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Abstract. High-resolution precipitation information is essential for hydrometeorological applications such as extreme 

weather monitoring, flood forecasting, and disaster risk management. Despite substantial advances in satellite, radar, and 

gauge observations, producing kilometre-resolution sub-daily precipitation analyses over continental domains remains 15 

challenging due to heterogeneous data availability, scale mismatches, and computational constraints. This study presents the 

design and trial implementation of BRAIN (blended rainfall), a continental-scale, kilometre-resolution hourly precipitation 

analysis for Australia. In this initial implementation, BRAIN integrates three key data sources from the Australian Bureau of 

Meteorology: geostationary satellite rainfall estimates from Himawari (2 km, 10 min), radar rainfall estimates (1 km, 5 min), 

and sub-daily rain gauge observations. The trialled system incorporates quality control, spatiotemporal aggregation, bias 20 

correction, and a simplified statistical interpolation configuration designed to balance performance with scalability at 

continental scale. Source contributions are weighted according to their spatial and temporal error characteristics, allowing 

each data type to influence the analysis where it is most informative. The trial implementation produces hourly rainfall fields 

at 2-km resolution across the Australian continent. Evaluation for the trial period 2022–2023 indicates that the blended 

analysis improves upon satellite-only, radar-only, and satellite–gauge products, outperforms the gauge-based interpolation 25 

approach currently used in flood operations, and provides more spatially coherent and detailed rainfall structures than the 

current daily operational product. These results demonstrate the feasibility and utility of the proposed design and trial 

implementation in the Australian context, with potential extension to long-term historical reconstruction and near–real-time 

applications. The system design is flexible and scalable, enabling future upgrades such as finer spatial and temporal 

resolutions and the incorporation of additional data sources. Beyond the Australian context, this study provides an additional 30 

reference for large-scale multi-source precipitation analysis at kilometre and hourly resolutions. 

https://doi.org/10.5194/egusphere-2026-666
Preprint. Discussion started: 5 February 2026
c© Author(s) 2026. CC BY 4.0 License.



2 

 

1 Introduction 

Precipitation is a critical component of the water cycle, exerting strong control over hydrological processes and acting as a 

primary driver of flooding, which poses significant risks to infrastructure and human safety (Prein et al., 2017). However, 

accurately characterising precipitation fields, particularly at high spatial and temporal resolutions, remains challenging due to 35 

their pronounced variability across scales (Nishant et al., 2022; Zhang et al., 2021a). For example, rain gauges, while reliable 

for point-based measurements, struggle to capture spatial variability, especially in regions with sparse observation networks 

(Villarini et al., 2008). Weather radars provide high-resolution data with broader spatial coverage but are typically 

concentrated in densely populated areas, leaving large remote regions unmonitored (e.g., Zhang et al., 2025). Satellites-based 

precipitation products provide near-global coverage and high temporal sampling, but their estimates are subject to retrieval 40 

uncertainties arising from indirect measurement principles and algorithmic assumptions (e.g., Sun et al., 2018; Zhang et al., 

2021b, c). Reanalysis products, which combine numerical weather prediction models with diverse observations, provide 

spatially and temporally complete precipitation fields, but their resolution and accuracy depend on model configuration and 

data assimilation assumptions (e.g., Su et al., 2019, 2021, 2025). Integrating information from multiple sources through 

blending offers a pathway to leverage the complementary strengths of each data source, mitigate their individual limitations, 45 

and better represent precipitation variability across space and time (e.g., Beck et al., 2017, 2019). 

A range of approaches have been developed for multi-source precipitation blending (e.g., Xu et al., 2024; Zhang et al., 2025). 

For example, performance-based averaging methods derive weights for non-gauge data sources from gauge-based skill 

metrics and apply them in a grid-aligned manner, but their applicability may be limited in regions with very sparse gauge 

coverage. Triple collocation-based approach provides a gauge-independent alternative by estimating weights from 50 

independent data sources (e.g., Dong et al., 2022; Koster et al., 2021; Xu et al., 2020); however, both approaches typically 

require spatially complete datasets and assign fixed source weights over time, limiting their applicability under 

heterogeneous data coverage, such as mixtures of spatially incomplete gridded fields and point observations. Multifractal 

blending methods aim to combine precipitation information across spatial scales (e.g., Imhoff et al., 2023; Renzullo et al., 

2017), but their implementation can be challenging when consistent scaling behaviour is not evident in the input data. More 55 

recently, machine learning–based approaches have been explored (e.g., Gavahi et al., 2023; Kossieris et al., 2024; Xu et al., 

2024), in which non-gauge data sources are treated as input features and model relationships are learned using gauge 

observations as targets; while offering high flexibility, these approaches often have limited interpretability and substantial 

computational demands, which have constrained their adoption in operational precipitation analysis. In addition, all above 

approaches typically do not assimilate gauge observations directly as a primary data source in the blending step, which can 60 

limit performance in gauge-rich regions where point observations provide the most accurate precipitation information. 

