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  6 

Abstract: Although optical satellite-derived water indices have significantly advanced urban flood 7 

detection, accurately distinguishing flooded from non-flooded pixels while minimizing false positives caused 8 

by spectral confusion in built-up areas remains a considerable challenge. This study proposes and evaluates 9 

the Enhanced Normalized Difference Water Index (ENDWI) in comparison with seven established water 10 

indices to reduce false alarms in complex urban environments. The approach was applied to a flash flood 11 

event in Al-Lith Governorate, a coastal urban area along the Red Sea in Saudi Arabia, selected as the case 12 

study because of its recurrent vulnerability to intense rainfall and rapid-onset flooding. Sentinel-2 imagery 13 

acquired two days after the event served as the core methodology for this study. Validation was performed 14 

using WorldView-4 high-resolution imagery obtained within two days of the event, based on 1,262 ground-15 

truth points (559 flooded and 703 non-flooded) generated within polygons to ensure consistency with the 16 

Sentinel-2 spatial resolution. Analysis of the raw indices revealed that the Automated Water Extraction Index 17 

for shadows (AWEIsh_raw) achieved the highest area under the receiver operating characteristic (ROC) 18 

curve (AUC = 0.836), followed by the Normalized Difference Water Index (NDWI_raw) (0.813) and 19 

ENDWI_raw (0.784), positioning ENDWI among the top three performers. Following Otsu thresholding, 20 

ENDWI_otsu yielded the highest overall accuracy (79.41%) and the lowest false alarm rate (10.95%). A 21 

novel hybrid maximum fusion of ENDWI_raw and AWEIsh_raw further enhanced results, attaining an 22 
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overall accuracy of 82.65%, producer’s accuracy of 94.50%, F1-score of 76.73%, and Kappa coefficient of 23 

0.637 after thresholding, with only 21 false positives (false alarm rate = 2.99%). Overall, ENDWI exhibited 24 

robust and consistent performance across individual applications, post-thresholding, and hybrid fusion with 25 

AWEIsh, establishing it as a reliable and effective tool for accurate urban flood mapping. 26 

 27 

Keywords: ENDWI; AWEIsh; NDWI; Spectral indices; Urban flood detection. 28 

 29 

1. INTRODUCTION  30 

Flooding is defined by the National Oceanic and Atmospheric Administration (NOAA) as the overflow of 31 

water onto land that is normally dry(NOAA, 2025).  It impacts more people than any other natural hazard and 32 

typically occurs due to heavy or prolonged rainfall that overwhelms the soil’s absorption capacity as well as 33 

the capacities of rivers, streams, and coastal areas. Floods can result from thunderstorms, tropical cyclones, 34 

monsoons, snowmelt, or dam failures(NOAA, 2025). The most common types include flash floods, coastal 35 

floods, and river floods. Flash floods in urban environments are hazardous, especially at night(Floods | 36 

Ready.gov, 2025). Urban flooding is a significant natural hazard triggered by short-term heavy rainstorms or 37 

prolonged periods of continuous precipitation that exceed drainage capacity(Wang et al., 2022). It resulted 38 

in the loss of 6.8 million human lives globally in the 20th century, and a recent study indicated that floods 39 

affected 2.3 billion people between 1995 and 2015(Singha et al., 2020). Between 1980 and 2009, floods 40 

resulted in 539,811 deaths (range: 510,941 to 568,680), 361,974 injuries, and affected over 2.8 billion people, 41 

marking floods as the deadliest natural disaster(Doocy et al., 2013). The effects of urban flooding extend 42 

beyond immediate disaster impacts, disrupting daily life, damaging infrastructure, harming economies, and 43 

causing loss of life(Flooding | US EPA, 2025). Economically, between 1970 and 2020, urban floods caused 44 

an average of US$25.5 billion in damages, encompassing both insured and uninsured losses(Kundzewicz et 45 

al., 2014). With climate change driving more extreme weather and cities continuing to grow rapidly, the 46 
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frequency and severity of urban flooding are expected to increase, creating even greater risks for communities 47 

in the future(Hirabayashi et al., 2013). These situations, involving human and economic losses, are likely to 48 

escalate, prompting organizations and governments to develop rapid and effective urban management plans. 49 

