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Abstract. The Soil Moisture Active Passive Level-4 Terrestrial Carbon Flux model (hereafter referred to as the L4C model)
provides daily estimates of net ecosystem CO5 exchange (NEE), gross primary production (GPP), and ecosystem respiration
(ER) at a global scale. The model is based on direct mechanistic forcing—response relationships between CO» fluxes and energy
proxies (absorbed photosynthetically active radiation and temperature) and moisture proxies (soil moisture and vapor pressure
deficit). Although the L4C model aims to provide a representative estimation of the CO5 budget of Arctic and Subarctic (AS)
environments, a deeper understanding of carbon cycle processes and targeted refinements are needed to improve its accuracy.
In this study, alternative model formulations are proposed for the North American AS regions during the growing season.
These formulations are calibrated and evaluated using NEE-derived GPP and ER from 20 eddy covariance towers across
western Canada and Alaska, covering the period from 2015 to 2022. Refinements in the representation of energy proxies
resulted in greater improvements in model performance than adjustments to moisture proxies. Specifically, implementing a
light-response curve in GPP estimation reduced unbiased root mean squared error and bias, while incorporating growing
degree days improved correlation. Adjustments to rootzone and surface soil moisture in GPP and ER estimation, respectively,
did not yield conclusive performance improvements. Vapor pressure deficit showed limited importance as a driver of GPP in
upland tundra and wetlands, whereas it had a stronger impact in taiga forests. Finally, the litterfall scheme used to represent
SOC dynamics in the L4C ER model formulation in version 8 demonstrated improved performance relative to version 7. These
results highlight opportunities to enhance the accuracy of the L4C model for the North American AS growing season but also

underscores the need for further research on ER modeling.



20

25

30

35

40

45

50

https://doi.org/10.5194/egusphere-2026-720
Preprint. Discussion started: 16 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

1 Introduction

Arctic and Subarctic (AS) environments store nearly half of the global soil organic carbon (SOC) pool (Tarnocai et al., 2009;
Hugelius et al., 2014; Mishra et al., 2021) and are experiencing accelerated warming (Rantanen et al., 2022). Rising temper-
atures increase photosynthetic activity and extend the growing season, leading to higher CO5 uptake by vegetation (Myneni
et al., 1997; Jia et al., 2003; Euskirchen, E. S. et al., 2009; Natali et al., 2012; Forkel et al., 2016; Fisher et al., 2018). In
addition, rising temperatures enhance autotrophic respiration (AR) as well as heterotrophic respiration (HR) in two pathways:
directly, by stimulating microbial activity, and indirectly, by thawing permafrost and exposing frozen SOC to decomposition.
The combined increase in AR and HR intensifies CO- release to the atmosphere (Natali et al., 2019; Turetsky et al., 2020;
Virkkala et al., 2024). Consequently, estimating the net CO, budget of AS regions is essential for understanding their role in
global climate system feedbacks (Oechel et al., 1993; Hayes et al., 2011; Turetsky et al., 2011; Bell et al., 2013; Schuur et al.,
2013; Schaefer et al., 2014; Zona et al., 2016). Nevertheless, our understanding of CO, fluxes in the AS environments remains
limited. This is due to the inherent complexity and high cost of measuring CO, fluxes, the scarcity of such measurements, and
the seasonal variability in the dominant processes controlling CO4 fluxes (Baldocchi et al., 2007; Fisher et al., 2018; Pallandt
et al., 2022; Mavrovic et al., 2023b).

Net ecosystem CO, exchange (NEE) represents the overall balance between COs uptake by photosynthesis, called gross
primary production (GPP), and CO, release through ecosystem respiration (ER), as follows (Chapin et al., 2006)

NEE = HR + AR — GPP = ER — GPP (D

GPP is a light-driven process whose efficiency is modulated by air temperature, soil moisture availability within the plant root
zone and vapor pressure deficit, which can induce stomatal closure and thereby reduce CO5 uptake (Davis et al., 2014; Bao
et al., 2022). Comparatively, HR is governed by SOC availability, soil temperature, and surface soil moisture, whereas AR
primarily depends on air temperature, plant metabolic activity and GPP rate (Reichstein et al., 2005; Davis et al., 2014; Zona
et al., 2023). When soil temperature drops near 0 °C, the soil starts freezing and GPP and AR progressively ceases, following
a soil freezing characteristic curve (Salmabadi et al., 2025). Under fully frozen conditions, NEE is equal to HR, which is
controlled by soil temperature and SOC availability (Natali et al., 2019; Mavrovic et al., 2023b).

Although global terrestrial carbon flux (TCF) models, atmospheric inversions (which infer surface CO- fluxes from at-
mospheric CO4 concentrations), and data-driven flux-upscaling approaches are available to estimate the CO5 budget of AS
regions, they often disagree on whether these regions are COq sources or sinks (McGuire et al., 2012; Fisher et al., 2018;
Lopez-Blanco et al., 2019; Virkkala et al., 2021; Ramage et al., 2024; Virkkala et al., 2024; Foster et al., 2024). In recent
decades, satellite-based microwave remote sensing (300 MHz — 100 GHz) has provided a valuable approach for monitoring
land—atmosphere interactions and carbon cycle dynamics through the retrieval of key surface variables (Fisher et al., 2018;
Lees et al., 2018; Mavrovic et al., 2023a; Pulliainen et al., 2024) such as soil moisture (Kerr et al., 2012; Colliander et al.,
2017), snow properties (Lievens et al., 2019), aboveground biomass (Mialon et al., 2020), and freeze-thaw state (Rautiainen
et al., 2016; Derksen et al., 2017; Prince et al., 2019). In 2015, the Soil Moisture Active Passive (SMAP) satellite was launched

to monitor surface soil moisture and freeze-thaw dynamics using L-band brightness temperature observations (Entekhabi et al.,
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2010). One of the science objectives of the SMAP mission is to improve our understanding of interconnected water, energy,
and carbon cycles, as well as to quantify the boreal landscape CO- budget (Entekhabi et al., 2014). In this context, the SMAP
Level-4 Global Daily 9-km EASE-Grid Carbon Net Ecosystem Exchange (SPL4CMDL) product currently provides global,
daily estimates of NEE and GPP, as well as ER (indirectly derived from HR, GPP and NEE). These estimates are derived
from a TCF model (hereafter referred to as the L4C model), which is notably informed by the SMAP Level-4 Global 9-km
EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP) product (Jones et al., 2017; Endsley et al.,
2022; Kimball et al., 2025; Reichle et al., 2025). Although the L4C model achieves an unbiased root-mean-square error of
NEE within the targeted accuracy of 1.6 gCm~2d~! in AS environments, recent studies have reported that it fails to capture
the amplitude of GPP and ER during the green-up phase (Endsley et al., 2022; Madelon et al., 2025). The authors also reported
discrepancies in annual CO, budgets when compared with eddy covariance (EC) measurements, leading to uncertainties in
classifying AS environments as net CO5 sources or sinks (Madelon et al., 2025). From April to July 2025, the L4C model
transitioned from version 7 to version 8 (Kimball et al., 2025), featuring a major update partly due to (i) the upgrade of the
SMAP SPL4SMGP product, which transitioned from its own version 7 to version 8 (Reichle et al., 2025), and (ii) changes to
the litterfall estimation scheme used for modeling SOC dynamics and ER (Section 3).

The goal of this study is to better characterize how key environmental drivers influence GPP and ER, and to refine their

modeling for the North American AS growing season. To achieve this, we:

— explore alternative formulations of the L4C model (hereafter referred to as the AS-adapted models) that adjust GPP
and ER responses to absorbed photosynthetically active radiation, air and soil temperature, rootzone and surface soil

moisture, and vapor pressure deficit;

— calibrate and evaluate these formulations using GPP and ER data from 20 EC towers across western Canada and Alaska
from 2015 to 2022;

— identify and interpret the specific model adjustments that yield the greatest performance improvements in terms of

Pearson correlation, unbiased root-mean-square error, and bias;

— provide recommendations for more accurate satellite-derived estimates of GPP and ER, with indirect benefits for NEE

and CO, budget estimation.

2 Eddy covariance measurements

NEE, GPP, and ER data were collected from 20 EC towers located in AS environments (Figure 1), all within the NASA
Arctic-Boreal Vulnerability Experiment (ABoVE) study domain (https://above.nasa.gov/sites.html). The dataset spans from
April 2015 through December 2022 (Table 1) and includes

— half-hourly fluxes from 13 EC towers in Alaska, downloaded from the AmeriFlux Network website (https://ameriflux.Ibl.gov).
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— half-hourly fluxes from 7 EC towers in western Canada, provided directly by the principal investigators to ensure the use

of the most up-to-date records; some of these sites are not yet available on the AmeriFlux Network website.

EC towers measure NEE by quantifying the turbulent vertical exchange of CO5 in the surface layer of the atmospheric
boundary layer (typically within the lowest tens of meters), where turbulence dominates the airflow (Aubinet et al., 2012;
Burba, 2013, 2022). The spatial footprint can extend up to 1 km or more, but remains complex to calculate and varies with
wind direction, wind speed, and tower height (Leclerc and Thurtell, 1990; Schuepp et al., 1990; Aubinet et al., 2012; Webb
et al., 2016). NEE measurements are subject to systematic errors, which mostly arise from unmet assumptions, instrument
design and calibration, physical phenomena (e.g. storage terms), and terrain-specific conditions. These errors are generally well
characterized and are typically corrected using software, such as EddyPro, as part of the standard flux processing workflow
(Aubinet et al., 2012; Burba, 2022). NEE measurements are also affected by random errors, notably turbulence sampling error,
which arises when large eddies are not adequately captured within a 30-minute window (Finkelstein and Sims, 2001). The
standard deviation of this error tends to follow a consistent pattern across ecosystem types and increases linearly with the flux
magnitude (Aubinet et al., 2012). Overall, random errors in NEE are difficult to quantify, but using simultaneous measurements
from two collocated EC towers, they have been estimated at 15 % for a 30-minute interval (Eugster et al., 1997; Dragoni et al.,
2007).