Compared with the approaches discussed above, statistical interpolation, also known as optimal interpolation, is a statistical 

method with several properties that are well suited to multi-source precipitation blending (e.g., Bhargava and Danard, 1994; 

Chua et al., 2022a, 2023; Fortin et al., 2018; Gandin, 1963; Mahfouf et al., 2007; Shen et al., 2014a, 2018). A defining 
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feature of statistical interpolation is that rain gauge observations are explicitly assimilated as a primary data source, rather 65 

than being used only indirectly for weight estimation, bias correction, or model training. The grid-wise, time-step-wise 

formulation combines a spatially complete background field with observational increments weighted according to error 

characteristics and spatial proximity. This structure enables the flexible integration of point and gridded observations while 

accommodating spatial and temporal data gaps, making statistical interpolation well suited for large-scale precipitation 

analysis in conditions with heterogeneous data availability. Building on these properties, multi-source precipitation analysis 70 

or reanalysis systems have been developed and implemented in several countries in the world, including the United States 

(e.g., Xie et al., 2010), Canada (e.g., Fortin et al., 2015, 2018; Khedhaouiria et al., 2020, 2022; Mahfouf et al., 2007), the 

United Kingdom (e.g., Yu et al., 2020), China (e.g., Shen et al., 2014a, 2018; Xie and Xiong, 2011), and France (e.g., Hyfte 

et al., 2023), with a wide range of spatial and temporal resolutions. In practice, the achievable spatial and temporal resolution 

of such systems is largely constrained by the data source used for background field. For example, systems based on global 75 

satellite products and NWP outputs commonly at spatial resolutions of around 10 km unless additional interpolation or 

downscaling is applied, with temporal resolutions typically ranging from hourly to several-hourly intervals, depending on 

data availability and computational cost. Although these systems generally follow similar blending principles, each 

implementation must be tailored to regional data availability, blending configuration, computational capacity, and 

operational requirements, and must be maintained through routine updates as observing systems evolve. 80 

In Australia, several gridded precipitation products based on daily gauge observations have been developed to support 

climate and water-related applications (e.g., Jeffrey et al. 2001; Jones et al. 2009; Evans et al. 2020). For example, the 

Australian Gridded Climate Data (AGCD) product, formerly known as the Australian Water Availability Project (AWAP) 

product (Jones et al., 2009) provides an operational 5-km daily rainfall dataset that is widely used and is being progressively 

upgraded towards higher resolution (i.e., 1 km). Despite these advances, there is currently no national operational gridded 85 

rainfall product that provides high-resolution precipitation at sub-daily timescales (e.g., hourly). For flood modelling and 

forecasting, sub-daily gauge observations therefore remain the primary data source, with inverse distance weighting (IDW) 

interpolation currently used operationally to estimate catchment-scale rainfall. While radar-based rainfall products (Seed et 

al., 2007) offer high spatial and temporal resolution, their limited coverage leaves a substantial fraction of the Australian 

land area unmonitored (approximately 28% as of year 2023), particularly in remote regions (see Fig. 1c). Satellite-derived 90 

sub-daily precipitation estimates are also available, but their relatively coarse resolution (e.g., 10 km) and uncertainty 

constrain their suitability compared with gauge-based analyses (Islam et al., 2020).  

