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S1 Description of the OPLS-AA force field

The OPLS intramolecular potential consists of harmonic bond and angle terms, as well as a Fourier series for
dihedral angles:
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where kP, r;, and 70 are the force constant, instantaneous length, and equilibrium length of bond i; k:J, 6;, and 90
denote the force constant, instantaneous angle, and equilibrium angle for angle j; and V;,, ¢¥, and ¢* represent the
Fourier coefficients, phase angles, and instantaneous value of dihedral k.
Intermolecular interactions, along with intramolecular interactions between atoms separated by more than three
covalent bonds, are described by Lennard-Jones and Coulomb terms:
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where r;; is the distance between atoms ¢ and j, €;; and o;; are the Lennard-Jones energy and distance parameters,
q is the partial charge, and ¢y the vacuum permittivity.

We utilized the OPLS parameters from Loukonen et al. (2010). Notably, while the standard OPLS force field
scales 1-4 interactions (atoms separated by three bonds) by 0.5, Loukonen et al. (2010) set this scaling factor to
zero during parameterization. For consistency, we also neglected these interactions in our simulations.
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S2 Hyperparameter tuning plots
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Figure S1: Parallel coordinates plot visualizing the hyperparameter optimization for the AIMNet2 model. The model was
trained on 2,000 GFN1-xTB structures from the sulfuric acid—sulfuric acid collision system. Each vertical axis represents a
specific hyperparameter, while the final axis displays the resulting validation loss. Each connecting line corresponds to a single
training experiment, illustrating how different parameter combinations correlate with model performance.
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Figure S2: Parallel coordinates plot visualizing the hyperparameter optimization for the PaiNN model. The model was trained
on 2,000 GEN1-xTB structures from the sulfuric acid—sulfuric acid collision system. Each vertical axis represents a specific
hyperparameter, while the final axis displays the resulting validation loss. Each connecting line corresponds to a single training
experiment, illustrating how different parameter combinations correlate with model performance.
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S3 List of hyperparameters

This section details the hyperparameters used for training the AIMNet2 and PaiNN models. We also provide
example model definition and training configuration files for the AIMNet2 model, specifically for the sulfuric
acid—sulfuric acid system trained on GFN1-xTB data. PaiNN calculations were conducted using the JK framework
(Kubecka et al., 2024). All hyperparameters not explicitly listed here were maintained at their default values.

AIMNet2 PaiNN
Parameter Value Parameter Value
AIM size 128 Features 256
Vector channels (ncomb_v) 16 Cutoff radius 10.0 A
Features 16 Radial basis 32
Cutoff radius (rc_s) 50A Batch size 2
Radial basis size (nshifts_s) 20 Energy weight 0.01
Coulombic cutoff 46 A Forces weight 1.0
DFTD3 s6 1.0 Validation fraction 10%
DFTD3 s8 2.4 Learning rate 1x1074
DFTD3 al 0.63 Epochs 1,000
DFTD3 a2 5.0 Blocks 4
Batch size 16
Batches per epoch 4,000
Validation fraction 10%
Charges weight 0.01
Energy weight 0.1
Forces weight 1.0
Learning rate 4x1074
Weight decay 1x10°8
Epochs 1,000
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File S1: example of AIMNet2 model definition file

class: aimnet.models.AIMNet2

kwargs:

nfeature: 16
d2features: true
ncomb_v: 16
hidden:
- - 512

- 380
- - 512

- 380
- - 512

- 380

- 380
aim_size: 128
aev:

rc_s: 5.0

nshifts_s: 20

outputs:
energy_mlp:
class: aimnet.modules
kwargs:
n_in: 128
n_out: 1

key_in: aim
key_out: energy
mlp:

.Output

activation_fn: torch.nn.GELU

last_linear: true
hidden:
- 128
- 128
atomic_shift:
class: aimnet.modules
kwargs:
key_in: energy
key_out: energy
atomic_sum:
class: aimnet.modules
kwargs:
key_in: energy
key_out: energy
lrcoulomb:
class: aimnet.modules
kwargs:
rc: 4.6
key_in: charges
key_out: energy
dftd3:
class: aimnet.modules

kwargs:
s6: 1.0
s8: 2.4
al: 0.63
az: 5.0

key_out: energy

.AtomicShift

.AtomicSum

.LRCoulomb

.DFTD3
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File S2: example of AIMNet?2 training configuration file

checkpoint:
dirname: checkpoints
filename_prefix: lsa_lsa_XTB1
kwargs:
n_saved: 1
require_empty: false

data:
datasets:
train:
class: aimnet.data.SizeGroupedDataset
kwargs: {}
val:
class: aimnet.data.SizeGroupedDataset
kwargs: {}
ddp_load_full_dataset: false
loaders:
train:

num_workers: 0
pin_memory: true
val:
num_workers: 0
pin_memory: true
sae:
energy:
file: lsa_lsa_20K_XTB_training_sae.yaml
mode: linreg
samplers:
train:
class: aimnet.data.SizeGroupedSampler
kwargs:
batch_mode: molecules
batch_size: 16
batches_per_epoch: 4000
shuffle: true
val:
class: aimnet.data.SizeGroupedSampler
kwargs:
batch_mode: molecules
batch_size: 16
batches_per_epoch: -1
shuffle: false
separate_val: true
train: lsa_lsa_20K_XTB_training.h5
val:
val_fraction: 0.1