GPP and ER are commonly derived from NEE using flux-partitioning methods. The most established approach assumes
that nighttime NEE consists solely of the ER component, since photosynthesis, and therefore GPP, is considered negligible
in the absence of light (Reichstein et al., 2005; Aubinet et al., 2012). Nighttime ER is modeled using the Arrhenius equation,
with air or soil temperature as the primary driver (Lloyd and Taylor, 1994). Air temperature is generally preferred because
it better represents the landscape surrounding the EC tower, whereas soil temperature varies spatially and with depth across
heterogeneous terrain (Helbig et al., 2017a, b). Daytime ER is then extrapolated to isolate the GPP contribution from the
NEE measurements. Alternative approaches fit a light-response curve combined with a Q; equation to NEE measurements,
accounting for the effects of photosynthetically active radiation (PAR) on GPP and air temperature on ER (Falge et al., 2001;
Gilmanov et al., 2003; Lasslop et al., 2010b; Runkle et al., 2013; Helbig et al., 2017a). GPP and ER have greater uncertainties
than tower measurements of NEE because they are modeled using additional data and rely on various assumptions (Lasslop
et al., 2010a). In this study, we placed confidence in the flux-partitioning methods selected by the investigators at each EC
tower. We therefore considered the resulting partitioned GPP and ER values to be credible representations of the underlying
processes and suitable for use as reference data for model calibration and evaluation. EC NEE, GPP, and ER were averaged
from 30-minute intervals to daily time steps, using at least 24 out of the theoretical 48 data points available per day. Hereafter,
NEEgc, GPPgc, and ERgc refer to the daily means of EC NEE, GPP, and ER.

All EC towers considered in this study are located in the tundra and taiga biomes, in areas underlain by sporadic, discontin-
uous, or continuous permafrost (Figure 1). Permafrost (ground that has remained frozen for more than 2 years) lies beneath an
active layer that thaws during the growing season, enabling plant growth, as roots can only establish in thawed soil (Blume-
Werry et al., 2019). Permafrost also restricts surface drainage, promoting water saturation and slowing decomposition rates

(Wania et al., 2009; Robinson and Moore, 2000; Rouse et al., 1997; Maltby and Immirzi, 1993). These conditions can favor
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the formation of wetlands, including peatlands as well as other seasonally or permanently waterlogged ecosystems, across both
tundra and taiga biomes (Treat et al., 2022). Based on site descriptions, EC towers were grouped into three distinct ecosystem

types (Table 1):

— Taiga forests: 7 EC towers are located in taiga forests, characterized by a vertically stratified vegetation structure, with

an open canopy of coniferous trees and an understory of shrubs, mosses, and lichens (Crawford, 2013; Juday, 2025).

Upland tundra: 5 EC towers are located in upland tundra, which may exhibit lower vegetation density and diversity,
as well as reduced soil biological activity, compared with taiga forests (Crawford, 2013; Hagedorn et al., 2025). The
landscape is treeless and dominated by dwarf shrubs, grasses, sedges, mosses, and lichens, as plant growth is constrained
by cold temperatures, short growing seasons, and the shallow depth of the permafrost active layer (Crawford, 2013; Hu

and Bliss, 2025; Juday, 2025; Péwé, 2025).

Wetlands: 8 EC towers are located in wetlands, where the term “wetland” refers to a wide range of types, including
peatlands, bogs, fens, marshes, wet meadows, and shrub swamps, present in both tundra and taiga biomes. Compared
with taiga forests and upland tundra, wetlands may exhibit higher species richness (McPartland et al., 2019) and localized
microtopography, such as hummocks and hollows, whose characteristics depend on water table depth (Rouse et al., 1997,

Zhang et al., 2024).

3 L4C model

The L4C model provides global, daily estimates of NEE, GPP, and ER at 9-km resolution from March 31, 2015, to the present
(Jones et al., 2017; Kimball et al., 2025). It takes as inputs

— A static global plant functional type (PFT) classification at 500-m resolution, retrieved from the Moderate Resolution

Imaging Spectroradiometer (MODIS) MCD12Q1 Type 5 product (Friedl and Sulla-Menashe, 2019).

— Eight-day fraction of photosynthetically active radiation (canopy-intercepted FPAR) and leaf area index (LAI) data at

500-m resolution, retrieved from the Visible Infrared Imaging Radiometer Suite (VIIRS) VNP15A2H product (Myneni
and Knyazikhin, 2018).

— Daily means of three-hourly data at 9-km resolution, retrieved from the SMAP SPL4SMGP product version 8 (Reichle

et al., 2025), including 10-cm deep soil temperature (ST1g), surface skin temperature, incident shortwave solar radiation
(SWiy), surface soil moisture (SSM), and rootzone soil moisture (RZSM). SSM and RZSM estimates are obtained by
assimilating SMAP L-band brightness temperature observations into the Goddard Earth Observing System Version 5
Catchment Land Surface Model (GEOS-5 CLSM) (Reichle et al., 2019).

— Daily vapor pressure deficit (VPD) and minimum air temperature (MNT) at 0.25° (approximately 25-km resolution),

retrieved from the GEOS-5 Forward Processing (FP) product (Lucchesi, 2018).
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SWj, is combined with FPAR to compute canopy-absorbed photosynthetically active radiation (APAR), assuming that PAR
constitutes 45 % of SWiy, as follows:

APAR = 0.45- SWj, - FPAR = PAR - FPAR 2)

RZSM is rescaled using a normalized logarithmic transformation (Jones et al., 2017), and SSM is converted from volumetric
units to relative wetness units. With the exception of APAR, the variables MNT, VPD, RZSM, ST, and SSM affect GPP and
ER estimation only after being converted into stress scalars, denoted as Syint, Svep, Srzsms Sst, and Sssm. The derivation of
these stress scalars is described later in Equations 7a-e.

The L4C model runs at a daily time step and is defined as follows:
GPP(t) = €max 'APAR('[) - SMNT (t) -Svpp (t) - SrzsM (t) (3a)
ER(I) = AR(t) + HR(t) =« GPP(t) + [k] -SOC, (t) + (1 — 77) -ky - SOCz(t) + ks - SOC; (t)] . SST(t) - Sssm (t) (3b)

GPP is modeled using a light-use efficiency approach (Jones et al., 2017; Xiao et al., 2013), where en,ax represents the bulk en-
vironmental reduction in PAR conversion efficiency. AR is modeled as a fixed proportion of GPP, determined by the coefficient
«. HR is estimated using a cascading three-pool SOC decomposition model (Ise and Moorcroft, 2006; Kimball et al., 2008;
Jones et al., 2017), assuming that carbon fixed from atmospheric CO5 through GPP enters the SOC pools as litterfall (Lg,y).
The daily SOC change for each of the three SOC pools is specified as:

SOCl(t) = S0C, (t — 1) + [)\ . Lfall(t) —ki- SOCl(t — 1) . SST(t) . SSSM(t)] -dt (4a)
SOCz(t) = SOC2(t — 1) + [(1 — )\) . Lfau(t) — ks - SOCz(t — 1) . SST(t) . SSSM(t)] -dt (4b)
SOC; (t) = S0C; (t — 1) + [’17 -k - SOCQ(I) . SST(t) . SSSM(t) —k;-SOC; (t — 1) . SST<t) . SSSM(t)] -dt (4¢)

SOC, SOC,, and SOC; represent the labile, structural, and recalcitrant SOC pools, respectively, with corresponding decay
rates ki, ko = 0.4 -k;, and ks = 0.01 - k;. The model parameters A and 7 account for the fraction of L, allocated to the SOC;
and SOC, pools, and the fraction of material transferred from the SOC; pool to the SOC;3 pool, respectively. The parameters
€max» K1, A, and 7 are treated as free parameters estimated during the optimization process. The model integration step dt is set
to one day.

In the L4C model version 7, L, was derived as a constant daily fraction of the mean annual estimated net primary produc-

tivity (NPP), as follows:

Lfall (t) = NPPannual . 1/365 = (1 — Oé) . GPPannual . 1/365 (5)

NPP,pnuar and GPPpnu denote the mean annual NPP and GPP, respectively, and the daily fraction is set to 1/366 for leap
years. Instantaneous NPP is initially derived as NPP(t) = GPP(t) — AR(t). In the L4C model version 8, the allocation timing

was changed from constant to dynamic, and is now determined using a leaf-loss function (Ljoss), derived from climatological
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LAI as follows:

Lloss (t) min(LAI)

Ltan (t) = NPPygnyar - [fg - dt + (1 —fg) - m] with fg = m

Here, fi represents the proportion of the canopy that is evergreen. Ly is computed using a triangular moving average centered

(6)

on the current time step, where weights increase linearly toward the center. It represents the difference between lagged and
leading climatological LAI values (Endsley et al., 2022).
In equations 3a-b and 4a-c, the stress scalars Synt, Svep, Srzsm, Sst, and Sssm represent the ecosystem responses to their

respective environmental variables and are defined as follows:

MNT(t) — MNTppin
’ MNTmax - MNTmin

Smnr(t) = min(1, max(0 (7a)

S ) 0.1 VPD(t) — VPDpin -
t) = mi -
vep(t) = min(1, max(0, VPD, o — VPDmin)) (7b)

RZSM(t) — RZSM pin

Srzsm(t) = min(1, max(0, RZSMyax — RZSMnin -
- SSM(t) — SSMinin 7d
Sssm(t) = min(1, max(0, SSMinax — SSMimin -
) " e 1 1 ) (Te)
t) = min(1, ex N T a2l )

ST P03 T ST() — s

Each stress scalar ranges from O to 1, where a value of 0 indicates that the environmental variable fully constrains model esti-
mates, while a value of 1 indicates no constraint. The thresholds MNT,,;n, MNT 101, VPDinin, VPDinax, RZSMin, RZSM iy ax,
SSMiin, and SSMy,.« are free parameters estimated during the optimization process. These are used as model thresholds and
do not correspond to the actual minimum or maximum values within the time series. Similarly, (3 is a free parameter, while
(1 and (B, are fixed at 66.02 K and 227.13 K, respectively (Kimball et al., 2025). The behavior of the ecosystem response
functions is shown in Figure A1.A1-C1. The GPP formulation originally includes a stress scalar based on the freeze—thaw
state, computed using surface skin temperature from the SMAP SPL4SMGP product (Jones et al., 2017; Kimball et al., 2025).
However, it is not shown here, as this study focuses on the growing season.

