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Abstract. The Soil Moisture Active Passive Level-4 Terrestrial Carbon Flux model (hereafter referred to as the L4C model)

provides daily estimates of net ecosystem CO2 exchange (NEE), gross primary production (GPP), and ecosystem respiration

(ER) at a global scale. The model is based on direct mechanistic forcing–response relationships between CO2 fluxes and energy

proxies (absorbed photosynthetically active radiation and temperature) and moisture proxies (soil moisture and vapor pressure

deficit). Although the L4C model aims to provide a representative estimation of the CO2 budget of Arctic and Subarctic (AS)5

environments, a deeper understanding of carbon cycle processes and targeted refinements are needed to improve its accuracy.

In this study, alternative model formulations are proposed for the North American AS regions during the growing season.

These formulations are calibrated and evaluated using NEE-derived GPP and ER from 20 eddy covariance towers across

western Canada and Alaska, covering the period from 2015 to 2022. Refinements in the representation of energy proxies

resulted in greater improvements in model performance than adjustments to moisture proxies. Specifically, implementing a10

light-response curve in GPP estimation reduced unbiased root mean squared error and bias, while incorporating growing

degree days improved correlation. Adjustments to rootzone and surface soil moisture in GPP and ER estimation, respectively,

did not yield conclusive performance improvements. Vapor pressure deficit showed limited importance as a driver of GPP in

upland tundra and wetlands, whereas it had a stronger impact in taiga forests. Finally, the litterfall scheme used to represent

SOC dynamics in the L4C ER model formulation in version 8 demonstrated improved performance relative to version 7. These15

results highlight opportunities to enhance the accuracy of the L4C model for the North American AS growing season but also

underscores the need for further research on ER modeling.
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1 Introduction

Arctic and Subarctic (AS) environments store nearly half of the global soil organic carbon (SOC) pool (Tarnocai et al., 2009;

Hugelius et al., 2014; Mishra et al., 2021) and are experiencing accelerated warming (Rantanen et al., 2022). Rising temper-20

atures increase photosynthetic activity and extend the growing season, leading to higher CO2 uptake by vegetation (Myneni

et al., 1997; Jia et al., 2003; Euskirchen, E. S. et al., 2009; Natali et al., 2012; Forkel et al., 2016; Fisher et al., 2018). In

addition, rising temperatures enhance autotrophic respiration (AR) as well as heterotrophic respiration (HR) in two pathways:

directly, by stimulating microbial activity, and indirectly, by thawing permafrost and exposing frozen SOC to decomposition.

The combined increase in AR and HR intensifies CO2 release to the atmosphere (Natali et al., 2019; Turetsky et al., 2020;25

Virkkala et al., 2024). Consequently, estimating the net CO2 budget of AS regions is essential for understanding their role in

global climate system feedbacks (Oechel et al., 1993; Hayes et al., 2011; Turetsky et al., 2011; Bell et al., 2013; Schuur et al.,

2013; Schaefer et al., 2014; Zona et al., 2016). Nevertheless, our understanding of CO2 fluxes in the AS environments remains

limited. This is due to the inherent complexity and high cost of measuring CO2 fluxes, the scarcity of such measurements, and

the seasonal variability in the dominant processes controlling CO2 fluxes (Baldocchi et al., 2007; Fisher et al., 2018; Pallandt30

et al., 2022; Mavrovic et al., 2023b).

Net ecosystem CO2 exchange (NEE) represents the overall balance between CO2 uptake by photosynthesis, called gross

primary production (GPP), and CO2 release through ecosystem respiration (ER), as follows (Chapin et al., 2006)

NEE = HR + AR−GPP = ER−GPP (1)

GPP is a light-driven process whose efficiency is modulated by air temperature, soil moisture availability within the plant root35

zone and vapor pressure deficit, which can induce stomatal closure and thereby reduce CO2 uptake (Davis et al., 2014; Bao

et al., 2022). Comparatively, HR is governed by SOC availability, soil temperature, and surface soil moisture, whereas AR

primarily depends on air temperature, plant metabolic activity and GPP rate (Reichstein et al., 2005; Davis et al., 2014; Zona

et al., 2023). When soil temperature drops near 0 °C, the soil starts freezing and GPP and AR progressively ceases, following

a soil freezing characteristic curve (Salmabadi et al., 2025). Under fully frozen conditions, NEE is equal to HR, which is40

controlled by soil temperature and SOC availability (Natali et al., 2019; Mavrovic et al., 2023b).

Although global terrestrial carbon flux (TCF) models, atmospheric inversions (which infer surface CO2 fluxes from at-

mospheric CO2 concentrations), and data-driven flux-upscaling approaches are available to estimate the CO2 budget of AS

regions, they often disagree on whether these regions are CO2 sources or sinks (McGuire et al., 2012; Fisher et al., 2018;

López-Blanco et al., 2019; Virkkala et al., 2021; Ramage et al., 2024; Virkkala et al., 2024; Foster et al., 2024). In recent45

decades, satellite-based microwave remote sensing (300 MHz – 100 GHz) has provided a valuable approach for monitoring

land–atmosphere interactions and carbon cycle dynamics through the retrieval of key surface variables (Fisher et al., 2018;

Lees et al., 2018; Mavrovic et al., 2023a; Pulliainen et al., 2024) such as soil moisture (Kerr et al., 2012; Colliander et al.,

2017), snow properties (Lievens et al., 2019), aboveground biomass (Mialon et al., 2020), and freeze-thaw state (Rautiainen

et al., 2016; Derksen et al., 2017; Prince et al., 2019). In 2015, the Soil Moisture Active Passive (SMAP) satellite was launched50

to monitor surface soil moisture and freeze-thaw dynamics using L-band brightness temperature observations (Entekhabi et al.,

2

https://doi.org/10.5194/egusphere-2026-720
Preprint. Discussion started: 16 February 2026
c© Author(s) 2026. CC BY 4.0 License.



2010). One of the science objectives of the SMAP mission is to improve our understanding of interconnected water, energy,

and carbon cycles, as well as to quantify the boreal landscape CO2 budget (Entekhabi et al., 2014). In this context, the SMAP

Level-4 Global Daily 9-km EASE-Grid Carbon Net Ecosystem Exchange (SPL4CMDL) product currently provides global,

daily estimates of NEE and GPP, as well as ER (indirectly derived from HR, GPP and NEE). These estimates are derived55

from a TCF model (hereafter referred to as the L4C model), which is notably informed by the SMAP Level-4 Global 9-km

EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP) product (Jones et al., 2017; Endsley et al.,

2022; Kimball et al., 2025; Reichle et al., 2025). Although the L4C model achieves an unbiased root-mean-square error of

NEE within the targeted accuracy of 1.6 gCm−2d−1 in AS environments, recent studies have reported that it fails to capture

the amplitude of GPP and ER during the green-up phase (Endsley et al., 2022; Madelon et al., 2025). The authors also reported60

discrepancies in annual CO2 budgets when compared with eddy covariance (EC) measurements, leading to uncertainties in

classifying AS environments as net CO2 sources or sinks (Madelon et al., 2025). From April to July 2025, the L4C model

transitioned from version 7 to version 8 (Kimball et al., 2025), featuring a major update partly due to (i) the upgrade of the

SMAP SPL4SMGP product, which transitioned from its own version 7 to version 8 (Reichle et al., 2025), and (ii) changes to

the litterfall estimation scheme used for modeling SOC dynamics and ER (Section 3).65

The goal of this study is to better characterize how key environmental drivers influence GPP and ER, and to refine their

modeling for the North American AS growing season. To achieve this, we:

– explore alternative formulations of the L4C model (hereafter referred to as the AS-adapted models) that adjust GPP

and ER responses to absorbed photosynthetically active radiation, air and soil temperature, rootzone and surface soil

moisture, and vapor pressure deficit;70

– calibrate and evaluate these formulations using GPP and ER data from 20 EC towers across western Canada and Alaska

from 2015 to 2022;

– identify and interpret the specific model adjustments that yield the greatest performance improvements in terms of

Pearson correlation, unbiased root-mean-square error, and bias;

– provide recommendations for more accurate satellite-derived estimates of GPP and ER, with indirect benefits for NEE75

and CO2 budget estimation.

2 Eddy covariance measurements

NEE, GPP, and ER data were collected from 20 EC towers located in AS environments (Figure 1), all within the NASA

Arctic-Boreal Vulnerability Experiment (ABoVE) study domain (https://above.nasa.gov/sites.html). The dataset spans from

April 2015 through December 2022 (Table 1) and includes80

– half-hourly fluxes from 13 EC towers in Alaska, downloaded from the AmeriFlux Network website (https://ameriflux.lbl.gov).
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– half-hourly fluxes from 7 EC towers in western Canada, provided directly by the principal investigators to ensure the use

of the most up-to-date records; some of these sites are not yet available on the AmeriFlux Network website.

EC towers measure NEE by quantifying the turbulent vertical exchange of CO2 in the surface layer of the atmospheric

boundary layer (typically within the lowest tens of meters), where turbulence dominates the airflow (Aubinet et al., 2012;85

Burba, 2013, 2022). The spatial footprint can extend up to 1 km or more, but remains complex to calculate and varies with

wind direction, wind speed, and tower height (Leclerc and Thurtell, 1990; Schuepp et al., 1990; Aubinet et al., 2012; Webb

et al., 2016). NEE measurements are subject to systematic errors, which mostly arise from unmet assumptions, instrument

design and calibration, physical phenomena (e.g. storage terms), and terrain-specific conditions. These errors are generally well

characterized and are typically corrected using software, such as EddyPro, as part of the standard flux processing workflow90

(Aubinet et al., 2012; Burba, 2022). NEE measurements are also affected by random errors, notably turbulence sampling error,

which arises when large eddies are not adequately captured within a 30-minute window (Finkelstein and Sims, 2001). The

standard deviation of this error tends to follow a consistent pattern across ecosystem types and increases linearly with the flux

magnitude (Aubinet et al., 2012). Overall, random errors in NEE are difficult to quantify, but using simultaneous measurements

from two collocated EC towers, they have been estimated at 15 % for a 30-minute interval (Eugster et al., 1997; Dragoni et al.,95

2007).

