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S1 Description of the OPLS-AA force field
The OPLS intramolecular potential consists of harmonic bond and angle terms, as well as a Fourier series for
dihedral angles:
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where kbi , ri, and r0i are the force constant, instantaneous length, and equilibrium length of bond i; kθj , θj , and θ0j
denote the force constant, instantaneous angle, and equilibrium angle for angle j; and Vn, ϕk

n, and ϕk represent the
Fourier coefficients, phase angles, and instantaneous value of dihedral k.

Intermolecular interactions, along with intramolecular interactions between atoms separated by more than three
covalent bonds, are described by Lennard-Jones and Coulomb terms:
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where rij is the distance between atoms i and j, ϵij and σij are the Lennard-Jones energy and distance parameters,
q is the partial charge, and ϵ0 the vacuum permittivity.

We utilized the OPLS parameters from Loukonen et al. (2010). Notably, while the standard OPLS force field
scales 1–4 interactions (atoms separated by three bonds) by 0.5, Loukonen et al. (2010) set this scaling factor to
zero during parameterization. For consistency, we also neglected these interactions in our simulations.
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S2 Hyperparameter tuning plots

Figure S1: Parallel coordinates plot visualizing the hyperparameter optimization for the AIMNet2 model. The model was
trained on 2,000 GFN1-xTB structures from the sulfuric acid–sulfuric acid collision system. Each vertical axis represents a
specific hyperparameter, while the final axis displays the resulting validation loss. Each connecting line corresponds to a single
training experiment, illustrating how different parameter combinations correlate with model performance.

Figure S2: Parallel coordinates plot visualizing the hyperparameter optimization for the PaiNN model. The model was trained
on 2,000 GFN1-xTB structures from the sulfuric acid–sulfuric acid collision system. Each vertical axis represents a specific
hyperparameter, while the final axis displays the resulting validation loss. Each connecting line corresponds to a single training
experiment, illustrating how different parameter combinations correlate with model performance.
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S3 List of hyperparameters
This section details the hyperparameters used for training the AIMNet2 and PaiNN models. We also provide
example model definition and training configuration files for the AIMNet2 model, specifically for the sulfuric
acid–sulfuric acid system trained on GFN1-xTB data. PaiNN calculations were conducted using the JK framework
(Kubečka et al., 2024). All hyperparameters not explicitly listed here were maintained at their default values.

AIMNet2

Parameter Value

AIM size 128
Vector channels (ncomb v) 16
Features 16
Cutoff radius (rc s) 5.0 Å
Radial basis size (nshifts s) 20
Coulombic cutoff 4.6 Å
DFTD3 s6 1.0
DFTD3 s8 2.4
DFTD3 a1 0.63
DFTD3 a2 5.0
Batch size 16
Batches per epoch 4,000
Validation fraction 10%
Charges weight 0.01
Energy weight 0.1
Forces weight 1.0
Learning rate 4× 10−4

Weight decay 1× 10−8

Epochs 1,000

PaiNN

Parameter Value

Features 256
Cutoff radius 10.0 Å
Radial basis 32
Batch size 2
Energy weight 0.01
Forces weight 1.0
Validation fraction 10%
Learning rate 1× 10−4

Epochs 1,000
Blocks 4
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File S1: example of AIMNet2 model definition file

class: aimnet.models.AIMNet2
kwargs:
nfeature: 16
d2features: true
ncomb_v: 16
hidden:
- - 512
- 380

- - 512
- 380

- - 512
- 380
- 380

aim_size: 128
aev:
rc_s: 5.0
nshifts_s: 20

outputs:
energy_mlp:
class: aimnet.modules.Output
kwargs:
n_in: 128
n_out: 1
key_in: aim
key_out: energy
mlp:
activation_fn: torch.nn.GELU
last_linear: true
hidden:
- 128
- 128

atomic_shift:
class: aimnet.modules.AtomicShift
kwargs:
key_in: energy
key_out: energy

atomic_sum:
class: aimnet.modules.AtomicSum
kwargs:
key_in: energy
key_out: energy

lrcoulomb:
class: aimnet.modules.LRCoulomb
kwargs:
rc: 4.6
key_in: charges
key_out: energy

dftd3:
class: aimnet.modules.DFTD3
kwargs:
s6: 1.0
s8: 2.4
a1: 0.63
a2: 5.0
key_out: energy
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File S2: example of AIMNet2 training configuration file

checkpoint:
dirname: checkpoints
filename_prefix: 1sa_1sa_XTB1
kwargs:
n_saved: 1
require_empty: false

data:
datasets:
train:
class: aimnet.data.SizeGroupedDataset
kwargs: {}

val:
class: aimnet.data.SizeGroupedDataset
kwargs: {}

ddp_load_full_dataset: false
loaders:
train:
num_workers: 0
pin_memory: true

val:
num_workers: 0
pin_memory: true

sae:
energy:
file: 1sa_1sa_20K_XTB_training_sae.yaml
mode: linreg

samplers:
train:
class: aimnet.data.SizeGroupedSampler
kwargs:
batch_mode: molecules
batch_size: 16
batches_per_epoch: 4000
shuffle: true

