Chad

13 ⁴Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Hamburg, Germany

14

15 Corresponding author: Claudin Wamba Tchinda wambatchindaclaudin@yahoo.fr

16

17 Claudin Wamba Tchinda's orcid: <https://orcid.org/0009-0007-5715-5897>

18 E-mail: wambatchindaclaudin@yahoo.fr

19

20 Frédéric Saha's ORCID: 0000-0003-0327-9417

21 fredericsaha72@gmail.com

22

23 Alain T. Tamoffo's ORCID: 0000-0001-8482-8881

24 alaintamoffotchio@gmail.com

25

26

27

28

29

30

31

32

33

34

35

36

3

37 Abstract

38 This study examines the atmospheric mechanisms behind the extreme rainfall event of
39 August 2024 in the northern Chad, and their devastating socio-economic impacts. Analysis of the
40 hydro-climatic regime over the region reveals a major structural transition marked by a statistical
41 tipping point in 2003, shifting from historical aridity to a phase of intensified rainfall that
42 culminated in the record high of August 2024. Our analysis of lower-tropospheric convergence,
43 specific humidity, vertical velocity (ω), and moist static energy (MSE) reveals a major shift from
44 the typical West African monsoon regime. In August 2024, the Intertropical Front (ITF) shifted
45 abnormally northward, reaching 20–22°N, which allows moist moisture air to penetrate deep into
46 the Saharan zone. This shift was driven by strengthened convergence at 850 hPa and a significant
47 increase in low-level humidity. Furthermore, negative ω anomalies throughout the troposphere
48 indicate a northward extension of the monsoon's upward branch. Strong positive MSE anomalies
49 over desert regions further highlight a thermodynamic enrichment of the atmospheric column.
50 Together, these signals point to a highly effective dynamic-thermodynamic coupling that fueled
51 intense convective systems. Ultimately, the synchronization between these atmospheric
52 condition and the synoptic forcing of African easterly waves generated local rainfall anomalies
53 exceeding 100%, redefining the hydrological balance of the Lake Chad basin between aquifer
54 recharge and increased risks of flash flooding. This hydro-climatic shift had immediate and
55 devastating socio-economic impacts: the resulting flooding affected nearly 20,000 people across
56 four desert provinces in Chad. In Tibesti alone, sixty lives were lost due to drowning or building
57 collapses, alongside significant losses of livestock and infrastructure.

58

59 Keywords: Chad, extreme rainfall, flooding, intertropical front, west African monsoon, impact

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

5

75 1. Introduction

76

77 Extreme precipitation episodes constitute one of the most critical manifestations of
78 contemporary climate variability, posing a growing challenge to the resilience of human societies
79 (Seneviratne et al., 2021). Their impact is particularly devastating in arid and semi-arid regions,
80 where structural water scarcity renders natural and socio-economic systems extremely vulnerable
81 to hydrometeorological anomalies (Saha et al., 2020). Under global warming, the intensification
82 of the hydrological cycle has led to a documented increase in the frequency and magnitude of
83 these events, often exceeding local adaptive capacities (Allan and Soden, 2008; Trenberth et al.,
84 2015; Ehtasham et al., 2024; Adeyeri, 2025). Specifically, surpassing critical warming thresholds
85 could increase intense precipitation in Central Africa by up to 25%, exacerbating flooding risks
86 and population exposure (Zakariahou et al., 2024). This vulnerability is especially concerning for
87 the Lake Chad Basin, where projections indicate a resurgence of rainfall extremes alongside an
88 extension of dry spells (Adeyeri et al., 2019).

89 The Sahara and its southern margins operate under a climatic regime traditionally
90 governed by tropospheric subsidence and erratic rainfall. In this environment, intense rain events
91 arise from exceptional atmospheric configurations linked to the dynamics of the Saharan Heat
92 Low (SHL) and regional moisture convergence (Selami et al., 2021). This dynamics is part of
93 a rainfall recovery observed since the end of the 20th century, driven by oceanic warming and a
94 strengthened monsoon moisture budget (Sindikubwabo et al., 2018; Biasutti, 2019). However,
95 paleoclimatic records serve as a reminder that this system is prone to non-linear and abrupt
96 responses; the history of "Lake Mega-Chad" demonstrates that transitions between aridity and
97 "African Humid Periods" can be sudden (Simon et al., 2015; Pausata et al., 2017; Pausata et al.,
98 2020).

99 Northern Chad, a confluence point between the central Sahara and the Sahel, represents a
100 highly sensitive climatic transition zone where the balance between water resources and
101 agropastoral activities is precarious (Raimond et al., 2014; Mahamat Nour et al., 2017). Rainfall
102 distribution is strictly governed by the latitudinal position of the Intertropical Front (ITF), the
103 surface expression of the Intertropical Convergence Zone (ITCZ) marking the boundary between
104 the dry harmattan and the moist monsoon (Nicholson, 2013). An anomalous northward migration
105 of the ITF allows for the injection of Atlantic moisture into the heart of the Sahara, triggering
106 deep convection (Sultan and Janicot, 2003; Parker et al., 2005). This dynamics is further
107 modulated by intra-seasonal oscillations (ISO), which influence water vapor transport and moist
108 static energy (MSE) fluxes (Siewe et al., 2025; Wamba et al., 2023) and is often exacerbated by
109 synoptic perturbations, such as African Easterly Waves (AEW) (Kiladis et al., 2006; Lafore et
110 al., 2017).

111 Beyond dynamics, thermodynamic and radiative factors are decisive. MSE offers a diagnostic
112 framework integrating temperature, humidity, and the vertical structure of the atmosphere
113 (Neelin and Held, 1987; Holloway and Neelin, 2009). High MSE values reduce convective
114 inhibition, facilitating the organization of mesoscale convective systems responsible for extreme
115 accumulations (Romps, 2015). Recent studies demonstrate that these events result from a

7

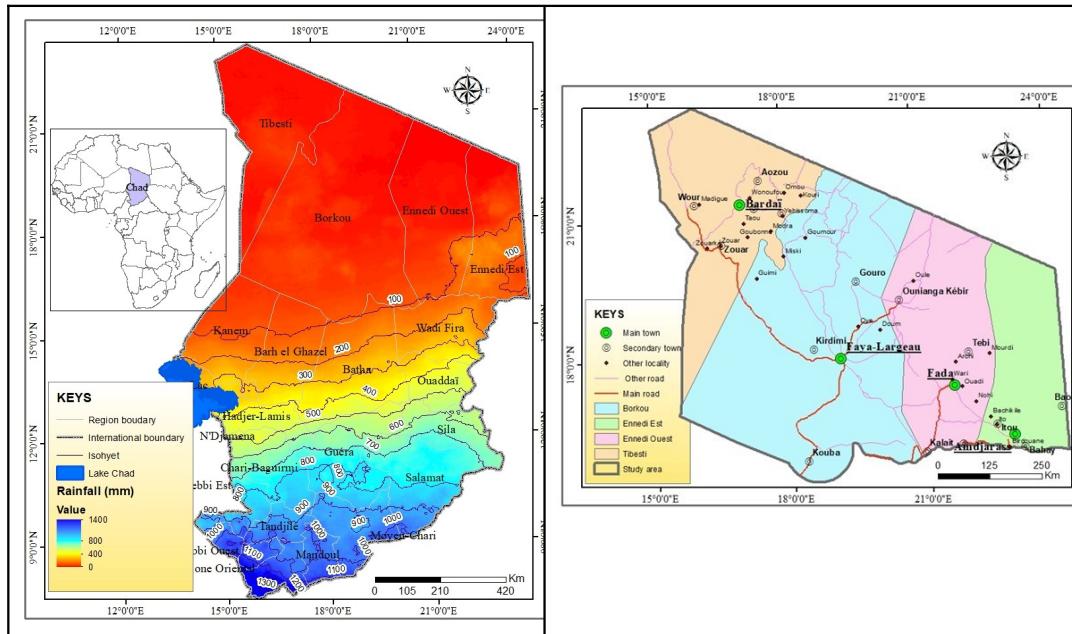
116 synergy between thermodynamic instability, radiative flux anomalies, and dynamic forcings such
117 as moist enthalpy advection and potential vorticity anomalies (Kenfack et al., 2024, 2025;
118 Tchana et al., 2025). Simultaneously, vertical velocity characterizes the strength of updraft where
119 negative omega anomalies represent the classic signature of organized convection in West Africa
120 (Taylor et al., 2017; Panthou et al., 2020).

121 At the global scale, 2024 was characterized by unprecedented warming and a surge in
122 hydrometeorological extremes (Zhang et al., 2025). In August 2024, exceptionally intense
123 rainfall hit the Saharan regions of Chad and the Lake Chad Basin, leading to catastrophic socio-
124 economic impacts, including unusual flooding, infrastructure collapse, agricultural losses, and
125 widespread population displacement (OCHA, 2024). These events revealed the acute
126 vulnerability of regions historically characterized by low rainfall variability. While the 2024
127 anomaly aligns with a broader Sahelian trend associated with an anomalously northward ITCZ
128 (Zhang et al., 2025; Nicholson, 2013), the specific atmospheric mechanisms driving rainfall in
129 the true Saharan desert remain insufficiently documented. Most existing literature focuses on the
130 Sahelian and Sudanian belts, leaving a gap in our understanding of the joint dynamic and
131 thermodynamic processes, and their socio-economic consequences, within the hyper-arid Sahara
132 and the Lake Chad Basin.