The lack of a national, high-resolution sub-daily rainfall product highlights the need for a multi-source precipitation analysis 

for Australia (Nishant et al., 2022). Several experimental efforts have sought to address this gap. Disaggregation approaches 

infer sub-daily rainfall from daily products using high-frequency data such as reanalysis (Acharya et al., 2022), but their 95 

accuracy depends on the ability of reanalysis to realistically represent sub-daily precipitation and is further limited by data 

latency for near–real-time applications (Su et al., 2024). Blending-based studies have demonstrated the potential of 
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integrating multiple data sources, including satellite–gauge merging using statistical interpolation at the monthly scale Chua 

et al. (2022a, b) and catchment-scale blending of NWP, satellite, and radar data using multifractal methods (Renzullo et al., 

2017). However, these efforts have not been extended to a national-scale, kilometre-resolution, sub-daily rainfall product.  100 

Recently, the Australian Bureau of Meteorology (hereafter, the Bureau) has implemented the Himawari-based Convective 

Rainfall Rate from Cloud Physical Properties (CRRPH) product, which offers markedly higher spatial (2 km) and temporal 

(10 min) resolution than existing global satellite products such as the Integrated Multi-satellite Retrievals for Global 

Precipitation Measurement (IMERG, 10 km and 30 min), with frequent updates (15 min) suitable for near–real-time 

applications (Bureau of Meteorology, 2024). This provides a promising foundation for constructing kilometre-resolution, 105 

sub-daily precipitation fields at the national scale. 

As part of recent national efforts to advance high-resolution precipitation analysis, the Bureau has initiated the Next 

Generation Rainfall Project. The project aims to develop a new generation of rainfall products to support both historical 

applications, such as climate analysis and hydrological model calibration, and near–real-time operational uses, including 

flood forecasting and disaster response. Within this context, this paper presents the design and trial national implementation 110 

of BRAIN (Blended Rainfall). BRAIN is a multi-source precipitation analysis that produces hourly rainfall fields at 2-km 

resolution across Australia by integrating satellite, radar, and sub-daily gauge observations within a statistical interpolation 

framework. 

The study makes several key contributions:  

(i)  It systematically examines the role of the latest Himawari CRRPH satellite rainfall product as a high-resolution 115 

background field and investigates its interaction with radar and sub-daily gauge observations within the blended 

analysis, building on recent advances by the Bureau in satellite-based rainfall estimation.  

(ii)  It presents the first continental-scale trial implementation in Australia that integrates all currently available and 

operationally manageable satellite, radar, and gauge observations within a unified framework, extending previous 

multi-source efforts toward an operationally viable national product.  120 

(iii)  It applies and tailors statistical interpolation theory to Australian observational and computational constraints, including 

the adoption of an error-informed localisation strategy and a simplified nearest-point representation for radar 

observations, thereby enabling scalable, grid-cell-wise and time-step-wise blending at kilometre and hourly resolutions 

with minimal computational overhead.  

(iv)  It evaluates blending performance from multiple complementary perspectives, including comparisons against single-125 

source fields, two-source blending configurations, and existing operational products and approaches, demonstrating the 

feasibility of producing consistent kilometre-resolution, hourly rainfall analyses at national scale. 

The BRAIN framework is designed to be extensible, scalable, and transferable. It allows the future incorporation of 

additional data sources, including alternative satellite products, numerical weather prediction (NWP) or reanalysis outputs, 
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and daily gauge observations. The framework also supports adaptation to finer spatial or temporal resolutions (e.g., 1 km and 130 

30 min) as operational and research needs evolve and as computational resources increase. Beyond the Australian context, 

BRAIN provides a practical reference for large-scale multi-source precipitation analysis at kilometre and hourly resolutions. 

It complements existing regional-, national-, and basin-scale implementations and contributes to a broader understanding of 

multi-source precipitation performance under heterogeneous observational conditions. 

2 Data sources 135 

Many different data sources are possible for use in generating a blended precipitation product for Australia. In the first 

instance, we use three Bureau-managed precipitation observation data sources for blending: 

- In situ gauges (15/30-min data aggregated to hourly) from the Bureau and those supplied operationally through 

other jurisdictional agencies to support the Bureau's flood forecasting and warning responsibilities. 

- Radar rainfall rates (5-min, 1-km grid) from the Bureau’s nationally owned network. 140 

- Satellite estimates processed from Himawari (10-min, 2-km grid). 