GPP and ER are commonly derived from NEE using flux-partitioning methods. The most established approach assumes

that nighttime NEE consists solely of the ER component, since photosynthesis, and therefore GPP, is considered negligible

in the absence of light (Reichstein et al., 2005; Aubinet et al., 2012). Nighttime ER is modeled using the Arrhenius equation,

with air or soil temperature as the primary driver (Lloyd and Taylor, 1994). Air temperature is generally preferred because100

it better represents the landscape surrounding the EC tower, whereas soil temperature varies spatially and with depth across

heterogeneous terrain (Helbig et al., 2017a, b). Daytime ER is then extrapolated to isolate the GPP contribution from the

NEE measurements. Alternative approaches fit a light-response curve combined with a Q10 equation to NEE measurements,

accounting for the effects of photosynthetically active radiation (PAR) on GPP and air temperature on ER (Falge et al., 2001;

Gilmanov et al., 2003; Lasslop et al., 2010b; Runkle et al., 2013; Helbig et al., 2017a). GPP and ER have greater uncertainties105

than tower measurements of NEE because they are modeled using additional data and rely on various assumptions (Lasslop

et al., 2010a). In this study, we placed confidence in the flux-partitioning methods selected by the investigators at each EC

tower. We therefore considered the resulting partitioned GPP and ER values to be credible representations of the underlying

processes and suitable for use as reference data for model calibration and evaluation. EC NEE, GPP, and ER were averaged

from 30-minute intervals to daily time steps, using at least 24 out of the theoretical 48 data points available per day. Hereafter,110

NEEEC, GPPEC, and EREC refer to the daily means of EC NEE, GPP, and ER.

All EC towers considered in this study are located in the tundra and taiga biomes, in areas underlain by sporadic, discontin-

uous, or continuous permafrost (Figure 1). Permafrost (ground that has remained frozen for more than 2 years) lies beneath an

active layer that thaws during the growing season, enabling plant growth, as roots can only establish in thawed soil (Blume-

Werry et al., 2019). Permafrost also restricts surface drainage, promoting water saturation and slowing decomposition rates115

(Wania et al., 2009; Robinson and Moore, 2000; Rouse et al., 1997; Maltby and Immirzi, 1993). These conditions can favor
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the formation of wetlands, including peatlands as well as other seasonally or permanently waterlogged ecosystems, across both

tundra and taiga biomes (Treat et al., 2022). Based on site descriptions, EC towers were grouped into three distinct ecosystem

types (Table 1):

– Taiga forests: 7 EC towers are located in taiga forests, characterized by a vertically stratified vegetation structure, with120

an open canopy of coniferous trees and an understory of shrubs, mosses, and lichens (Crawford, 2013; Juday, 2025).

– Upland tundra: 5 EC towers are located in upland tundra, which may exhibit lower vegetation density and diversity,

as well as reduced soil biological activity, compared with taiga forests (Crawford, 2013; Hagedorn et al., 2025). The

landscape is treeless and dominated by dwarf shrubs, grasses, sedges, mosses, and lichens, as plant growth is constrained

by cold temperatures, short growing seasons, and the shallow depth of the permafrost active layer (Crawford, 2013; Hu125

and Bliss, 2025; Juday, 2025; Péwé, 2025).

– Wetlands: 8 EC towers are located in wetlands, where the term “wetland” refers to a wide range of types, including

peatlands, bogs, fens, marshes, wet meadows, and shrub swamps, present in both tundra and taiga biomes. Compared

with taiga forests and upland tundra, wetlands may exhibit higher species richness (McPartland et al., 2019) and localized

microtopography, such as hummocks and hollows, whose characteristics depend on water table depth (Rouse et al., 1997;130

Zhang et al., 2024).

3 L4C model

The L4C model provides global, daily estimates of NEE, GPP, and ER at 9-km resolution from March 31, 2015, to the present

(Jones et al., 2017; Kimball et al., 2025). It takes as inputs

– A static global plant functional type (PFT) classification at 500-m resolution, retrieved from the Moderate Resolution135

Imaging Spectroradiometer (MODIS) MCD12Q1 Type 5 product (Friedl and Sulla-Menashe, 2019).

– Eight-day fraction of photosynthetically active radiation (canopy-intercepted FPAR) and leaf area index (LAI) data at

500-m resolution, retrieved from the Visible Infrared Imaging Radiometer Suite (VIIRS) VNP15A2H product (Myneni

and Knyazikhin, 2018).

– Daily means of three-hourly data at 9-km resolution, retrieved from the SMAP SPL4SMGP product version 8 (Reichle140

et al., 2025), including 10-cm deep soil temperature (ST10), surface skin temperature, incident shortwave solar radiation

(SWin), surface soil moisture (SSM), and rootzone soil moisture (RZSM). SSM and RZSM estimates are obtained by

assimilating SMAP L-band brightness temperature observations into the Goddard Earth Observing System Version 5

Catchment Land Surface Model (GEOS-5 CLSM) (Reichle et al., 2019).

– Daily vapor pressure deficit (VPD) and minimum air temperature (MNT) at 0.25° (approximately 25-km resolution),145

retrieved from the GEOS-5 Forward Processing (FP) product (Lucchesi, 2018).

5

https://doi.org/10.5194/egusphere-2026-720
Preprint. Discussion started: 16 February 2026
c© Author(s) 2026. CC BY 4.0 License.



SWin is combined with FPAR to compute canopy-absorbed photosynthetically active radiation (APAR), assuming that PAR

constitutes 45 % of SWin, as follows:

APAR = 0.45 ·SWin ·FPAR = PAR ·FPAR (2)

RZSM is rescaled using a normalized logarithmic transformation (Jones et al., 2017), and SSM is converted from volumetric150

units to relative wetness units. With the exception of APAR, the variables MNT, VPD, RZSM, ST, and SSM affect GPP and

ER estimation only after being converted into stress scalars, denoted as SMNT, SVPD, SRZSM, SST, and SSSM. The derivation of

these stress scalars is described later in Equations 7a-e.

The L4C model runs at a daily time step and is defined as follows:

GPP(t) = ϵmax ·APAR(t) ·SMNT(t) ·SVPD(t) ·SRZSM(t) (3a)155

ER(t) = AR(t) + HR(t) = α ·GPP(t) + [k1 ·SOC1(t) + (1− η) · k2 ·SOC2(t) + k3 ·SOC3(t)] ·SST(t) ·SSSM(t) (3b)

GPP is modeled using a light-use efficiency approach (Jones et al., 2017; Xiao et al., 2013), where ϵmax represents the bulk en-

vironmental reduction in PAR conversion efficiency. AR is modeled as a fixed proportion of GPP, determined by the coefficient

α. HR is estimated using a cascading three-pool SOC decomposition model (Ise and Moorcroft, 2006; Kimball et al., 2008;

Jones et al., 2017), assuming that carbon fixed from atmospheric CO2 through GPP enters the SOC pools as litterfall (Lfall).160

The daily SOC change for each of the three SOC pools is specified as:

SOC1(t) = SOC1(t− 1) + [λ ·Lfall(t)− kl ·SOC1(t− 1) ·SST(t) ·SSSM(t)] · dt (4a)

SOC2(t) = SOC2(t− 1) + [(1−λ) ·Lfall(t)− ks ·SOC2(t− 1) ·SST(t) ·SSSM(t)] · dt (4b)

SOC3(t) = SOC3(t− 1) + [η · ks ·SOC2(t) ·SST(t) ·SSSM(t)− kr ·SOC3(t− 1) ·SST(t) ·SSSM(t)] · dt (4c)

SOC1, SOC2, and SOC3 represent the labile, structural, and recalcitrant SOC pools, respectively, with corresponding decay165

rates k1, k2 = 0.4 · k1, and k3 = 0.01 · k1. The model parameters λ and η account for the fraction of Lfall allocated to the SOC1

and SOC2 pools, and the fraction of material transferred from the SOC2 pool to the SOC3 pool, respectively. The parameters

ϵmax, kl, λ, and η are treated as free parameters estimated during the optimization process. The model integration step dt is set

to one day.

In the L4C model version 7, Lfall was derived as a constant daily fraction of the mean annual estimated net primary produc-170

tivity (NPP), as follows:

Lfall(t) = NPPannual · 1/365 = (1−α) ·GPPannual · 1/365 (5)

NPPannual and GPPannual denote the mean annual NPP and GPP, respectively, and the daily fraction is set to 1/366 for leap

years. Instantaneous NPP is initially derived as NPP(t) = GPP(t)−AR(t). In the L4C model version 8, the allocation timing

was changed from constant to dynamic, and is now determined using a leaf-loss function (Lloss), derived from climatological175
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LAI, as follows:

Lfall(t) = NPPannual · [fE · dt + (1− fE) ·
Lloss(t)∑

Lloss(t)
] with fE =

min(LAI)

max(LAI)
(6)

Here, fE represents the proportion of the canopy that is evergreen. Lloss is computed using a triangular moving average centered

on the current time step, where weights increase linearly toward the center. It represents the difference between lagged and

leading climatological LAI values (Endsley et al., 2022).180

In equations 3a-b and 4a-c, the stress scalars SMNT, SVPD, SRZSM, SST, and SSSM represent the ecosystem responses to their

respective environmental variables and are defined as follows:

SMNT(t) = min(1, max(0,
MNT(t)−MNTmin

MNTmax−MNTmin
)) (7a)

SVPD(t) = min(1, max(0, 1−
VPD(t)−VPDmin

VPDmax−VPDmin
)) (7b)

SRZSM(t) = min(1, max(0,
RZSM(t)−RZSMmin

RZSMmax−RZSMmin
)) (7c)185

SSSM(t) = min(1, max(0,
SSM(t)−SSMmin

SSMmax−SSMmin
)) (7d)

SST(t) = min(1, exp(β0 · (
1

β1
−

1

ST(t)−β2
))) (7e)

Each stress scalar ranges from 0 to 1, where a value of 0 indicates that the environmental variable fully constrains model esti-

mates, while a value of 1 indicates no constraint. The thresholds MNTmin, MNTmax, VPDmin, VPDmax, RZSMmin, RZSMmax,

SSMmin, and SSMmax are free parameters estimated during the optimization process. These are used as model thresholds and190

do not correspond to the actual minimum or maximum values within the time series. Similarly, β0 is a free parameter, while

β1 and β2 are fixed at 66.02 K and 227.13 K, respectively (Kimball et al., 2025). The behavior of the ecosystem response

functions is shown in Figure A1.A1-C1. The GPP formulation originally includes a stress scalar based on the freeze–thaw

state, computed using surface skin temperature from the SMAP SPL4SMGP product (Jones et al., 2017; Kimball et al., 2025).

