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7 Abstract: Although optical satellite-derived water indices have significantly advanced urban flood
8  detection, accurately distinguishing flooded from non-flooded pixels while minimizing false positives caused
9 by spectral confusion in built-up areas remains a considerable challenge. This study proposes and evaluates
10  the Enhanced Normalized Difference Water Index (ENDWI) in comparison with seven established water
11 indices to reduce false alarms in complex urban environments. The approach was applied to a flash flood
12 event in Al-Lith Governorate, a coastal urban area along the Red Sea in Saudi Arabia, selected as the case
13 study because of its recurrent vulnerability to intense rainfall and rapid-onset flooding. Sentinel-2 imagery
14 acquired two days after the event served as the core methodology for this study. Validation was performed
15 using WorldView-4 high-resolution imagery obtained within two days of the event, based on 1,262 ground-
16  truth points (559 flooded and 703 non-flooded) generated within polygons to ensure consistency with the
17 Sentinel-2 spatial resolution. Analysis of the raw indices revealed that the Automated Water Extraction Index
18 for shadows (AWEIsh _raw) achieved the highest area under the receiver operating characteristic (ROC)
19  curve (AUC = 0.836), followed by the Normalized Difference Water Index (NDWI raw) (0.813) and
20  ENDWI raw (0.784), positioning ENDWI among the top three performers. Following Otsu thresholding,
21 ENDWI otsu yielded the highest overall accuracy (79.41%) and the lowest false alarm rate (10.95%). A

22 novel hybrid maximum fusion of ENDWI raw and AWEIsh raw further enhanced results, attaining an
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23 overall accuracy of 82.65%, producer’s accuracy of 94.50%, F1-score of 76.73%, and Kappa coefficient of
24 0.637 after thresholding, with only 21 false positives (false alarm rate = 2.99%). Overall, ENDWI exhibited
25  robust and consistent performance across individual applications, post-thresholding, and hybrid fusion with

26  AWEISsh, establishing it as a reliable and effective tool for accurate urban flood mapping.
27

28  Keywords. ENDWI; AWEIsh; NDWI; Spectral indices; Urban flood detection.

29

30 1. INTRODUCTION

31  Flooding is defined by the National Oceanic and Atmospheric Administration (NOAA) as the overflow of
32 water onto land that is normally dry(NOAA, 2025). It impacts more people than any other natural hazard and
33 typically occurs due to heavy or prolonged rainfall that overwhelms the soil’s absorption capacity as well as
34 the capacities of rivers, streams, and coastal areas. Floods can result from thunderstorms, tropical cyclones,
35  monsoons, snowmelt, or dam failures(NOAA, 2025). The most common types include flash floods, coastal
36  floods, and river floods. Flash floods in urban environments are hazardous, especially at night(Floods |
37 Ready.gov, 2025). Urban flooding is a significant natural hazard triggered by short-term heavy rainstorms or
38  prolonged periods of continuous precipitation that exceed drainage capacity(Wang et al., 2022). It resulted
39  in the loss of 6.8 million human lives globally in the 20th century, and a recent study indicated that floods
40  affected 2.3 billion people between 1995 and 2015(Singha et al., 2020). Between 1980 and 2009, floods
41  resulted in 539,811 deaths (range: 510,941 to 568,680), 361,974 injuries, and affected over 2.8 billion people,
42 marking floods as the deadliest natural disaster(Doocy et al., 2013). The effects of urban flooding extend
43 beyond immediate disaster impacts, disrupting daily life, damaging infrastructure, harming economies, and
44 causing loss of life(Flooding | US EPA, 2025). Economically, between 1970 and 2020, urban floods caused
45  an average of US$25.5 billion in damages, encompassing both insured and uninsured losses(Kundzewicz et

46 al., 2014). With climate change driving more extreme weather and cities continuing to grow rapidly, the
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47  frequency and severity of urban flooding are expected to increase, creating even greater risks for communities
48 in the future(Hirabayashi et al., 2013). These situations, involving human and economic losses, are likely to
49  escalate, prompting organizations and governments to develop rapid and effective urban management plans.
50  Such plans should aim to reduce risks in flood-prone areas, address and respond to rapidly emerging hotspots

51  innear real-time, and assess damage.