L4C model estimates are initially derived at a 1-km sub-grid resolution for up to 8 MODIS MCD12Q1 PFT classes, and
then averaged to 9-km resolution. In this study, only the L4C model estimates corresponding to the PFT class in which the
EC towers are located were considered (Table 1). A total of two towers are located in the grassland (GRA) class, 8 in the
shrubland (SHR) class, and 10 in the evergreen needleleaf forest (ENF) class. Hereafter, NEE 4c, GPP4c, and ERy4¢ refer to
daily estimates derived from the L4C model, which were retrieved from the SMAP SPLACMDL product version 8.
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4 Method
4.1 Arctic-Subarctic adapted model formulations

In this study, we explored alternative GPP and ER model formulations that retain the core GPP and ER equations of the original
L4C model version 8. We aimed to preserve the structure and variable set of the original L4C model while enabling the incor-
poration of constraints or additional flexibility guided by literature-based findings on ecosystem responses and flux-partitioning
methods. Five different formulations are presented for both GPP and ER, with each formulation building incrementally on the
previous one by incorporating earlier modifications along with additional adjustments. Testing modifications incrementally,
rather than independently, allowed us to determine whether their interactions improved or degraded model performance.

The GPP formulations, labeled GPP; through GPP5, mainly adjust ecosystem responses to environmental variables and are
defined as follows (Table 3):

— GPPy: Under sub-freezing air temperatures, photosynthetic activity is expected to be severely reduced, approaching
cessation (Schaefer et al., 2012; Ensminger et al., 2004; Bowling et al., 2018; Parazoo et al., 2018). This behavior is not
well represented in the original L4C model, where Syt still remains near 0.5 at 270 K (Figures 2, 3, 4.A2), indicating
that GPP capacity is reduced by only half at this temperature. In the proposed formulation, GPP is ensured to cease when

MNT is equal to or below 273.15 K by fixing the minimum threshold (MNT ;) of Syt to 273.15 K (Equation 7a).

— GPPy (defined as GPP; with additional adjustments): Some flux-partitioning methods use a nonlinear light-response
curve to partition NEEgc into GPPgc and ERgc (Lasslop et al., 2010b; Runkle et al., 2013), capturing the saturation of
leaf-level photosynthesis at high solar irradiance. In the original L4C model, APAR directly scales the dynamic range
of GPP and is not transformed through a transfer function into a stress scalar, as is the case for the other environmental
variables (Equation 3a). In GPPs, this linear dependence is replaced by a nonlinear stress scalar, Sapar, inspired by the

light-response curve, which is defined as follows:

GPP(t) = GPPpax - Sapar (t) - Smnr(t) - Svpp(t) - Srzsm(t) (8a)
Sapn(l) = APAR(t) (8b)
APARYY ™ APAR(t) + APAR

At low APAR, GPP increases rapidly, but as APAR increases, the rate of increase slows down, and GPP asymptoti-
cally approaches a maximum value, GPPy,.x. This behavior is shown in Figure A1.D1. GPP,,x and APAR,;; are free

parameters estimated during the optimization process.

— GPP; (defined as GPP;, with additional adjustments): In the original L4C model, GPP responds linearly to MNT, VPD,
and RZSM (Equations 7a,b,c). In GPP3, GPP responses to these variables are modeled with increased flexibility, with no

assumed shape other than monotonicity, to allow varying rates of change across different ranges. To achieve this, they
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are redefined as logistic ramp functions:

g(MNT(t)) - g(MNTmin) . 1
SN = & NN T ) — e MNTo) 0 N ) = Gt - (MNT() — MNTor)) ©a)
g(VPD(t)) - g(VPDmax) . 1
Svn() = g(VPDpin) — g(VPDiax) with  g(VPDO) = 5 + exp(yvpp - (VPD(t) — VPDeyy()) ©b)
RZSM(1)) — g(RZSMpin 1
Srzsm(t) = g( ( )) g( ) with g(RZSM(t)) = (9¢)

2(RZSM 0% ) — gMNTin) 1+ exp(—yrzsm - (RZSM(t) — RZSM,3))

In this formulation, the thresholds MNT ;n, MNT 1.5, VPDmin, VPDLax, RZSMin, and RZSM,,, .« are used to scale
the stress scalars between 0 and 1, and are fixed to 273.15 K, 293.15 K, 0 kPa, 2.5 kPa, 0 m*m—2, and 1 m3m—3,
respectively. The parameters MNTcyit, YMNT>, VPDerit, YvpDs RZSMcit, and yrzsm are treated as free parameters and are

estimated during the optimization process. The behavior of the logistic ramp functions is illustrated in Figure A1.A2-C2.

GPP, (defined as GPP3 with additional adjustments): Growing degree days (GDD) are widely used in agricultural and
ecological studies as a proxy to plant development (Fotouo Makouate and Zude-Sasse, 2025), and have recently been
used to develop a phenology scheme that improved GPP modeling in a temperate bog (He et al., 2025). In the present for-
mulation, GDD is incorporated into GPP modeling to capture the vegetation green-up and senescence phases through an
additional stress scalar (Sgpp). GDD is first derived from mean air temperature using a base temperature of 273.15 K. It
is then normalized for each site and each year using the annual minimum and maximum values, resulting in a normalized
range from O to 1. This normalization ensures that GDD acts as a seasonal shape or trend driver, rather than a magnitude
driver, which is instead represented by the instantaneous variables (APAR, MNT, VPD, and RZSM). Hereafter, GDD

refers to normalized GDD and is used to derive Sgpp, as follows:

GPP4(t) = GPPpax - Sapar(t) - SMnt(t) - Svep(t) - Srzsm(t) - Sepp (t) (10a)
«(GDD()) a b
Sepp(t) = ——— with  g(GDD(t)) = GDD(t)*- (1 — GDD(t)) (10b)
a
& a+b

Scpp is defined as a beta-like, bell-shaped function, normalized between 0 and 1 (Figure A1.D2). The parameters a and

b are treated as free parameters and are estimated during the optimization process.

GPP; (defined as GPP4 with additional adjustments): Some studies have reported that water-saturated soil conditions
limit oxygen and nutrient availability to plant roots, restrict cellular respiration, and consequently hinder photosynthetic
activity (Kreuzwieser et al., 2004; Nawaz et al., 2025). Additionally, Peng et al. (2024) showed that the relationship
between GPP and soil moisture may follow a bell-shaped curve at EC tower sites with PFTs similar to those in the

present study (e.g., ENF, SHR, GRA; Table 1). A similar response has also been reported for peatlands (Valkenborg et al.,
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2023). In GPPs5, it is similarly assumed that GPP peaks at an optimal RZSM level, beyond which excessive moisture
reduces efficiency. This assumption is tested by redefining Sgzsm as a beta-like, bell-shaped function, analogous to Sgpp

(Equation 10b and Figure A1.D2):

g(RZSM(1)) ) b
SRZSM(t) = ——— with g(RZSM(t)) = RZSM(t) . (1 — RZSM(t)) (11)
a
& a+b
260 The parameters a and b are treated as free parameters and are estimated during the optimization process.

Regarding the ER modeling, we tested different formulations for the HR component while leaving the AR component
unchanged. The ER formulations, labeled ER; through ERj5, are described below (Table 3):

— ER;: Rather than using the the L, estimation scheme from the baseline L4C model version 8, ER; instead adopts the

one from version 7 (Equation 5). The L4C model transitioned from version 7 to version 8 over the course of the present

265 study was conducted, during which the Lg,;; estimation scheme was modified. The version 7 scheme was retained to
enable comparison with the one introduced in version 8. Additionally, HR response to SSM (Sssm) is redefined as a

logistic ramp, analogous to Sgzsm in GPP3 (Equation 9c and Figure A1.A2). The original linear response (Equation 7d)

was directly replaced because the logistic ramp can reproduce a linear behavior if the relationship between SSM and HR

is actually linear. The ER response function to ST is unchanged but was recalibrated (Equation 7e).

270 — ERj (defined as ER; with additional adjustments): The Lg; estimation scheme is reverted to that of the baseline L4C

model version 8.

— ERj (defined as ER, with additional adjustments): None of the established flux-partitioning methods requires SOC data
to derive GPP and ER from NEE (Reichstein et al., 2005; Lasslop et al., 2010b; Runkle et al., 2013; Helbig et al., 2017a).

Consequently, in ER3, we aimed to capture the added value of incorporating SOC dynamics in ER modeling. To this

275 end, SOC dynamics are replaced by a single constant representing a baseline heterotrophic respiration rate, (Rpase), as
follows:
ER(t) = o - GPP(t) + Rpyse - Sst(t) - Sssm(t) (12)

The parameter Ry, is treated as a free parameter and is estimated during the optimization process.

— ERy (defined as ER3 with additional adjustments): In the present formulation, we aimed to mimic the flux-partitioning
280 methods that derive Ry, every few days (Reichstein et al., 2005; Lasslop et al., 2010b; Runkle et al., 2013; Helbig et al.,
2017a). Rpase 1s then redefined as:

Rbase(t) = (1 - w) : Rbase(t - 1) +w- R0 ‘ SST(t) : SSSM(t) (13)

This follows a first-order auto-regressive (AR1) approach, in which the current value depends on the previous one and

the 7-day backward mean of the product of temperature and moisture stress scalars (Sst(t) - Sssm(t)), weighted by the
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parameter w (ranging from O to 1). This approach introduces acclimation behavior by smoothing short-term variability
in environmental conditions. The parameters Ry and w are treated as free parameters and are estimated during the

optimization process.

— ERj (defined as ER4 with additional adjustments): Endsley et al. (2022) showed that including an O4 diffusion limitation
in the HR response to SSM, which penalizes HR rates under high SSM conditions, improved seasonal ER performance.
In ER5, we adopted the beta-like, bell-shaped function, analogous to Sgzsm in GPP5 (Equation 11), to model HR response
to SSM. This avoids to collect or estimate Og concentration data while still representing diminishing returns on HR under
high SSM conditions.

In this study, daily VPD and MNT were retrieved from the Modern-Era Retrospective Analysis for Research and Applica-
tions, Version 2 (MERRA-2), M2TINXSLV Version 5.12.4 product (Gelaro et al., 2017), instead of the GEOS-5 FP product,
because it is sparsely documented. MERRA-2 re-analysis dataset is better constrained by observations, exhibits a climatology
comparable to GEOS-5 FP and is used in the L4C model calibration due to its longer period of record. Mean air temperature,
required to derive GDD, was also retrieved from the MERRA-2 M2TINXSLV product. Finally, RZSM and SSM from the
SMAP SPL4SMGP product were retained in volumetric units (m®m~3), unlike in the original L4C model.