As detailed further below, these data feeds were chosen to build the service because: (1) All three data sources (in situ 

gauges, radar, and satellite) are currently operational, ensuring both feasibility and immediate applicability; (2) Among these, 

in situ gauge data are already used operationally to support national flood forecasting services and serve as the primary 

reference for validation. Additional datasets are being considered for future upgrades (see Section 5 for further directions). 145 

The 2022–2023 period was used for trial development to provide an indication of near-current performance. 
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Figure 1. Spatial distribution and coverage of the data sources used in this study: (a) hourly gauges (aggregated from sub-

daily) (N=2,155) categorized into those within maximum radar range (N=2,122, blue) and outside maximum radar range 

(N=33, red), (b) daily gauges (N=3,659) similarly categorized within maximum radar range (N=3,457, blue) and outside 150 

maximum radar range (N=112, red), (c) radar-based precipitation product showing the calibrated hourly rainfall 

accumulation at the continental scale for 0800 UTC on 1 March 2022. The radar has a maximum range of approximately 300 

km with a 1-km spatial resolution, and (d) satellite-based precipitation product (CRRPH) showing the hourly rainfall 

accumulation at the same time and spatial domain. The satellite product provides seamless spatial coverage with a 2-km 

spatial resolution. 155 
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2.1 In situ observations 

A total of 2,155 sub-daily (aggregated to hourly) (Fig. 1a) and 3,659 independent daily (Fig. 1b) rain gauge stations (Bureau 

of Meteorology, 2025) were used in this study. The hourly gauges, sourced from both automatic weather stations and flood 

warning stations, were recorded at sub-hourly intervals and served as the primary input for the blending process. The daily 

gauges, obtained primarily from human-recorded observations, provided an independent evaluation dataset for the final 160 

blended product. To prevent redundancy, any gauge present in both datasets was retained only in the hourly dataset. Both the 

hourly and daily datasets were subjected to rigorous quality control procedures, including checks for extreme high values 

comparing with gridded design rainfall fields; spatial intercomparisons to detect anomalous high values, or prolonged 

periods of zero values which may indicate an instrument failure or gauge blockage; intercomparisons between sub-daily and 

daily data in cases where these are separately stored; and large numbers of successive identical non-zero values. The network 165 

density varies significantly for hourly gauges (Fig. 1a), with some areas—particularly along the populated and flood-prone 

Great Dividing Range in eastern Australia—having dense coverage, while others have little to no data. In contrast, daily 

gauges (Fig. 1b) are more evenly distributed, though substantial data voids remain, particularly in the arid and sparsely 

populated western interior.  

An additional independent hourly dataset (approximately 2000 stations) was collated after completion of the main analyses 170 

and used for supplementary evaluation. The spatial distribution of these hourly gauge stations is shown in Figure S13. 

2.2 Radar-based observations 

Radar rainfall estimates (Bureau of Meteorology, 2022) were obtained from the Bureau’s operational Rainfields system, 

which provides real-time data at a 1-km/5-min resolution. The system offers both raw and calibrated radar rainfall rates. Raw 

rainfall rates are derived using reflectivity–rainfall rate (Z–R) relationships, which are established for each radar based on 175 

long-term historical data. Calibrated rainfall rates are then generated by applying dynamic bias correction to the raw 

estimates using nearby gauge observations within a 150-km radius over a 15-min time window, employing a Kalman 

filtering approach (Chumchean et al., 2006). By incorporating real-time gauge data, calibrated radar rainfall rates provide an 

additional refinement to the Z-R-based estimates, ensuring adjustments to current conditions that may deviate from the 

historical period used to derive the Z-R relationships. 180 

In this study, we used hourly radar accumulations derived from 5-min calibrated radar rain rates as a blending input for the 

target hourly resolution. However, we recalibrated the radar data using gauges within a 300-km radius over a 1-hour window 

to better match the hourly target timescale, improving accuracy by incorporating more gauges. We refer to the operational 

calibrated product as R0 and the recalibrated version as R1. In addition, to match the spatial resolution with satellite data, the 

original 1-km radar grids were aggregated to 2 km. Figure 1c shows an example of the calibrated radar rainfall hourly 185 

accumulation (R1) at a continental scale, recorded at 0800 UTC on 1 March 2022. 
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2.3 Satellite-based observations 

The Himawari-based CRRPH v2.1 product (Bureau of Meteorology, 2024) was selected as background filed for this study 

because it provides continental coverage at 2-km spatial and 10-min temporal resolution, helping to compensate for gaps in 

the ground-based network. The product is derived from the Japanese Himawari-8/9 geostationary satellites, which carry the 190 

Advanced Himawari Imager (AHI) and provide multi-spectral observations of cloud and atmospheric properties over the 

Australian region. CRRPH exploits the high-frequency, multi-channel infrared observations from AHI to infer convective 

rainfall rates based on cloud physical properties, including cloud optical depth and effective radius, which are indicative of 

convective intensity. 