However, it is not shown here, as this study focuses on the growing season.195

L4C model estimates are initially derived at a 1-km sub-grid resolution for up to 8 MODIS MCD12Q1 PFT classes, and

then averaged to 9-km resolution. In this study, only the L4C model estimates corresponding to the PFT class in which the

EC towers are located were considered (Table 1). A total of two towers are located in the grassland (GRA) class, 8 in the

shrubland (SHR) class, and 10 in the evergreen needleleaf forest (ENF) class. Hereafter, NEEL4C, GPPL4C, and ERL4C refer to

daily estimates derived from the L4C model, which were retrieved from the SMAP SPL4CMDL product version 8.200
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4 Method

4.1 Arctic-Subarctic adapted model formulations

In this study, we explored alternative GPP and ER model formulations that retain the core GPP and ER equations of the original

L4C model version 8. We aimed to preserve the structure and variable set of the original L4C model while enabling the incor-

poration of constraints or additional flexibility guided by literature-based findings on ecosystem responses and flux-partitioning205

methods. Five different formulations are presented for both GPP and ER, with each formulation building incrementally on the

previous one by incorporating earlier modifications along with additional adjustments. Testing modifications incrementally,

rather than independently, allowed us to determine whether their interactions improved or degraded model performance.

The GPP formulations, labeled GPP1 through GPP5, mainly adjust ecosystem responses to environmental variables and are

defined as follows (Table 3):210

– GPP1: Under sub-freezing air temperatures, photosynthetic activity is expected to be severely reduced, approaching

cessation (Schaefer et al., 2012; Ensminger et al., 2004; Bowling et al., 2018; Parazoo et al., 2018). This behavior is not

well represented in the original L4C model, where SMNT still remains near 0.5 at 270 K (Figures 2, 3, 4.A2), indicating

that GPP capacity is reduced by only half at this temperature. In the proposed formulation, GPP is ensured to cease when

MNT is equal to or below 273.15 K by fixing the minimum threshold (MNTmin) of SMNT to 273.15 K (Equation 7a).215

– GPP2 (defined as GPP1 with additional adjustments): Some flux-partitioning methods use a nonlinear light-response

curve to partition NEEEC into GPPEC and EREC (Lasslop et al., 2010b; Runkle et al., 2013), capturing the saturation of

leaf-level photosynthesis at high solar irradiance. In the original L4C model, APAR directly scales the dynamic range

of GPP and is not transformed through a transfer function into a stress scalar, as is the case for the other environmental

variables (Equation 3a). In GPP2, this linear dependence is replaced by a nonlinear stress scalar, SAPAR, inspired by the220

light-response curve, which is defined as follows:

GPP(t) = GPPmax ·SAPAR(t) ·SMNT(t) ·SVPD(t) ·SRZSM(t) (8a)

SAPAR(t) =
APAR(t)

APAR(t) + APARcrit
(8b)

At low APAR, GPP increases rapidly, but as APAR increases, the rate of increase slows down, and GPP asymptoti-

cally approaches a maximum value, GPPmax. This behavior is shown in Figure A1.D1. GPPmax and APARcrit are free225

parameters estimated during the optimization process.

– GPP3 (defined as GPP2 with additional adjustments): In the original L4C model, GPP responds linearly to MNT, VPD,

and RZSM (Equations 7a,b,c). In GPP3, GPP responses to these variables are modeled with increased flexibility, with no

assumed shape other than monotonicity, to allow varying rates of change across different ranges. To achieve this, they
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are redefined as logistic ramp functions:230

SMNT(t) =
g(MNT(t))− g(MNTmin)

g(MNTmax)− g(MNTmin)
with g(MNT(t)) =

1

1 + exp(−γMNT · (MNT(t)−MNTcrit))
(9a)

SVPD(t) =
g(VPD(t))− g(VPDmax)

g(VPDmin)− g(VPDmax)
with g(VPD(t)) =

1

1 + exp(γVPD · (VPD(t)−VPDcrit))
(9b)

SRZSM(t) =
g(RZSM(t))− g(RZSMmin)

g(RZSMmax)− g(MNTmin)
with g(RZSM(t)) =

1

1 + exp(−γRZSM · (RZSM(t)−RZSMcrit))
(9c)

In this formulation, the thresholds MNTmin, MNTmax, VPDmin, VPDmax, RZSMmin, and RZSMmax are used to scale

the stress scalars between 0 and 1, and are fixed to 273.15 K, 293.15 K, 0 kPa, 2.5 kPa, 0 m3m−3, and 1 m3m−3,235

respectively. The parameters MNTcrit, γMNT, VPDcrit, γVPD, RZSMcrit, and γRZSM are treated as free parameters and are

estimated during the optimization process. The behavior of the logistic ramp functions is illustrated in Figure A1.A2-C2.

– GPP4 (defined as GPP3 with additional adjustments): Growing degree days (GDD) are widely used in agricultural and

ecological studies as a proxy to plant development (Fotouo Makouate and Zude-Sasse, 2025), and have recently been

used to develop a phenology scheme that improved GPP modeling in a temperate bog (He et al., 2025). In the present for-240

mulation, GDD is incorporated into GPP modeling to capture the vegetation green-up and senescence phases through an

additional stress scalar (SGDD). GDD is first derived from mean air temperature using a base temperature of 273.15 K. It

is then normalized for each site and each year using the annual minimum and maximum values, resulting in a normalized

range from 0 to 1. This normalization ensures that GDD acts as a seasonal shape or trend driver, rather than a magnitude

driver, which is instead represented by the instantaneous variables (APAR, MNT, VPD, and RZSM). Hereafter, GDD245

refers to normalized GDD and is used to derive SGDD, as follows:

GPP4(t) = GPPmax ·SAPAR(t) ·SMNT(t) ·SVPD(t) ·SRZSM(t) ·SGDD(t) (10a)

SGDD(t) =
g(GDD(t))

g


 a

a + b




with g(GDD(t)) = GDD(t)a · (1−GDD(t))b (10b)

SGDD is defined as a beta-like, bell-shaped function, normalized between 0 and 1 (Figure A1.D2). The parameters a and

b are treated as free parameters and are estimated during the optimization process.250

– GPP5 (defined as GPP4 with additional adjustments): Some studies have reported that water-saturated soil conditions

limit oxygen and nutrient availability to plant roots, restrict cellular respiration, and consequently hinder photosynthetic

activity (Kreuzwieser et al., 2004; Nawaz et al., 2025). Additionally, Peng et al. (2024) showed that the relationship

between GPP and soil moisture may follow a bell-shaped curve at EC tower sites with PFTs similar to those in the

present study (e.g., ENF, SHR, GRA; Table 1). A similar response has also been reported for peatlands (Valkenborg et al.,255
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2023). In GPP5, it is similarly assumed that GPP peaks at an optimal RZSM level, beyond which excessive moisture

reduces efficiency. This assumption is tested by redefining SRZSM as a beta-like, bell-shaped function, analogous to SGDD

(Equation 10b and Figure A1.D2):

SRZSM(t) =
g(RZSM(t))

g


 a

a + b




with g(RZSM(t)) = RZSM(t)a · (1−RZSM(t))b (11)

The parameters a and b are treated as free parameters and are estimated during the optimization process.260

Regarding the ER modeling, we tested different formulations for the HR component while leaving the AR component

unchanged. The ER formulations, labeled ER1 through ER5, are described below (Table 3):

– ER1: Rather than using the the Lfall estimation scheme from the baseline L4C model version 8, ER1 instead adopts the

one from version 7 (Equation 5). The L4C model transitioned from version 7 to version 8 over the course of the present

study was conducted, during which the Lfall estimation scheme was modified. The version 7 scheme was retained to265

enable comparison with the one introduced in version 8. Additionally, HR response to SSM (SSSM) is redefined as a

logistic ramp, analogous to SRZSM in GPP3 (Equation 9c and Figure A1.A2). The original linear response (Equation 7d)

was directly replaced because the logistic ramp can reproduce a linear behavior if the relationship between SSM and HR

is actually linear. The ER response function to ST is unchanged but was recalibrated (Equation 7e).

– ER2 (defined as ER1 with additional adjustments): The Lfall estimation scheme is reverted to that of the baseline L4C270

model version 8.

– ER3 (defined as ER2 with additional adjustments): None of the established flux-partitioning methods requires SOC data

to derive GPP and ER from NEE (Reichstein et al., 2005; Lasslop et al., 2010b; Runkle et al., 2013; Helbig et al., 2017a).

Consequently, in ER3, we aimed to capture the added value of incorporating SOC dynamics in ER modeling. To this

end, SOC dynamics are replaced by a single constant representing a baseline heterotrophic respiration rate, (Rbase), as275

follows:

ER(t) = α ·GPP(t) + Rbase ·SST(t) ·SSSM(t) (12)

The parameter Rbase is treated as a free parameter and is estimated during the optimization process.

– ER4 (defined as ER3 with additional adjustments): In the present formulation, we aimed to mimic the flux-partitioning

methods that derive Rbase every few days (Reichstein et al., 2005; Lasslop et al., 2010b; Runkle et al., 2013; Helbig et al.,280

2017a). Rbase is then redefined as:

Rbase(t) = (1−ω) ·Rbase(t− 1) +ω ·R0 ·SST(t) ·SSSM(t) (13)

This follows a first-order auto-regressive (AR1) approach, in which the current value depends on the previous one and

the 7-day backward mean of the product of temperature and moisture stress scalars (SST(t) ·SSSM(t)), weighted by the
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parameter ω (ranging from 0 to 1). This approach introduces acclimation behavior by smoothing short-term variability285

in environmental conditions. The parameters R0 and ω are treated as free parameters and are estimated during the

optimization process.

– ER5 (defined as ER4 with additional adjustments): Endsley et al. (2022) showed that including an O2 diffusion limitation

in the HR response to SSM, which penalizes HR rates under high SSM conditions, improved seasonal ER performance.

In ER5, we adopted the beta-like, bell-shaped function, analogous to SRZSM in GPP5 (Equation 11), to model HR response290

to SSM. This avoids to collect or estimate O2 concentration data while still representing diminishing returns on HR under

high SSM conditions.

In this study, daily VPD and MNT were retrieved from the Modern-Era Retrospective Analysis for Research and Applica-

tions, Version 2 (MERRA-2), M2T1NXSLV Version 5.12.4 product (Gelaro et al., 2017), instead of the GEOS-5 FP product,

because it is sparsely documented. MERRA-2 re-analysis dataset is better constrained by observations, exhibits a climatology295

comparable to GEOS-5 FP and is used in the L4C model calibration due to its longer period of record. Mean air temperature,

required to derive GDD, was also retrieved from the MERRA-2 M2T1NXSLV product. Finally, RZSM and SSM from the

SMAP SPL4SMGP product were retained in volumetric units (m3m−3), unlike in the original L4C model.