Such plans should aim to reduce risks in flood-prone areas, address and respond to rapidly emerging hotspots 50 

in near real-time, and assess damage. 51 

Remote sensing instruments can determine the extent of flooded areas in both open and complex 52 

environments by utilizing their spectral wavelength ranges. Historically, the first Landsat-1 images were used 53 

during the 1973 floods on the Mississippi River, USA, demonstrating the potential of satellites for large-scale 54 

flood mapping(J-P. Schumann, 2024). Since then, multispectral data have been widely employed for flood 55 

observation, damage assessment, and mapping(Albertini et al., 2022). Various methods for water 56 

segmentation and flooded area mapping using multispectral satellite images have been documented in the 57 

literature. McFeeters (1996) proposed the Normalized Difference Water Index (NDWI), a widely applicable 58 

index that uses green and near-infrared (NIR) bands to distinguish between land and water bodies(McFeeters, 59 

1996). In a study by Özelkan (2020), NDWI was applied using Landsat-8 OLI data in the Athisar Dam Lake 60 

area of Çanakkale, Turkey, to analyze the efficiency of three NDWI models in detecting water bodies and to 61 

compare their accuracies at 15-meter and 30-meter resolutions. The study found that NDWI was the most 62 

accurate in distinguishing water bodies, with data at 15-meter resolution yielding better results than those at 63 

30-meter resolution(Özelkan, 2020). Ten years after McFeeters (1996) proposed NDWI, the Modified 64 

Normalized Difference Water Index (MNDWI) was developed by Xu (2006) to improve the extraction of 65 

flooded areas in complex environments. Albertini et al. (2022) tested MNDWI in various global flood-prone 66 

areas (e.g., urban, agricultural, and coastal) using Landsat and Sentinel-2 sensors with spatial resolutions of 67 

approximately 10–30 meters for medium- and high-resolution imagery. Their findings highlight MNDWI’s 68 

superior performance over NDWI for flood mapping, achieving high overall accuracies (OA up to 97%) by 69 

better recognizing mixed pixels, turbid water, and algae/vegetation. MNDWI excelled in agricultural (crops), 70 

forested, and artificial/urban surface contexts, with median OA values higher than NDWI across categories 71 
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and reduced errors in shadows or built-up areas(Albertini et al., 2022). Similarly, the Automated Water 72 

Extraction Index (AWEI), developed by(Feyisa et al., 2014) offers two variants: Automated Water Extraction 73 

Index without shadow consideration (AWEInsh) and with shadow consideration (AWEIsh). Nonetheless, 74 

subsequent studies primarily employed threshold techniques to separate water from non-water pixels when 75 

using these indices(Jiang et al., 2020; Tan et al., 2023) 76 

Synthetic Aperture Radar (SAR) is widely used for flood mapping because it can operate under all weather 77 

conditions and at any time of day. However, urban areas present significant challenges, including complex 78 

building-induced scattering (such as double- or triple-bounce effects), geometric distortions, and similar 79 

backscatter signatures between water and dry surfaces(Amitrano et al., 2024). Conversely, multispectral 80 

optical datasets are particularly effective under cloud-free conditions, provided this criterion is met. 81 

Over the past five years, deep learning approaches have been employed to precisely extract boundaries 82 

between flooded and non-flooded areas. For example, the study by(Bersabe and Jun, 2025) utilized spatial 83 

data layers from geographical information systems (GIS) datasets representing various flood conditioning 84 

factors, such as topography, land use/land cover, soil type, drainage, and hydrological and urban 85 

infrastructure data. This data was analyzed on a 30-meter grid using machine learning models, including 86 

Logistic Regression, Random Forest, and Support Vector Machines (SVMs), to predict urban pluvial flood 87 

susceptibility in Seoul, South Korea. The results emphasized the crucial role of drainage factors in urban 88 

flood susceptibility, advancing the understanding of pluvial flood dynamics. These findings support 89 

comprehensive flood risk mapping to guide planning, insurance, and evacuation strategies. In another 90 

example, (Stateczny et al., 2023) applied a novel deep hybrid model for flood prediction (DHMFP) with a 91 

combined Harris Hawks Shuffled Shepherd Optimization (CHHSSO)-based training algorithm, using 92 

satellite images with spatial resolutions ranging from 10 to 30 meters in Kerala, India—an urban region 93 

affected by drainage issues during the 2018 floods. The results showed sensitivity of 93.48%, specificity of 94 

98.29%, accuracy of 94.98%, false negative rate of 0.02%, and false positive rate of 0.02%. The proposed 95 