52 Remote sensing instruments can determine the extent of flooded areas in both open and complex
53 environments by utilizing their spectral wavelength ranges. Historically, the first Landsat-1 images were used
54 during the 1973 floods on the Mississippi River, USA, demonstrating the potential of satellites for large-scale
55  flood mapping(J-P. Schumann, 2024). Since then, multispectral data have been widely employed for flood
56  observation, damage assessment, and mapping(Albertini et al., 2022). Various methods for water
57  segmentation and flooded area mapping using multispectral satellite images have been documented in the
58  literature. McFeeters (1996) proposed the Normalized Difference Water Index (NDWI), a widely applicable
59  index that uses green and near-infrared (NIR) bands to distinguish between land and water bodies(McFeeters,
60 1996). In a study by Ozelkan (2020), NDWI was applied using Landsat-8 OLI data in the Athisar Dam Lake
61  area of Canakkale, Turkey, to analyze the efficiency of three NDWI models in detecting water bodies and to
62  compare their accuracies at 15-meter and 30-meter resolutions. The study found that NDWI was the most
63  accurate in distinguishing water bodies, with data at 15-meter resolution yielding better results than those at
64  30-meter resolution(Ozelkan, 2020). Ten years after McFeeters (1996) proposed NDWI, the Modified
65 Normalized Difference Water Index (MNDWI) was developed by Xu (2006) to improve the extraction of
66  flooded areas in complex environments. Albertini et al. (2022) tested MNDWI in various global flood-prone
67  areas (e.g., urban, agricultural, and coastal) using Landsat and Sentinel-2 sensors with spatial resolutions of
68  approximately 10-30 meters for medium- and high-resolution imagery. Their findings highlight MNDWTI’s
69  superior performance over NDWI for flood mapping, achieving high overall accuracies (OA up to 97%) by
70  better recognizing mixed pixels, turbid water, and algae/vegetation. MNDWI excelled in agricultural (crops),
71 forested, and artificial/urban surface contexts, with median OA values higher than NDWI across categories

3
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72 and reduced errors in shadows or built-up areas(Albertini et al., 2022). Similarly, the Automated Water
73 Extraction Index (AWEI), developed by(Feyisa et al., 2014) offers two variants: Automated Water Extraction
74 Index without shadow consideration (AWEInsh) and with shadow consideration (AWEIsh). Nonetheless,
75  subsequent studies primarily employed threshold techniques to separate water from non-water pixels when

76  using these indices(Jiang et al., 2020; Tan et al., 2023)

77 Synthetic Aperture Radar (SAR) is widely used for flood mapping because it can operate under all weather
78  conditions and at any time of day. However, urban areas present significant challenges, including complex
79  building-induced scattering (such as double- or triple-bounce effects), geometric distortions, and similar
80  backscatter signatures between water and dry surfaces(Amitrano et al., 2024). Conversely, multispectral

81  optical datasets are particularly effective under cloud-free conditions, provided this criterion is met.

82 Over the past five years, deep learning approaches have been employed to precisely extract boundaries
83  between flooded and non-flooded areas. For example, the study by(Bersabe and Jun, 2025) utilized spatial
84  data layers from geographical information systems (GIS) datasets representing various flood conditioning
85  factors, such as topography, land use/land cover, soil type, drainage, and hydrological and urban
86  infrastructure data. This data was analyzed on a 30-meter grid using machine learning models, including
87  Logistic Regression, Random Forest, and Support Vector Machines (SVMs), to predict urban pluvial flood
88  susceptibility in Seoul, South Korea. The results emphasized the crucial role of drainage factors in urban
89  flood susceptibility, advancing the understanding of pluvial flood dynamics. These findings support
90  comprehensive flood risk mapping to guide planning, insurance, and evacuation strategies. In another
91  example, (Stateczny et al., 2023) applied a novel deep hybrid model for flood prediction (DHMFP) with a
92  combined Harris Hawks Shuffled Shepherd Optimization (CHHSSO)-based training algorithm, using
93  satellite images with spatial resolutions ranging from 10 to 30 meters in Kerala, India—an urban region
94  affected by drainage issues during the 2018 floods. The results showed sensitivity of 93.48%, specificity of
95  98.29%, accuracy of 94.98%, false negative rate of 0.02%, and false positive rate of 0.02%. The proposed

96  DHMFP-CHHSSO outperformed baseline models in sensitivity (0.932), specificity (0.977), accuracy
4



https://doi.org/10.5194/egusphere-2026-672
Preprint. Discussion started: 9 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

97  (0.952), false negative rate (0.0858), and false positive rate (0.036). Although the promising results of using
98 deep learning in urban flood studies are evident, challenges remain, including high computational
99  requirements, the need for labeled training datasets to address urban complexities, and the time-intensive

100 nature of processing phases.