4.2 Growing season timing and data filtering

GPPEC was used as an indicator to identify the growing season (Gonsamo et al., 2013). For each EC tower, GPPEC values below300

the noise threshold of 0.05 gCm−2d−1 were first attributed to the winter season and removed. Among the remaining values,

those below the arbitrary threshold of the 10th percentile were considered part of the shoulder seasons (i.e., transitional periods

between fully frozen and fully thawed states) and excluded, while values above the 99th percentile were treated as outliers and

also removed. To ensure consistency in outlier detection, EREC values above the 99th percentile were similarly excluded.

Complementary filtering flags were applied to ensure biophysical plausibility of root-level soil activity and photosynthesis305

during the growing season from a modeling perspective. The specific criteria for these flags are as follows:

– ST10cm ≥ 275.15 K (i.e., 2 °C above freezing)

– ST20cm ≥ 275.15 K

– ST39cm ≥ 275.15 K (applied to ENF sites only, see Table 1)

– MNT ≥ 275.15 K310

ST20cm and ST39cm refer to soil temperature at 20 and 39 cm depths, respectively, and were retrieved from the SMAP

SPL4SMGP product. For the remainder of this study, ST refers to ST10cm as ST20cm and ST39cm are not used further.

After filtering, a total of 1,650 data points (23 %) remained for the upland tundra ecosystem, 4,632 data points (33 %) for

the taiga forest ecosystem, and 3,653 data points (30 %) for the wetland ecosystem (Table 1).
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4.3 Model formulation calibration315

The AS-adapted GPP and ER formulations were calibrated separately for each ecosystem type (upland tundra, taiga forests,

and wetlands), using GPPEC and EREC as reference targets. The optimization framework for calibration used least-squares

minimization via the MATLAB lsqcurvefit function (MathWorks, Inc., 2023), which minimizes the sum of squared differences

between the model outputs and target values. This is an unconstrained optimization, with no additional penalty terms applied.

To mitigate overfitting, the optimization process was repeated 100 times using different random subsets, comprising 70 % of the320

data available for the ecosystem type (1,155 data points for upland tundra, 3,243 for taiga forests and 2,557 for wetlands). Final

model parameter values were taken as the median across all runs. This approach aimed to capture diverse data combinations and

promote a more stable and representative parameterization by smoothing out the influence of outliers or any individual biased

subset. A 70 % subset size was arbitrarily chosen to balance between providing sufficient data for robust model calibration and

retaining enough data variability across the 100 iterations (Martinez Molera, 2025). Contrary to the global calibration of the325

original L4C model, no reference SOC data were used to constrain the recalibration over the AS environments. As a result,

in ER1 and ER2, only the SOC1 pool was modeled to avoid potential parameter compensation and to prevent unrealistic SOC

distribution across the original three pools. An initial guess was necessary for SOC1 on March 31, 2015, to explicitly solve the

SOC dynamics, since the system is formulated recursively and requires a starting value to iterate forward in time (Equation 4).

March 31, 2015, was chosen as the start of the simulation because it precedes the first date of the period of study. The initial330

guess was set to 0 gCm−2 for the first spin-up iteration, providing a neutral starting point to avoid biasing the early simulation.

It was subsequently updated using the SOC value on March 31, 2022, corresponding to the last March 31 within the study

period. A total of 20 spin-up iterations were performed.

4.4 Model formulation evaluation and validation

The AS-adapted GPP formulations were evaluated spatiotemporally, capturing the combined effects of spatial and temporal335

variability, using GPPEC as the reference target. All available data points, including those used for calibration, were included

in the evaluation. Model performance was quantified using three statistical metrics: the Pearson correlation coefficient (r), the

unbiased root mean square error (ubRMSE), and bias (B). A rank was assigned to each formulation for each metric. The ranks

were then averaged across the three metrics to obtain an overall score. This score was subsequently adjusted by a penalty factor

accounting for model complexity, as follows:340

Si =


1

3

3∑

j=1

Rij


 ·Pi with Pi =

ni

nmin
(14)

Si is the final score of the ith formulation, and Rij is its rank for the jth metric. The penalty factor of the ith formulation, Pi,

is determined by the number of free parameters (ni; Table 3) relative to the minimum numbers of free parameters across all

formulations (nmin). A lower score indicates better performance, whereas a higher score indicates worse performance. As a

complement, temporal representativeness between formulations was assessed by computing the three metrics separately for345

each EC tower.
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The AS-adapted ER formulations were evaluated and scored using the same approach as the GPP formulations, but with

EREC as the reference target. Because ER modeling requires a GPP input (Equation 3), the GPP formulation with the lowest

score was selected. Finally, the ER formulation with the lowest score, together with its corresponding GPP formulation, was

selected to derive AS-adapted estimates of NEE (NEEAS). NEEAS was then validated using NEEEC as the reference target. This350

entire evaluation and scoring procedure was repeated independently for each ecosystem type.

5 Results

5.1 Gross primary production

This subsection presents the performance of the AS-adapted GPP formulations (GPP1 through GPP5) and GPPL4C relative to

GPPEC.355

5.1.1 Upland tundra

Based on the spatiotemporal evaluation for upland tundra (Table 4), GPP1 performs better than GPPL4C in terms of B and

ubRMSE (-0.32 vs. 0.41 gCm−2d−1 and 1.20 vs. 1.47 gCm−2d−1, respectively), although GPPL4C achieves a higher r value

(0.56 vs. 0.64). Introducing a nonlinear light-response in GPP2 (Equation 8) leads to better performance compared with GPP1,

reducing B from -0.32 to 0.00 gCm−2d−1. In addition, ubRMSE decreases, and r increases, approaching the r observed360

for GPPL4C. Replacing linear ramps with logistic ramps to simulate ecosystem responses in GPP3 (Equation 9) increases

model complexity but provides limited improvement over GPP2. GPP4 incorporates GDD through an additional stress scalar

(Equation 10). This results in improved r and ubRMSE compared with GPP3 (0.75 vs. 0.65, and 0.84 vs. 0.96 gCm−2d−1,

respectively). In GPP5, a bell-shaped function is used to simulate the influence of RZSM (Equation 11). This further improves

r and ubRMSE, though B slightly increases (–0.02 vs. -0.01 gCm−2d−1). After score computation, GPP5 ranks first, followed365

by GPP4 and GPP3 (tied for second), and GPP2 and GPP1 in last place.

Across all formulations, SVPD remains equal to 1 throughout the entire range of VPD variability (Figure 2.B3–F3). The use

of a non linear light-response in GPP2 introduces an early saturation (Figure 2.B6–F6), where modeled GPP peaks are lower

than those of GPPEC. This premature flattening is progressively reduced in GPP4 and GPP5, due to the incorporation of GDD

and the use of a bell-shaped function for simulating RZSM influence.370

Considering metrics across EC towers (Figure 8), GPP4 and GPP5 exhibit the highest median r (0.77 and 0.76) and the

lowest median ubRMSE (0.65 and 0.71 gCm−2d−1). In contrast, GPP5, GPP3, and GPP2 show the lowest median B with

0.04, 0.05, and 0.08 gCm−2d−1, respectively.

5.1.2 Taiga forests

The spatiotemporal evaluation for taiga forests (Table 4) indicates that GPP1 performs better than GPPL4C in terms of r (0.62375

vs. 0.58) and ubRMSE (1.75 vs. 1.93 gCm−2d−1), although GPP1 shows higher B (-0.43 vs. -0.38 gCm−2d−1). As in up-
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land tundra (Section 5.1.1), introducing a nonlinear light-response in GPP2 (Equation 9) leads to overall better performance

compared with GPP1, notably reducing B from -0.43 gCm−2d−1 to -0.07 gCm−2d−1. GPP3 does not offer improvement over

GPP2, aside from a slight reduction in B (-0.02 gCm−2d−1 vs. -0.07 gCm−2d−1). Due to the inclusion of GDD through an ad-

ditional stress scalar (Equation 10), GPP4 outperforms GPP3 (0.74 vs. 0.67 for r, and 1.30 vs. 1.41 gCm−2d−1 for ubRMSE).380

Switching to a bell-shaped function for simulating RZSM influence in GPP5 (Equation 11) does not result in improved perfor-

mance compared with GPP4. After score computation, GPP5 and GPP4 are tied for first place, followed by GPP3 and GPP2,

with GPP1 ranking last.

RZSM appears to be a negligible input in GPPL4C, as SRZSM remains equal to 1 throughout the entire range of RZSM

variability (Figure 3.A4). However, RZSM gains more effect in GPP1 through GPP5, although its effect remains weaker than385

that of MNT, VPD, and GDD (Figure 3.B4-F4). As in upland tundra (Section 5.1.1), the use of a nonlinear light-response

in GPP2 introduces an early saturation, underestimating GPPEC peaks (Figure 3.B6–F6). However, this premature flattening

persists in GPP4 and GPP5, despite the incorporation of GDD and the use of a bell-shaped function for simulating RZSM

influence.

Considering metrics across EC towers (Figure 8), the highest median r are obtained for GPP4 and GPP5 (0.79 and 0.76).390

These two formulations also achieve the lowest median ubRMSE, with 1.12 gCm−2d−1 for GPP5 and 1.15 gCm−2d−1 for

GPP4. GPP3 and GPP4 exhibits the lowest median B (-0.14 gCm−2d−1).

5.1.3 Wetlands

Based on the spatiotemporal evaluation for wetlands (Table 4), GPP1 outperforms GPPL4C, notably exhibiting reduced ubRMSE

and B (1.33 vs. 2.19 gCm−2d−1, and -0.40 vs. 1.31 gCm−2d−1, respectively). As seen in upland tundra and taiga forests395

(Sections 5.1.1 and 5.1.2), introducing a nonlinear light-response in GPP2 (Equation 8) results in improved r (0.63 vs. 0.53),

reduced ubRMSE (1.04 vs. 1.33 gCm−2d−1), and reduced B (-0.04 vs. -0.40 gCm−2d−1), compared with GPP1. GPP3 shows

only a minor improvement over GPP3. Due to the inclusion of GDD through an additional stress scalar (Equation 10), GPP4

outperforms GPP3 (0.72 vs. 0.65 for r, and 0.92 vs. 1.01 gCm−2d−1 for ubRMSE). In contrast to upland tundra and taiga

forests (Sections 5.1.1 and 5.1.2), using a bell-shaped function for simulating RZSM influence in GPP5 (Equation 11), result400

in degraded performance compared with GPP4. Overall, GPP4 ranks first, followed by GPP3, GPP5, and GPP2, with GPP1

ranking last.