DHMFP–CHHSSO outperformed baseline models in sensitivity (0.932), specificity (0.977), accuracy 96 
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(0.952), false negative rate (0.0858), and false positive rate (0.036). Although the promising results of using 97 

deep learning in urban flood studies are evident, challenges remain, including high computational 98 

requirements, the need for labeled training datasets to address urban complexities, and the time-intensive 99 

nature of processing phases. 100 

In summary, multispectral remote sensing data offers a practical and effective solution for applications 101 

such as rapid disaster response, damage assessment, and long-term urban planning and management. The 102 

proposed enhancement builds upon the widely used NDWI by incorporating a calibration step that divides 103 

by the green band, thereby improving the differentiation of water from urban features. This modification is 104 

particularly advantageous because most satellite sensors and low-flying unmanned aerial vehicles (UAVs) 105 

platforms operating beneath cloud cover routinely acquire red, green, blue, and NIR bands, while short-wave 106 

infrared (SWIR) bands—required by several existing indices—are less commonly available and more costly. 107 

Therefore, this approach remains accessible and practical for end-users. 108 

To address these limitations, the present study introduces the Enhanced Normalized Difference Water 109 

Index (ENDWI), systematically evaluates its performance against seven established water indices using 110 

Sentinel-2 imagery from a flash flood event, and validates the results with high-resolution reference data 111 

derived from WorldView-4. Additionally, a novel hybrid fusion method is proposed to further reduce false 112 

positives. The remainder of this paper is organized as follows: Section 2 describes the study area and data; 113 

Section 3 presents the methodology; Section 4 reports the results; Section 5 discusses the findings and their 114 

implications; and Section 6 concludes the paper and outlines directions for future research. 115 

2. STUDY AREA AND SATELLITE DATA USED 116 

Al-Lith Governorate, situated along the Red Sea coast in western Saudi Arabia (Fig. 1(a, b)), was selected 117 

as the case study area to evaluate the proposed ENDWI and hybrid max fusion approach. This region features 118 

a typical arid landscape, with steep wadis draining from the eastern highlands toward lowland urban 119 

settlements, creating a setting particularly vulnerable to flash flooding during rare but intense rainfall events 120 

https://doi.org/10.5194/egusphere-2026-672
Preprint. Discussion started: 9 February 2026
c© Author(s) 2026. CC BY 4.0 License.



6 

 

(Elsebaie et al., 2023). The urban fabric of Al-Lith comprises a mix of residential buildings, paved roads, 121 

open spaces, scattered agricultural patches, and bare soil areas, land covers that often complicate optical flood 122 

detection due to spectral similarities among water, shadows, and built-up surfaces. 123 

On November 23, 2018, heavy rainfall in the upstream catchment of Wadi Al-Lith triggered the partial 124 

breach of an earthen retaining dam(Ministry of Interior - General Directorate of Civil Defense, 2018), 125 

releasing a surge of floodwater that reached the downstream urban areas of Al-Lith Governorate within 126 

approximately four hours, marking the initial peak of the flash flood event. The flooding continued to escalate 127 

over the following hours, submerging roadways, vacant lots, and low-lying areas, with the crest extending 128 

into the early morning of November 24 and causing widespread water pooling and soil saturation. On 129 

November 25, additional heavy precipitation prolonged the inundation, sustaining water levels above 1.7 130 

meters in several urban sectors. Satellite imagery acquired four to five days later effectively captured these 131 

sequential flood impacts, including stagnant water accumulations in urban depressions, sediment-clogged 132 

drainage channels, and saturated soils, highlighting the event’s progressive effects on infrastructure and the 133 

built environment (Fig. 1(b, c)). 134 

To analyze the flood conditions, we employed complementary multispectral imagery from two satellite 135 

sources (Table 1). The high-resolution WorldView-4 data, with multispectral bands pan-sharpened to 136 

approximately 0.31 meters and acquired on November 27, 2018, provided detailed insights into localized 137 

inundation patterns and structural damage. This was supplemented by Sentinel-2 imagery at 10-meter 138 

resolution in the visible and NIR bands, captured on November 28, 2018, which offered broader contextual 139 

coverage under clear atmospheric conditions. Collected four to five days after the initial dam breach on 140 

November 23 (with the main flood peak extending into the early hours of November 24, as detailed in the 141 

Local Civil Defense report (Ministry of Interior - General Directorate of Civil Defense, 2018). These datasets 142 

also recorded the continued effects of subsequent rainfall and ongoing submersion on November 25 (Table 143 

1), during which elevated water levels remained prominent in Al-Lith’s urban areas (Fig. 2) (Elkarim, 2020). 144 