101 In summary, multispectral remote sensing data offers a practical and effective solution for applications
102 such as rapid disaster response, damage assessment, and long-term urban planning and management. The
103 proposed enhancement builds upon the widely used NDWI by incorporating a calibration step that divides
104 by the green band, thereby improving the differentiation of water from urban features. This modification is
105 particularly advantageous because most satellite sensors and low-flying unmanned aerial vehicles (UAVs)
106  platforms operating beneath cloud cover routinely acquire red, green, blue, and NIR bands, while short-wave
107 infrared (SWIR) bands—required by several existing indices—are less commonly available and more costly.

108 Therefore, this approach remains accessible and practical for end-users.

109 To address these limitations, the present study introduces the Enhanced Normalized Difference Water
110  Index (ENDWI), systematically evaluates its performance against seven established water indices using
111 Sentinel-2 imagery from a flash flood event, and validates the results with high-resolution reference data
112 derived from WorldView-4. Additionally, a novel hybrid fusion method is proposed to further reduce false
113 positives. The remainder of this paper is organized as follows: Section 2 describes the study area and data;
114 Section 3 presents the methodology; Section 4 reports the results; Section 5 discusses the findings and their

115 implications; and Section 6 concludes the paper and outlines directions for future research.
116 2. STUDY AREA AND SATELLITE DATA USED

117 Al-Lith Governorate, situated along the Red Sea coast in western Saudi Arabia (Fig. 1(a, b)), was selected
118  as the case study area to evaluate the proposed ENDWI and hybrid max fusion approach. This region features
119 a typical arid landscape, with steep wadis draining from the eastern highlands toward lowland urban

120  settlements, creating a setting particularly vulnerable to flash flooding during rare but intense rainfall events
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121 (Elsebaie et al., 2023). The urban fabric of Al-Lith comprises a mix of residential buildings, paved roads,
122 open spaces, scattered agricultural patches, and bare soil areas, land covers that often complicate optical flood

123 detection due to spectral similarities among water, shadows, and built-up surfaces.

124 On November 23, 2018, heavy rainfall in the upstream catchment of Wadi Al-Lith triggered the partial
125  breach of an earthen retaining dam(Ministry of Interior - General Directorate of Civil Defense, 2018),
126  releasing a surge of floodwater that reached the downstream urban areas of Al-Lith Governorate within
127  approximately four hours, marking the initial peak of the flash flood event. The flooding continued to escalate
128  over the following hours, submerging roadways, vacant lots, and low-lying areas, with the crest extending
129  into the early morning of November 24 and causing widespread water pooling and soil saturation. On
130 November 25, additional heavy precipitation prolonged the inundation, sustaining water levels above 1.7
131  meters in several urban sectors. Satellite imagery acquired four to five days later effectively captured these
132 sequential flood impacts, including stagnant water accumulations in urban depressions, sediment-clogged
133 drainage channels, and saturated soils, highlighting the event’s progressive effects on infrastructure and the

134 built environment (Fig. 1(b, c)).

135 To analyze the flood conditions, we employed complementary multispectral imagery from two satellite
136 sources (Table 1). The high-resolution WorldView-4 data, with multispectral bands pan-sharpened to
137 approximately 0.31 meters and acquired on November 27, 2018, provided detailed insights into localized
138  inundation patterns and structural damage. This was supplemented by Sentinel-2 imagery at 10-meter
139 resolution in the visible and NIR bands, captured on November 28, 2018, which offered broader contextual
140 coverage under clear atmospheric conditions. Collected four to five days after the initial dam breach on
141 November 23 (with the main flood peak extending into the early hours of November 24, as detailed in the
142 Local Civil Defense report (Ministry of Interior - General Directorate of Civil Defense, 2018). These datasets
143 also recorded the continued effects of subsequent rainfall and ongoing submersion on November 25 (Table
144 1), during which elevated water levels remained prominent in Al-Lith’s urban areas (Fig. 2) (Elkarim, 2020).