133 This study aims to fill this gap by characterizing the forcings behind the August 2024
134 extreme event through an integrated analysis of moisture convergence, remote moisture
135 advection, vertical velocity, and MSE. By linking these physical mechanisms to field
136 observations of socio-economic impacts, this work provides critical insights for climate
137 adaptation and risk management in the Sahara and Lake Chad Basin (Biasutti, 2019; Vizy and
138 Cook, 2022). The article is structured as follows: Section 2 details the study area, the data and
139 methodology; Section 3 presents the dynamic and thermodynamic results; Section 4 discusses
140 the physical mechanisms and associated socio-economic impacts; and Section 5 concludes the
141 study.

142

143


144 2. Study Area, Data and Methods
145 2.1. Study Area

146 This study focuses on northern Chad expanding 16°-24°N, 13°-25°E, an area
147 administratively comprising the regions of Tibesti, Borkou, Ennedi West, and Ennedi East
148 (Figure 1). The landscape is dominated by vast sandy plains and longitudinal dune systems. The
149 regional climate is hyper-arid, characterized by extreme thermal amplitudes and negligible
150 annual precipitation. Despite its harsh environment, the Saharan sector of Chad accounts for
151 approximately 13% of the national population (approx. 2.73 million inhabitants; INSEED-Chad).
152 Economic subsistence is primarily linked to oasis-based agriculture, specifically date palm
153 cultivation, and nomadic pastoralism centered on camel herding. The primary urban centers
154 include Faya-Largeau (pop. 100,000), Fada (pop. 50,000), Bardaï (pop 30,000) and Amdjarass

9

155 (pop. 2,000). These cities, like all inhabited localities, are established in oases to take advantage
156 of the meager water resources available given the hyper-arid environment.

157 Figure 1. Study area in Chad

158
159 2.2. Data

160 a. Rainfall datasets

161 The present study employed monthly rainfall data, from the Tropical Applications of
162 Meteorology using SATellite Data v.3.1(TAMSAT) rainfall estimate (Maidment et al., 2017)
163 and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) (Funck et al.,
164 2015), spanning from 1983 to 2024. The aim is to analyze, in the two datasets, the interannual
165 variations and trend of the August rainfall.

166 CHIRPS is a global precipitation dataset comprising data from over 30 years. The integration of
167 satellite imagery at a $0.05^\circ \times 0.05^\circ$ resolution with in-situ station data enables the generation of
168 gridded precipitation time series, facilitating the analysis of trends and the monitoring of
169 seasonal droughts. The CHIRPS dataset used is publicly accessible for download
170 (<https://www.chc.ucsb.edu/data/chirps3>). TAMSAT estimates are derived from a synergy of
171 Meteosat Thermal Infrared (TIR) imagery and ground-based rain gauge calibrations (Maidment
172 et al., 2017). The algorithm utilizes Cold Cloud Duration (CCD) to estimate rainfall, a method
173 particularly effective for convective systems in Africa (Wainwright et al., 2021). The data feature

11

174 a high spatial resolution of 0.0375° (~ 4 km), facilitating a detailed characterization of rainfall
175 distribution across the complex Saharan topography.

176

177 b. The ERA5 reanalysis

178 Atmospheric conditions were analyzed using the ERA5 reanalysis, the fifth-generation global
179 climate dataset produced by the European Centre for Medium-Range Weather Forecasts
180 (ECMWF) (Hersbach et al., 2020). ERA5 offers significant advancements over its predecessor,
181 ERA-Interim, including enhanced spatial and temporal resolutions and a more sophisticated data
182 assimilation system. These improvements allow for a more physically consistent representation
183 of the hydrological cycle and atmospheric dynamics over the African continent.

184 Previous evaluations have demonstrated that ERA5 accurately captures rainfall variability,
185 moisture transport, and large-scale circulation patterns over equatorial and Sahelian Africa
186 (Johannsen et al., 2019; Cook and Vizy, 2021). Furthermore, the dataset's internal consistency
187 between dynamic and thermodynamic variables makes it a robust tool for diagnosing extreme
188 hydroclimatic events in data-sparse regions like the Sahara (Tarek et al., 2020; Ssenyunzi et al.,
189 2020). The dataset features a $0.25^\circ \times 0.25^\circ$ horizontal resolution and a vertical discretization
190 of 137 pressure levels (surface to 0.01 hPa). For this study, we extracted monthly fields of
191 horizontal and vertical wind components, geopotential height, specific humidity, temperature,
192 and vertical velocity (ω). The analysis focuses on the month of August for the 1983-2024
193 period, coinciding with the peak of the West African Monsoon's northward migration. This
194 timeframe provides a stable climatological baseline to evaluate the mechanisms driving the
195 exceptional anomalies observed in northern Chad during 2024.

196

197 c. Data on flood losses

198 Due to Chad's fragile socioeconomic and security context, systematic disaster recording is
199 primarily facilitated by international humanitarian organizations and United Nations agencies in
200 collaboration with the Chadian government. For the 2024 flood event, impact data were obtained
201 from the United Nations Office for the Coordination of Humanitarian Affairs (OCHA), which
202 synthesizes inter-agency field reports. These data are validated by the Ministry of Territorial
203 Administration and Decentralization, alongside the Ministry of Social Action, Solidarity, and
204 Humanitarian Affairs.

205 The dataset includes standardized metrics on:

- 206 • Human casualties (mortality and injury rates);
- 207 • Displaced populations and affected households;
- 208 • Agricultural losses (hectares of devastated cropland);
- 209 • Infrastructure damage (destruction of homes and commercial facilities);
- 210 • Livestock mortality.

13

211 While national summaries typically emphasize the southern and central provinces due to their
212 higher absolute population densities (e.g., Mayo-Kebbi Est, Lac, and Tandjilé), this study
213 specifically isolates data for the northern Saharan provinces. Although the absolute number of
214 victims in these arid regions is lower compared to the south, the relative impact, defined as the
215 ratio of affected individuals to the total provincial population, is among the highest recorded in
216 2024. This relative approach is essential for assessing the exceptional nature of climate extremes
217 in sparsely populated hyper-arid zones. Data was accessed via the OCHA Chad humanitarian
218 portal (<https://www.unocha.org/chad>).

219 2.3. Methods

220 To diagnose the physical mechanisms driving the exceptional rainfall of August 2024, a suite of
221 diagnostic variables was employed. The methodological framework distinguishes between
222 thermodynamic precursors (the energy and moisture required for convection) and dynamic
223 forcing (the atmospheric mechanisms triggering vertical motion).

224 a. Climatological Anomaly Calculation

225 The primary method for quantifying the departure of the 2024 event from historical norms is the
226 calculation of climatological anomalies. For a given variable, the August 2024 anomaly (X'_{2024})
227 is defined as the difference between the observed monthly value (X_{2024}) and the long-term
228 climatological mean (X) calculated over the 1983-2023 reference period:

229

$$230 X'_{2024} = X_{2024} - \frac{1}{n} \sum_{i=1983}^{2023} X_i$$

231 where $n=41$ years. Positive anomalies signify values exceeding the historical baseline, while
232 negative anomalies denote deficits.

233 b. Detection of the Intertropical Front (ITF)

234

235 The ITF serves as a critical diagnostic for monitoring the northward penetration of the
236 West African Monsoon (WAM) into the Saharan heat low. In this study, the latitudinal position
237 of the ITF is identified using the 15°C isodrosotherm (dew point temperature $T_d=15^\circ$) at the 925
238 hPa level, following the criteria established by Nicholson (2013). This boundary marks the
239 interface between the moist south-westerly monsoon flow and the dry north-easterly Harmattan.

240

241 c. Wind Convergence Analysis

242 To identify zones of mechanical forcing, we analyze horizontal wind convergence at the 850 hPa
243 level. Low-level convergence is the primary driver for mass inflow that sustains vertical
244 updrafts. The horizontal divergence (D) is calculated as:

245

$$D = \nabla \cdot V = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$

14

15

246

247

248

249 Where u and v are the zonal and meridional wind components, respectively. A negative value of D
250 ($D < 0$) represents convergence, indicating a mass inflow that sustains vertical updrafts.

251 d. Moist Static Energy (MSE) and Moisture Flux Convergence

252 Moist Static Energy (MSE) is used to evaluate the convective potential and stability of the
253 atmosphere (Neelin and Held, 1987; Kenfack et al., 2025). It integrates sensible heat, potential
254 energy, and latent heat:

255

$$MSE = C_p T + gz + L_v q$$

256

257 Where:

258 C_p is the specific heat of dry air at constant pressure (1004 J.Kg-1.K-1); T is the absolute
259 temperature (K), g is the gravitational acceleration (9.81 m.s-1), L_v is the latent heat of
260 vaporization, z is the geopotential height (m), and q is the specific humidity (Kg.Kg-1). By
261 examining MSE anomalies, we can establish if the August 2024 extremes were driven by an
262 unusual amount of moisture (latent heat) or intense localised surface heating (sensible heat).

263

264 2.5 Vertical Velocity (ω)

265 We also explored the intensity of the atmospheric ascent triggered by the convergence by
266 analyzing the vertical velocity in pressure coordinates (ω). Significant negative values ($\omega < 0$)
267 indicate strong upward motion throughout the tropospheric column, which is the dynamic
268 signature of deep convective cells (Taylor et al., 2017; Tchana et al., 2025).