Similar to upland tundra (Section 5.1.1), SVPD remains equal to 1 throughout the entire range of VPD variability across all

formulations (Figure 4.B3–F3). Likewise, as observed in taiga forests (Section 5.1.2), RZSM appears to be a negligible input

in GPPL4C, with SRZSM staying equal to 1 throughout the entire range of RZSM variability (Figure 4.A4). However, RZSM405

gains a considerable effect in GPP1 through GPP5, especially under dry conditions (Figure 4.B4-F4). The introduction of the

nonlinear light-response in GPP2 triggers an early saturation (Figure 4.B6–F6), that persists throughout GPP5.

Across EC towers (Figure 8), GPP4 and GPP5 exhibit the highest median r (0.79 and 0.76). GPP4 and GPP3 exhibits the

lowest median ubRMSE (0.76 and 0.79 gCm−2d−1, respectively), closely followed by GPP5 (0.82 gCm−2d−1) and GPP3

(0.86 gCm−2d−1). Median B is similar for GPP2 through GPP5, with -0.21, -0.22, -0.23, and -0.19 gCm−2d−1, respectively.410
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5.2 Ecosystem respiration

This subsection presents the performance of the AS-adapted ER formulations (ER1 through ER5) and ERL4C relative to EREC.

As GPP5 ranked first among the GPP formulations for upland tundra and taiga forests, it was used as the GPP input for the ER

modeling. For wetlands, GPP4 was used instead.

5.2.1 Upland tundra415

Based on the spatiotemporal evaluation for upland tundra (Table 5), ER1, which uses the approach where mean annual NPP

is allocated uniformly across the year to Lfall (Equation 5), performs better than ERL4C. It exhibits higher r (0.51 vs. 0.43),

reduced ubRMSE (0.72 vs. 0.99 gCm−2d−1), and reduced B (-0.09 vs. 0.38 gCm−2d−1). Switching to the dynamic allocation

in ER2 (Equation 6) leads to enhanced r (0.65), ubRMSE (0.60 gCm−2d−1), and B (-0.06 gCm−2d−1), compared with ER1.

Using a constant Rbase term instead of a SOC model in ER3 (Equation 12) results in r and ubRMSE close to those of ER2,420

and lower B (0.00 vs. -0.06 gCm−2d−1). Using a dynamic Rbase in ER4 (Equation 13) shows better performance than ER3

with greater r (0.73 vs. 0.61) and reduced ubRMSE (0.53 vs. 0.62 gCm−2d−1). In ER5, the use of a bell-shaped function to

simulate SSM influence does not provide a clear benefit. After score computation, ER4 ranks first, followed by ER3, ER5, and

ER2, with ER1 ranking last.

ST appears to have a stronger effect than SSM in ER1 through ER4 (Figure 5B1–E1 vs. B2-E2). SST mainly oscillates around425

0.5, while SSSM rapidly reaches 1 under dry conditions, and wet conditions do not constrain model outputs. In ER5, the use

of a bell-shaped function to simulate SSM increases its effect (Figure 5F2), but without any improvement in performance, as

previously observed.

Considering metrics across EC towers (Figure 8), the highest median r are obtained for ER2 and ER5 (0.67 and 0.62). The

lowest median ubRMSE is observed for ER5 (0.41 gCm−2d−1) and ER4 (0.42 gCm−2d−1), closely followed by the other430

formulations. In terms of median B, ER5, ER3, and ER4 show the smallest values with 0.01, -0.01, and 0.02 gCm−2d−1.

5.2.2 Taiga forests

The spatiotemporal evaluation for taiga forests (Table 5) indicates that ER1 outperforms ERL4C, showing enhanced r (0.52 vs.

0.33), reduced ubRMSE (1.28 vs. 1.71 gCm−2d−1), but slightly higher B (-0.15 vs. -0.11 gCm−2d−1). As in upland tundra

(Section 5.2.1), switching from a constant to dynamic allocation of mean annual NPP to Lfall in ER2 (Equation 6) results in435

enhanced performance over ER1. Using a constant Rbase term instead of a SOC model in ER3 (Equation 12) exhibits similar r

(0.53 vs. 0.54) and ubRMSE (1.23 vs. 1.23 gCm−2d−1), but lower B (-0.01 vs. -0.08 gCm−2d−1), compared with ER2. Using

a dynamic Rbase in ER4 (Equation 13) shows better performance than ER3 with greater r (0.59 vs. 0.53) and reduced ubRMSE

(1.17 vs. 1.23 gCm−2d−1). In ER5, the use of a bell-shaped function to simulate SSM influence does not provide any benefits.

After score computation, ER4 ranks first, followed by ER5, ER3, and ER2, with ER1 ranking last.440
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SSM appears to be a negligible input in ERL4C, as SSSM remains equal to 1 throughout the entire range of SSM variability

(Figure 6.A2). However, SSM gains more effect in ER1 through ER5, although its effect remains weaker than that of ST

(Figure 6.B2-F2).

Across EC towers (Figure 8), median r is similar across formulations, ranging from 0.61 to 0.64. The same pattern is observed

for median ubRMSE, which ranges from 0.95 to 1.01 gCm−2d−1. The lowest median B are obtained for ER3 and ER2, with445

0.00 and -0.02 gCm−2d−1, respectively.

5.2.3 Wetlands

Based on the spatiotemporal evaluation for wetlands (Table 5), ER1 outperforms ERL4C, exhibiting enhanced r (0.49 vs. 0.23),

reduced ubRMSE (0.81 vs. 1.81 gCm−2d−1), and reduced B (-0.06 vs. 1.76 gCm−2d−1). Switching from a constant to

dynamic allocation of mean annual NPP to Lfall in ER2 (Equation 6) slightly increases r (0.53 vs. 0.49), and reduces ubRMSE450

and B (0.78 vs. 0.81 gCm−2d−1, -0.02 vs. -0.06 gCm−2d−1, respectively). Using a constant or dynamic Rbase term instead

of a SOC model in ER3 and in ER4 (Equations 12 and 13) does not result in enhanced performance. In ER5, the use of a

bell-shaped function to simulate SSM influence does not provides any benefits neither. After score computation, ER3 and ER2

are tied for first place, followed by ER4 and ER5, with ER1 ranking last.

As observed in taiga forests (Section 5.2.2), SSM appears to be a negligible input in ERL4C, with SSSM staying equal to 1455

throughout the entire range of SSM variability (Figure 7.A2). However, SSM gains a considerable effect in ER1 through ER5,

especially under dry conditions (Figure 7.B2-F2). ERL4C may overestimate EREC by up to a factor of two or three (Figure 7.A3).

This magnitude discrepancy is largely removed in ER1 through ER5, but a pattern persists, in which EREC are systematically

overestimated at low values (approximately 0 to 1 gCm−2d−1) across all formulations (Figure 7.B3-F3).

Considering metrics across EC towers (Figure 8), median r is similar across formulations, ranging from 0.63 to 0.67. The460

same pattern is observed for median ubRMSE, with the highest value assigned to ER1 (0.58 gCm−2d−1) and the lowest to

ER4 (0.48 gCm−2d−1). ER1 and ER2 exhibiting the lowest median B, with -0.01 and -0.04 gCm−2d−1, respectively.

5.3 Net ecosystem CO2 exchange

Using the scores assigned to the AS-adapted GPP and ER formulations (Sections 5.1 and 5.2), NEEAS was derived differently

for each ecosystem type. For upland tundra and taiga forests, NEEAS = ER4 - GPP5, while for wetlands NEEAS = ER3 - GPP4.465

Based on the spatiotemporal validation for upland tundra (Table 6), NEEAS exhibits enhanced r (0.64 vs. 0.55), reduced

ubRMSE (0.73 vs. 0.86 gCm−2d−1), and similar B (0.01 vs. -0.03 gCm−2d−1), compared with NEEL4C. This improvement is

also observed when considering the median r and ubRMSE across all EC towers (0.62 vs. 0.44 for r, 0.69 vs. 0.90 gCm−2d−1

for ubRMSE). However, median B changed from 0.06 to -0.12 gCm−2d−1.

For taiga forests, the spatiotemporal validation indicates (Table 6) that NEEAS outperforms NEEL4C (0.63 vs. 0.55 for r,470

1.09 vs. 1.17 gCm−2d−1 for ubRMSE, and 0.02 vs. 0.26 gCm−2d−1 for B). Across EC towers, the same pattern is observed:

median ubRMSE and B are reduced (0.97 vs. 1.04 gCm−2d−1 and -0.09 vs. 0.40 gCm−2d−1, respectively), median r is higher

(0.60 vs. 0.54).
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Finally, for wetlands, the spatiotemporal validation indicates (Table 6) that NEEAS exhibits reduced ubRMSE and B (0.93

vs. 0.99 gCm−2d−1 and 0.01 vs. 0.45 gCm−2d−1, respectively), but similar r (0.48 vs. 0.47), compared with NEEL4C. Im-475

provement is also observed when considering the median B across all EC towers (0.22 vs. 0.73 gCm−2d−1), but the median

ubRMSE is similar (0.82 vs. 0.79 gCm−2d−1), and the median r is lower (0.33 vs. 0.50).

6 Discussion

This section discusses how the modifications implemented in the AS-Adapted GPP and ER model formulations affected their

performance relative to GPPEC and EREC. We specifically identify candidate GPP model adjustments for operational implemen-480

tation, evaluate the contribution of incorporating SOC dynamics into ER modeling, examine the influence of input variables,

and highlight the limitations of our study.

6.1 Candidate GPP model adjustments

Implementing a nonlinear light-response function to represent the influence of APAR on GPP (GPP2, Equation 8) appears

to be the most effective adjustment tested for reducing both ubRMSE and B across the three ecosystem types (Section 5.1,485

and Table 4, Figure 8). However, our results indicate that this adjustment requires careful parametrization, as it can lead to

underestimation of GPP peaks (Figures 2–4).