145 By retaining visible signatures of residual surface water and moistened terrain, these images provided an

6
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146 ideal resource for evaluating the performance of the proposed new spectral water index, along with eight
147 spectral water indices used in this study, including the proposed ENDWTI and the following seven: (NDWI,
148 MNDWI, AWEIsh, AWEInsh, WI, LSWI, and SWI). Detailed descriptions and equations for all indices are

149 provided in the Methodology section.

150
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184  Fig. 1. Overview of the study area along the Red Sea coast, Saudi Arabia. (a) Location map with the study
185  area marked by a red box. (b) High-resolution WorldView-4 image (0.31 meter) of the study area, acquired
186 on November 27, 2018. (c) Sentinel-2 image (10 meter) was acquired on November 28, 2018. (d) Distribution
187  of ground reference points overlaid on the WorldView-4 image (yellow: non-flooded; blue: flooded; total of

188 1,262 points).
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190 Fig. 2. Floods in Al-Lith Governorate on November 25, 2018(Elsebaie et al., 2023).
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TABLE 1

EGUsphere\

CHARACTERISTICS OF THE FLOOD EVENT AND REMOTELY SENSED DATASETS EMPLOYED

Spatial
Dataset Acquisition Date Purpose
Resolution
Event reference timing: intense
rainfall and partial dam breach
Flash Flood Event (peak November 23-24,
— (Ministry of Interior - General
inundation) 2018
Directorate of Civil Defense,
2018).
Continued heavy rainfall and flood
Flash Flood effects flow affected(Elsebaie et al., 2023;
(continued November 25, 2018 - Ministry of Interior - General
inundation/effects) Directorate of Civil Defense,
2018).
Generation of ground reference
WorldView-4 November 27, 2018 0.31 meter
points (validation)
Methodology for calculations and
Sentinel-2 November 28, 2018 10 meters

evaluations employed in this study

3. METHODOLOGY

3.1 Data Pre-processing and Validation Point Generation

The Sentinel-2 imagery used in this study was a Level-2A product, providing atmospherically corrected

surface reflectance data processed by the European Space Agency (ESA). The WorldView-4 image was
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207  acquired as an ortho-ready product, with radiometric and basic geometric corrections already applied by the

208  provider(King Abdulaziz City for Science and Technology (KACST), 2018).

209 Both datasets were previously reprojected using ArcGIS Pro to the same projected coordinate system:
210 World Geodetic System (WGS) 1984 / Universal Transverse Mercator (UTM) Zone 37N. To ensure greater
211  accuracy, overlay consistency was evaluated through a careful, manual, swipe-based visual inspection, during
212 which the Sentinel-2 image was swiped over the WorldView-4 image at comparable zoom levels to verify
213 geometric alignment(Samela et al., 2022). This assessment relied on stable, high-contrast features, including
214  major road intersections, building outlines, and the distinctive Red Sea coastline. The method proved fully
215 sufficient, delivering the required spatial correspondence for reliable water index calculation, flood extent

216  extraction, and validation against ground reference points.

217 The process began with the manual digitization of polygons to delineate clearly identifiable flooded zones
218  (e.g., standing water in streets, low-lying residential areas, muddy ground, drainage channels, and inundated
219 vegetation patches) and non-flooded zones (e.g., dry roads, building rooftops, and elevated ground). Polygons
220  within the same class were then merged using the Dissolve tool to remove fragmentation and produce larger

221 contiguous areas.

222 A 10-meter inward buffer was applied to the merged polygons to eliminate edge pixels potentially affected

223 by mixed spectral signatures or minor geometric offsets.

224 Finally, stratified random points were automatically generated within the buffered polygons using ArcGIS
225 Pro. To ensure balanced representation between the two classes and adequate spatial distribution across the
226  study area, a total of 1,262 reference points were produced (559 flooded and 703 non-flooded) (Fig. 1(d)),

227  providing a suitable dataset for the accuracy assessment of the water indices.
228 3.2 Spectral Indices Calculation

229 To assess the effectiveness of water indices in detecting urban floods, particularly focusing on quantifying

230  false alarm rates caused by spectral confusion with built-up structures, this study computed eight indices,

11
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231 including the newly proposed ENDWI, using Sentinel-2 Level-2A imagery to generate flood maps. Sentinel-
232 2 was selected for its 10-meter spatial resolution in the visible and NIR bands, as well as its atmospherically
233 corrected surface reflectance data, which enable reliable index application and comparative evaluation in

234 complex urban settings.