269

270 3. Results

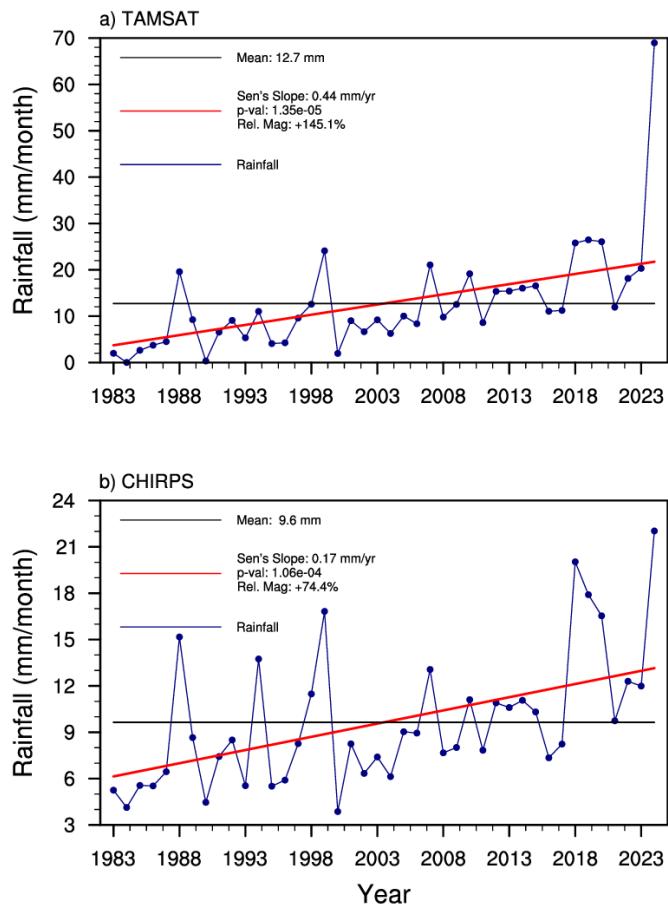
271

272 3. 1 The record-breaking August 2024 rainfall in the Chadian Sahara

273

274 The interannual variation in August rainfall in northern Chad (16°-24°N, 13°-25°E)
275 characterizes a hydro-climatic regime defined by extreme scarcity and structural volatility, where
276 monthly totals historically hover around a low climatological base of 9 to 13 mm. This dynamic
277 is intrinsically linked to the Saharo-Sahelian transition zone, where rainfall depends strictly on
278 erratic excursions northward of the Intertropical Convergence Zone (ITCZ) and the associated
279 dynamics of the African East Jet (AEJ) (Nicholson et al., 2013; 2018). Analysis of time series
280 over the period 1983-2024, comparing TAMSAT and CHIRPS satellite products (Fig. 2), reveals

17


281 remarkable consistency in capturing phases of variability, accurately identifying drought cycles
282 (1984, 1990, 2000) and wetter episodes (1999, 2018-2020). Although a systematic bias appears
283 between the two algorithms, with TAMSAT showing an average of 12.7mm compared to 9.6
284 mm for CHIRPS, the overall climate trajectory is unambiguous. There is a clear transition from a
285 phase of persistent drought in the 1980s to a robust and statistically significant upward trend, as
286 evidenced by the extremely low p-values (1.35×10^{-5} for TAMSAT and 1.06×10^{-4} for CHIRPS). A
287 major visual indicator of this change is the intersection point between the trend line and the
288 climatological average, located around the year 2003. This intersection is a true statistical turning
289 point: it marks the moment when the region's "new normal" exceeded the historical average for
290 the period 1983-2024. Before this point, the signal was weighted by the extreme aridity of
291 decades of drought; after 2003, the trend line rising above the average indicates that the rainfall
292 regime has entered a phase of structural excess compared to the past. In terms of decadal
293 variability, this shift is reflected in a clear intensification: while the period 1993-2012 showed a
294 simple return to equilibrium, the decade after 2013 (and particularly after 2017) has been
295 marked by increasingly frequent and closely spaced peaks, suggesting that the region is moving
296 away from its traditional hyper-arid state towards a more unstable and humid climate.

18

9

19

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

Figure 2: Precipitation trends and patterns in the 16°-24°N / 13°-25°E region in August (1983-2024). A comparison of TAMSAT (a) and CHIRPS (b) satellite data is shown. The red line shows the trend line; the black line shows the average over the study period.

This change is reflected in a positive Sen slope (0.44 mm/year for TAMSAT) and a massive relative magnitude of up to +145%, confirming a profound change in the water regime that goes beyond simplerandom variability and is part of the “greening” signal in the Sahel (Brandt et al., 2015). The record anomaly in August 2024, when precipitation exceeded the exceptional threshold of 70 mm/month, marked the culmination of this intensification. Such an event, exceeding the historical average by more than four to five standard deviations, reflects an unprecedented northward penetration of the WAM, illustrating how current thermodynamic forcings amplify the magnitude of extreme hydrological events in traditionally hyperarid regions of the Sahara. These developments have major hydrological implications for the entire Lake Chad basin. Although the north is located outside the active runoff production zone, the increase in rainfall after the 2003 pivot point is changing the regional water balance. Such intensification contributes to the recharge of shallow aquifers and the reactivation of fossil wadis. For Lake Chad, this means a slowdown in evaporation and increased surface inflow from its

21

314 northern margins, although this dynamic also exposes pastoral areas to unprecedented risks of flash
315 flooding.

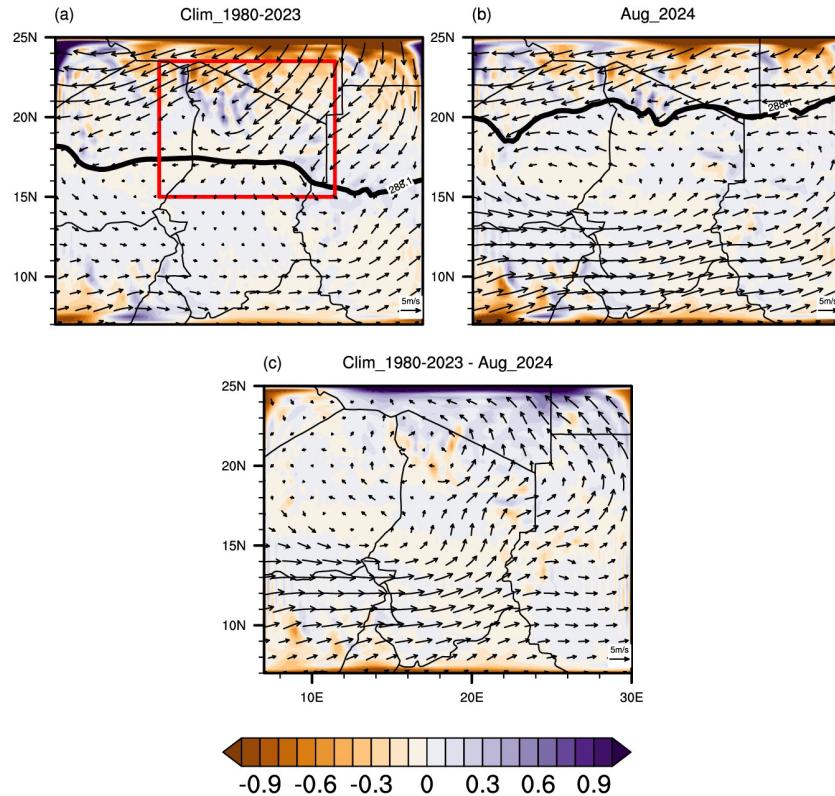
316

317 3.2. Atmospheric drivers

318 3.2.1. Climatological mean position and anomalies of the Intertropical Front (ITF) at 850 hPa

319 Figure 3 displays the spatial distribution of 850 hPa wind convergence, horizontal wind
320 vectors, and the latitudinal position of the ITF, defined by the 15°C dew point isodrosotherm.
321 Three states are compared: the 1983-2023 August climatology (Fig. 3a), the August 2024
322 observed state (Fig. 3b), and the resultant anomalies (Fig. 3c).

323 In the climatological mean (Fig. 3a), the ITF is typically positioned between 15°N and 18°N.
324 Significant low-level convergence is confined to the Sahelian belt, driven by the moisture-laden
325 southwesterly monsoon flow. Conversely, Northern Chad is dominated by a divergent regime
326 associated with the subsiding branch of the Hadley cell and dry northeasterly Harmattan winds,
327 conditions that inhibit deep convection. This configuration is consistent with the established
328 structure of the WAM, where low-level convergence is the primary trigger for convective
329 activity (Sultan & Janicot, 2003; Nicholson, 2013). In August 2024 (Fig. 3b), the atmospheric
330 circulation underwent a radical shift. The ITF exhibited an anomalous northward migration,
331 reaching 20°N-22°N. This displacement facilitated the deep penetration of southwesterly
332 monsoon surges into the Saharan interior. Consequently, the core of low-level convergence
333 shifted significantly northward, establishing the dynamic engine necessary for sustained vertical
334 motion in regions that are climatologically stable. Similar mechanisms involving anomalous
335 southwesterly moisture intrusions and strong low-level moisture flux convergence have been
336 shown to underpin extreme multi-day rainfall events in northern tropical Africa, particularly
337 when such flows reinforce a northward-displaced ITF and interact with regional-scale circulation
338 anomalies (Vondou et al., 2025).


339 The wind field analysis reveals a low-tropospheric cyclonic anomaly centered between 15°N and
340 20°N. This feature not only enhanced horizontal convergence but also increased cyclonic
341 vorticity, which is essential for the organization and longevity of Mesoscale Convective Systems
342 (MCSs) (Lavaysse et al., 2009; Flamant et al., 2018).