Adding GDD into the GPP modeling (Equation 10) complements the nonlinear light-response adjustment by further reduc-

ing ubRMSE and predominantly improving r across the three ecosystem types (Section 5.1, Table 4, Figure 8). These results

suggest that the current L4C model may lack a phenological proxy that accounts for the progressive functional adjustment of490

vegetation to environmental conditions over time (Maire et al., 2012), thereby complementing the instantaneous proxies cur-

rently used as inputs. Vegetation indices are assumed to capture vegetation phenology by tracking seasonal changes in canopy

structure and greenness. Because GDD is derived from air temperature and MNT is used as a proxy for the instantaneous tem-

perature response of GPP, replacing GDD with a vegetation index may help reduce redundancy (Huang et al., 2019; Pulliainen

et al., 2024). In this context, LAI or normalized difference vegetation index (NDVI) could potentially serve this role. However,495

LAI is likely to introduce additional redundancy, as VIIRS LAI retrievals are already used to derive FPAR, which represents

canopy phenology in the GPP formulation (Equation 2). In contrast, NDVI may provide a more independent phenological

proxy without duplicating existing model inputs. Nonetheless, MODIS and VIIRS vegetation indices exhibit large uncertain-

ties at high northern latitudes, particularly during shoulder seasons, due to extensive cloud cover and snow contamination (Xu

et al., 2018; Pu et al., 2023).500

Overall, the nonlinear light-response adjustment appears to be the strongest candidate for correcting GPP magnitude dis-

crepancies, while incorporating GDD emerges as the most effective adjustment to improve GPP seasonal dynamics. These two

findings are consistent with McCallum et al. (2013), where the authors reported that the inclusion of temperature acclimation

and nonlinear light-response in GPP modeling in Russian boreal forests improved model performance. Future studies could

explore more complex light-response functions, such as a rectangular hyperbolic function, where the parameters may vary505
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temporally with temperature, as suggested by Wang et al. (2014a). However, testing this approach would imply departing from

the current multiplicative structure of the L4C model, in which direct mechanistic forcing–response behaviors are represented.

Prior work also suggests that vegetation green-up onset is influenced by winter chilling accumulation and precipitation (Fu

et al., 2014). Greater accumulation of chilling days may lead to earlier green-up, as vegetation exposed to colder winter tem-

peratures requires less thermal accumulation (less GDDs) to initiate spring growth. In contrast, higher winter precipitation may510

contribute to delayed green-up through thicker snowpacks, cooler soil temperatures, and increased cloud cover that reduces

incoming radiation. Future improvements could therefore integrate winter chilling days and precipitation into the normalized

GDD-based phenological proxy to better represent early-season GPP dynamics.

6.2 Comparison of SOC-based and empirical approaches for ER modeling

Updating the allocation of mean annual NPP to Lfall from a constant to a LAI-based formulation to represent SOC dynamics515

(ER1 vs. ER2; Equations 5 and 6) improves ER model performance. Both the spatiotemporal evaluation and the median

metrics across EC towers indicate higher r and lower ubRMSE and B, with stronger improvements for upland tundra and

weaker improvements for taiga forests and wetlands (Table 5 and Figure 8). The benefits are limited relative to the added

model complexity, especially in taiga forests and wetlands, compared with the simpler approach that replaces SOC dynamics

with a single constant Rbase (ER3, Equation 12). Based on the spatiotemporal evaluation, introducing temporal variability in520

Rbase (ER4, Equation 13) leads to improved performance in upland tundra and taiga forests (Table 5). However, the median

metrics across EC towers do not indicate a clear improvement across the three ecosystems (Figure 8).

Overall, using SOC dynamics with the Lfall estimation scheme from the L4C model version 8 to model ER appears to be

the most suitable approach, as it outperforms version 7 and is physically grounded and mechanistically interpretable compared

with the two empirical approaches. Continuing to explore alternative ways to estimate Lfall may be a promising direction for525

future research. However, the assumption that mean annual NPP can serve as a proxy for the magnitude of Lfall may not be

realistic (Sierra et al., 2022). In addition, the timing of NPP allocation to Lfall may not accurately reflect actual changes in

aboveground biomass, particularly given the large uncertainties in LAI and FPAR retrievals at high northern latitudes (Xu

et al., 2018; Pu et al., 2023). Furthermore, because NPP is derived from modeled GPP, any inaccuracies in GPP propagate

directly into modeled Lfall, SOC, and ultimately ER. Finally, recent work in Alaska has shown that implementing vertical SOC530

transport to simulate depth-dependent Lfall, SOC distribution, and corresponding HR rates may further improve ER estimates

(Yi et al., 2020).

6.3 Tested but unretained GPP and ER model adjustments

Implementing logistic ramps to represent GPP responses to MNT, VPD, and RZSM stress (GPP3, Equation 9) provides limited

benefits based on the spatiotemporal evaluation (GPP2 vs. GPP3 in Table 4). However, this adjustment appears to improve535

median r and ubRMSE across EC towers (GPP2 vs. GPP3 in Figure 8.A1-C1). This suggests that MNT, VPD, and RZSM may

exhibit nonlinear interactions with GPP, but the added value may not justify the increased complexity required to implement

this adjustment.
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The spatiotemporal evaluation indicates that using a bell-shaped function to represent RZSM influence on GPP (GPP5,

Equation 11) provides only a limited performance improvement in upland tundra and no improvement in taiga forests (Table 4).540

One possible explanation is that, in upland tundra, RZSM exhibits both dry and wet conditions across years and EC tower

sites (grey histogram in Figure 2.F4), whereas in taiga forests, conditions remain mostly dry with less seasonal variation

(Figure 3.F4). This pattern is supported by the bimodal distribution of RZSM in upland tundra, in contrast to the unimodal

distribution in taiga forests. Nevertheless, the RZSM distribution in wetlands is bimodal (Figure 4.F4), with both dry and wet

conditions, but the bell-shaped function worsens the performance of modeled GPP (Table 4). The diminishing returns under545

wet conditions appear to penalize model calibration, indicating a different ecosystem response to RZSM in wetlands compared

with upland tundra and taiga forests. This may reflect the adaptation of wetland vegetation to anaerobic conditions, where

excessive RZSM does not hinder photosynthesis activity. Although several studies show that wetlands and peatlands are more

sensitive to drought than to flooding (Churchill et al., 2015; Olefeldt et al., 2017; Heinzelmann et al., 2025), clear evidence is

lacking to suggest that GPP in wetlands does not exhibit diminishing returns under high RZSM conditions. It is also noteworthy550

that the bell-shaped function does not improve model performance for any ecosystem when normalized RZSM is used (not

shown), as is the case in the original L4C model (Section 3). The bell-shaped function offers no clear benefit neither when

considering median metrics across EC towers (Figure 8). Finally, the L4C model methodology focuses on direct mechanistic

forcing–response behavior, where instantaneous RZSM data are used as input. However, a temporal lag in GPP response to

RZSM saturation may be expected, as it can take several days to weeks for soil oxygen levels to become depleted to the point555

of restricting aerobic processes under saturation. A larger number of EC towers should also be included to increase RZSM

variability during calibration before drawing conclusions about the value of this adjustment for North American AS regions.

As in the GPP modeling, the use of a bell-shaped function to represent SSM influence on ER provides no clear improvement,

regardless of ecosystem type or whether dry and wet SSM conditions are included during calibration (Table 5 and Figures 5-8).

These results indicate that an unidirectional function ramp is more appropriate, with dry conditions limiting ER rates, and no560

diminishing returns under wet conditions. The same conclusion is drawn when SSM expressed in relative wetness units is used

(not shown), as in the original L4C model (Section 3). This finding partly contrasts with Endsley et al. (2022), who reported

improved seasonal ER performance after adding an O2 diffusion limitation (also based on SSM) to the original monotonic

linear response, thereby penalizing ER rates under high SSM. The differing behavior between studies may first be attributed to

differences in SSM response functions. In addition, in our study the GPP formulation used as input to ER already incorporates565

a bell-shaped response to RZSM for upland tundra and taiga forests, and in Endsley et al. (2022), the SPL4SMGP product did

not yet account for peatland hydrology (Reichle et al., 2023).

6.4 Key drivers in shaping model performance

As VPD rises, indicating atmospheric dryness, plants typically show stomatal closure to minimize water loss, which in turn

reduces their photosynthetic activity (López et al., 2021). However, in upland tundra and wetlands, GPP appearsinsensitive570

to VPD as the corresponding stress scalar SVPD remains equal to 1 across all five AS-adapted formulations (Figures 2.B3-F3

and 4.B3-F3). This suggests that either the VPD response is inadequately represented in the formulations, or that vegetation in
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these areas is inherently less responsive to stomatal closure than in taiga forests, where SVPD strongly constrains the modeling

(Figure 3.B3-F3). Indeed, VPD distributions are similar across the three ecosystem types, which supports the idea that the

observed differences in SVPD are not due to differing environmental conditions, but rather to ecosystem-specific sensitivity. In575

other words, for the same VPD values, the model applies a stronger constraint to vegetation photosynthetic activity in taiga

forests, while in upland tundra and wetlands it remains unconstrained. These findings are consistent with those of Chen et al.

(2023), where the authors observed that increasing VPD did not hinder vegetation growth in northern peatlands. Additionally,

Zona et al. (2023) reported that VPD was not correlated to GPP at monthly scales in Arctic tundra, while Mirabel et al. (2023)

found that tree growth in the Canadian boreal forest responded negatively to rising VPD.580

Across all three ecosystem types, the most notable model improvement arises from revising the influence of APAR and

AT (through GDD) on GPP (Table 4, Figure 8, Section 6.1). Interestingly, APAR and AT are also the two drivers primarily

used to partition NEEEC into GPPEC and EREC (Section 2). This indicates that model performance is inherently entangled

with these two drivers, rather than to VPD, RZSM, SSM, SOC, or ST. It is important to note that drivers used in the L4C

model formulations are provided at 9-km and 25-km resolution (except FPAR), which is coarse relative to EC tower footprints585

(Sections 2 and 3). Some of the discrepancies between EC measurements and model estimates may therefore be attributed to

representativeness errors, as the coarse model resolution is expected to smooth spatial variability that is captured by the EC

measurements. Coupled with the candidate GPP model adjustments (Section 6.1), using higher spatial resolution PAR and AT

inputs could represent a promising avenue for improving GPP estimates and, consequently, ER estimates in future studies.

6.5 Limitations590

Although the best-scoring GPP and ER formulations showed performance gains relative to the original L4C model, particularly

for GPP, the resulting improvement in NEE performance is more modest (Tables 4, 5, and Figure 8 compared with Table 6).