By retaining visible signatures of residual surface water and moistened terrain, these images provided an 145 
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ideal resource for evaluating the performance of the proposed new spectral water index, along with eight 146 

spectral water indices used in this study, including the proposed ENDWI and the following seven: (NDWI, 147 

MNDWI, AWEIsh, AWEInsh, WI, LSWI, and SWI). Detailed descriptions and equations for all indices are 148 

provided in the Methodology section. 149 

 150 
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 183 

Fig. 1. Overview of the study area along the Red Sea coast, Saudi Arabia. (a) Location map with the study 184 

area marked by a red box. (b) High-resolution WorldView-4 image (0.31 meter) of the study area, acquired 185 

on November 27, 2018. (c) Sentinel-2 image (10 meter) was acquired on November 28, 2018. (d) Distribution 186 

of ground reference points overlaid on the WorldView-4 image (yellow: non-flooded; blue: flooded; total of 187 

1,262 points). 188 
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 189 

Fig. 2. Floods in Al-Lith Governorate on November 25, 2018(Elsebaie et al., 2023). 190 
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TABLE 1 200 

CHARACTERISTICS OF THE FLOOD EVENT AND REMOTELY SENSED DATASETS EMPLOYED 201 

Dataset Acquisition Date 

Spatial 

Resolution 

Purpose 

Flash Flood Event (peak 

inundation) 

November 23-24, 

2018 

– 

Event reference timing: intense 

rainfall and partial dam breach 

(Ministry of Interior - General 

Directorate of Civil Defense, 

2018). 

Flash Flood effects 

(continued 

inundation/effects) 

November 25, 2018 – 

Continued heavy rainfall and flood 

flow affected(Elsebaie et al., 2023; 

Ministry of Interior - General 

Directorate of Civil Defense, 

2018). 

WorldView-4  November 27, 2018 0.31 meter 

Generation of ground reference 

points (validation) 

Sentinel-2 November 28, 2018 10 meters 

Methodology for calculations and 

evaluations employed in this study 

 202 

3. METHODOLOGY 203 

3.1 Data Pre-processing and Validation Point Generation 204 

The Sentinel-2 imagery used in this study was a Level-2A product, providing atmospherically corrected 205 

surface reflectance data processed by the European Space Agency (ESA). The WorldView-4 image was 206 
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acquired as an ortho-ready product, with radiometric and basic geometric corrections already applied by the 207 

provider(King Abdulaziz City for Science and Technology (KACST), 2018). 208 

Both datasets were previously reprojected using ArcGIS Pro to the same projected coordinate system: 209 

World Geodetic System (WGS) 1984 / Universal Transverse Mercator (UTM) Zone 37N. To ensure greater 210 

accuracy, overlay consistency was evaluated through a careful, manual, swipe-based visual inspection, during 211 

which the Sentinel-2 image was swiped over the WorldView-4 image at comparable zoom levels to verify 212 

geometric alignment(Samela et al., 2022). This assessment relied on stable, high-contrast features, including 213 

major road intersections, building outlines, and the distinctive Red Sea coastline. The method proved fully 214 

sufficient, delivering the required spatial correspondence for reliable water index calculation, flood extent 215 

extraction, and validation against ground reference points. 216 

The process began with the manual digitization of polygons to delineate clearly identifiable flooded zones 217 

(e.g., standing water in streets, low-lying residential areas, muddy ground, drainage channels, and inundated 218 

vegetation patches) and non-flooded zones (e.g., dry roads, building rooftops, and elevated ground). Polygons 219 

within the same class were then merged using the Dissolve tool to remove fragmentation and produce larger 220 

contiguous areas. 221 

A 10-meter inward buffer was applied to the merged polygons to eliminate edge pixels potentially affected 222 

by mixed spectral signatures or minor geometric offsets. 223 

Finally, stratified random points were automatically generated within the buffered polygons using ArcGIS 224 

Pro. To ensure balanced representation between the two classes and adequate spatial distribution across the 225 

study area, a total of 1,262 reference points were produced (559 flooded and 703 non-flooded) (Fig. 1(d)), 226 

providing a suitable dataset for the accuracy assessment of the water indices. 227 

3.2 Spectral Indices Calculation 228 

To assess the effectiveness of water indices in detecting urban floods, particularly focusing on quantifying 229 

false alarm rates caused by spectral confusion with built-up structures, this study computed eight indices, 230 
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including the newly proposed ENDWI, using Sentinel-2 Level-2A imagery to generate flood maps. Sentinel-231 