343 The anomaly field (Fig. 3c) confirms that the 2024 convergence patterns were statistically
344 significant at the 95% confidence level (exceeding two standard deviations). These positive
345 convergence anomalies are spatially in-phase with the northward wind anomalies, signalling a
346 total disruption of the typical Saharan divergent regime. This transition represents a temporary
347 northward expansion of the Sahelian convective climate into the hyper-arid Saharan zone (Taylor
348 et al., 2017; Biasutti, 2019). Broadly, the extreme rainfall of August 2024 resulted from a
349 synergistic interaction between the exceptional northward migration of the ITF, a reinforced low-
350 level convergence at 850 hPa and the establishment of a regional cyclonic circulation that
351 sustained the ascent of warm, moist air masses. These findings align with recent literature linking
352 increased WAM variability to higher frequencies of hydroclimatic extremes in the Sahara-Sahel
353 transition zone (Taylor et al., 2017; Biasutti, 2019; Janicot et al., 2008; Panthou et al., 2020).

354

23

355
356 Figure 3. Spatial distribution of lower-tropospheric wind convergence at 850 hPa (shaded; s^{-1}),
357 horizontal wind vectors ($m s^{-1}$), and the mean position of the Intertropical Front (ITF; solid black
358 contour), defined by the 15°C dew point isodrosotherm. The panels represent: (a) the August
359 climatology (1983-2023), (b) the observed conditions in August 2024, and (c) the 2024
360 anomalies (relative to the 1983-2023 baseline). The reference vector represents a wind speed of
361 5 $m s^{-1}$. The red box delimits the study domain (Northern Chad; 16N-24N, 13E-25E)
362

363 3.2.2. Composite anomalies of wind and humidity (850 hPa)

364 Figure 4 displays the spatial distribution of specific humidity at 850 hPa (shaded)
365 superimposed with horizontal wind vectors at the same level over Central and Saharan Africa.
366 Three configurations are analyzed: (a) the August climatology for the 1980-2023 period, (b) the
367 conditions observed in August 2024, and (c) the anomalies, defined as the difference between
368 August 2024 and the climatological mean.

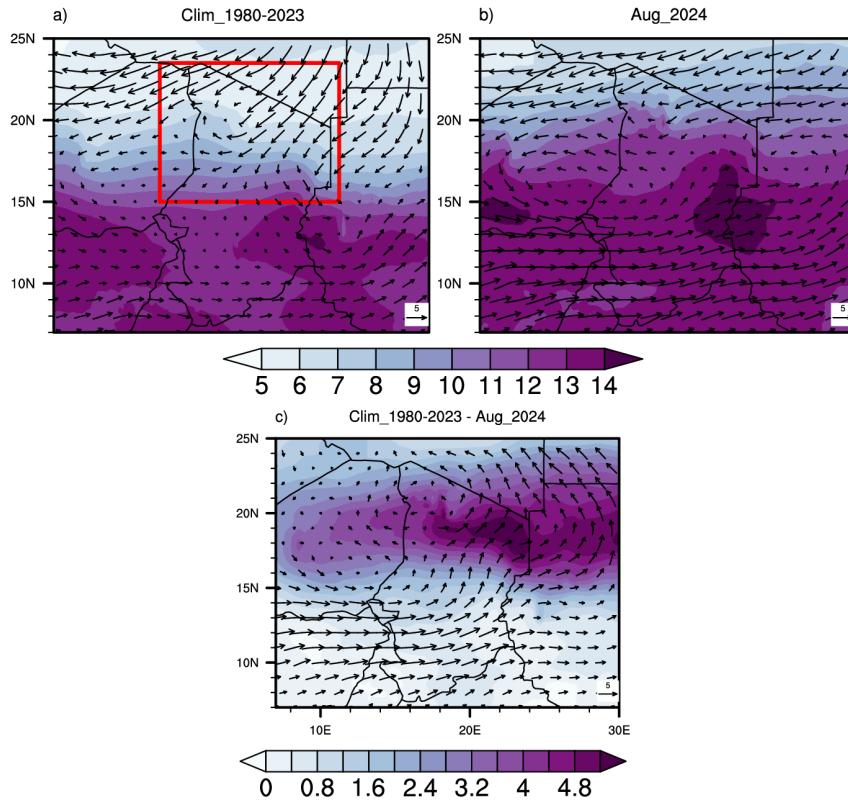
369 The climatology (Fig. 4a) reveals a pronounced meridional gradient of specific humidity, with
370 high values confined south of approximately 15°N-18°N, corresponding to the mean
371 northernmost extent of the West African Monsoon (WAM). Low-tropospheric winds are
372 dominated by a southwesterly flow south of the Intertropical Front (ITF), ensuring the advection
373 of moist air toward the Sahelian belt. In contrast, the northern Saharan regions remain under the

25

374 influence of much drier air and weak zonal circulation, conditions generally unfavorable for
375 convective activity. This configuration reflects the mean monsoon regime, where the distribution
376 of low-level moisture acts as a primary control on summer convection (Nicholson, 2013;
377 Biasutti, 2019).

378 In August 2024 (Fig. 4b), the specific humidity structure deviated markedly from the
379 climatological mean. Enhanced humidity values extended anomalously northward, locally
380 reaching 20°N-22°N, indicating an exceptional penetration of moist monsoonal air into the
381 Saharan region. This northward extension was coupled with strengthened low-level winds, which
382 facilitated efficient moisture advection from the Gulf of Guinea toward the Central Sahel and
383 Sahara. These features reflect both an intensification and a northward expansion of the low-level
384 moisture pool, serving as a critical precondition for the development of extreme precipitation
385 events over typically arid regions.

386 The anomaly field (Fig. 4c) highlights strong positive specific humidity anomalies at 850 hPa
387 over large portions of the Saharan domain, in phase with wind anomalies that favored meridional
388 moisture transport. These anomalies suggest a clear breakdown of the climatological regime,
389 which is typically characterized by a low-level moisture deficit north of the Sahel. They confirm
390 the establishment of an exceptionally favorable thermodynamic environment for deep
391 convection, consistent with the observed northward shift of the monsoon in August 2024.


392 Combined with the previously identified positive anomalies of low-level convergence at 850
393 hPa, these moisture surpluses point to a particularly effective dynamical-thermodynamical
394 coupling. Low-level convergence enhances upward motion, while abundant near-surface
395 moisture reduces convective inhibition and promotes the development of organized mesoscale
396 convective systems (MCSs), the primary contributors to extreme rainfall over West Africa.

397 Overall, Figure 4 demonstrates that the extreme rainfall observed in August 2024 over Saharan
398 regions did not result solely from favorable dynamical forcing, but also from a major anomaly in
399 low-level moisture content associated with an exceptional northward shift of the West African
400 Monsoon.

401

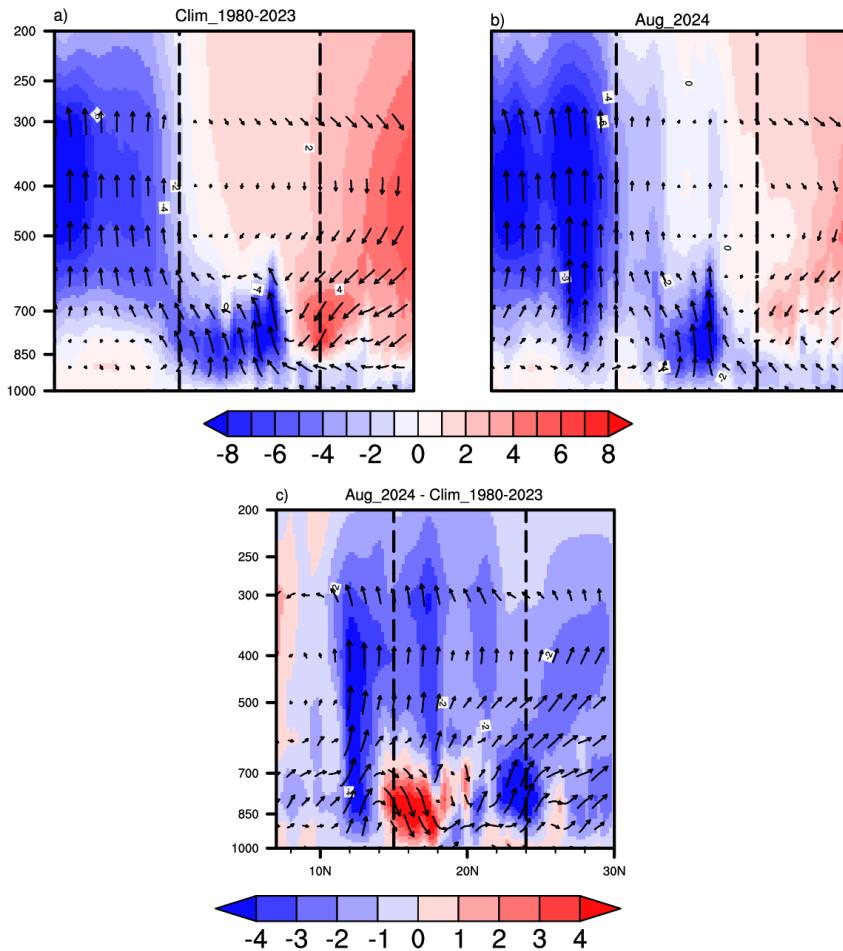
27

402

403 Figure 4: Spatial distribution of specific humidity and wind fields at 850 hPa in August. The red
404 box delimits the study domain (Northern Chad; 15N-24N, 13E-25E). Panels represent: (a) the
405 1980-2023 climatological mean; (b) August 2024 conditions; and (c) August 2024 anomalies
406 relative to the climatology, showing specific humidity ($\text{kg} \cdot \text{kg}^{-1}$, shaded) and wind vectors. Only
407 anomalies exceeding two standard deviations are shown. A 5 m/s reference wind vector is
408 displayed in the bottom right corner of each panel.