These results suggest that developing more accurate representations of ER and GPP does not necessarily translate into improved

NEE performance. This is because errors in modeled ER and GPP can either compensate or accumulate when computing

NEEAS, thereby directly affecting its ability to accurately predict short-term transitions between CO2 sink and source states.595

Regardless of whether NEEEC is partitioned into GPPEC and EREC using daytime data, nighttime data, or a combination of

both, daytime EREC is derived from a fitted Q10 (power-based) or Arrhenius (exponential-based) function (Section 2). These

functions depend solely on temperature and estimate the combined contribution of AR and HR, treating both components as

a single and inseparable flux. In the L4C model and the tested AS-adapted formulations, ER is explicitly represented as the

sum of AR and HR, with both components estimated separately using multiple drivers, including APAR, GDD, MNT, VPD,600

RZSM, ST, and SSM. This approach is based on the assumed linkages between GPP and AR, and between GPP, Lfall, SOC

and HR (Kimball et al., 2008), resulting in a more mechanistic and interaction-rich framework than partitioning methods.

Consequently, calibrating ER formulations is challenging, as the reference ER is obtained from partitioning using a simpler,

empirical approach, which may limit model performance. If the ultimate goal is to estimate the CO2 budget accurately rather

than to predict the underlying GPP and ER components, it may be advantageous to calibrate the L4C model using NEEEC as605

the reference, rather than relying on GPPEC and EREC as intermediate references. However, this approach prevents validating
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whether the modeled GPP and ER truly reflect the underlying processes. For future research, it could also be valuable to

partition NEEEC into GPPEC and EREC using a more mechanistic approach, similar to the L4C model, explicitly distinguishing

between AR and HR.

Finally, several studies have shown that GPP responds to the ratio of leaf-internal to ambient CO2 concentration (Wang et al.,610

2014b, 2017). Although this ratio is regulated by environmental conditions such as temperature and VPD, neither the original

L4C model nor the tested formulations explicitly accounts for the response of GPP to changes in ambient CO2 concentration.

Because ambient CO2 varies over time and may continue to increase in the future, this omission may limit the ability of the

L4C model to accurately predict GPP over long temporal scales.

7 Conclusions615

The goal of this study was to refine the integration of energy and moisture proxies into the SMAP L4C GPP and ER modeling

for the North American AS growing season. Alternative GPP and ER model formulations were calibrated and evaluated against

GPPEC and EREC across upland tundra, taiga forests and wetlands, covering the period from 2015 to 2022. Ultimately, we

recommend two key adjustments related to energy proxies to enhance the L4C model ability to monitor the GPP process:

– Implementing a nonlinear light-response, particularly to reduce ubRMSE and B;620

– Incorporating GDD to reflect vegetation green-up and senescence phases, thereby improving seasonal dynamics.

In contrast, model adjustments related to moisture proxies (VPD, RZSM, SSM) for both ER and GPP modeling do not currently

emerge as essential for future operational implementation. Moreover, evaluating the benefits of integrating SOC dynamics into

ER modeling remains challenging, even though the L4C version 8 approach represents an improvement over that of version 7,

and therefore further research into ER modeling is recommended.625

In addition, we encourage the scientific community to harmonize strategies between flux-partitioning methods and mecha-

nistic modeling approaches (such as the L4C model), particularly for estimating ER and its underlying HR and AR components.

The alignment between partitioning and modeling frameworks is essential to enhance the reliability of spatial extrapolation of

GPPEC and EREC using satellite-based TCF models.

While GPP and AR are dominant during the growing season, the winter and shoulder seasons also play a critical role in630

shaping the annual CO2 budget (Kim et al., 2013; Natali et al., 2019), because HR becomes the primary contributor when

GPP and AR are minimal or absent. Therefore, future studies will focus on adjusting GPP and ER modeling during these

periods to provide improved year-round estimates of NEE, GPP, and ER, as well as more accurate annual CO2 budgets for

North-American AS environments.
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Site name Site ID Coordinates Years Ecosystem PFT NDP Reference

Iqaluktuuttiaq Mesic CA-IQm 69.08°N, -104.58°E [2022, 2023[ Upland Tundra GRA 68 Madelon et al. (2025)

Iqaluktuuttiaq Wetland CA-IQw 69.08°N, -104.58°E [2022, 2023[ Wetland GRA 22 Madelon et al. (2025)

Havikpak Creek CA-HPC 68.32°N, -133.52°E [2016, 2023[ Taiga Forest SHR 371 Sonnentag and Marsh (2021a)

Scotty Creek Bog CA-SCB 61.31°N, -121.30°E [2015, 2023[ Wetland ENF 633 Sonnentag and Quinton (2021)

Scotty Creek Landscape CA-SCC 61.31°N, -121.30°E [2015, 2023[ Taiga Forest ENF 733 Sonnentag and Quinton (2018)

Smith Creek CA-SMC 63.15°N, -123.25°E [2017, 2023[ Taiga Forest ENF 312 Sonnentag (2021)

Trail Valley Creek CA-TVC 68.75°N, -133.50°E [2015, 2023[ Upland Tundra SHR 620 Sonnentag and Marsh (2021b)

Bonanza Creek Black Spruce US-BZS 64.70°N, -148.32°E [2017, 2023[ Taiga Forest ENF 652 Euskirchen (2022d)

Bonanza Creek Old Thermokarst Bog US-BZo 64.69°N, -148.33°E [2018, 2023[ Wetland ENF 548 Euskirchen (2022c)

Bonanza Creek Rich Fen US-BZF 64.70°N, -148.31°E [2017, 2023[ Wetland ENF 689 Euskirchen (2022b)

Bonanza Creek Thermokarst Bog US-BZB 64.70°N, -148.32°E [2017, 2023[ Wetland ENF 680 Euskirchen (2022a)

Eight Mile Lake US-EML 63.88°N, -149.25°E [2015, 2021[ Upland Tundra SHR 571 Bracho et al. (2021)

Imnavait Creek Heath Tundra US-ICh 68.61°N, -149.30°E [2015, 2023[ Upland Tundra SHR 314 Euskirchen et al. (2022a)

Imnavait Creek Sedge Tundra US-ICs 68.61°N, -149.31°E [2015, 2023[ Wetland SHR 336 Euskirchen et al. (2022b)

Imnavait Creek Tussock Tundra US-ICt 68.61°N, -149.30°E [2021, 2023[ Upland Tundra SHR 77 Euskirchen et al. (2022c)

Poker Flats Black Spruce US-Prr 65.12°N, -147.49°E [2015, 2023[ Taiga Forest ENF 827 Iwahana et al. (2023)

Poker Flats Fire Scar US-Rpf 65.12°N, -147.43°E [2015, 2023[ Taiga Forest ENF 852 Ueyama et al. (2023b)

University Of Fairbanks US-Uaf 64.87°N, -147.86°E [2015, 2023[ Taiga Forest ENF 885 Ueyama et al. (2023a)

Yukon-Kuskokwim Delta Burned US-YK1 61.27°N, -163.22°E [2019, 2023[ Wetland SHR 330 Natali (2024)

Yukon-Kuskokwim Delta Unburned US-YK2 61.26°N, -163.26°E [2019, 2023[ Wetland SHR 415 Natali (2025)

Table 1. List of the 20 eddy covariance (EC) tower sites used in this study. Ecosystem types were assigned based on site descriptions while

plant functional type (PFT) classes were assigned using the Moderate Resolution Imaging Spectroradiometer (MODIS) MCD12Q1 type 5

product (Friedl and Sulla-Menashe, 2019). GRA, SHR, and ENF stand for grassland, shrubland, and evergreen needleleaf forest, respectively.

Column 7 shows the number of data points (NDP) within the EC net ecosystem CO2 exchange (NEEEC), gross primary production (GPPEC),

and ecosystem respiration (EREC) time series after daily averaging and data filtering (see Sections 2 and 4.2).
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Abbreviation Definition

AS Arctic-Subarctic

L4C model Soil Moisture Active Passive Level-4 Terrestrial Carbon Flux model

EC Eddy covariance

PFT Plant functional type

NEE Net ecosystem CO2 exchange [gCm−2d−1]

GPP Gross primary production [gCm−2d−1]

ER Ecosystem respiration [gCm−2d−1]

AR Autotrophic respiration [gCm−2d−1]

HR Heterotrophic respiration [gCm−2d−1]

NPP Net primary production [gCm−2d−1]

PAR Photosynthetically active radiation [MJm−2d−1]

FPAR Canopy-intercepted fraction of absorbed photosynthetically active radiation [dim.]

APAR Canopy-absorbed photosynthetically active radiation [MJm−2d−1]

MNT Minimum air temperature [K]

VPD Vapor pressure deficit [kPa]

RZSM Rootzone soil moisture [m3m−3]

SSM Surface soil moisture [m3m−3]

ST Soil temperature [K]

SOC Soil organic carbon [gCm−2]

Lfall Litterfall [gCm−2]

GDD Normalized growing degree days [dim.]

Sx Stress scalar corresponding to the environmental variable x [dim.]

LAI Leaf area index [dim.]

NDVI Normalized difference vegetation index [dim.]

Table 2. Summary of frequently used abbreviations.

24

https://doi.org/10.5194/egusphere-2026-720
Preprint. Discussion started: 16 February 2026
c© Author(s) 2026. CC BY 4.0 License.



AS-adapted
Free parameters Model specificity

formulation

GPP1 ϵmax, MNTmax, VPDmin, VPDmax, RZSMmin, RZSMmax MNTmin is set to 273.15 K

GPP2 GPPmax, APARcrit, MNTmax, VPDmin, VPDmax, RZSMmin, RZSMmax Nonlinear light response to APAR

GPP3 GPPmax, APARcrit, γMNT, γVPD, VPDcrit, γRZSM, RZSMcrit Nonlinear responses to MNT, VPD and RZSM

GPP4 GPPmax, APARcrit, γMNT, γVPD, VPDcrit, γRZSM, RZSMcrit, aGDD, bGDD Incorporation of GDD

GPP5 GPPmax, APARcrit, γMNT, γVPD, VPDcrit, aRZSM, bRZSM, aGDD, bGDD Bell-shaped response to RZSM

ER1 α, k1, λ, β0, γSSM, SSMcrit Constant daily allocation of annual mean NPP to Lfall

ER2 α, k1, λ, β0, γSSM, SSMcrit Dynamic daily allocation of annual mean NPP to Lfall

ER3 α, Rbase, β0, γSSM, SSMcrit Constant Rbase instead of SOC dynamic

ER4 α, R0, ω, β0, γSSM, SSMcrit Dynamic Rbase(t)

ER5 α, R0, ω, β0, aSSM, bSSM Bell-shaped response to SSM

Table 3. Summary of the specificity of each Arctic-Subarctic (AS) adapted model formulation of the L4C model. Column 1 lists the gross

primary production (GPP) and ecosystem respiration (ER) formulations, labeled GPP1 through GPP5 and ER1 through ER5, respectively.