4.2 Growing season timing and data filtering

GPPgc was used as an indicator to identify the growing season (Gonsamo et al., 2013). For each EC tower, GPPg( values below
the noise threshold of 0.05 gCm~2d~! were first attributed to the winter season and removed. Among the remaining values,
those below the arbitrary threshold of the 10" percentile were considered part of the shoulder seasons (i.e., transitional periods
between fully frozen and fully thawed states) and excluded, while values above the 99™ percentile were treated as outliers and
also removed. To ensure consistency in outlier detection, ERgc values above the 99" percentile were similarly excluded.
Complementary filtering flags were applied to ensure biophysical plausibility of root-level soil activity and photosynthesis

during the growing season from a modeling perspective. The specific criteria for these flags are as follows:

ST10em > 275.15 K (i.e., 2 °C above freezing)

ST20em > 275.15 K

ST39em > 275.15 K (applied to ENF sites only, see Table 1)

MNT > 275.15 K

ST20em and STsgen refer to soil temperature at 20 and 39 cm depths, respectively, and were retrieved from the SMAP
SPL4SMGP product. For the remainder of this study, ST refers to ST1gem as ST20em and STsgcm are not used further.

After filtering, a total of 1,650 data points (23 %) remained for the upland tundra ecosystem, 4,632 data points (33 %) for
the taiga forest ecosystem, and 3,653 data points (30 %) for the wetland ecosystem (Table 1).
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4.3 Model formulation calibration

The AS-adapted GPP and ER formulations were calibrated separately for each ecosystem type (upland tundra, taiga forests,
and wetlands), using GPPgc and ERgc as reference targets. The optimization framework for calibration used least-squares
minimization via the MATLAB Isqcurvefit function (MathWorks, Inc., 2023), which minimizes the sum of squared differences
between the model outputs and target values. This is an unconstrained optimization, with no additional penalty terms applied.
To mitigate overfitting, the optimization process was repeated 100 times using different random subsets, comprising 70 % of the
data available for the ecosystem type (1,155 data points for upland tundra, 3,243 for taiga forests and 2,557 for wetlands). Final
model parameter values were taken as the median across all runs. This approach aimed to capture diverse data combinations and
promote a more stable and representative parameterization by smoothing out the influence of outliers or any individual biased
subset. A 70 % subset size was arbitrarily chosen to balance between providing sufficient data for robust model calibration and
retaining enough data variability across the 100 iterations (Martinez Molera, 2025). Contrary to the global calibration of the
original L4C model, no reference SOC data were used to constrain the recalibration over the AS environments. As a result,
in ER; and ERy, only the SOC; pool was modeled to avoid potential parameter compensation and to prevent unrealistic SOC
distribution across the original three pools. An initial guess was necessary for SOC; on March 31, 2015, to explicitly solve the
SOC dynamics, since the system is formulated recursively and requires a starting value to iterate forward in time (Equation 4).
March 31, 2015, was chosen as the start of the simulation because it precedes the first date of the period of study. The initial
guess was set to 0 gCm 2 for the first spin-up iteration, providing a neutral starting point to avoid biasing the early simulation.
It was subsequently updated using the SOC value on March 31, 2022, corresponding to the last March 31 within the study

period. A total of 20 spin-up iterations were performed.
4.4 Model formulation evaluation and validation

The AS-adapted GPP formulations were evaluated spatiotemporally, capturing the combined effects of spatial and temporal
variability, using GPPgc as the reference target. All available data points, including those used for calibration, were included
in the evaluation. Model performance was quantified using three statistical metrics: the Pearson correlation coefficient (r), the
unbiased root mean square error (ubRMSE), and bias (B). A rank was assigned to each formulation for each metric. The ranks
were then averaged across the three metrics to obtain an overall score. This score was subsequently adjusted by a penalty factor

accounting for model complexity, as follows:

n;

3
1 .
Si — g j_g 1 Rl] . Pi with Pi = (14)

Nmin

S; is the final score of the ith formulation, and Rj; is its rank for the jlh metric. The penalty factor of the ith formulation, P;,
is determined by the number of free parameters (n;; Table 3) relative to the minimum numbers of free parameters across all
formulations (npin). A lower score indicates better performance, whereas a higher score indicates worse performance. As a
complement, temporal representativeness between formulations was assessed by computing the three metrics separately for

each EC tower.
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The AS-adapted ER formulations were evaluated and scored using the same approach as the GPP formulations, but with
ERgc as the reference target. Because ER modeling requires a GPP input (Equation 3), the GPP formulation with the lowest
score was selected. Finally, the ER formulation with the lowest score, together with its corresponding GPP formulation, was
selected to derive AS-adapted estimates of NEE (NEEs). NEEg was then validated using NEEgc as the reference target. This

entire evaluation and scoring procedure was repeated independently for each ecosystem type.

5 Results
5.1 Gross primary production

This subsection presents the performance of the AS-adapted GPP formulations (GPP; through GPP5) and GPPy4¢ relative to
GPPgc.

5.1.1 Upland tundra

Based on the spatiotemporal evaluation for upland tundra (Table 4), GPP; performs better than GPPp4¢ in terms of B and
ubRMSE (-0.32 vs. 0.41 gCm~2d~! and 1.20 vs. 1.47 gCm~2d ™!, respectively), although GPPy 4 achieves a higher r value
(0.56 vs. 0.64). Introducing a nonlinear light-response in GPP, (Equation 8) leads to better performance compared with GPP;,
reducing B from -0.32 to 0.00 gCm~2d~'. In addition, ubRMSE decreases, and r increases, approaching the r observed
for GPPpy4c. Replacing linear ramps with logistic ramps to simulate ecosystem responses in GPP3 (Equation 9) increases
model complexity but provides limited improvement over GPP,. GPP, incorporates GDD through an additional stress scalar
(Equation 10). This results in improved r and ubRMSE compared with GPP3 (0.75 vs. 0.65, and 0.84 vs. 0.96 gCm~2d !,
respectively). In GPPs5, a bell-shaped function is used to simulate the influence of RZSM (Equation 11). This further improves
r and ubRMSE, though B slightly increases (-0.02 vs. -0.01 gCm~2d~!). After score computation, GPPj ranks first, followed
by GPP,4 and GPPs (tied for second), and GPP; and GPP; in last place.

Across all formulations, Sypp remains equal to 1 throughout the entire range of VPD variability (Figure 2.B3-F3). The use
of a non linear light-response in GPP» introduces an early saturation (Figure 2.B6-F6), where modeled GPP peaks are lower
than those of GPPgc. This premature flattening is progressively reduced in GPP4 and GPPs, due to the incorporation of GDD
and the use of a bell-shaped function for simulating RZSM influence.

Considering metrics across EC towers (Figure 8), GPP, and GPPj5 exhibit the highest median r (0.77 and 0.76) and the
lowest median ubRMSE (0.65 and 0.71 gCm~2d~!). In contrast, GPP5, GPP3, and GPP, show the lowest median B with
0.04, 0.05, and 0.08 gCm~—2d !, respectively.

5.1.2 Taiga forests
The spatiotemporal evaluation for taiga forests (Table 4) indicates that GPP; performs better than GPPy4¢ in terms of r (0.62

vs. 0.58) and ubRMSE (1.75 vs. 1.93 gCm~—2d '), although GPP; shows higher B (-0.43 vs. -0.38 gCm~2d~!). As in up-
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land tundra (Section 5.1.1), introducing a nonlinear light-response in GPPy (Equation 9) leads to overall better performance
compared with GPP;, notably reducing B from -0.43 gCm~2d ! to -0.07 gCm~2d~'. GPP; does not offer improvement over
GPP,, aside from a slight reduction in B (-0.02 gCm~2d~! vs. -0.07 gCm~2d~1). Due to the inclusion of GDD through an ad-
ditional stress scalar (Equation 10), GPP, outperforms GPP3 (0.74 vs. 0.67 for r, and 1.30 vs. 1.41 gCm~2d~! for ubRMSE).
Switching to a bell-shaped function for simulating RZSM influence in GPP5 (Equation 11) does not result in improved perfor-
mance compared with GPP4. After score computation, GPP5 and GPP, are tied for first place, followed by GPP3 and GPPs,
with GPP; ranking last.

RZSM appears to be a negligible input in GPPp4c, as Sgzsm remains equal to 1 throughout the entire range of RZSM
variability (Figure 3.A4). However, RZSM gains more effect in GPP; through GPPj, although its effect remains weaker than
that of MNT, VPD, and GDD (Figure 3.B4-F4). As in upland tundra (Section 5.1.1), the use of a nonlinear light-response
in GPP; introduces an early saturation, underestimating GPPgc peaks (Figure 3.B6-F6). However, this premature flattening
persists in GPP4 and GPPj, despite the incorporation of GDD and the use of a bell-shaped function for simulating RZSM
influence.

Considering metrics across EC towers (Figure 8), the highest median r are obtained for GPP, and GPP5 (0.79 and 0.76).
These two formulations also achieve the lowest median ubRMSE, with 1.12 gCm~2d~! for GPP5 and 1.15 gCm~2d~! for
GPP,4. GPP;3 and GPP, exhibits the lowest median B (-0.14 gCm—2d~1).

5.1.3 Wetlands

Based on the spatiotemporal evaluation for wetlands (Table 4), GPP; outperforms GPPy4¢, notably exhibiting reduced ubRMSE
and B (1.33 vs. 2.19 gCm~2d~!, and -0.40 vs. 1.31 gCm~2d ™!, respectively). As seen in upland tundra and taiga forests
(Sections 5.1.1 and 5.1.2), introducing a nonlinear light-response in GPP5 (Equation 8) results in improved r (0.63 vs. 0.53),
reduced ubRMSE (1.04 vs. 1.33 gCm~2d 1), and reduced B (-0.04 vs. -0.40 gCm~2d 1), compared with GPP,. GPP3 shows
only a minor improvement over GPP3. Due to the inclusion of GDD through an additional stress scalar (Equation 10), GPP,
outperforms GPP3 (0.72 vs. 0.65 for 1, and 0.92 vs. 1.01 gCm~2d~! for ubRMSE). In contrast to upland tundra and taiga
forests (Sections 5.1.1 and 5.1.2), using a bell-shaped function for simulating RZSM influence in GPP5 (Equation 11), result
in degraded performance compared with GPP,4. Overall, GPP,4 ranks first, followed by GPP3, GPP5, and GPP5, with GPP;
ranking last.