409 3.2.3. Latitude-pressure cross-sections of vertical velocity

410 Figure 5 presents the latitude-pressure cross-sections of vertical velocity (ω , $10^{-2} \times \text{Pa} \cdot \text{s}^{-1}$,
411 shaded) for August, averaged over the longitudinal band 13°E - 24°E . The overlaid vectors,
412 constructed from the meridional wind component (v) and vertical velocity (ω), illustrate the
413 structure of the meridional-vertical circulation (Hadley-type cell). Three configurations are
414 analyzed: (a) the August climatology for the 1980-2023 period, (b) the conditions observed in
415 August 2024, and (c) the anomalies, defined as the difference between August 2024 and the
416 climatological mean. Following the ERA5 convention, negative ω values (blue shading) indicate
417 upward motion, while positive values (red shading) correspond to subsidence.



29

418 In climatology (Fig. 5a), the mean circulation is characterized by a well-defined ascending
419 branch ($\omega < 0$) centered between approximately 10°N and 15°N, extending from the lower
420 troposphere (850-700 hPa) into the upper troposphere (up to 300 hPa). This deep ascent
421 corresponds to the Sahelian convective zone associated with the WAM. North of about
422 18°N-20°N, the circulation is dominated by subsiding motions, particularly above 600 hPa,
423 reflecting the influence of the dry Saharan regime and the descending branch of the Hadley cell.
424 Within the study region (16°N-24°N), ascending motions remain shallow and largely restricted
425 to the lower and mid-troposphere, where they are rapidly capped by subsidence aloft. This
426 vertical structure is consistent with the climatological southward position of the ITF and with a
427 low-level convergence regime primarily confined to the Sahel, as indicated by the 850 hPa
428 circulation. The vectors illustrate a coherent but latitudinally limited overturning cell, with low-
429 level inflow and upper-level outflow concentrated south of the Sahara.
430 In August 2024 (Fig. 5b), the meridional circulation underwent a marked reorganization. Intense
431 ascending motions extended anomalously far north, reaching approximately 18°N-22°N, and
432 exhibited substantially increased vertical depth. This change is directly linked to the exceptional
433 northward displacement of the ITF, which brought the core of low-level convergence at 850 hPa
434 into the Saharan interior. The resulting sustained inflow of warm and moisture-laden air in the
435 lower troposphere fueled persistent ascent throughout the atmospheric column, as evidenced by
436 the dominance of negative ω values from the surface up to ~200 hPa. Simultaneously, the
437 meridional overturning circulation intensified, indicating enhanced poleward transport of
438 moisture and energy toward Saharan latitudes. Such a configuration is dynamically highly
439 favorable to the development and maintenance of organized deep convection, representing a
440 clear departure from the climatological Saharan regime.
441 The anomaly field (Fig. 5c) highlights pronounced negative ω anomalies over a broad latitudinal
442 band extending from approximately 16°N to 24°N, with maximum amplitude in the lower and
443 middle troposphere (850–500 hPa). This pattern marks a clear departure from the climatological
444 Saharan regime, where subsidence typically prevails north of the Sahel, and indicates a
445 significant northward displacement of the ascending branch of the West African Monsoon. The
446 associated meridional wind anomalies reveal a strengthened overturning circulation that favors
447 sustained ascent over normally arid regions. Together, these anomalies reflect a deep
448 destabilization of the atmospheric column, providing a dynamical explanation for the persistence
449 and intensity of the exceptional rainfall observed in August 2024.
450 In general, these results indicate that in August 2024, the atmospheric circulation was
451 characterized by an unusual intensification and northward expansion of the ascending branch of
452 the WAM. This is consistent with the previously identified anomalies in lower-tropospheric
453 convergence and moisture. The presence of deep, persistent, and spatially extensive ascent
454 represents a key mechanism explaining the extreme rainfall observed over Saharan regions, as it
455 facilitates the development and organization of intense Mesoscale Convective Systems
456
457

31

458

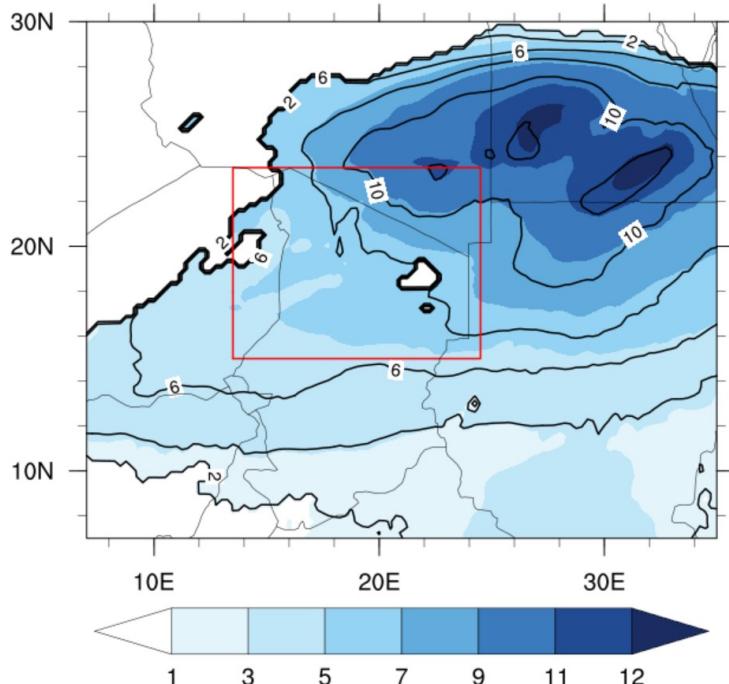
459 Figure 5: Latitude-pressure cross-sections of vertical velocity (ω , $\times 10^{-2} \text{ Pa.s}^{-1}$, shaded) and
460 zonal-vertical circulation (v , vectors) in August. Vertical velocity is averaged over the
461 longitudinal band 13°E - 25°E . The vertical dotted lines delimit the latitudinal band of our study
462 area. The overlaid vectors represent the combined zonal and vertical circulation (v and ω). Panels
463 show (a) the 1980 - 2023 climatology, (b) August 2024, and (c) anomalies calculated as the
464 difference between August 2024 and the climatological mean. Negative ω values indicate
465 upward, whereas positive values correspond to subsidence motion.

466

467 3.2.4. Spatial patterns of moist static energy anomalies

468

469 Figure 6 illustrates the spatial anomalies of moist static energy (MSE; shaded, kJ kg^{-1}) and
470 contours of equivalent potential temperature (θ_e ; red, K) over the Sahelian and Saharan regions.
471 As an integrative variable combining thermal, gravitational, and latent energy contributions,



33

472 MSE provides a robust diagnostic for linking dynamic forcing (convergence and ascent) to the
473 thermodynamic conditions conducive to deep convection (Neelin and Held, 1987; Romps, 2015).
474 Positive MSE anomalies dominate the central and eastern Sahara, with maxima reaching 10-12
475 kJ kg^{-1} north of the Sahel, centered between 18°N and 25°N . This structure reflects an
476 anomalous energetic enrichment of the lower and middle troposphere in regions typically
477 characterized by low energy content and strong convective inhibition (CIN). Conversely, regions
478 farther south exhibit weaker MSE anomalies, suggesting a northward displacement of the
479 monsoon-related energy reservoir. Horizontal convergence at 850 hPa acts as a dynamic pump,
480 driving the ascent of warm, moist air and enhancing MSE in the mid-troposphere (Raymond et
481 al., 2009). This low-level forcing propagates vertically, as evidenced by negative ω anomalies
482 (enhanced ascent) between 850 and 300 hPa. The spatial colocation of MSE maxima,
483 convergence zones, and ascent cores suggests a dynamic-thermodynamic locking mechanism,
484 wherein increased MSE reduces CIN while persistent ascent sustains the organization and
485 longevity of deep convection.
486 Contours of θ_e show a structure consistent with MSE anomalies. The tightening and deformation
487 of contours near MSE maxima indicate enhanced horizontal gradients, reflecting interactions
488 between low-level warm advection and diabatic heating from convective activity. The
489 coincidence of strong MSE anomalies and elevated θ_e suggests that the MSE increase stems
490 from the combined effects of enhanced moisture advection and local tropospheric warming. This
491 is consistent with theoretical frameworks linking the vertical structure of MSE to convective
492 stability and energy conversion efficiency in the tropics (Romps, 2015; Holloway and Neelin,
493 2009).
494 This MSE- θ_e coupling highlights a profound reorganization of the regional thermodynamic
495 environment. Persistent positive MSE anomalies are known precursors to extreme rainfall in
496 West Africa when spatially coherent with lower-tropospheric dynamic forcing (Taylor et al.,
497 2017). The observed configuration aligns with an anomalous northward extension of the
498 Sahelian convective regime, corresponding to the northward displacement of the Intertropical
499 Front (ITF).
500 In a broader context, these anomalies are consistent with mechanisms linking West African
501 monsoon intensification to increased frequency and intensity of extreme rainfall over the Sahara
502 (Biasutti, 2019; Vizy and Cook, 2022). The joint analysis of MSE, lower-tropospheric
503 convergence, and vertical velocity (ω) underscores an integrated mechanism: convergence
504 strengthens ascent, which promotes the vertical homogenization of MSE; in turn, elevated MSE
505 sustains intense, long-lasting deep convection. This positive dynamic-thermodynamic feedback
506 is a key driver behind the magnitude of the extreme rainfall observed in August 2024.