The CRRPH product is available from 2015 onwards and is updated operationally with a latency of approximately 15 195 

minutes, making it suitable for near–real-time applications. In this study, the native 2-km spatial resolution of CRRPH was 

adopted as the target grid for blending, thereby defining a common spatial standard across all input datasets. This choice 

avoids additional spatial resampling of the satellite field and reduces potential interpolation-induced errors. Temporally, the 

10-min CRRPH rainfall rates were aggregated to hourly accumulations prior to blending to ensure consistency with other 

data sources and downstream hydrological applications. 200 

Figure 1d illustrates an example of the CRRPH hourly rainfall accumulation at the continental scale at 0800 UTC on 1 

March 2022, highlighting its ability to represent large-scale precipitation patterns with fine spatial detail. As with other 

satellite-based precipitation products, CRRPH rainfall estimates are subject to systematic biases. To mitigate these effects, a 

mean bias correction was applied using a gauge-based adjustment approach (Chumchean et al., 2006), consistent with the 

procedure adopted for radar rainfall estimates. Further details of the bias correction methodology are provided in Section 3.3. 205 

3 Methods 

3.1 Workflow 

The multi-source blending workflow (Fig. 2) integrates satellite, radar, and gauge data through a multi-step process to 

produce a high-resolution blended rainfall product. After temporal/spatial aggregation, quality control, and bias correction, 

satellite data serve as the background, radar data as the first-layer observations, and gauge data as the second-layer 210 

observations. These inputs are then combined using the multi-source statistical interpolation framework to generate the final 

blended rainfall (BRAIN) product. Some key steps are detailed in the following subsections. 
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Figure 2. Workflow of the multi-source statistical interpolation blending process used in BRAIN (Blended Rainfall) 

analysis. The inputs include Himawari satellite CRRPH data (2-km, 10-min), Rainfields radar data (1-km, 5-min), and sub-215 

daily gauge observations (point data, 15/30-min). The workflow includes temporal aggregation for satellite, radar and gauge 

data, spatial aggregation for radar data, and quality control for gauge data. After bias correction, the satellite data serves as 

background, the radar data serve as the first-layer observations, and the gauge data act as second-layer observations. The 

trialled implementation of the system integrates these inputs to generate the final blended rainfall product (BRAIN) with a 2-

km spatial and 1-hour temporal resolution. 220 
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3.2 Multi-source statistical interpolation 

A range of approaches can be selected for producing blended gridded datasets (e.g., Yin et al. 2021; Gavahi et al. 2023; 

Khedhaouiria et al. 2022; Chappell et al. 2013; Shen et al. 2014; Yu et al. 2020). Statistical interpolation is a widely used 

interpolation method in many meteorological organisations (e.g., Mitchell et al. 1990; Huang et al. 1997; De Mey 1994; 225 

Lorenc et al. 1991) for blending or assimilating observations with weather models, particularly before the development of 

more advanced variational methods (e.g., Gauthier et al. 2007; Rawlins et al. 2007; Rabier et al. 2000; Rabier 2005). More 

recently, it has been widely applied to precipitation interpolation and blending (e.g., Xie and Xiong 2011; Yu et al. 2020; 

Chua et al. 2022a; Mahfouf et al. 2007). 

Statistical interpolation enables the integration of multi-source precipitation data by updating a background estimate—in this 230 

case, the satellite-derived first guess—based on observations (gauge/radar fields) to generate an analysis, with adjustments 

weighted according to the estimated error characteristics of each data source. The method assumes Gaussian error 

distributions, which may not strictly hold for precipitation but are commonly used approximations to avoid added 

complexity from data transformation, while bias correction is applied to both satellite and radar data to help satisfy the 

assumption of unbiased errors. Statistical interpolation operates as an iterative, grid-based analysis adjusting each target grid 235 

cell using observations within a predefined search radius (e.g., 200 km). 

For a given target grid cell k, the analysis value is computed as: 

𝐴𝐴𝑘𝑘 = 𝐵𝐵𝑘𝑘 + ∑ 𝑤𝑤𝑖𝑖 ∙ (𝑂𝑂𝑖𝑖 − 𝐵𝐵𝑖𝑖)𝑛𝑛
𝑖𝑖=1            (1) 

where 𝐴𝐴𝑘𝑘 is the analysis value, 𝐵𝐵𝑘𝑘 is the background value, 𝑂𝑂𝑖𝑖 is the observational value at a nearby location i, and Bi is the 

corresponding background value, 𝑛𝑛 is the total number of nearby observations. The term 𝑂𝑂𝑖𝑖 − 𝐵𝐵𝑖𝑖 represents the observational 240 

increment, and 𝑤𝑤𝑖𝑖 are the weights assigned to each observation. 