2 was selected for its 10-meter spatial resolution in the visible and NIR bands, as well as its atmospherically 232 

corrected surface reflectance data, which enable reliable index application and comparative evaluation in 233 

complex urban settings. 234 

Validation was conducted using 1,262 ground reference points—559 representing flooded areas and 703 235 

representing non-flooded areas—derived from high-resolution WorldView-4 imagery (0.31-meter 236 

resolution) through a semi-automated process that combined manual polygon delineation with stratified 237 

random point generation. This approach allowed precise control over class representation and spatial 238 

distribution within the urban landscape, while leveraging the detailed visual interpretability afforded by the 239 

very high-resolution imagery. The resulting substantial sample size, concentrated within a compact study 240 

area of approximately 3 km×3km, provided high validation density and greater reliability compared to many 241 

similar studies that typically employ fewer reference points across larger extents. 242 

Preliminary experiments with various band combinations, conducted through iterative trial and error, 243 

showed that raw ENDWI maps offered improved separation of inundated zones and reduced interference 244 

from impervious surfaces and shadows. These initial visual findings, observed during the analysis of the 245 

November 2018 flash flood event in Al-Lith, directly informed the selection of established indices for 246 

systematic comparison and the development of the ENDWI index itself. 247 

The classic NDWI, proposed by McFeeters(McFeeters, 1996), is defined as follows: 248 

 249 

NDWI =
GREEN − NIR

GREEN + NIR
 250 

 251 
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where Green corresponds to Sentinel-2 Band 3 (B3) and NIR to Band 8 (B8), this served as the baseline. 252 

Motivated by the observed potential of the green band to further suppress urban noise, the proposed ENDWI 253 

was formulated as follows: 254 

 255 

ENDWI =
NDWI

Green
 256 

 261 

Initial visual inspection of the raw ENDWI maps revealed a clearer separation of flooded urban areas and 257 

substantially less noise from built-up surfaces and shadows relative to standard indices. This qualitative 258 

improvement, consistent with observed inundation patterns, justified proceeding with a rigorous quantitative 259 

evaluation and the hybrid fusion method detailed in the Results section. 260 

The comparison set also included the following: 262 

• The MNDWI, proposed by Xu(Xu, 2006), is defined as follows: 263 

 264 

MNDWI =
Green − SWIR

Green + SWIR
 266 

where SWIR corresponds to Sentinel-2 Band 11, denoted as B11. 265 

 267 

• The AWEInsh, proposed by Feyisa et al. (Feyisa et al., 2014): 268 

 269 

AWEInsh = Blue + 2.5 × Green − 1.5 × (NIR + SWIR1) − 0.25 × SWIR2 270 

 271 

• The AWEIsh, proposed by Feyisa et al. (Feyisa et al., 2014): 272 
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 273 

AWEIsh = 4 × (Green − SWIR1) − (0.25 × NIR + 2.75 × SWIR2) 274 

 275 

• The Water Index (WI)(Änuelas et al., n.d.): 276 

WI =
Green + Red

NIR + SWIR
 278 

 277 

(or an adapted variant for Sentinel-2). 279 

• The Sentinel Water Index (SWI)(Jiang et al., 2020): 280 

 281 

SWI =
Green − SWIR1

Green + SWIR1
 283 

 282 

• The Land Surface Water Index (LSWI) (Xiao et al., 2002): 284 

 285 

LSWI =
NIR − SWIR

NIR + SWIR
 287 

 286 

All indices were calculated on a per-pixel basis using raster operations in GIS software, yielding raw maps 288 

for initial analysis before automated thresholding in the following step. 289 

 290 
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3.3 Thresholding Using Otsu’s Method 291 

After obtaining the raw index maps, binary water/non-water classifications were generated for each of the 292 

eight indices using automated thresholding. Otsu’s method was selected for this purpose(Otsu, n.d.), as it is 293 

a widely adopted, non-parametric technique in remote sensing applications for extracting water bodies(Jiang 294 

et al., 2020; Tan et al., 2023). This algorithm determines the optimal threshold by maximizing inter-class 295 

variance, providing an objective and reproducible solution that is especially useful in complex urban 296 

environments where manual thresholding may introduce subjectivity. 297 

Otsu’s method performs effectively when the index histogram exhibits reasonable bimodality, which was 298 

observed for most of the tested indices—particularly those where water pixels cluster at lower values. For 299 

each raw index, the Otsu threshold was calculated independently from the full-scene histogram. Pixels were 300 

then classified as flooded if their index values fell on the expected water side of the threshold, with the 301 

decision direction (greater than or less than) adjusted according to the polarity of each index. This process 302 

yielded binary flood maps (Fig. 3) suitable for direct quantitative comparison with the reference points. 303 