val:
class: aimnet.data.SizeGroupedSampler
kwargs:
batch_mode: molecules
batch_size: 16
batches_per_epoch: -1
shuffle: false

separate_val: true
train: 1sa_1sa_20K_XTB_training.h5
val:
val_fraction: 0.1
x:
- coord
- numbers
- charge
y:
- energy
- forces
- charges

loss:
class: aimnet.train.loss.MTLoss
kwargs:
components:
charges:
fn: aimnet.train.loss.peratom_loss_fn
kwargs:
key_pred: charges
key_true: charges

weight: 0.01
energy:
fn: aimnet.train.loss.energy_loss_fn
weight: 0.1

forces:
fn: aimnet.train.loss.peratom_loss_fn
kwargs:
key_pred: forces
key_true: forces

weight: 1.0
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metrics:
class: aimnet.train.metrics.RegMultiMetric
kwargs:
cfg:
charges:
abbr: q
peratom: true

dipole:
abbr: D
mult: 3
scale: 1.0

energy:
abbr: E
scale: 23.06

forces:
abbr: F
mult: 3
peratom: true
scale: 23.06

quadrupole:
abbr: Q
mult: 6
scale: 1.0

volumes:
abbr: V
peratom: true

optimizer:
class: torch.optim.RAdam
force_no_train: []
force_train: []
kwargs:
lr: 0.0004
weight_decay: 1.0e-08

param_groups:
shifts:
re: .*.atomic_shift.shifts.weight$
weight_decay: 0.0

run_name: grid_search
scheduler:
class: ignite.handlers.param_scheduler.ReduceLROnPlateauScheduler
kwargs:
factor: 0.75
metric_name: loss
patience: 12

terminate_on_low_lr: 1.0e-06
trainer:
epochs: 1000
evaluator: aimnet.train.utils.default_evaluator
trainer: aimnet.train.utils.default_trainer

wandb:
init:
mode: offline
entity: ivo-neefjes
project: aimnet2_project

watch_model:
log: all
log_freq: 1000
log_graph: true
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S4 Removed umbrella sampling simulations

Table S1: List of removed umbrella sampling simulations. Values represent the center-of-mass (COM) distance in Å. The
number in parentheses represents the number of failed runs out of the 10 simulations performed per window (e.g., 2.0 (3)
means 3 simulations were removed at 2.0 Å).

System Data Model Removed COM distances (number)

H2SO4–H2SO4

GFN1-xTB
AIMNet2 2.0 (3), 2.2 (2), 2.6 (2), 2.8, 3.8, 4.8, 5.0 (2), 5.2,

5.4
PaiNN None
∆-PaiNN None

ωB97X-3c
AIMNet2 None
PaiNN None
∆-PaiNN None

H2SO4–NH(CH3)2

GFN1-xTB
AIMNet2 2.0 (2), 2.2 (2), 3.6
PaiNN 2.0, 2.2, 2.4 (2)
∆-PaiNN Not performed

ωB97X-3c
AIMNet2 2.0
PaiNN 2.0 (2), 2.2 (2)
∆-PaiNN None

H2SO4–HSO4
–

GFN1-xTB
AIMNet2 2.2, 2.4, 2.8, 3.2 (2), 13.4, 16.2, 17.4
PaiNN 2.0
∆-PaiNN Not performed

ωB97X-3c
AIMNet2 2.2, 2.4, 2.8, 3.2 (2), 13.4, 16.2, 17.4
PaiNN None
∆-PaiNN 2.6, 7.4, 9.4, 10.2 (2), 11.4, 11.8, 12.0 (2), 12.2

(2), 12.4, 12.8, 13.0, 18.4, 19.2
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S5 Collision probability heat maps

Figure S3: Collision probabilities derived from molecular dynamics simulations for the H2SO4–H2SO4, H2SO4–NH(CH3)2,
and H2SO4–HSO4

– system at 300 K. The heat maps show the probability distribution across impact parameter b and initial
relative velocity v0 for the reference GFN1-xTB method (Grimme et al., 2017) and the classical OPLS-AA force field method
(Jorgensen et al., 1996).

Figure S4: Collision probabilities derived from molecular dynamics simulations for the H2SO4–H2SO4, H2SO4–NH(CH3)2,
and H2SO4–HSO4

– system at 300 K. The heat maps show the probability distribution across impact parameter b and initial
relative velocity v0 for the AIMNet2 (Anstine et al., 2025), PaiNN (Schütt et al., 2021), and ∆-PaiNN machine learning models
trained on GFN1-xTB reference data (Grimme et al., 2017).
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Figure S5: Collision probabilities derived from molecular dynamics simulations for the H2SO4–H2SO4, H2SO4–NH(CH3)2,
and H2SO4–HSO4

– system at 300 K. The heat maps show the probability distribution across impact parameter b and initial
relative velocity v0 for the AIMNet2 (Anstine et al., 2025), PaiNN (Schütt et al., 2021), and ∆-PaiNN machine learning models
trained on ωB97X-3c reference data (Müller et al., 2023).
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