The free parameters estimated during the optimization process are provided in column 2. Each GPP and ER formulation is incrementally

built on the previous one by incorporating its modifications along with an additional change summarized in column 3. APAR, MNT, VPD,

RZSM, SSM, GDD, NPP, Lfall, SOC, Rbase, denote absorbed photosynthetically active radiation, minimum air temperature, vapor pressure

deficit, rootzone soil moisture, surface soil moisture, normalized growing degree days, net primary productivity, litterfall, soil organic carbon,

and baseline heterotrophic respiration, respectively. Refer to Sections 3 and 4.1 for a description of each model formulation and parameter.
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GPP
Upland Tundra Taiga Forests Wetlands

r ubRMSE B r ubRMSE B r ubRMSE B

GPPL4C 0.64 1.47 0.41 0.58 1.93 -0.38 0.48 2.19 1.31

GPP1 0.56 1.20 -0.32 0.62 1.75 -0.43 0.53 1.33 -0.40

GPP2 0.62 0.99 0.00 0.67 1.43 -0.07 0.63 1.04 -0.04

GPP3 0.65 0.96 -0.01 0.67 1.41 -0.02 0.65 1.01 -0.00

GPP4 0.75 0.84 -0.01 0.74 1.30 -0.00 0.72 0.92 0.00

GPP5 0.77 0.80 -0.02 0.74 1.29 -0.02 0.67 0.99 -0.05

Table 4. Spatiotemporal performance of modeled gross primary production (GPP) against daily-averaged eddy covariance GPP (GPPEC)

in upland tundra, taiga forests, and wetlands during the growing season. GPPL4C refers to GPP from the original L4C model, while GPP1

through GPP5 represent outputs from the five Arctic–Subarctic (AS) adapted formulations. Refer to Sections 3 and 4.1 for a description

of each model formulation. ubRMSE and B denote the unbiased root mean squared error and bias, respectively, expressed in gCm−2d−1.

A positive (negative) B indicates that the model formulation overestimates (underestimates) GPPEC. r is the Pearson correlation coefficient

(dimensionless). The evaluation accounts for both spatial and temporal variability. It includes all available GPPEC data points for each

ecosystem type after filtering, including those used for calibration (1,650 for upland tundra, 4,632 for taiga forests and 3,653 for wetlands;

Section 4.3).

ER
Upland Tundra Taiga Forests Wetlands

r ubRMSE B r ubRMSE B r ubRMSE B

ERL4C 0.43 0.99 0.38 0.33 1.71 -0.11 0.23 1.81 1.76

ER1 0.51 0.72 -0.09 0.52 1.28 -0.15 0.49 0.81 -0.06

ER2 0.65 0.60 -0.06 0.54 1.23 -0.08 0.53 0.78 -0.02

ER3 0.61 0.62 0.00 0.53 1.23 -0.01 0.51 0.79 0.00

ER4 0.73 0.53 -0.01 0.59 1.17 0.01 0.51 0.79 -0.03

ER5 0.71 0.54 0.00 0.59 1.17 0.02 0.50 0.80 -0.03

Table 5. Same as Table 4, but for ecosystem respiration (ER). The evaluation includes all available EREC data points for each ecosystem

type after filtering, including those used for calibration (1,650 for upland tundra, 4,632 for taiga forests and 3,653 for wetlands; Section 4.3).
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NEE
Upland Tundra Taiga Forests Wetlands

r ubRMSE B r ubRMSE B r ubRMSE B

NEEL4C 0.55 (0.44) 0.86 (0.90) -0.03 (0.06) 0.55 (0.54) 1.17 (1.04) 0.26 (0.40) 0.47 (0.50) 0.99 (0.79) 0.45 (0.73)

NEEAS 0.64 (0.62) 0.73 (0.69) 0.01 (-0.12) 0.63 (0.60) 1.09 (0.97) 0.02 (-0.09) 0.48 (0.33) 0.93 (0.82) 0.01 (0.22)

Table 6. Performance of modeled net ecosystem CO2 exchange (NEE) against daily-averaged eddy covariance (EC) NEE (NEEEC) in up-

land tundra, taiga forests, and wetlands during the growing season. Modeled NEE is computed as the difference between modeled ecosystem

respiration (ER) and gross primary production (GPP). NEEL4C denotes NEE from the original L4C model, while NEEAS refers to outputs

from the Arctic–Subarctic (AS) adapted formulations. For upland tundra and taiga forests, NEEAS = ER4 - GPP5, while for wetlands NEEAS

= ER3 - GPP4. The formulation selection was based on their performance scores (Section 4.4). Refer to Sections 3 and 4.1 for a description

of each model formulation. ubRMSE and B denote the unbiased root mean squared error and bias, respectively, expressed in gCm−2d−1.

A positive (negative) B indicates that the model formulation overestimates (underestimates) NEEEC. r is the Pearson correlation coefficient

(dimensionless). Values reported outside parentheses represent spatiotemporal performance, accounting for both spatial and temporal vari-

ability. This evaluation includes all available NEEEC data points for each ecosystem type after filtering (1,650 for upland tundra, 4,632 for

taiga forests and 3,653 for wetlands; Section 4.3). Values in parentheses represents temporal performance, shown as the median metrics

across EC towers.
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Figure 1. Locations of the 20 eddy covariance (EC) towers providing measurements of net ecosystem exchange (NEEEC), NEE-derived

gross primary production (GPPEC) and ecosystem respiration (EREC) from April 2015 to December 2022. The High Arctic, Low Arctic and

Subarctic zones were delineated following the Conservation of Arctic Flora and Fauna (CAFF) working group of the Arctic Council, using

Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imagery (Potapov et al., 2008). The permafrost extent is estimated in

percent areal coverage (Brown et al., 2002): continuous (>90-100% areal extent), discontinuous (>50-90%), sporadic (10-50%) and isolated

patches (<10%). Due to overlapping, a single color dot may represent up to four EC towers on the map. Information for each EC tower is

listed in Table 1. The figure was inspired by Madelon et al. (2025) and Mavrovic et al. (2023a).
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Figure 2. Ecosystem responses used to compute modeled gross primary production (GPP) from the L4C model (GPPL4C, column A) and

from the Arctic-Subarctic (AS) adapted formulations (GPP1 through GPP5, columns B–F) in upland tundra during the growing season. The

ecosystem responses are expressed as stress scalars, Sx, for each environmental variable x, where x represents absorbed photosynthetically

active radiation (APAR), minimum air temperature (MNT), vapor pressure deficit (VPD), root zone soil moisture (RZSM), and normalized

growing degree days (GDD). In the background of each subplot, the histogram of the corresponding environmental variable is shown in light

grey. All ecosystem responses of a given model formulation are calibrated jointly using eddy covariance GPP (GPPEC) as reference,

and not based on the histogram values. In subplot A4, RZSM∗ refers to the normalized RZSM used as input in the original L4C model.

Subplots A1 and B1 are omitted because APAR is used as a direct input, rather than through a stress scalar, in GPPL4C and GPP1 formulations.

Similarly, subplots A5-D5 are omitted because GDD is not used as input in the GPPL4C, GPP1, GPP2, and GPP3 formulations. Refer to

Sections 3 and 4.1 for a detailed description of each model formulation. The last row displays scatter plots between modeled GPP against

GPPEC. It is a spatiotemporal comparison, accounting for both temporal and spatial variability. It includes all available GPPEC data points for

upland tundra after filtering, including those used for calibration (1,650 data points; Section 4.3).
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Figure 3. Same as Figure 2, but for taiga forests. The spatiotemporal comparison includes all available GPPEC data points for taiga forests

after filtering, including those used for calibration (4,632 data points; Section 4.3).
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Figure 4. Same as Figure 2, but for wetlands. The spatiotemporal comparison includes all available GPPEC data points for wetlands after

filtering, including those used for calibration (3,653 data points; Section 4.3).
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Figure 5. Ecosystem responses used to compute modeled ecosystem respiration (ER) from the L4C model (ERL4C, column A) and from the

Arctic-Subarctic (AS) adapted formulations (ER1 through ER5, columns B–F) in upland tundra during the growing season. The ecosystem

responses are expressed as stress scalars, Sx, for each environmental variable x, where x represents soil temperature (ST) and surface soil

moisture (SSM). In the background of each subplot, the histogram of the corresponding environmental variable is shown in light grey.

All ecosystem responses of a given model formulation are calibrated jointly using daily-averaged eddy covariance ER (EREC) as

reference, and not based on the histogram values. In subplot A2, SSM∗ refers to the SSM in relative wetness unit used as input in the

original L4C model. Refer to Sections 3 and 4.1 for a detailed description of each model formulation. The last row displays scatter plots

between modeled ER against EREC. It is a spatiotemporal comparison, accounting for both temporal and spatial variability. It includes all

available EREC data points for upland tundra after filtering, including those used for calibration (1,650 data points; Section 4.3).
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Figure 6. Same as Figure 5, but for taiga forests. The spatiotemporal comparison includes all available EREC data points for taiga forests

after filtering, including those used for calibration (4,632 data points; Section 4.3).

Figure 7. Same as Figure 5, but for wetlands. The spatiotemporal comparison includes all available EREC data points for wetlands after

filtering, including those used for calibration (3,653 data points; Section 4.3).
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Figure 8. Temporal performance of modeled gross primary production (GPP) and ecosystem respiration (ER) against daily-averaged

eddy covariance GPP (GPPEC) and ER (EREC) in upland tundra, taiga forests, and wetlands during the growing season. GPPL4C and

ERL4C refer to GPP and ER from the original L4C model, while GPP1 through GPP5 and ER1 through ER5 represent outputs from the

Arctic–Subarctic (AS) adapted formulations. Descriptions of the model formulations are provided in Sections 3 and 4.1. ubRMSE and B

denote the unbiased root mean squared error and bias, respectively, expressed in gCm−2d−1. A positive (negative) B indicates that the

model formulation overestimates (underestimates) GPPEC or EREC. r is the Pearson correlation coefficient (dimensionless). Reported values

correspond to the median metric across all EC towers.
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Appendix A: Supplementary figure655

Figure A1. Behavior of the ecosystem response functions used in the L4C model and the Arctic–Subarctic adapted formulations. Each panel

shows the same response function evaluated across a range of parameter values to illustrate how parameterization affects function shape.

Refer to Sections 3 and 4.1 for a detailed description of each model formulation. Panels A1, B1, and C1 correspond to Equations 7a,c,d 7b,

and 7e, respectively; panel D1 corresponds to Equation 8b. Panels A2 and B2 correspond to Equations 9a,c and 9b, respectively; panel C2

corresponds to Equations 10b and 11.
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