35

507

508 Figure 6. Spatial anomalies of moist static energy (MSE; shaded, kJ kg^{-1}) and equivalent
509 potential temperature (θ_e ; black contours, K). The map illustrates the coupling between regional
510 thermodynamic variability and the spatial organization of MSE over the Sahel-Saharan region.
511 The superposition of these fields highlights the northward expansion of high-energy air masses
512 and the intensification of the monsoon-related energy reservoir.

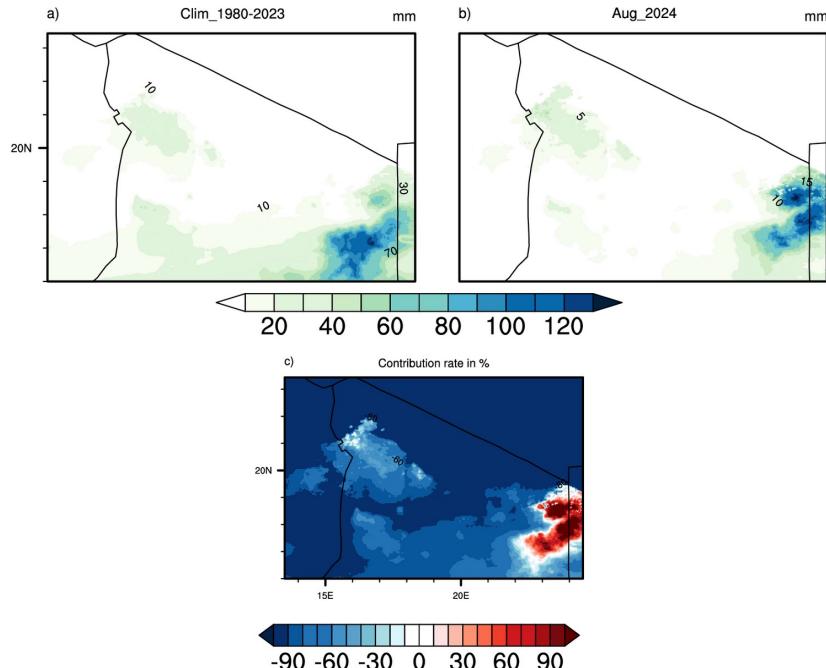
513

514 3.2.5. Contribution of August 2024 rainfall to the climatological mean

515

516 Figure 7 illustrates the exceptional nature of the August 2024 rainfall anomalies across the study
517 region. Compared to the long-term August climatology (Fig. 7a), the August 2024 period
518 exhibits a significant intensification of precipitation, particularly across the eastern sector (Fig.
519 7b). The relative contribution map (Fig. 7c) reveals localized positive anomalies exceeding 80-
520 100%, indicating that the rainfall during this single month nearly doubled the historical average
521 in several areas.

522 This spatial pattern is consistent with an anomalous northward displacement of the ITF, which
523 facilitated the deep penetration of monsoon moisture into typically arid Saharan latitudes. This
524 increased moisture availability preconditioned the lower troposphere, enhancing its sensitivity to
525 dynamical triggers. Consequently, the regions with the highest contribution rates align with areas
526 of intensified low-level convergence, likely modulated by the passage of an AEW. The synergy



37

527 between an intensified monsoon flux, a northward-shifted ITF, and AEW-driven ascent accounts

528 for the localized extremes observed in August 2024.

529

530

531 Figure 7: Spatial distribution of August rainfall and relative contribution of the 2024 event.

532 (a) August rainfall climatology for 1980-2023, (b) observed August 2024 rainfall, and (c)
533 relative contribution (%) of the August 2024 rainfall with respect to the climatology.

534 The spatial distribution of these rainfall anomalies (Fig. 7) is closely coupled with coherent
535 features in the lower- and mid-tropospheric fields. The precipitation maxima and peak
536 contribution rates are collocated with enhanced 850 hPa wind convergence, meaning a
537 strengthened monsoon inflow and moisture pooling south of the displaced ITF. This convergence
538 is supported by positive specific humidity anomalies and elevated moist static energy (MSE),
539 reflecting a deepened moist layer and reduced convective inhibition.

540 Consistent with these findings, the affected regions exhibit pronounced negative ω anomalies,
541 confirming enhanced large-scale ascent. The spatial synchronization of vertical motion, moisture
542 convergence, and MSE maxima underscores the critical role of vertical coupling in sustaining
543 organized deep convection. By allowing the meridional transport of moisture into the Sahara, the
544 ITF shift created a favorable thermodynamic environment, while synoptic-scale disturbances
545 from AEWs provided the necessary dynamical forcing to trigger and maintain the observed
546 extreme precipitation events.

547

39

548

549

550

551 3.3. Socio-economic impacts of the August 2024 extreme event

552 In 2024, Chad experienced the most catastrophic flooding in its recorded history. Nationwide,
553 the impact was profound: nearly 2 million people were affected, resulting in 576 confirmed
554 fatalities. The floods submerged approximately 432,800 hectares of agricultural land, destroyed
555 217,700 homes, and led to the loss of 72,100 head of livestock. Furthermore, infrastructure
556 damage was extensive, with 3,058 schools severely impacted. Geographically, the crisis was
557 universal, affecting all 23 provinces. Notably, the Saharan provinces, typically spared due to
558 their hyper-arid climate, suffered disproportionately heavy losses.

559 In the desert zone, initial warnings were issued in July as flooding began in the south. However,
560 torrential rains struck the northern desert region with unprecedented intensity between August
561 9th and 14th, 2024. National meteorological records documented 126.5 mm of rainfall over eight
562 days in areas where total annual precipitation rarely reaches 100 mm. These levels represent the
563 highest rainfall totals in 60 years. Visual evidence (Fig. 8) corroborates these records, showing
564 water levels reaching knee-depth at the Faya-Largeau market, where commercial and material
565 losses were severe.

566

567

568 Figure 8: Flooded streets and commercial stalls at the Faya-Largeau market (Source: Tchad Info
569 Société).

570

571 Within the specific study area, the flooding impacts are categorized by human displacement,
572 mortality, agricultural devastation, and infrastructural loss. While national reports often
573 aggregate these figures, detailed provincial data is typically only prioritized where significant
574 loss of life occurs. Consequently, the situations in Borkou (4 deaths) and Tibesti (60 deaths) are
575 better documented than in the Ennedi provinces, which reported no fatalities. However, OCHA
576 situational reporting as of October 1, 2024, allows for a more granular assessment of the affected
577 populations across all study provinces. This disparity highlights the critical need for developing
578 nations to enhance civil protection services and systematic data collection during

41

579 hydrometeorological disasters (Saha et al., 2018; Mazhin et al., 2021). Table 1 presents the
580 damage breakdown for each province covered by this study.

581
582 Table 1: Losses due to flooding in the study provinces
583

Region	Number of families affected	Number of people affected	Number of dead recorded	Number of houses/ shops destroyed	number of animal kill
Borkou	10 402	67 613	04	23 174 houses	861
Ennedi East	35 980	233 872			
Ennedi West	1 842	11 977			
Tibesti	23	150	60	Thousands shops	

584
585 Beyond the quantified losses in Table 1, the regional economy, heavily reliant on trade and
586 mining, suffered significant shocks. Thousands of shops were destroyed, and merchandise was
587 lost. In the Tibesti region, gold mining operations suffered immense equipment losses. A
588 particularly grave secondary hazard emerged as the 2024 floods unearthed thousands of
589 landmines remaining from previous conflicts, creating a long-term security and humanitarian risk
590 for the local population.

591
592 Conclusion
593

594 This study elucidates the multi-scale atmospheric mechanisms that drive the unprecedented
595 rainfall observed in August 2024 across the Saharan region. Through an integrated analysis of
596 lower-tropospheric convergence, specific humidity, ω , and moist static energy (MSE), the results
597 demonstrate that August 2024 deviated significantly from historical climatology. This anomaly
598 was primarily driven by an exceptional northward migration of the ITF, which reached latitudes
599 of 20-22°N, supported by a synchronized intensification of the WAM.

600 The northward shift was characterized by significant positive 850 hPa convergence anomalies, a
601 sharp increase in lower-tropospheric specific humidity, and the meridional extension of the
602 upward branch of the Hadley-type circulation. This is evidenced by pronounced negative ω
603 anomalies extending from the lower to the mid-troposphere. Concurrently, substantial positive
604 MSE anomalies over the Sahara indicate a profound thermodynamic enrichment of the

43

605 atmospheric column in regions typically dominated by large-scale subsidence and moisture
606 deficits.
607 The synthesis of these variables reveals a coherent dynamic-thermodynamic coupling: lower-
608 tropospheric convergence facilitated the forced ascent and advection of warm, moist air, which
609 in turn promoted the vertical homogenization of MSE. This high-energy environment provided
610 the necessary instability to sustain the development and organization of mesoscale convective
611 systems (MCSs), resulting in the exceptional rainfall totals observed. The socio-economic
612 consequences of this event were devastating, ranging from substantial loss of life to the large-
613 scale destruction of private property and public infrastructure. The scale of this disaster
614 underscores the extreme vulnerability of hyper-arid regions to hydrological hazards.
615 Furthermore, the observed intensification of the hydrological cycle suggests that such events
616 may increase in frequency; consequently, there is an urgent need for regional authorities to
617 transition from reactive disaster management to proactive climate adaptation strategies.
618 These findings align with recent literature linking WAM variability to intensifying rainfall
619 extremes in West Africa. By emphasizing the synergy between dynamic forcing and
620 thermodynamic preconditioning, this study provides critical insights for improving the
621 representation of Saharan convective extremes in climate models and assessing their future
622 evolution within the context of global climate change.
623

624 CODE AVAILABILITY

625 Figures shown in this study are plotted using the NCAR Command Language (NCL;
626 <https://doi.org/10.5065/D6WD3XH5>, NCAR Command Language, 2017) and QGIS. Codes can
627 be obtained from the corresponding author.