235 Validation was conducted using 1,262 ground reference points—559 representing flooded areas and 703
236 representing non-flooded areas—derived from high-resolution WorldView-4 imagery (0.31-meter
237 resolution) through a semi-automated process that combined manual polygon delineation with stratified
238 random point generation. This approach allowed precise control over class representation and spatial
239 distribution within the urban landscape, while leveraging the detailed visual interpretability afforded by the
240  very high-resolution imagery. The resulting substantial sample size, concentrated within a compact study
241  area of approximately 3 kmx3km, provided high validation density and greater reliability compared to many

242 similar studies that typically employ fewer reference points across larger extents.

243 Preliminary experiments with various band combinations, conducted through iterative trial and error,
244 showed that raw ENDWI maps offered improved separation of inundated zones and reduced interference
245  from impervious surfaces and shadows. These initial visual findings, observed during the analysis of the
246 November 2018 flash flood event in Al-Lith, directly informed the selection of established indices for

247  systematic comparison and the development of the ENDWTI index itself.

248 The classic NDWI, proposed by McFeeters(McFeeters, 1996), is defined as follows:

249

)50 NDWI = GREEN — NIR
: "~ GREEN + NIR

251
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252 where Green corresponds to Sentinel-2 Band 3 (B3) and NIR to Band 8 (BS8), this served as the baseline.
253 Motivated by the observed potential of the green band to further suppress urban noise, the proposed ENDWI

254  was formulated as follows:

255

NDWI
256 ENDWI =

Green
261

257  Initial visual inspection of the raw ENDWI maps revealed a clearer separation of flooded urban areas and
258  substantially less noise from built-up surfaces and shadows relative to standard indices. This qualitative
259  improvement, consistent with observed inundation patterns, justified proceeding with a rigorous quantitative

260  evaluation and the hybrid fusion method detailed in the Results section.

262 The comparison set also included the following:

263 e The MNDWI, proposed by Xu(Xu, 2006), is defined as follows:
264

266 MNDWI = Green — SWIR

" Green + SWIR

265  where SWIR corresponds to Sentinel-2 Band 11, denoted as B11.

267

268 e« The AWElInsh, proposed by Feyisa et al. (Feyisa et al., 2014):

269

270 AWElInsh = Blue + 2.5 X Green — 1.5 X (NIR + SWIR1) — 0.25 x SWIR2
271

272 e The AWEIsh, proposed by Feyisa et al. (Feyisa et al., 2014):

13
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273
274 AWEIsh = 4 x (Green — SWIR1) — (0.25 X NIR + 2.75 X SWIR2)
275
276 o The Water Index (WI)(Anuelas et al., n.d.):
Green + Red
278 =
NIR + SWIR
277
279 (or an adapted variant for Sentinel-2).
280 e The Sentinel Water Index (SWI)(Jiang et al., 2020):
281
283 SWI = Green — SWIRI1
" Green + SWIRI
282
284 e The Land Surface Water Index (LSWI) (Xiao et al., 2002):
285
LSW[ = NIR — SWIR
287 ~ NIR + SWIR
286
288 All indices were calculated on a per-pixel basis using raster operations in GIS software, yielding raw maps

289  for initial analysis before automated thresholding in the following step.

290
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291 3.3 Thresholding Using Otsu’s Method

292 After obtaining the raw index maps, binary water/non-water classifications were generated for each of the
293 eight indices using automated thresholding. Otsu’s method was selected for this purpose(Otsu, n.d.), as it is
294  awidely adopted, non-parametric technique in remote sensing applications for extracting water bodies(Jiang
295 et al., 2020; Tan et al., 2023). This algorithm determines the optimal threshold by maximizing inter-class
296  variance, providing an objective and reproducible solution that is especially useful in complex urban

297  environments where manual thresholding may introduce subjectivity.