Similar to upland tundra (Section 5.1.1), Sypp remains equal to 1 throughout the entire range of VPD variability across all
formulations (Figure 4.B3-F3). Likewise, as observed in taiga forests (Section 5.1.2), RZSM appears to be a negligible input
in GPPpyc, with Sgrzsm staying equal to 1 throughout the entire range of RZSM variability (Figure 4.A4). However, RZSM
gains a considerable effect in GPP; through GPPj, especially under dry conditions (Figure 4.B4-F4). The introduction of the
nonlinear light-response in GPP;, triggers an early saturation (Figure 4. B6-F6), that persists throughout GPPs5.

Across EC towers (Figure 8), GPP, and GPP5 exhibit the highest median r (0.79 and 0.76). GPP4 and GPP3 exhibits the
lowest median ubRMSE (0.76 and 0.79 gCm~2d !, respectively), closely followed by GPP5 (0.82 gCm~2d~!) and GPP;
(0.86 gCm~2d~1). Median B is similar for GPP; through GPP5, with -0.21, -0.22, -0.23, and -0.19 gCm~2d !, respectively.
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5.2 Ecosystem respiration

This subsection presents the performance of the AS-adapted ER formulations (ER; through ER5) and ERy 4¢ relative to ERgc.
As GPPj ranked first among the GPP formulations for upland tundra and taiga forests, it was used as the GPP input for the ER

modeling. For wetlands, GPP4 was used instead.
5.2.1 Upland tundra

Based on the spatiotemporal evaluation for upland tundra (Table 5), ER;, which uses the approach where mean annual NPP
is allocated uniformly across the year to Lg,y (Equation 5), performs better than ERy 4¢. It exhibits higher r (0.51 vs. 0.43),
reduced ubRMSE (0.72 vs. 0.99 gCm~2d '), and reduced B (-0.09 vs. 0.38 gCm~2d~1). Switching to the dynamic allocation
in ER, (Equation 6) leads to enhanced r (0.65), ubRMSE (0.60 gCm—2d '), and B (-0.06 gCm~2d '), compared with ER;.
Using a constant Ry, term instead of a SOC model in ER; (Equation 12) results in r and ubRMSE close to those of ER,
and lower B (0.00 vs. -0.06 gCm~2d~1). Using a dynamic Ry, in ER4 (Equation 13) shows better performance than ER3
with greater r (0.73 vs. 0.61) and reduced ubRMSE (0.53 vs. 0.62 gCm~2d~!). In ERs, the use of a bell-shaped function to
simulate SSM influence does not provide a clear benefit. After score computation, ER4 ranks first, followed by ER3, ER5, and
ER,, with ER; ranking last.

ST appears to have a stronger effect than SSM in ER; through ERy4 (Figure 5SB1-E1 vs. B2-E2). Sgt mainly oscillates around
0.5, while Sgsm rapidly reaches 1 under dry conditions, and wet conditions do not constrain model outputs. In ERj5, the use
of a bell-shaped function to simulate SSM increases its effect (Figure 5F2), but without any improvement in performance, as
previously observed.

Considering metrics across EC towers (Figure 8), the highest median r are obtained for ER, and ER5 (0.67 and 0.62). The
lowest median ubRMSE is observed for ER5 (0.41 gCm~2d ') and ER4 (0.42 gCm~2d '), closely followed by the other
formulations. In terms of median B, ER5, ER3, and ER4 show the smallest values with 0.01, -0.01, and 0.02 ng”d’l.

5.2.2 Taiga forests

The spatiotemporal evaluation for taiga forests (Table 5) indicates that ER| outperforms ERy4c, showing enhanced r (0.52 vs.
0.33), reduced ubRMSE (1.28 vs. 1.71 gCm~2d~1), but slightly higher B (-0.15 vs. -0.11 gCm~2d~!). As in upland tundra
(Section 5.2.1), switching from a constant to dynamic allocation of mean annual NPP to L, in ER, (Equation 6) results in
enhanced performance over ER;. Using a constant Ry, term instead of a SOC model in ER3 (Equation 12) exhibits similar r
(0.53 vs. 0.54) and ubRMSE (1.23 vs. 1.23 gCm~2d 1), but lower B (-0.01 vs. -0.08 gCm~2d 1), compared with ER,. Using
a dynamic Ry,se in ER4 (Equation 13) shows better performance than ER3 with greater r (0.59 vs. 0.53) and reduced ubRMSE
(1.17 vs. 1.23 gCm~2d~1). In ERs5, the use of a bell-shaped function to simulate SSM influence does not provide any benefits.
After score computation, ER4 ranks first, followed by ER5, ER3, and ERo, with ER; ranking last.
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SSM appears to be a negligible input in ER 4¢, as Sgsm remains equal to 1 throughout the entire range of SSM variability
(Figure 6.A2). However, SSM gains more effect in ER; through ERj5, although its effect remains weaker than that of ST
(Figure 6.B2-F2).

Across EC towers (Figure 8), median r is similar across formulations, ranging from 0.61 to 0.64. The same pattern is observed
for median ubRMSE, which ranges from 0.95 to 1.01 ng_Qd_l. The lowest median B are obtained for ER3 and ER5, with
0.00 and -0.02 gCm~2d ", respectively.

5.2.3 Wetlands

Based on the spatiotemporal evaluation for wetlands (Table 5), ER; outperforms ERyp4c, exhibiting enhanced r (0.49 vs. 0.23),
reduced ubRMSE (0.81 vs. 1.81 gCm~2d '), and reduced B (-0.06 vs. 1.76 gCm~2d~1). Switching from a constant to
dynamic allocation of mean annual NPP to Lg,;; in ER, (Equation 6) slightly increases r (0.53 vs. 0.49), and reduces ubRMSE
and B (0.78 vs. 0.81 gCm~—2d ™!, -0.02 vs. -0.06 gCm~2d !, respectively). Using a constant or dynamic Ry, term instead
of a SOC model in ER3 and in ER4 (Equations 12 and 13) does not result in enhanced performance. In ERs, the use of a
bell-shaped function to simulate SSM influence does not provides any benefits neither. After score computation, ER3 and ER,
are tied for first place, followed by ER, and ER5, with ER; ranking last.

As observed in taiga forests (Section 5.2.2), SSM appears to be a negligible input in ER; 4¢, with Sggm staying equal to 1
throughout the entire range of SSM variability (Figure 7.A2). However, SSM gains a considerable effect in ER; through ERs5,
especially under dry conditions (Figure 7.B2-F2). ER| 4¢c may overestimate ERgc by up to a factor of two or three (Figure 7.A3).
This magnitude discrepancy is largely removed in ER; through ERs, but a pattern persists, in which ERgc are systematically
overestimated at low values (approximately 0 to 1 gCm~2d 1) across all formulations (Figure 7.B3-F3).

Considering metrics across EC towers (Figure 8), median r is similar across formulations, ranging from 0.63 to 0.67. The
same pattern is observed for median ubRMSE, with the highest value assigned to ER; (0.58 gCm~2d~!) and the lowest to
ER, (0.48 gCm—2d!). ER; and ER, exhibiting the lowest median B, with -0.01 and -0.04 gCm~—2d !, respectively.

5.3 Net ecosystem CO- exchange

Using the scores assigned to the AS-adapted GPP and ER formulations (Sections 5.1 and 5.2), NEEss was derived differently
for each ecosystem type. For upland tundra and taiga forests, NEEys = ER4 - GPP5, while for wetlands NEE»s = ER3 - GPPy.

Based on the spatiotemporal validation for upland tundra (Table 6), NEEas exhibits enhanced r (0.64 vs. 0.55), reduced
ubRMSE (0.73 vs. 0.86 gCm~2d 1), and similar B (0.01 vs. -0.03 gCm~2d '), compared with NEE; 4c. This improvement is
also observed when considering the median r and ubRMSE across all EC towers (0.62 vs. 0.44 for r, 0.69 vs. 0.90 gCHFQd’1
for ubRMSE). However, median B changed from 0.06 to -0.12 gCm~2d 1.

For taiga forests, the spatiotemporal validation indicates (Table 6) that NEEAg outperforms NEE; 4¢ (0.63 vs. 0.55 for r,
1.09 vs. 1.17 gCm~2d ! for ubRMSE, and 0.02 vs. 0.26 gCm~2d ! for B). Across EC towers, the same pattern is observed:
median ubRMSE and B are reduced (0.97 vs. 1.04 gCm~2d~! and -0.09 vs. 0.40 gCm~2d !, respectively), median r is higher
(0.60 vs. 0.54).
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Finally, for wetlands, the spatiotemporal validation indicates (Table 6) that NEE,g exhibits reduced ubRMSE and B (0.93
vs. 0.99 gCm~2d~! and 0.01 vs. 0.45 gCm~2d !, respectively), but similar r (0.48 vs. 0.47), compared with NEE 4c. Im-
provement is also observed when considering the median B across all EC towers (0.22 vs. 0.73 gCm~2d 1), but the median

ubRMSE is similar (0.82 vs. 0.79 gCm~2d~1), and the median r is lower (0.33 vs. 0.50).

6 Discussion

This section discusses how the modifications implemented in the AS-Adapted GPP and ER model formulations affected their
performance relative to GPPgc and ERgc. We specifically identify candidate GPP model adjustments for operational implemen-
tation, evaluate the contribution of incorporating SOC dynamics into ER modeling, examine the influence of input variables,

and highlight the limitations of our study.
6.1 Candidate GPP model adjustments

Implementing a nonlinear light-response function to represent the influence of APAR on GPP (GPP,, Equation 8) appears
to be the most effective adjustment tested for reducing both ubRMSE and B across the three ecosystem types (Section 5.1,
and Table 4, Figure 8). However, our results indicate that this adjustment requires careful parametrization, as it can lead to
underestimation of GPP peaks (Figures 2—4).

Adding GDD into the GPP modeling (Equation 10) complements the nonlinear light-response adjustment by further reduc-
ing ubRMSE and predominantly improving r across the three ecosystem types (Section 5.1, Table 4, Figure 8). These results
suggest that the current L4C model may lack a phenological proxy that accounts for the progressive functional adjustment of
vegetation to environmental conditions over time (Maire et al., 2012), thereby complementing the instantaneous proxies cur-
rently used as inputs. Vegetation indices are assumed to capture vegetation phenology by tracking seasonal changes in canopy
structure and greenness. Because GDD is derived from air temperature and MNT is used as a proxy for the instantaneous tem-
perature response of GPP, replacing GDD with a vegetation index may help reduce redundancy (Huang et al., 2019; Pulliainen
et al., 2024). In this context, LAI or normalized difference vegetation index (NDVI) could potentially serve this role. However,
LAI is likely to introduce additional redundancy, as VIIRS LAI retrievals are already used to derive FPAR, which represents
canopy phenology in the GPP formulation (Equation 2). In contrast, NDVI may provide a more independent phenological
proxy without duplicating existing model inputs. Nonetheless, MODIS and VIIRS vegetation indices exhibit large uncertain-
ties at high northern latitudes, particularly during shoulder seasons, due to extensive cloud cover and snow contamination (Xu
et al., 2018; Pu et al., 2023).