628

629 DATA AVAILABILITY STATEMENT

630 The ERA5 data were obtained from the Copernicus Climate Change Service (C3S) Climate Data
631 Store (<https://cds.climate.copernicus.eu>). Climate Hazards Group InfraRed Precipitation with
632 Station data (CHIRPS) is available through the link <https://www.chc.ucsb.edu/data/chirps3>
633 The TAMSAT rainfall estimates and derived products are based on Meteosat thermal infra-red
634 (TIR) imagery provided by EUMETSAT (<https://data.tamsat.org.uk/data-download/rainfall/>)
635

636 AUTHOR CONTRIBUTIONS

637 CWT: conceptualization; data analysis; formal analysis; investigation; methodology; writing
638 original draft; writing ; review and editing. FS: supervision; conceptualization; data analysis ;
639 investigation; validation ; writing original draft ; review and editing. ATT: conceptualization;
640 investigation; methodology; project administration; resources; supervision; validation; writing ;
641 review and editing.

642

643 COMPETING INTERESTS

644 The authors declared that they have no conflict of interests.

645

45

646 ACKNOWLEDGEMENTS

647 The authors thank all the observational and reanalysis data providers used in this study and the
648 research of the International Joint Laboratory “Dynamics of Terrestrial Ecosystems in Central
649 Africa: A Context of Global Changes” (IJL DYCOCA/LMI DYCOFAC).

650 The authors acknowledge the use of Gemini AI (Google) for linguistic refinement and stylistic
651 editing of the manuscript

652 References

653 Adeyeri, O. E. (2025). Hydrology and climate change in Africa: Contemporary challenges, and
654 future resilience pathways. *Water*, 17(15), 2247. <https://doi.org/10.3390/w17152247>

655 Adeyeri, O. E., Lawin, A. E., Laux, P., Ishola, K. A., & Ige, S. O. (2019). Analysis of climate
656 extreme indices over the Komadugu-Yobe basin, Lake Chad region: Past and future
657 occurrences. *Weather and Climate Extremes*, 23, 100194.
658 <https://doi.org/10.1016/j.wace.2019.100194>

659 Armitage, S. J., Bristow, C. S., & Drake, N. A. (2015). West African monsoon dynamics inferred
660 from abrupt fluctuations of Lake Mega-Chad. *Proceedings of the National Academy of
661 Sciences*, 112(28), 8543–8548. <https://doi.org/10.1073/pnas.1417655112>

662 Biasutti, M. (2019a). Rainfall trends in the African Sahel: Characteristics, processes, and causes.
663 *WIREs Climate Change*, 10(4). <https://doi.org/10.1002/wcc.591>

664 Biasutti, M. (2019b). Rainfall trends in the African Sahel: Characteristics, processes, and causes.
665 *WIREs Climate Change*, 10(4). <https://doi.org/10.1002/wcc.591>

666 Brandt, M., Mbow, C., Diouf, A. A., Verger, A., Samimi, C., & Fensholt, R. (2015).
667 Ground- and satellite-based evidence of the biophysical mechanisms behind the greening
668 Sahel. *Global Change Biology*, 21(4), 1610–1620. <https://doi.org/10.1111/gcb.12807>

669 Cook, K. H., & Vizy, E. K. (2021). *Hydrodynamics of regional and seasonal variations in
670 Congo Basin precipitation*. Springer Science and Business Media LLC.
671 <https://doi.org/10.21203/rs.3.rs-879134/v1>

672 Ehtasham, L., Sherani, S. H., & Nawaz, F. (2024). Acceleration of the hydrological cycle and its
673 impact on water availability over land: An adverse effect of climate change. *Meteorology
674 Hydrology and Water Management*. <https://doi.org/10.26491/mhwm/188920>

675 Flamant, C., Knippertz, P., Fink, A. H., Akpo, A., Brooks, B., Chiu, C. J., Coe, H., Danuor, S.,
676 Evans, M., Jegede, O., Kalthoff, N., Konaré, A., Liousse, C., Lohou, F., Mari, C.,
677 Schlager, H., Schwarzenboeck, A., Adler, B., Amekudzi, L., ... Yoboué, V. (2018). The
678 dynamics–aerosol–chemistry–cloud interactions in west africa field campaign: Overview
679 and research highlights. *Bulletin of the American Meteorological Society*, 99(1), 83–104.
680 <https://doi.org/10.1175/bams-d-16-0256.1>

681 Gaetani, M., Janicot, S., Vrac, M., Famien, A. M., & Sultan, B. (2020). Robust assessment of the

47

682 time of emergence of precipitation change in West Africa. *Scientific Reports*, 10(1).
683 <https://doi.org/10.1038/s41598-020-63782-2>

684 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
685 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellán, X.,
686 Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,
687 P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
688 A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S.,
689 Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F.,
690 Villaume, S., and Thépaut, J.: The ERA5 global reanalysis, *Q. J. Roy. Meteor. Soc.*, 146,
691 1999–2049, <https://doi.org/10.1002/qj.3803> , 2020.

692 Holloway, C. E., & Neelin, J. D. (2009). Moisture vertical structure, column water vapor, and
693 tropical deep convection. *Journal of the Atmospheric Sciences*, 66(6), 1665–1683.
694 <https://doi.org/10.1175/2008jas2806.1>

695 Janicot, S., Thorncroft, C. D., Ali, A., Asencio, N., Berry, G., Bock, O., Bourles, B., Caniaux,
696 G., Chauvin, F., Deme, A., Kergoat, L., Lafore, J.-P., Lavaysse, C., Lebel, T.,
697 Marticorena, B., Mounier, F., Nedelec, P., Redelsperger, J.-L., Ravegnani, F., ...
698 Ulanovsky, A. (2008). Large-scale overview of the summer monsoon over West Africa
699 during the AMMA field experiment in 2006. *Annales Geophysicae*, 26(9), 2569–2595.
700 <https://doi.org/10.5194/angeo-26-2569-2008>

701 Johannsen, F., Ermida, S., Martins, J., Trigo, I. F., Nogueira, M., & Dutra, E. (2019). *Cold bias
702 of ERA5 summertime daily maximum land surface temperature over iberian peninsula.*
703 MDPI AG. <https://doi.org/10.20944/preprints201909.0268.v1>

704 Kenfack, K., Djotang Tchotchou, L. A., Marra, F., Bellomo, K., Tamoffo, A. T., Tchana, B. C.,
705 Donfack, F. C., Fotso-Nguemo, T. C., Tanessong, R. S., Djomou, Z. Y., & Vondou, D. A.
706 (2025). Radiative anomalies associated with extreme precipitation of November 2023 in
707 equatorial Central Africa. *Atmospheric Research*, 321, 108090.
708 <https://doi.org/10.1016/j.atmosres.2025.108090>

709 Kenfack, K., Marra, F., Yepdo Djomou, Z., Angennes Djotang Tchotchou, L., Tchio Tamoffo,
710 A., & Appolinaire Vondou, D. (2025). *Dynamic and thermodynamic contribution to the
711 October 2019 exceptional rainfall in West Central Africa*. Copernicus GmbH.
712 <https://doi.org/10.5194/egusphere-egu25-347>

713 Lafore, J. P., Biasutti, M., Knippertz, P., & Taylor, C. (2017). The west african monsoon. In
714 *World Scientific Series on Asia-Pacific Weather and Climate* (pp. 35–49). World
715 Scientific. https://doi.org/10.1142/9789813200913_0004

716 Lavaysse, C., Flamant, C., Janicot, S., Parker, D. J., Lafore, J.-P., Sultan, B., & Pelon, J. (2009).
717 Seasonal evolution of the West African heat low: A climatological perspective. *Climate*

49

718 *Dynamics*, 33(2–3), 313–330. <https://doi.org/10.1007/s00382-009-0553-4>

719 Maidment, R. I., Grimes, D., Allan, R. P., Tarnavsky, E., Stringer, M., Hewison, T., Roebeling,
720 R., & Black, E. (2014). The 30 year TAMSAT African Rainfall Climatology And Time
721 series (TARCAT) data set. *Journal of Geophysical Research: Atmospheres*, 119(18).
722 <https://doi.org/10.1002/2014jd021927>

723 Maidment, R. I., Grimes, D., Black, E., Tarnavsky, E., Young, M., Greatrex, H., Allan, R. P.,
724 Stein, T., Nkonde, E., Senkunda, S., & Alcántara, E. M. U. (2017). A new, long-term
725 daily satellite-based rainfall dataset for operational monitoring in Africa. *Scientific Data*,
726 4(1). <https://doi.org/10.1038/sdata.2017.63>

727 Mazhin, S. A., Farrokhi, M., Noroozi, M., Roudini, J., Hosseini, S. A., Motlagh, M. E.,
728 Kolivand, P., & Khankeh, H. (2021). Worldwide disaster loss and damage databases: A
729 systematic review. *Journal of education and health promotion*, 10, 329.
730 https://doi.org/10.4103/jehp.jehp_1525_20

731 (N.d.). Retrieved January 17, 2026, from
732 https://www.iom.int/sites/g/files/tmzbdl486/files/1028/228493/avis-td-proc-24-02_wash-activities.pdf

734 Neelin, J. D., & Held, I. M. (1987). Modeling tropical convergence based on the moist static
735 energy budget. *Monthly Weather Review*, 115(1), 3–12. [https://doi.org/10.1175/1520-0493\(1987\)115<0003:mtcbot>2.0.co;2](https://doi.org/10.1175/1520-0493(1987)115<0003:mtcbot>2.0.co;2)

737 Nicholson, S. E. (2013). The west african sahel: A review of recent studies on the rainfall regime
738 and its interannual variability. *ISRN Meteorology*, 2013, 1–32.
739 <https://doi.org/10.1155/2013/453521>

740 Nilsson, E., Becker, P., & Uvo, C. B. (2020). Drivers of abrupt and gradual changes in
741 agricultural systems in Chad. *Regional Environmental Change*, 20(3).
742 <https://doi.org/10.1007/s10113-020-01668-9>

743 OCHA “United Nations Office for the Coordination of Humanitarian Affairs” (2024): TCHAD :
744 Situation des inondations Rapport de situation no03 (01/10/2024).