298 Otsu’s method performs effectively when the index histogram exhibits reasonable bimodality, which was
299  observed for most of the tested indices—particularly those where water pixels cluster at lower values. For
300  each raw index, the Otsu threshold was calculated independently from the full-scene histogram. Pixels were
301  then classified as flooded if their index values fell on the expected water side of the threshold, with the
302 decision direction (greater than or less than) adjusted according to the polarity of each index. This process

303 yielded binary flood maps (Fig. 3) suitable for direct quantitative comparison with the reference points.

304 The application of Otsu thresholding generally enhanced classification sharpness and improved overall
305  accuracy across the indices. Nevertheless, residual false positives persisted in challenging areas, such as
306  shadowed built-up zones, even for stronger raw performers like AWEIsh. In contrast, ENDWI demonstrated
307  notable resilience to these urban artifacts after thresholding, achieving a lower false alarm rate despite its
308  moderately lower raw AUC value. This complementary performance—where AWEIsh provided superior
309  general separability while ENDWI excelled in suppressing urban-induced errors (Table 2) motivated the
310  development of a simple hybrid maximum fusion strategy, detailed in the next subsection, to leverage the

311 respective strengths of both indices.
312 3.4 Hybrid Max Fusion

313 Building on observations from raw and thresholded indices—particularly the complementary strengths of

314  AWEIsh_raw (which provides the strongest overall separation) and ENDWI raw (effective at suppressing

15
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315  urban false positives) (Table 2), we developed a simple hybrid approach to combine their advantages. The
316  goal was to create a fused index that retains high water detection capability while further reducing spectral
317 confusion in built-up and shadowed areas, without introducing complex parameters or requiring additional
318  data. The hybrid fusion was implemented as a straightforward pixel-wise maximum operation between the

319  raw values of the two indices:

320 Hybrid = = max (ENDWL,,, AWEIsh,,)

321 This “max” rule was chosen because both indices are formulated such that higher values generally indicate
322 a greater likelihood of water (or reduced non-water interference in urban contexts). By taking the maximum
323 value at each pixel, the fusion preserves the strongest water signal from either index while mitigating their
324  weaknesses: AWEIsh contributes robust shadow handling and broad separation, whereas ENDWI helps

325  reduce false positives from dark impervious surfaces through its emphasis on the green band.

326 The resulting hybrid raw map was then subjected to the same Otsu thresholding process described
327  previously, producing a final binary classification. This two-step workflow—fusion followed by automated
328  thresholding—kept the method computationally efficient and fully reproducible, making it practical for rapid

329 flood mapping applications.

330 Although simple, this hybrid strategy proved effective in preliminary visual checks, showing cleaner urban
331 flood extents with fewer isolated false positives compared to individual indices. A quantitative evaluation of

332 these outputs, including overall accuracy and false alarm rates, is presented in the Results section.
333 4. RESULTS
334 4.1 Performance of Individual Indices (Raw Values)

335 The discriminatory power of the eight raw indices was first assessed using ROC analysis on 1,262
336  validation points. AUC values provided a threshold-independent measure of separation, complemented by

337  the mean index values for flooded and non-flooded classes, their differences, and t-test statistics.
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338 AWEIsh_raw emerged as the top performer, closely followed by NDWI raw and the proposed
339  ENDWI raw (Table 2). All three indices achieved AUC values greater than 0.78, with highly significant
340  class separation (p < 0.001), confirming their strong potential for urban flood detection even without

341 thresholding (Fig. 3).

342 TABLE 2
343 SEPARATION PERFORMANCE OF THE TOP THREE RAW INDICES
Index AUC Mean Flooded Pixels Mean Non-Flooded Pixels Difference t-stat p-value
AWEIsh raw 0.836 0.325 0.035 0.290 11.369  0.000
NDWI raw  0.813 0.298 0.128 0.170 10.769  0.000
ENDWI raw 0.784 0.527 0.406 0.121 10.347  0.000
344
345 The superior AUC of AWEIsh_raw can be attributed to its explicit incorporation of shadow terms, which

346 helps maintain clear separation in complex urban environments. NDWI _raw performed reliably, as expected
347  from a well-established baseline. Although ENDWI raw ranked third in AUC, its mean values exhibited a
348  distinctive pattern—higher flooded means driven by green-band amplification—suggesting particular
349  resilience against urban spectral confusion. These complementary characteristics motivated a focused

350  analysis of these three indices in the subsequent thresholding and fusion stages.
351 4.2 Performance After Otsu’s Thresholding

352 Applying Otsu’s thresholding to the raw indices produced binary classifications, which were evaluated
353 using standard accuracy metrics—including overall accuracy, precision, recall, F1-score, Kappa coefficient,

354  and false alarm rate—based on the same validation points (Table 3).