Overall, the nonlinear light-response adjustment appears to be the strongest candidate for correcting GPP magnitude dis-
crepancies, while incorporating GDD emerges as the most effective adjustment to improve GPP seasonal dynamics. These two
findings are consistent with McCallum et al. (2013), where the authors reported that the inclusion of temperature acclimation
and nonlinear light-response in GPP modeling in Russian boreal forests improved model performance. Future studies could

explore more complex light-response functions, such as a rectangular hyperbolic function, where the parameters may vary
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temporally with temperature, as suggested by Wang et al. (2014a). However, testing this approach would imply departing from
the current multiplicative structure of the L4C model, in which direct mechanistic forcing—response behaviors are represented.
Prior work also suggests that vegetation green-up onset is influenced by winter chilling accumulation and precipitation (Fu
et al., 2014). Greater accumulation of chilling days may lead to earlier green-up, as vegetation exposed to colder winter tem-
peratures requires less thermal accumulation (less GDDs) to initiate spring growth. In contrast, higher winter precipitation may
contribute to delayed green-up through thicker snowpacks, cooler soil temperatures, and increased cloud cover that reduces
incoming radiation. Future improvements could therefore integrate winter chilling days and precipitation into the normalized

GDD-based phenological proxy to better represent early-season GPP dynamics.
6.2 Comparison of SOC-based and empirical approaches for ER modeling

Updating the allocation of mean annual NPP to L, from a constant to a LAI-based formulation to represent SOC dynamics
(ER; vs. ERy; Equations 5 and 6) improves ER model performance. Both the spatiotemporal evaluation and the median
metrics across EC towers indicate higher r and lower ubRMSE and B, with stronger improvements for upland tundra and
weaker improvements for taiga forests and wetlands (Table 5 and Figure 8). The benefits are limited relative to the added
model complexity, especially in taiga forests and wetlands, compared with the simpler approach that replaces SOC dynamics
with a single constant Ry, (ER3, Equation 12). Based on the spatiotemporal evaluation, introducing temporal variability in
Rpase (ER4, Equation 13) leads to improved performance in upland tundra and taiga forests (Table 5). However, the median
metrics across EC towers do not indicate a clear improvement across the three ecosystems (Figure 8).

Overall, using SOC dynamics with the Lg,; estimation scheme from the L4C model version 8 to model ER appears to be
the most suitable approach, as it outperforms version 7 and is physically grounded and mechanistically interpretable compared
with the two empirical approaches. Continuing to explore alternative ways to estimate Lg,; may be a promising direction for
future research. However, the assumption that mean annual NPP can serve as a proxy for the magnitude of Lg,; may not be
realistic (Sierra et al., 2022). In addition, the timing of NPP allocation to L¢,; may not accurately reflect actual changes in
aboveground biomass, particularly given the large uncertainties in LAI and FPAR retrievals at high northern latitudes (Xu
et al., 2018; Pu et al., 2023). Furthermore, because NPP is derived from modeled GPP, any inaccuracies in GPP propagate
directly into modeled Lg,;, SOC, and ultimately ER. Finally, recent work in Alaska has shown that implementing vertical SOC
transport to simulate depth-dependent Lg,;, SOC distribution, and corresponding HR rates may further improve ER estimates
(Yi et al., 2020).

6.3 Tested but unretained GPP and ER model adjustments

Implementing logistic ramps to represent GPP responses to MNT, VPD, and RZSM stress (GPP3, Equation 9) provides limited
benefits based on the spatiotemporal evaluation (GPPy vs. GPP3 in Table 4). However, this adjustment appears to improve
median r and ubRMSE across EC towers (GPP5 vs. GPP3 in Figure 8.A1-C1). This suggests that MNT, VPD, and RZSM may
exhibit nonlinear interactions with GPP, but the added value may not justify the increased complexity required to implement

this adjustment.
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The spatiotemporal evaluation indicates that using a bell-shaped function to represent RZSM influence on GPP (GPPs,
Equation 11) provides only a limited performance improvement in upland tundra and no improvement in taiga forests (Table 4).
One possible explanation is that, in upland tundra, RZSM exhibits both dry and wet conditions across years and EC tower
sites (grey histogram in Figure 2.F4), whereas in taiga forests, conditions remain mostly dry with less seasonal variation
(Figure 3.F4). This pattern is supported by the bimodal distribution of RZSM in upland tundra, in contrast to the unimodal
distribution in taiga forests. Nevertheless, the RZSM distribution in wetlands is bimodal (Figure 4.F4), with both dry and wet
conditions, but the bell-shaped function worsens the performance of modeled GPP (Table 4). The diminishing returns under
wet conditions appear to penalize model calibration, indicating a different ecosystem response to RZSM in wetlands compared
with upland tundra and taiga forests. This may reflect the adaptation of wetland vegetation to anaerobic conditions, where
excessive RZSM does not hinder photosynthesis activity. Although several studies show that wetlands and peatlands are more
sensitive to drought than to flooding (Churchill et al., 2015; Olefeldt et al., 2017; Heinzelmann et al., 2025), clear evidence is
lacking to suggest that GPP in wetlands does not exhibit diminishing returns under high RZSM conditions. It is also noteworthy
that the bell-shaped function does not improve model performance for any ecosystem when normalized RZSM is used (not
shown), as is the case in the original L4C model (Section 3). The bell-shaped function offers no clear benefit neither when
considering median metrics across EC towers (Figure 8). Finally, the L4C model methodology focuses on direct mechanistic
forcing—response behavior, where instantaneous RZSM data are used as input. However, a temporal lag in GPP response to
RZSM saturation may be expected, as it can take several days to weeks for soil oxygen levels to become depleted to the point
of restricting aerobic processes under saturation. A larger number of EC towers should also be included to increase RZSM
variability during calibration before drawing conclusions about the value of this adjustment for North American AS regions.

As in the GPP modeling, the use of a bell-shaped function to represent SSM influence on ER provides no clear improvement,
regardless of ecosystem type or whether dry and wet SSM conditions are included during calibration (Table 5 and Figures 5-8).
These results indicate that an unidirectional function ramp is more appropriate, with dry conditions limiting ER rates, and no
diminishing returns under wet conditions. The same conclusion is drawn when SSM expressed in relative wetness units is used
(not shown), as in the original L4C model (Section 3). This finding partly contrasts with Endsley et al. (2022), who reported
improved seasonal ER performance after adding an O diffusion limitation (also based on SSM) to the original monotonic
linear response, thereby penalizing ER rates under high SSM. The differing behavior between studies may first be attributed to
differences in SSM response functions. In addition, in our study the GPP formulation used as input to ER already incorporates
a bell-shaped response to RZSM for upland tundra and taiga forests, and in Endsley et al. (2022), the SPL4ASMGP product did
not yet account for peatland hydrology (Reichle et al., 2023).

6.4 Key drivers in shaping model performance

As VPD rises, indicating atmospheric dryness, plants typically show stomatal closure to minimize water loss, which in turn
reduces their photosynthetic activity (L6pez et al., 2021). However, in upland tundra and wetlands, GPP appearsinsensitive
to VPD as the corresponding stress scalar Sypp remains equal to 1 across all five AS-adapted formulations (Figures 2.B3-F3

and 4.B3-F3). This suggests that either the VPD response is inadequately represented in the formulations, or that vegetation in
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these areas is inherently less responsive to stomatal closure than in taiga forests, where Sypp strongly constrains the modeling
(Figure 3.B3-F3). Indeed, VPD distributions are similar across the three ecosystem types, which supports the idea that the
observed differences in Sypp are not due to differing environmental conditions, but rather to ecosystem-specific sensitivity. In
other words, for the same VPD values, the model applies a stronger constraint to vegetation photosynthetic activity in taiga
forests, while in upland tundra and wetlands it remains unconstrained. These findings are consistent with those of Chen et al.
(2023), where the authors observed that increasing VPD did not hinder vegetation growth in northern peatlands. Additionally,
Zona et al. (2023) reported that VPD was not correlated to GPP at monthly scales in Arctic tundra, while Mirabel et al. (2023)
found that tree growth in the Canadian boreal forest responded negatively to rising VPD.

Across all three ecosystem types, the most notable model improvement arises from revising the influence of APAR and
AT (through GDD) on GPP (Table 4, Figure 8, Section 6.1). Interestingly, APAR and AT are also the two drivers primarily
used to partition NEEgc into GPPgc and ERgc (Section 2). This indicates that model performance is inherently entangled
with these two drivers, rather than to VPD, RZSM, SSM, SOC, or ST. It is important to note that drivers used in the L4C
model formulations are provided at 9-km and 25-km resolution (except FPAR), which is coarse relative to EC tower footprints
(Sections 2 and 3). Some of the discrepancies between EC measurements and model estimates may therefore be attributed to
representativeness errors, as the coarse model resolution is expected to smooth spatial variability that is captured by the EC
measurements. Coupled with the candidate GPP model adjustments (Section 6.1), using higher spatial resolution PAR and AT

inputs could represent a promising avenue for improving GPP estimates and, consequently, ER estimates in future studies.
6.5 Limitations

Although the best-scoring GPP and ER formulations showed performance gains relative to the original L4C model, particularly
for GPP, the resulting improvement in NEE performance is more modest (Tables 4, 5, and Figure 8 compared with Table 6).
These results suggest that developing more accurate representations of ER and GPP does not necessarily translate into improved
NEE performance. This is because errors in modeled ER and GPP can either compensate or accumulate when computing
NEE,s, thereby directly affecting its ability to accurately predict short-term transitions between CO; sink and source states.
Regardless of whether NEEgc is partitioned into GPPgc and ERgc using daytime data, nighttime data, or a combination of
both, daytime ERgc is derived from a fitted Q1o (power-based) or Arrhenius (exponential-based) function (Section 2). These
functions depend solely on temperature and estimate the combined contribution of AR and HR, treating both components as
a single and inseparable flux. In the L4C model and the tested AS-adapted formulations, ER is explicitly represented as the
sum of AR and HR, with both components estimated separately using multiple drivers, including APAR, GDD, MNT, VPD,
RZSM, ST, and SSM. This approach is based on the assumed linkages between GPP and AR, and between GPP, Lg,;, SOC
and HR (Kimball et al., 2008), resulting in a more mechanistic and interaction-rich framework than partitioning methods.
Consequently, calibrating ER formulations is challenging, as the reference ER is obtained from partitioning using a simpler,
empirical approach, which may limit model performance. If the ultimate goal is to estimate the CO5 budget accurately rather
than to predict the underlying GPP and ER components, it may be advantageous to calibrate the L4C model using NEEgc as

the reference, rather than relying on GPPgc and ERgc as intermediate references. However, this approach prevents validating
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whether the modeled GPP and ER truly reflect the underlying processes. For future research, it could also be valuable to
partition NEEgc into GPPgc and ERgc using a more mechanistic approach, similar to the L4C model, explicitly distinguishing
between AR and HR.