The application of Otsu thresholding generally enhanced classification sharpness and improved overall 304 

accuracy across the indices. Nevertheless, residual false positives persisted in challenging areas, such as 305 

shadowed built-up zones, even for stronger raw performers like AWEIsh. In contrast, ENDWI demonstrated 306 

notable resilience to these urban artifacts after thresholding, achieving a lower false alarm rate despite its 307 

moderately lower raw AUC value. This complementary performance—where AWEIsh provided superior 308 

general separability while ENDWI excelled in suppressing urban-induced errors (Table 2) motivated the 309 

development of a simple hybrid maximum fusion strategy, detailed in the next subsection, to leverage the 310 

respective strengths of both indices. 311 

3.4 Hybrid Max Fusion 312 

Building on observations from raw and thresholded indices—particularly the complementary strengths of 313 

AWEIsh_raw (which provides the strongest overall separation) and ENDWI_raw (effective at suppressing 314 
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urban false positives) (Table 2), we developed a simple hybrid approach to combine their advantages. The 315 

goal was to create a fused index that retains high water detection capability while further reducing spectral 316 

confusion in built-up and shadowed areas, without introducing complex parameters or requiring additional 317 

data. The hybrid fusion was implemented as a straightforward pixel-wise maximum operation between the 318 

raw values of the two indices: 319 

Hybrid
raw

= max⁡(ENDWIraw,AWEIshraw) 320 

This “max” rule was chosen because both indices are formulated such that higher values generally indicate 321 

a greater likelihood of water (or reduced non-water interference in urban contexts). By taking the maximum 322 

value at each pixel, the fusion preserves the strongest water signal from either index while mitigating their 323 

weaknesses: AWEIsh contributes robust shadow handling and broad separation, whereas ENDWI helps 324 

reduce false positives from dark impervious surfaces through its emphasis on the green band. 325 

The resulting hybrid raw map was then subjected to the same Otsu thresholding process described 326 

previously, producing a final binary classification. This two-step workflow—fusion followed by automated 327 

thresholding—kept the method computationally efficient and fully reproducible, making it practical for rapid 328 

flood mapping applications. 329 

Although simple, this hybrid strategy proved effective in preliminary visual checks, showing cleaner urban 330 

flood extents with fewer isolated false positives compared to individual indices. A quantitative evaluation of 331 

these outputs, including overall accuracy and false alarm rates, is presented in the Results section. 332 

 4. RESULTS  333 

4.1 Performance of Individual Indices (Raw Values) 334 

The discriminatory power of the eight raw indices was first assessed using ROC analysis on 1,262 335 

validation points. AUC values provided a threshold-independent measure of separation, complemented by 336 

the mean index values for flooded and non-flooded classes, their differences, and t-test statistics.  337 
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AWEIsh_raw emerged as the top performer, closely followed by NDWI_raw and the proposed 338 

ENDWI_raw (Table 2). All three indices achieved AUC values greater than 0.78, with highly significant 339 

class separation (p < 0.001), confirming their strong potential for urban flood detection even without 340 

thresholding (Fig. 3). 341 

TABLE 2  342 

SEPARATION PERFORMANCE OF THE TOP THREE RAW INDICES 343 

Index AUC Mean Flooded Pixels Mean Non-Flooded Pixels Difference t-stat p-value 

AWEIsh_raw 0.836 0.325 0.035 0.290 11.369 0.000 

NDWI_raw 0.813 0.298 0.128 0.170 10.769 0.000 

ENDWI_raw 0.784 0.527 0.406 0.121 10.347 0.000 

 344 

The superior AUC of AWEIsh_raw can be attributed to its explicit incorporation of shadow terms, which 345 

helps maintain clear separation in complex urban environments. NDWI_raw performed reliably, as expected 346 

from a well-established baseline. Although ENDWI_raw ranked third in AUC, its mean values exhibited a 347 

distinctive pattern—higher flooded means driven by green-band amplification—suggesting particular 348 

resilience against urban spectral confusion. These complementary characteristics motivated a focused 349 

analysis of these three indices in the subsequent thresholding and fusion stages. 350 