The analysis error is then determined as the difference between the "true value" and the analysis value: 

𝐸𝐸𝑘𝑘2 = (𝑇𝑇𝑘𝑘 − 𝐴𝐴𝑘𝑘)2 = [𝑇𝑇𝑘𝑘 − 𝐵𝐵𝑘𝑘 − ∑ 𝑤𝑤𝑖𝑖 ∙ (𝑂𝑂𝑖𝑖 − 𝐵𝐵𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ]2        (2) 

By defining the background error 𝑓𝑓𝑖𝑖 = 𝑇𝑇𝑖𝑖 − 𝐵𝐵𝑖𝑖  and observational error 𝜀𝜀𝑖𝑖 = 𝑂𝑂𝑖𝑖 − 𝑇𝑇𝑖𝑖 , the analysis error equation can be 

rewritten as: 245 

𝐸𝐸𝑘𝑘2 = [𝑓𝑓𝑘𝑘 − ∑ 𝑤𝑤𝑖𝑖 ∙ (𝑓𝑓𝑖𝑖 + 𝜀𝜀𝑖𝑖)𝑛𝑛
𝑖𝑖=0 ]2           (3) 

Minimizing this error allows us to optimally assign weights to nearby observations, yielding the most statistically accurate 

estimate for each target grid cell. To solve this optimization problem, we take the partial derivative of 𝐸𝐸𝑘𝑘2 with respect to 

each 𝑤𝑤𝑖𝑖 and set it to zero, which leads to the following equation: 

∑ (𝑓𝑓𝑖𝑖 + 𝜀𝜀𝑖𝑖)𝑛𝑛
𝑗𝑗=1 �𝑓𝑓𝑗𝑗 + 𝜀𝜀𝑗𝑗�𝑤𝑤𝑖𝑖 = 𝑓𝑓𝑘𝑘(𝑓𝑓𝑖𝑖 + 𝜀𝜀𝑖𝑖), 𝑖𝑖 = 1,2, … ,𝑛𝑛        (4) 250 
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By expanding and expressing the above equation in normalised form: 

∑ �𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖𝜎𝜎𝑗𝑗 + 𝜏𝜏𝑗𝑗𝑗𝑗𝜎𝜎𝑖𝑖 + 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗�𝑛𝑛
𝑗𝑗=1 𝑤𝑤𝑖𝑖′ = 𝜇𝜇𝑘𝑘𝑘𝑘 + 𝜏𝜏𝑘𝑘𝑘𝑘𝜎𝜎𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛       (5) 

where: 

• 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗 �𝑓𝑓𝑖𝑖
2𝑓𝑓𝑗𝑗

2�
1
2⁄  , 𝜇𝜇𝑖𝑖𝑖𝑖 ∈ ℝ𝑛𝑛×𝑛𝑛  is the background (satellite) error correlation between the 𝑖𝑖th and 𝑗𝑗th 

observational locations. Similarly, 𝜇𝜇𝑘𝑘𝑘𝑘 ∈ ℝ1×𝑛𝑛 is the background error correlation between the target grid cell k and 255 

the ith observational location. 

• 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖𝜀𝜀𝑗𝑗 �𝑓𝑓𝑖𝑖
2𝜀𝜀𝑗𝑗2�

1
2⁄ , 𝜏𝜏𝑖𝑖𝑖𝑖 ∈ ℝ𝑛𝑛×𝑛𝑛  is the correlation between the background error at the ith location and the 

observational error at jth location. Similarly, 𝜏𝜏𝑘𝑘𝑘𝑘 is the correlation between the background error at the target grid 

cell k and the observational error at the ith observational location. 

• 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜀𝜀𝑗𝑗 �𝜀𝜀𝑖𝑖2𝜀𝜀𝑗𝑗2�
1
2⁄ ,𝜌𝜌𝑖𝑖𝑖𝑖 ∈ ℝ𝑛𝑛×𝑛𝑛  is the observational error correlation between the 𝑖𝑖th and 𝑗𝑗th observational 260 

locations. 