Finally, several studies have shown that GPP responds to the ratio of leaf-internal to ambient CO2 concentration (Wang et al.,
2014b, 2017). Although this ratio is regulated by environmental conditions such as temperature and VPD, neither the original
L4C model nor the tested formulations explicitly accounts for the response of GPP to changes in ambient CO2 concentration.
Because ambient CO4 varies over time and may continue to increase in the future, this omission may limit the ability of the

L4C model to accurately predict GPP over long temporal scales.

7 Conclusions

The goal of this study was to refine the integration of energy and moisture proxies into the SMAP L4C GPP and ER modeling
for the North American AS growing season. Alternative GPP and ER model formulations were calibrated and evaluated against
GPPgc and ERgc across upland tundra, taiga forests and wetlands, covering the period from 2015 to 2022. Ultimately, we

recommend two key adjustments related to energy proxies to enhance the L4C model ability to monitor the GPP process:

— Implementing a nonlinear light-response, particularly to reduce ubRMSE and B;

— Incorporating GDD to reflect vegetation green-up and senescence phases, thereby improving seasonal dynamics.

In contrast, model adjustments related to moisture proxies (VPD, RZSM, SSM) for both ER and GPP modeling do not currently
emerge as essential for future operational implementation. Moreover, evaluating the benefits of integrating SOC dynamics into
ER modeling remains challenging, even though the L4C version 8 approach represents an improvement over that of version 7,
and therefore further research into ER modeling is recommended.

In addition, we encourage the scientific community to harmonize strategies between flux-partitioning methods and mecha-
nistic modeling approaches (such as the L4C model), particularly for estimating ER and its underlying HR and AR components.
The alignment between partitioning and modeling frameworks is essential to enhance the reliability of spatial extrapolation of
GPPgc and ERgc using satellite-based TCF models.

While GPP and AR are dominant during the growing season, the winter and shoulder seasons also play a critical role in
shaping the annual CO4 budget (Kim et al., 2013; Natali et al., 2019), because HR becomes the primary contributor when
GPP and AR are minimal or absent. Therefore, future studies will focus on adjusting GPP and ER modeling during these
periods to provide improved year-round estimates of NEE, GPP, and ER, as well as more accurate annual CO5 budgets for

North-American AS environments.
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Site name Site ID Coordinates Years Ecosystem | PFT | NDP Reference
Iqaluktuuttiaq Mesic CA-IQm | 69.08°N, -104.58°E | [2022, 2023[ | Upland Tundra | GRA | 68 Madelon et al. (2025)
Iqaluktuuttiaq Wetland CA-IQw | 69.08°N, -104.58°E | [2022, 2023[ Wetland GRA | 22 Madelon et al. (2025)
Havikpak Creek CA-HPC | 68.32°N, -133.52°E | [2016, 2023[ | Taiga Forest | SHR | 371 | Sonnentag and Marsh (2021a)
Scotty Creek Bog CA-SCB | 61.31°N, -121.30°E | [2015, 2023[ Wetland ENF | 633 | Sonnentag and Quinton (2021)
Scotty Creek Landscape CA-SCC | 61.31°N, -121.30°E | [2015, 2023[ | Taiga Forest | ENF | 733 | Sonnentag and Quinton (2018)
Smith Creek CA-SMC | 63.15°N, -123.25°E | [2017, 2023[ | Taiga Forest | ENF | 312 Sonnentag (2021)
Trail Valley Creek CA-TVC | 68.75°N, -133.50°E | [2015, 2023[ | Upland Tundra | SHR | 620 | Sonnentag and Marsh (2021b)
Bonanza Creek Black Spruce US-BZS | 64.70°N, -148.32°E | [2017, 2023[ | Taiga Forest | ENF | 652 Euskirchen (2022d)
Bonanza Creek Old Thermokarst Bog | US-BZo | 64.69°N, -148.33°E | [2018, 2023[ Wetland ENF | 548 Euskirchen (2022c¢)
Bonanza Creek Rich Fen US-BZF | 64.70°N, -148.31°E | [2017, 2023[ Wetland ENF | 689 Euskirchen (2022b)
Bonanza Creek Thermokarst Bog US-BZB | 64.70°N, -148.32°E | [2017, 2023[ Wetland ENF | 680 Euskirchen (2022a)
Eight Mile Lake US-EML | 63.88°N, -149.25°E | [2015, 2021[ | Upland Tundra | SHR | 571 Bracho et al. (2021)
Imnavait Creek Heath Tundra US-ICh | 68.61°N, -149.30°E | [2015, 2023[ | Upland Tundra | SHR | 314 Euskirchen et al. (2022a)
Imnavait Creek Sedge Tundra US-ICs | 68.61°N, -149.31°E | [2015, 2023[ Wetland SHR | 336 Euskirchen et al. (2022b)
Imnavait Creek Tussock Tundra US-ICt |68.61°N, -149.30°E | [2021, 2023[ | Upland Tundra | SHR | 77 Euskirchen et al. (2022c¢)
Poker Flats Black Spruce US-Prr | 65.12°N, -147.49°E | [2015, 2023[ | Taiga Forest | ENF | 827 Iwahana et al. (2023)
Poker Flats Fire Scar US-Rpf | 65.12°N, -147.43°E | [2015, 2023[ | Taiga Forest | ENF | 852 Ueyama et al. (2023b)
University Of Fairbanks US-Uaf | 64.87°N, -147.86°E | [2015, 2023[ | Taiga Forest | ENF | 885 Ueyama et al. (2023a)
Yukon-Kuskokwim Delta Burned | US-YK1 | 61.27°N, -163.22°E | [2019, 2023 Wetland SHR | 330 Natali (2024)
Yukon-Kuskokwim Delta Unburned | US-YK2 | 61.26°N, -163.26°E | [2019, 2023[ Wetland SHR | 415 Natali (2025)

Table 1. List of the 20 eddy covariance (EC) tower sites used in this study. Ecosystem types were assigned based on site descriptions while

plant functional type (PFT) classes were assigned using the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 type 5

product (Friedl and Sulla-Menashe, 2019). GRA, SHR, and ENF stand for grassland, shrubland, and evergreen needleleaf forest, respectively.

Column 7 shows the number of data points (NDP) within the EC net ecosystem CO2 exchange (NEEgc), gross primary production (GPPgc),

and ecosystem respiration (ERgc) time series after daily averaging and data filtering (see Sections 2 and 4.2).
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Abbreviation Definition
AS Arctic-Subarctic
L4C model Soil Moisture Active Passive Level-4 Terrestrial Carbon Flux model

EC Eddy covariance
PFT Plant functional type
NEE Net ecosystem COs exchange [gCm~2d ']
GPP Gross primary production [gCm ™ 2d ]

ER Ecosystem respiration [gCm ~2d ']

AR Autotrophic respiration [gCm™2d ']

HR Heterotrophic respiration [gCm ~2d "]

NPP Net primary production [gCm~2d "]

PAR Photosynthetically active radiation [MJ m~2d71]
FPAR Canopy-intercepted fraction of absorbed photosynthetically active radiation [dim.]
APAR Canopy-absorbed photosynthetically active radiation [MJm ~2d ']
MNT Minimum air temperature [K]

VPD Vapor pressure deficit [kPa]
RZSM Rootzone soil moisture [m®m ™3]

SSM Surface soil moisture [m®m ™3]

ST Soil temperature [K]
SoC Soil organic carbon [gCm 2]
Lean Litterfall [gCm 2]
GDD Normalized growing degree days [dim.]
S« Stress scalar corresponding to the environmental variable x [dim.]
LAI Leaf area index [dim.]
NDVI Normalized difference vegetation index [dim.]

Table 2. Summary of frequently used abbreviations.
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AS-adapted
formulation Free parameters Model specificity
GPP; €max> MNTmax, VPDiin, VPDmaxs RZSMmin, RZSMpax MNTmin is set to 273.15 K
GPP; GPPrax, APARit, MNTmax, VPDmin, VPDmax, RZSMmin, RZSMmax Nonlinear light response to APAR
GPPs3 GPPrax, APARGit, YMNT, YvPD, VPDeric, YRZSMs RZSMeri¢ Nonlinear responses to MNT, VPD and RZSM
GPP4 GPPrax, APARGit, YMNT, YvPDs VPDerits YRZSM>» RZSMerit, acpp, bapp Incorporation of GDD
GPPs GPPrax, APARGit, YMNT, YvPDs VPDerit, arzsM, brzsM, aGpD, DGpD Bell-shaped response to RZSM
ER; a, ki, A, Bo, Yssm»> SSMerit Constant daily allocation of annual mean NPP to Ly
ER2 a, ki, A, Bo, Yssms SSMrit Dynamic daily allocation of annual mean NPP to Ly
ER3 , Roases Bo, Yssms SSMerit Constant Ry instead of SOC dynamic
ER4 o, Ro, w, Bo, Yssm, SSMerit Dynamic Rygse(t)
ERs5 a, Ry, w, Bo, assm, bssm Bell-shaped response to SSM

Table 3. Summary of the specificity of each Arctic-Subarctic (AS) adapted model formulation of the L4C model. Column 1 lists the gross

primary production (GPP) and ecosystem respiration (ER) formulations, labeled GPP; through GPPs and ER; through ERs, respectively.

The free parameters estimated during the optimization process are provided in column 2. Each GPP and ER formulation is incrementally

built on the previous one by incorporating its modifications along with an additional change summarized in column 3. APAR, MNT, VPD,

RZSM, SSM, GDD, NPP, Ly, SOC, Rpase, denote absorbed photosynthetically active radiation, minimum air temperature, vapor pressure

deficit, rootzone soil moisture, surface soil moisture, normalized growing degree days, net primary productivity, litterfall, soil organic carbon,

and baseline heterotrophic respiration, respectively. Refer to Sections 3 and 4.1 for a description of each model formulation and parameter.