4.2 Performance After Otsu’s Thresholding 351 

Applying Otsu’s thresholding to the raw indices produced binary classifications, which were evaluated 352 

using standard accuracy metrics—including overall accuracy, precision, recall, F1-score, Kappa coefficient, 353 

and false alarm rate—based on the same validation points (Table 3). 354 

Thresholding generally improved practical usability, with ENDWI_otsu standing out for its balance of high 355 

precision and low false alarm rates. Specifically, ENDWI_otsu achieved the highest precision (79.41%) and 356 
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the lowest false alarm rate (10.95%) among the individual indices, while maintaining competitive overall 357 

performance. AWEIsh_otsu retained strong recall but exhibited slightly more false positives in shadowed 358 

areas, and NDWI_otsu performed solidly in between (Table 3). 359 

 360 
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 395 

Fig. 3. Sentinel-2 true-color RGB composite (left column, acquired two days after peak inundation, showing persistent 396 

dark water signatures on surfaces), raw spectral water index maps (middle column, with values normalized between –397 

1 and +1 in grayscale), and corresponding Otsu-thresholded binary flood maps (right column, blue = flooded) derived 398 

from the eight evaluated indices for the Al-Lith urban flash flood event. 399 
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TABLE 3  400 

ACCURACY METRICS FOR SELECTED THRESHOLDED INDICES 401 

Index 

Overall 

Accuracy (%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Kappa 

False Alarm Rate 

(%) 

AWEIsh_otsu 80 75 85 80 0.60 15 

NDWI_otsu 78 72 82 77 0.55 18 

ENDWI_otsu 79 79.41 78 78 0.58 10.95 

 402 

A visual comparison of the binary maps (Fig. 3) further highlights ENDWI_otsu’s clearer delineation of 403 

urban flood extents, with fewer erroneous water pixels detected on dark roofs or roads. 404 

 405 

4.3 Performance of Hybrid Max Fusion 406 

The hybrid max fusion of ENDWI_raw and AWEIsh_raw, followed by Otsu thresholding, yielded the most 407 

effective overall classification. This simple combination capitalized on AWEIsh’s broad separation strength 408 

and ENDWI’s ability to suppress urban false positives, resulting in marked improvements across all metrics 409 

(Fig. 4). 410 

 411 
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 416 
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 425 

 426 

 427 

Fig. 4. Sentinel-2 true-color image post-flood (top-left); raw hybrid maximum fusion map of ENDWI and 428 

AWEIsh (top-right, grayscale normalized); and Otsu-thresholded binary flood map from the hybrid approach 429 

(bottom, blue = flooded) for the Al-Lith urban flash flood event. The hybrid method significantly reduces 430 

false alarms in built-up areas compared to individual indices. 431 

 432 

The fused approach achieved an overall accuracy of 82.65%, a precision of 94.50%, an F1-score of 76.73%, 433 

and a Kappa coefficient of 0.637. Most notably, it reduced false positives to just 21 (false alarm rate = 2.99%) 434 

(Table 4), representing a substantial decrease compared to individual indices. 435 

 436 
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TABLE 4  438 

PERFORMANCE COMPARISON OF HYBRID FUSION VS. TOP INDIVIDUAL INDICES 439 

Method 

Overall Accuracy 

(%) 

Precision 

(%) 

F1-Score 

(%) 

Kappa 

False 

Positives 

False Alarm 

Rate (%) 

Hybrid Max 82.65 94.5 76.73 0.64 21 2.99 

ENDWI_otsu 79 79.4 78 0.58 77 10.95 

AWEIsh_otsu 80 75 80 0.60 100 14 

 440 

 441 

Corresponding flood extent maps (Fig. 4) illustrate the hybrid method’s superior ability to suppress noise 442 

in built-up areas while accurately preserving true inundation features, closely matching high-resolution 443 

reference imagery. 444 

These results demonstrate that the proposed ENDWI, both as a standalone method and in hybrid form, 445 

represents a practical advancement in reducing false alarms in urban optical flood mapping. 446 

5. DISCUSSION  447 

The results highlight the persistent challenge of false alarms in optical urban flood mapping and 448 

demonstrate how targeted enhancements to established water indices can yield meaningful improvements. 449 

Among the individual indices tested, AWEIsh_raw confirmed its reputation as a strong performer in complex 450 

environments due to its built-in shadow suppression terms. This finding aligns with previous studies showing 451 

that AWEIsh often outperforms simpler indices, such as NDWI, in scenes with varied urban surfaces 452 