745 Parker, D. J., Burton, R. R., Diongue-Niang, A., Ellis, R. J., Felton, M., Taylor, C. M.,
746 Thorncroft, C. D., Bessemoulin, P., & Tompkins, A. M. (2005). The diurnal cycle of the
747 West African monsoon circulation. *Quarterly Journal of the Royal Meteorological
748 Society*, 131(611), 2839–2860. <https://doi.org/10.1256/qj.04.52>

749 Pausata, F. S. R., Emanuel, K. A., Chiacchio, M., Diro, G. T., Zhang, Q., Sushama, L., Stager, J.
750 C., & Donnelly, J. P. (2017). Tropical cyclone activity enhanced by Sahara greening and
751 reduced dust emissions during the African Humid Period. *Proceedings of the National
752 Academy of Sciences*, 114(24), 6221–6226. <https://doi.org/10.1073/pnas.1619111114>

51

753 Pausata, F. S. R., Gaetani, M., Messori, G., Berg, A., Maia de Souza, D., Sage, R. F., &
754 deMenocal, P. B. (2020). The greening of the Sahara: Past changes and future
755 implications. *One Earth*, 2(3), 235–250. <https://doi.org/10.1016/j.oneear.2020.03.002>

756 Raymond, D. J., & Jiang, H. (1990). A theory for long-lived mesoscale convective systems.
757 *Journal of the Atmospheric Sciences*, 47(24), 3067–3077. [https://doi.org/10.1175/1520-0469\(1990\)047<3067:atflm>2.0.co;2](https://doi.org/10.1175/1520-0469(1990)047<3067:atflm>2.0.co;2)

759 Romps, D. M. (2015). MSE Minus CAPE is the True Conserved Variable for an Adiabatically
760 Lifted Parcel. *Journal of the Atmospheric Sciences*, 72(9), 3639–3646.
761 <https://doi.org/10.1175/jas-d-15-0054.1>

762 Saha, F., Tchindjang, M., Dzana, J. G., & Nguemadjita, D. (2020). Natural hazards in the Far-
763 North Region of Cameroon and the hydrological extremes dynamics of the Chari-Logone
764 system. Physio-Géo. Physical geography and environment, (Vol. 15), pp69-88.
765 <https://doi.org/10.4000/physio-geo.10719>

766 Saha F., Tchio Nkemta D., Tchindjang M., Voundsi É. & Mbevo Fendoung P. (2018). Production
767 of so-called “natural” risks in major urban centers of Cameroon, Nat. Sci. Soc., 26 4
768 (2018) 418-433 DOI: <https://doi.org/10.1051/nss/2019003>

769 Selami, N., Sèze, G., Gaetani, M., Grandpeix, J.-Y., Flamant, C., Cuesta, J., & Benabadj, N.
770 (2021). Cloud cover over the Sahara during the summer and associated circulation
771 features. *Atmosphere*, 12(4), 428. <https://doi.org/10.3390/atmos12040428>

772 Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. D., ... &
773 Allan, R. (2021). Weather and climate extreme events in a changing climate.
774 <https://doi.org/10.1017/9781009157896.013>

775 Sindikubwabo, C., Li, R., & Wang, C. (2018). Abrupt change in Sahara precipitation and the
776 associated circulation patterns. *Atmospheric and Climate Sciences*, 08(02), 262–273.
777 <https://doi.org/10.4236/acs.2018.82017>

778 Siwe, A. N., Sandjon, A. T., Tchotchou, L. A. D., Tchinda, C. W., Vondou, D. A., & Nzeukou,
779 A. (2025). Study the impact of intraseasonal oscillations on water vapour transport in
780 central africa: The case of 25–70 day oscillations. *International Journal of Climatology*,
781 46(1). <https://doi.org/10.1002/joc.70150>

782 Ssenyunzi, R. C., Oruru, B., D'ujanga, F. M., Realini, E., Barindelli, S., Tagliaferro, G., von
783 Engeln, A., & van de Giesen, N. (2020). Performance of ERA5 data in retrieving
784 Precipitable Water Vapour over East African tropical region. *Advances in Space
785 Research*, 65(8), 1877–1893. <https://doi.org/10.1016/j.asr.2020.02.003>

786 Sultan, B., Janicot, S., & Diedhiou, A. (2003). The west african monsoon dynamics. Part I:
787 Documentation of intraseasonal variability. *Journal of Climate*, 16(21), 3389–3406.
788 [https://doi.org/10.1175/1520-0442\(2003\)016<3389:twamdp>2.0.co;2](https://doi.org/10.1175/1520-0442(2003)016<3389:twamdp>2.0.co;2)

53

789 Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a
790 potential reference dataset for hydrological modelling over North America. *Hydrology*
791 and *Earth System Sciences*, 24(5), 2527–2544. <https://doi.org/10.5194/hess-24-2527-2020>

793 Tarnavsky, E., Grimes, D., Maidment, R., Black, E., Allan, R. P., Stringer, M., Chadwick, R., &
794 Kayitakire, F. (2014). Extension of the TAMSAT satellite-based rainfall monitoring over
795 Africa and from 1983 to present. *Journal of Applied Meteorology and Climatology*,
796 53(12), 2805–2822. <https://doi.org/10.1175/jamc-d-14-0016.1>

797 Taylor, C. M., Belušić, D., Guichard, F., Parker, D. J., Vischel, T., Bock, O., Harris, P. P.,
798 Janicot, S., Klein, C., & Panthou, G. (2017a). Frequency of extreme Sahelian storms
799 tripled since 1982 in satellite observations. *Nature*, 544(7651), 475–478.
800 <https://doi.org/10.1038/nature22069>

801 Taylor, C. M., Belušić, D., Guichard, F., Parker, D. J., Vischel, T., Bock, O., Harris, P. P.,
802 Janicot, S., Klein, C., & Panthou, G. (2017b). Frequency of extreme Sahelian storms
803 tripled since 1982 in satellite observations. *Nature*, 544(7651), 475–478.
804 <https://doi.org/10.1038/nature22069>

805 Tchana, B. C., Djomou, Z. Y., Kenfack, K., Tamoffo, A. T., Mouassom, F. L., Tchotchou, L. A.
806 D., Vondou, D. A., & Mbane, C. B. (2025). Analysis of air temperature anomalies during
807 abnormal rainfall events in Western Central Africa from September to November 2023.
808 *Theoretical and Applied Climatology*, 156(5). <https://doi.org/10.1007/s00704-025-05528-6>

810 Thorncroft, C. D., Bessemoulin, P., & Tompkins, A. M. (2005). The diurnal cycle of the West
811 African monsoon circulation. *Quarterly Journal of the Royal Meteorological Society*,
812 131(611), 2839–2860. <https://doi.org/10.1256/qj.04.52>

813 Vizy, E. K., & Cook, K. H. (2022). Distribution of extreme rainfall events and their
814 environmental controls in the West African Sahel and Soudan. *Climate Dynamics*, 59(3–4), 997–1026. <https://doi.org/10.1007/s00382-022-06171-x>

816 Vondou, D. A., Maranan, M., Fink, A., & Knippertz, P. (2025). Meteorological conditions
817 leading to a catastrophic, rain-induced landslide in Cameroon in October 2019.
818 Copernicus GmbH. <https://doi.org/10.5194/egusphere-egu25-4516>

819 Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E., & Marsham, J. H. (2020). Extreme
820 rainfall in East Africa, October 2019–January 2020 and context under future climate
821 change. *Weather*, 76(1), 26–31. <https://doi.org/10.1002/wea.3824>

822 Wamba Tchinda, C., Tchakoutio Sandjon, A., Djiotang Tchotchou, A. L., Nzeudeu Siwe, A.,
823 Vondou, D. A., & Nzeukou, A. (2023). The influence of intraseasonal oscillations on

55

824 rainfall variability over Central Africa: Case of the 25–70 days variability. *Scientific*
825 *Reports*, 13(1). <https://doi.org/10.1038/s41598-023-46346-y>

826 Zhang, W., Zhou, T., Ye, W., Zhang, T., Zhang, L., Wolski, P., Risbey, J., Wang, Z., Min, S.-K.,
827 Ramsay, H., Brody, M., Grimm, A., Clark, R., Ren, K., Jiang, J., Chen, X., Fu, S., Li, L.,
828 Tang, S., & Hu, S. (2025). A year marked by extreme precipitation and floods: Weather
829 and climate extremes in 2024. *Advances in Atmospheric Sciences*, 42(6), 1045–1063.
830 <https://doi.org/10.1007/s00376-025-4540-4>

831