25




https://doi.org/10.5194/egusphere-2026-720
Preprint. Discussion started: 16 February 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere\

GPP Upland Tundra Taiga Forests Wetlands
r ubRMSE B r ubRMSE B r ubRMSE B

GPPLyc | 0.64 1.47 0.41 | 0.58 1.93 -0.38 | 0.48  2.19 1.31

GPP; | 0.56 120 -0.32]0.62 1.75 -0.43 | 0.53 1.33 -0.40

GPPy | 0.62 0.99 0.00 | 0.67 1.43 -0.07 | 0.63 1.04 -0.04

GPP; | 0.65 096  -0.01 | 0.67 1.41 -0.02 | 0.65 1.01 -0.00

GPP; | 0.75 0.84  -0.01|0.74 130 -0.00|0.72 092 0.00

GPPs |0.77 080  -0.02|0.74 1.29  -002|067 099  -0.05

Table 4. Spatiotemporal performance of modeled gross primary production (GPP) against daily-averaged eddy covariance GPP (GPPgc)
in upland tundra, taiga forests, and wetlands during the growing season. GPPy4c refers to GPP from the original L4C model, while GPP;
through GPP;5 represent outputs from the five Arctic—Subarctic (AS) adapted formulations. Refer to Sections 3 and 4.1 for a description
of each model formulation. ubRMSE and B denote the unbiased root mean squared error and bias, respectively, expressed in gCm ™ 2d !,
A positive (negative) B indicates that the model formulation overestimates (underestimates) GPPgc. r is the Pearson correlation coefficient
(dimensionless). The evaluation accounts for both spatial and temporal variability. It includes all available GPPgc data points for each

ecosystem type after filtering, including those used for calibration (1,650 for upland tundra, 4,632 for taiga forests and 3,653 for wetlands;

Section 4.3).

ER Upland Tundra Taiga Forests Wetlands
r ubRMSE B r ubRMSE B r ubRMSE B

ERp4c | 0.43 0.99 0.38 | 0.33 1.71 -0.11 | 0.23 1.81 1.76

ER; |0.51 0.72 -0.09 | 0.52 1.28 -0.15 | 0.49 0.81 -0.06

ER> | 0.65 0.60 -0.06 | 0.54 1.23 -0.08 | 0.53 0.78 -0.02

ERs | 0.61 0.62 0.00 | 0.53 1.23 -0.01 | 0.51 0.79 0.00

ERy |0.73 0.53 -0.01 | 0.59 1.17 0.01 | 0.51 0.79 -0.03

ERs | 0.71 0.54 0.00 | 0.59 1.17 0.02 {050  0.80 -0.03

Table 5. Same as Table 4, but for ecosystem respiration (ER). The evaluation includes all available ERgc data points for each ecosystem

type after filtering, including those used for calibration (1,650 for upland tundra, 4,632 for taiga forests and 3,653 for wetlands; Section 4.3).
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Upland Tundra Taiga Forests Wetlands
r ubRMSE B r ubRMSE B r ubRMSE B
NEEL4c | 0.55(0.44) 0.86 (0.90) -0.03 (0.06) | 0.55(0.54) 1.17(1.04) 0.26 (0.40) | 0.47 (0.50) 0.99 (0.79) 0.45(0.73)
NEE,s | 0.64 (0.62) 0.73 (0.69) 0.01 (-0.12) | 0.63 (0.60) 1.09 (0.97) 0.02 (-0.09) | 0.48 (0.33) 0.93 (0.82) 0.01 (0.22)

NEE

Table 6. Performance of modeled net ecosystem CO2 exchange (NEE) against daily-averaged eddy covariance (EC) NEE (NEEgc) in up-
land tundra, taiga forests, and wetlands during the growing season. Modeled NEE is computed as the difference between modeled ecosystem
respiration (ER) and gross primary production (GPP). NEE4c denotes NEE from the original L4C model, while NEEas refers to outputs
from the Arctic—Subarctic (AS) adapted formulations. For upland tundra and taiga forests, NEEas = ER4 - GPP5, while for wetlands NEE4s
= ER3 - GPP4. The formulation selection was based on their performance scores (Section 4.4). Refer to Sections 3 and 4.1 for a description
of each model formulation. ubRMSE and B denote the unbiased root mean squared error and bias, respectively, expressed in gCm ™ 2d L.
A positive (negative) B indicates that the model formulation overestimates (underestimates) NEEgc. r is the Pearson correlation coefficient
(dimensionless). Values reported outside parentheses represent spatiotemporal performance, accounting for both spatial and temporal vari-
ability. This evaluation includes all available NEEgc data points for each ecosystem type after filtering (1,650 for upland tundra, 4,632 for
taiga forests and 3,653 for wetlands; Section 4.3). Values in parentheses represents temporal performance, shown as the median metrics

across EC towers.
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® High Arctic

@ Low Arctic
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Figure 1. Locations of the 20 eddy covariance (EC) towers providing measurements of net ecosystem exchange (NEEgc), NEE-derived
gross primary production (GPPgc) and ecosystem respiration (ERgc) from April 2015 to December 2022. The High Arctic, Low Arctic and
Subarctic zones were delineated following the Conservation of Arctic Flora and Fauna (CAFF) working group of the Arctic Council, using
Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imagery (Potapov et al., 2008). The permafrost extent is estimated in
percent areal coverage (Brown et al., 2002): continuous (>90-100% areal extent), discontinuous (>50-90%), sporadic (10-50%) and isolated
patches (<10%). Due to overlapping, a single color dot may represent up to four EC towers on the map. Information for each EC tower is

listed in Table 1. The figure was inspired by Madelon et al. (2025) and Mavrovic et al. (2023a).
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Figure 2. Ecosystem responses used to compute modeled gross primary production (GPP) from the L4C model (GPPyp4c, column A) and
from the Arctic-Subarctic (AS) adapted formulations (GPP; through GPPs, columns B-F) in upland tundra during the growing season. The
ecosystem responses are expressed as stress scalars, Sx, for each environmental variable x, where x represents absorbed photosynthetically
active radiation (APAR), minimum air temperature (MNT), vapor pressure deficit (VPD), root zone soil moisture (RZSM), and normalized
growing degree days (GDD). In the background of each subplot, the histogram of the corresponding environmental variable is shown in light
grey. All ecosystem responses of a given model formulation are calibrated jointly using eddy covariance GPP (GPPgc) as reference,
and not based on the histogram values. In subplot A4, RZSM™* refers to the normalized RZSM used as input in the original L4C model.
Subplots Al and B1 are omitted because APAR is used as a direct input, rather than through a stress scalar, in GPPr4c and GPP; formulations.
Similarly, subplots A5-D5 are omitted because GDD is not used as input in the GPPi4c, GPP1, GPP2, and GPP3 formulations. Refer to
Sections 3 and 4.1 for a detailed description of each model formulation. The last row displays scatter plots between modeled GPP against
GPPgc. It is a spatiotemporal comparison, accounting for both temporal and spatial variability. It includes all available GPPgc data points for

upland tundra after filtering, including those used for calibration (1,650 data points; Section 4.3).
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Figure 3. Same as Figure 2, but for taiga forests. The spatiotemporal comparison includes all available GPPgc data points for taiga forests

after filtering, including those used for calibration (4,632 data points; Section 4.3).
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Figure 4. Same as Figure 2, but for wetlands. The spatiotemporal comparison includes all available GPPgc data points for wetlands after

filtering, including those used for calibration (3,653 data points; Section 4.3).
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Figure 5. Ecosystem responses used to compute modeled ecosystem respiration (ER) from the L4C model (ERp4c, column A) and from the
Arctic-Subarctic (AS) adapted formulations (ER; through ER5, columns B-F) in upland tundra during the growing season. The ecosystem
responses are expressed as stress scalars, S, for each environmental variable x, where x represents soil temperature (ST) and surface soil
moisture (SSM). In the background of each subplot, the histogram of the corresponding environmental variable is shown in light grey.
All ecosystem responses of a given model formulation are calibrated jointly using daily-averaged eddy covariance ER (ERgc) as
reference, and not based on the histogram values. In subplot A2, SSM™ refers to the SSM in relative wetness unit used as input in the
original L4C model. Refer to Sections 3 and 4.1 for a detailed description of each model formulation. The last row displays scatter plots
between modeled ER against ERgc. It is a spatiotemporal comparison, accounting for both temporal and spatial variability. It includes all

available ERgc data points for upland tundra after filtering, including those used for calibration (1,650 data points; Section 4.3).
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Figure 6. Same as Figure 5, but for taiga forests. The spatiotemporal comparison includes all available ERgc data points for taiga forests

after filtering, including those used for calibration (4,632 data points; Section 4.3).
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Figure 7. Same as Figure 5, but for wetlands. The spatiotemporal comparison includes all available ERgc data points for wetlands after

filtering, including those used for calibration (3,653 data points; Section 4.3).
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Figure 8. Temporal performance of modeled gross primary production (GPP) and ecosystem respiration (ER) against daily-averaged
eddy covariance GPP (GPPgc) and ER (ERgc) in upland tundra, taiga forests, and wetlands during the growing season. GPPr4c and
ERp4c refer to GPP and ER from the original L4C model, while GPP; through GPPs and ER; through ER5 represent outputs from the
Arctic—Subarctic (AS) adapted formulations. Descriptions of the model formulations are provided in Sections 3 and 4.1. ubRMSE and B
denote the unbiased root mean squared error and bias, respectively, expressed in gCm~2d~'. A positive (negative) B indicates that the
model formulation overestimates (underestimates) GPPgc or ERgc. r is the Pearson correlation coefficient (dimensionless). Reported values

correspond to the median metric across all EC towers.
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Figure A1. Behavior of the ecosystem response functions used in the L4C model and the Arctic—Subarctic adapted formulations. Each panel

shows the same response function evaluated across a range of parameter values to illustrate how parameterization affects function shape.

Refer to Sections 3 and 4.1 for a detailed description of each model formulation. Panels A1, B1, and C1 correspond to Equations 7a,c,d 7b,

and 7e, respectively; panel D1 corresponds to Equation 8b. Panels A2 and B2 correspond to Equations 9a,c and 9b, respectively; panel C2

corresponds to Equations 10b and 11.
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