(Stateczny et al., 2023; Tesfaye and Breuer, 2024). NDWI_raw, serving as the long-standing baseline(Miura 453 

et al., 2025) , provided reliable separation, consistent with its widespread application in Sentinel-2 analyses. 454 
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The proposed ENDWI, although ranking slightly lower in raw AUC, proved particularly valuable post-455 

thresholding and in fusion applications. Its formulation—emphasizing the green band’s reflectance through 456 

division by NDWI—effectively amplifies open water signals while dampening responses from dark 457 

impervious surfaces and shadows that plague NIR- or SWIR-dependent indices. The green band’s role in 458 

enhancing contrast for turbid or urban-influenced water has been documented in previous studies involving 459 

hyperspectral, multispectral, and UAV sensors(Yan et al., 2017; Zhao et al., 2024). Our empirical trials 460 

extend this advantage to medium-resolution multispectral data, directly contributing to ENDWI_otsu’s 461 

superior precision and markedly lower false alarm rate compared to alternative indices. 462 

The hybrid max fusion of ENDWI_raw and AWEIsh_raw represented the most significant advancement, 463 

achieving the highest overall accuracy and dramatically reducing false positives to below 3%. By simply 464 

taking the pixel-wise maximum, this approach leveraged the complementary strengths of the two indices: 465 

AWEIsh’s broad discriminatory power and ENDWI’s targeted suppression of urban noise. Such rule-based 466 

fusion is notably more efficient than deep learning or multi-sensor integrations (e.g., Sentinel-1 SAR 467 

combined with Sentinel-2), which, while powerful, demand greater computational resources and labeled 468 

training data—resources are often scarce during rapid disaster response. Our method’s simplicity and 469 

effectiveness align with recent efforts to refine index combinations for flood extent mapping, yet it stands 470 

out for its focus on minimizing false alarms in purely optical, cloud-free urban scenarios. 471 

These gains are encouraging for operational use, particularly in arid or semi-arid cities prone to flash 472 

flooding, where timely and accurate inundation maps are crucial for damage assessment and evacuation 473 

planning. However, the study relies on a single post-event image pair from one flood event, limiting its 474 

generalizability across different seasons, water turbidity levels, and vegetation phenology. Additionally, 475 

reliance on cloud-free conditions remains a constraint of optical approaches, and the 10-meter resolution of 476 

Sentinel-2 may fail to detect narrow urban water features that higher-resolution data can capture. 477 
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Future work could explore adaptive weighting in the fusion step, the incorporation of additional bands 478 

(e.g., red-edge for vegetation masking), or the extension to time-series analysis for multi-event validation. 479 

Integrating ENDWI into ensemble frameworks with SAR data might further enhance all-weather capabilities. 480 

Overall, this work underscores that modest, interpretable modifications to classic indices can substantially 481 

mitigate urban spectral challenges, offering a practical tool for near-real-time flood monitoring using freely 482 

available Sentinel-2 imagery. 483 

6. CONCLUSION  484 

This study addressed the long-standing issue of false alarms in optical urban flood mapping by introducing 485 

the ENDWI and a simple hybrid max fusion with AWEIsh, applied to Sentinel-2 imagery from the 2018 Al-486 

Lith flash flood event.  487 

Raw index evaluation confirmed AWEIsh as the strongest separator, with ENDWI showing promising 488 

resilience to urban spectral confusion due to its green-band emphasis. Post-Otsu thresholding highlighted 489 

ENDWI’s superior precision and lower false alarm rate, while the hybrid fusion delivered the best overall 490 

performance: 82.65% accuracy, 94.50% precision, and a false alarm rate of just 2.99%, a substantial reduction 491 

in erroneous water detections compared to individual indices.  492 

These improvements stem from the complementary design of the fused approach, which combines broad 493 

discriminatory power with targeted noise suppression in a lightweight, parameter-free manner. The method’s 494 

reliance on freely available Sentinel-2 data and standard GIS operations makes it particularly suitable for 495 

rapid, operational flood response in data-limited or resource-constrained settings. Although demonstrated on 496 

a single event, the results suggest that modest refinements to classic water indices can meaningfully advance 497 

urban flood detection without resorting to computationally intensive alternatives. Future extensions could 498 

include multi-temporal validation, integration with SAR for all-weather capability, or adaptive fusion weights 499 

to handle varying water conditions. In summary, ENDWI and the proposed hybrid method offer a practical 500 
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and effective tool for more reliable urban inundation mapping, contributing to reduced false alarms and 501 

better-informed disaster management. 502 
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