355 Thresholding generally improved practical usability, with ENDWI_otsu standing out for its balance of high

356  precision and low false alarm rates. Specifically, ENDWI otsu achieved the highest precision (79.41%) and
17
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357  the lowest false alarm rate (10.95%) among the individual indices, while maintaining competitive overall
358  performance. AWEIsh otsu retained strong recall but exhibited slightly more false positives in shadowed

359  areas, and NDWI_otsu performed solidly in between (Table 3).
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396  Fig. 3. Sentinel-2 true-color RGB composite (left column, acquired two days after peak inundation, showing persistent
397  dark water signatures on surfaces), raw spectral water index maps (middle column, with values normalized between —
398 1 and+1 in grayscale), and corresponding Otsu-thresholded binary flood maps (right column, blue = flooded) derived
399  from the eight evaluated indices for the Al-Lith urban flash flood event.
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400 TABLE 3
401 ACCURACY METRICS FOR SELECTED THRESHOLDED INDICES
Overall Precision Recall F1-Score False Alarm Rate
Index Kappa
Accuracy (%) (%) (%) (%) (%)
AWEIsh otsu 80 75 85 80 0.60 15
NDWI otsu 78 72 82 77 0.55 18
ENDWI otsu 79 79.41 78 78 0.58 10.95
402

403 A visual comparison of the binary maps (Fig. 3) further highlights ENDWI otsu’s clearer delineation of

404  urban flood extents, with fewer erroneous water pixels detected on dark roofs or roads.

405

406 4.3 Performance of Hybrid Max Fusion

407 The hybrid max fusion of ENDWI_raw and AWEIsh_raw, followed by Otsu thresholding, yielded the most
408  effective overall classification. This simple combination capitalized on AWEIsh’s broad separation strength
409 and ENDWT’s ability to suppress urban false positives, resulting in marked improvements across all metrics

410 (Fig. 4).

411

412

413
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415
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Fig. 4. Sentinel-2 true-color image post-flood (top-left); raw hybrid maximum fusion map of ENDWI and
AWEIsh (top-right, grayscale normalized); and Otsu-thresholded binary flood map from the hybrid approach
(bottom, blue = flooded) for the Al-Lith urban flash flood event. The hybrid method significantly reduces

false alarms in built-up areas compared to individual indices.

The fused approach achieved an overall accuracy of 82.65%, a precision of 94.50%, an F1-score of 76.73%,
and a Kappa coefficient of 0.637. Most notably, it reduced false positives to just 21 (false alarm rate = 2.99%)

(Table 4), representing a substantial decrease compared to individual indices.
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438 TABLE 4
439 PERFORMANCE COMPARISON OF HYBRID FUSION VS. TOP INDIVIDUAL INDICES
Overall Accuracy  Precision F1-Score False False Alarm
Method Kappa
(%) (%) (%) Positives Rate (%)
Hybrid Max 82.65 94.5 76.73 0.64 21 2.99
ENDWI otsu 79 79.4 78 0.58 77 10.95
AWEIsh_otsu 80 75 80 0.60 100 14
440
441
442 Corresponding flood extent maps (Fig. 4) illustrate the hybrid method’s superior ability to suppress noise

443 in built-up areas while accurately preserving true inundation features, closely matching high-resolution

444 reference imagery.

445 These results demonstrate that the proposed ENDWI, both as a standalone method and in hybrid form,

446  represents a practical advancement in reducing false alarms in urban optical flood mapping.
447 S. DISCUSSION

448 The results highlight the persistent challenge of false alarms in optical urban flood mapping and
449  demonstrate how targeted enhancements to established water indices can yield meaningful improvements.
450  Among the individual indices tested, AWEIsh_raw confirmed its reputation as a strong performer in complex
451  environments due to its built-in shadow suppression terms. This finding aligns with previous studies showing
452 that AWEIsh often outperforms simpler indices, such as NDWI, in scenes with varied urban surfaces
453 (Stateczny et al., 2023; Tesfaye and Breuer, 2024). NDWI raw, serving as the long-standing baseline(Miura