- coord
— numbers
- charge

- energy
- forces
— charges
loss:
class: aimnet.train.loss.MTLoss
kwargs:
components:
charges:
fn: aimnet.train.loss.peratom_loss_fn
kwargs:
key_pred: charges
key_true: charges
weight: 0.01
energy:
fn: aimnet.train.loss.energy_loss_fn
weight: 0.1
forces:
fn: aimnet.train.loss.peratom_loss_fn
kwargs:
key_pred: forces
key_true: forces
weight: 1.0
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metrics:
class: aimnet.train.metrics.RegMultiMetric

kwargs:
cfg:

charges:
abbr: g
peratom: true

dipole:
abbr: D
mult: 3
scale: 1.0

energy:
abbr: E
scale: 23.06

forces:
abbr: F
mult: 3

peratom: true
scale: 23.06
quadrupole:
abbr: O
mult: 6
scale: 1.0
volumes:
abbr: V
peratom: true
optimizer:
class: torch.optim.RAdam
force_no_train: []
force_train: []
kwargs:
lr: 0.0004
weight_decay: 1.0e-08
param_groups:
shifts:
re: .x.atomic_shift.shifts.weight$
weight_decay: 0.0
run_name: grid_search
scheduler:
class: ignite.handlers.param_scheduler.ReduceLROnPlateauScheduler
kwargs:
factor: 0.75
metric_name: loss
patience: 12
terminate_on_low_lr: 1.0e-06
trainer:
epochs: 1000
evaluator: aimnet.train.utils.default_evaluator
trainer: aimnet.train.utils.default_trainer
wandb:
init:
mode: offline
entity: ivo-neefjes
project: aimnet2_project
watch_model :
log: all
log_freqg: 1000
log_graph: true
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S4 Removed umbrella sampling simulations

Table S1: List of removed umbrella sampling simulations. Values represent the center-of-mass (COM) distance in A. The
number in parentheses represents the number of failed runs out of the 10 simulations performed per window (e.g., 2.0 (3)

means 3 simulations were removed at 2.0 A).

System Data

Model

Removed COM distances (number)

GFN1-xTB
H,SO4-H,>S04

AIMNet2

PaiNN
A-PaiNN

2.0(3),2.2(12),2.6(2),2.8,3.8,4.8,5.0(2),5.2,
5.4

None

None

wB97X-3c

AIMNet2
PaiNN
A-PaiNN

None
None
None

GFN1-xTB
H,SO4—NH(CH3),

AIMNet2
PaiNN
A-PaiNN

2.0(2),2.2(2),3.6
2.0,2.2,24(2)
Not performed

wB97X-3c

AIMNet2
PaiNN
A-PaiNN

2.0
2002),2.212)
None

GFN1-xTB

AIMNet2
PaiNN
A-PaiNN

22,24,2.8,32(2),13.4,16.2,17.4
2.0
Not performed

H,S04-HSO4~

wB97X-3¢c

AIMNet2
PaiNN
A-PaiNN
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2.2,24,28,32(2),13.4,162,17.4

None

2.6,74,94,102 (2), 114, 11.8, 12.0 (2), 12.2
(2),12.4,12.8,13.0, 18.4,19.2
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Figure S3: Collision probabilities derived from molecular dynamics simulations for the H,SO4—H2S04, H,SO4~NH(CH3),,
and H,SO4—HSO4~ system at 300 K. The heat maps show the probability distribution across impact parameter b and initial
relative velocity vo for the reference GFN1-xTB method (Grimme et al., 2017) and the classical OPLS-AA force field method
(Jorgensen et al., 1996).
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Figure S4: Collision probabilities derived from molecular dynamics simulations for the HySO4—H>S04, H>SO4—NH(CH3),,
and H,SO4—HSO4~ system at 300 K. The heat maps show the probability distribution across impact parameter b and initial
relative velocity vo for the AIMNet2 (Anstine et al., 2025), PaiNN (Schiitt et al., 2021), and A-PaiNN machine learning models
trained on GFN1-xTB reference data (Grimme et al., 2017).
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Figure S5: Collision probabilities derived from molecular dynamics simulations for the H,SO4—H>S0O4, H>SO4—NH(CH3),,
and H,SO4—HSO4~ system at 300 K. The heat maps show the probability distribution across impact parameter b and initial
relative velocity vo for the AIMNet2 (Anstine et al., 2025), PaiNN (Schiitt et al., 2021), and A-PaiNN machine learning models
trained on wB97X-3c reference data (Miiller et al., 2023).
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