454 etal., 2025) , provided reliable separation, consistent with its widespread application in Sentinel-2 analyses.
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455 The proposed ENDWI, although ranking slightly lower in raw AUC, proved particularly valuable post-
456  thresholding and in fusion applications. Its formulation—emphasizing the green band’s reflectance through
457  division by NDWI—effectively amplifies open water signals while dampening responses from dark
458  impervious surfaces and shadows that plague NIR- or SWIR-dependent indices. The green band’s role in
459 enhancing contrast for turbid or urban-influenced water has been documented in previous studies involving
460  hyperspectral, multispectral, and UAV sensors(Yan et al., 2017; Zhao et al., 2024). Our empirical trials
461  extend this advantage to medium-resolution multispectral data, directly contributing to ENDWI otsu’s

462 superior precision and markedly lower false alarm rate compared to alternative indices.

463 The hybrid max fusion of ENDWI raw and AWEIsh_raw represented the most significant advancement,
464  achieving the highest overall accuracy and dramatically reducing false positives to below 3%. By simply
465  taking the pixel-wise maximum, this approach leveraged the complementary strengths of the two indices:
466  AWEIsh’s broad discriminatory power and ENDWTI’s targeted suppression of urban noise. Such rule-based
467  fusion is notably more efficient than deep learning or multi-sensor integrations (e.g., Sentinel-1 SAR
468  combined with Sentinel-2), which, while powerful, demand greater computational resources and labeled
469  training data—resources are often scarce during rapid disaster response. Our method’s simplicity and
470  effectiveness align with recent efforts to refine index combinations for flood extent mapping, yet it stands

471 out for its focus on minimizing false alarms in purely optical, cloud-free urban scenarios.

472 These gains are encouraging for operational use, particularly in arid or semi-arid cities prone to flash
473 flooding, where timely and accurate inundation maps are crucial for damage assessment and evacuation
474  planning. However, the study relies on a single post-event image pair from one flood event, limiting its
475  generalizability across different seasons, water turbidity levels, and vegetation phenology. Additionally,
476  reliance on cloud-free conditions remains a constraint of optical approaches, and the 10-meter resolution of

477  Sentinel-2 may fail to detect narrow urban water features that higher-resolution data can capture.
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478 Future work could explore adaptive weighting in the fusion step, the incorporation of additional bands
479  (e.g., red-edge for vegetation masking), or the extension to time-series analysis for multi-event validation.
480  Integrating ENDWI into ensemble frameworks with SAR data might further enhance all-weather capabilities.
481  Overall, this work underscores that modest, interpretable modifications to classic indices can substantially
482 mitigate urban spectral challenges, offering a practical tool for near-real-time flood monitoring using freely

483 available Sentinel-2 imagery.
484 6. CONCLUSION

485 This study addressed the long-standing issue of false alarms in optical urban flood mapping by introducing
486 the ENDWI and a simple hybrid max fusion with AWEIsh, applied to Sentinel-2 imagery from the 2018 Al-

487  Lith flash flood event.

488 Raw index evaluation confirmed AWEIsh as the strongest separator, with ENDWI showing promising
489  resilience to urban spectral confusion due to its green-band emphasis. Post-Otsu thresholding highlighted
490  ENDWT/’s superior precision and lower false alarm rate, while the hybrid fusion delivered the best overall
491  performance: 82.65% accuracy, 94.50% precision, and a false alarm rate of just 2.99%, a substantial reduction

492 in erroneous water detections compared to individual indices.

493 These improvements stem from the complementary design of the fused approach, which combines broad
494 discriminatory power with targeted noise suppression in a lightweight, parameter-free manner. The method’s
495  reliance on freely available Sentinel-2 data and standard GIS operations makes it particularly suitable for
496  rapid, operational flood response in data-limited or resource-constrained settings. Although demonstrated on
497  asingle event, the results suggest that modest refinements to classic water indices can meaningfully advance
498  urban flood detection without resorting to computationally intensive alternatives. Future extensions could
499  include multi-temporal validation, integration with SAR for all-weather capability, or adaptive fusion weights

500  to handle varying water conditions. In summary, ENDWI and the proposed hybrid method offer a practical
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501  and effective tool for more reliable urban inundation mapping, contributing to reduced false alarms and

502  better-informed disaster management.
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