• 𝜎𝜎𝑖𝑖 = �𝜀𝜀𝑖𝑖2 𝑓𝑓𝑖𝑖
2⁄ �

1
2,𝜎𝜎𝑖𝑖 ∈ ℝ𝑛𝑛×1 is the ratio of the standard deviation of observational error to the standard deviation of 

background error at the ith observational location. 

• 𝑤𝑤𝑖𝑖′ = 𝑤𝑤𝑖𝑖�𝑓𝑓𝑖𝑖
2 𝑓𝑓𝑘𝑘

2� �
1
2,𝑤𝑤𝑖𝑖′ ∈ ℝ𝑛𝑛×1 is adjusted weight accounting for differences in background error across between 

the ith observational location and target grid cell k. 265 

This system of linear equations is solved to determine the optimal weights 𝑤𝑤𝑖𝑖, which are used to obtain the best precipitation 

estimate at each target grid cell by optimally combining satellite, radar, and gauge data. These equations require knowledge 

of the background error correlation (𝜇𝜇𝑖𝑖𝑖𝑖 ,  𝜇𝜇𝑘𝑘𝑘𝑘), background-to-observation error correlations (𝜏𝜏𝑖𝑖𝑖𝑖 ,  𝜏𝜏𝑘𝑘𝑘𝑘), observational error 

correlations (𝜌𝜌𝑖𝑖𝑖𝑖), the ratio of observational to background error variances (𝜎𝜎𝑖𝑖), and the spatial variation of background errors 

(𝑓𝑓𝑖𝑖
2 𝑓𝑓𝑘𝑘

2� ). 270 

The background error correlation is typically derived from an analytical function (e.g., Bergman 1978; Xie and Xiong 2011; 

Yu et al. 2020), while background-to-observation error correlations are assumed to be zero, as different sensor systems are 

considered independent. Similarly, the observational-to-background error variance ratio is estimated separately for satellite, 

radar, and gauge data using analytical functions (e.g., Bergman 1978; Xie and Xiong 2011; Yu et al. 2020), with the 

corresponding ratios computed between different data sources. The most challenging part of statistical interpolation is 275 

determining the observational error correlations (𝜌𝜌𝑖𝑖𝑖𝑖), as it requires accounting for the number of observations in different 

cases and their respective sensor systems, particularly as the number of data sources increase.  

In this study, both gauge and radar are incorporated as observations. Since radar and gauge data originate from different 

sensor systems, they are simply treated as independent. Furthermore, gauges at different locations are also assumed to be 
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independent. Accordingly, radar–gauge and gauge–gauge observational error correlations are set to zero. However, 280 

incorporating radar-to-radar error correlations into the linear equations (i.e., Eq. (5)) is impractical, as a single target grid cell 

may involve hundreds of radar points within the influence radius (e.g., 200 km), leading to high computational cost and 

potential matrix rank deficiency. 

To address this issue, an error-informed localisation strategy is adopted within the statistical interpolation framework. 

Specifically, a highly efficient implementation is introduced in which only the nearest radar grid cell to each target grid cell 285 

is retained as a supplementary observation. This nearest-point approximation reflects a deliberate selection strategy that 

prioritises the most locally relevant radar information while avoiding dilution by redundant contributions. As a result, this 

approach enables scalable, grid-cell-wise blending suitable for continental-scale precipitation analysis at kilometre spatial 

resolution and hourly temporal resolution under practical computational constraints. 

The design offers several advantages. First, it substantially reduces computational complexity by avoiding redundancy in the 290 

statistical interpolation linear system, which is particularly important for continental-scale applications in Australia involving 

more than five million grid cells. Second, it removes the need to explicitly model radar-to-radar error correlations, thereby 

simplifying the modelling chain and reducing the number of processing steps. Third, by constraining the spatial influence of 

radar observations, the approach limits error extrapolation, an important consideration given the directional and range-

dependent nature of radar errors. Finally, despite its simplicity, the strategy allows radar observations to contribute 295 

effectively both within and outside radar coverage, ensuring consistency and spatial continuity across data sources in the 

blended rainfall fields. 

Following the above strategy and design, we solve the simplified system of linear equations from Eq. (5): 

∑ �𝜇𝜇𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗�𝑛𝑛
𝑗𝑗=1 𝑤𝑤𝑖𝑖′ = 𝜇𝜇𝑘𝑘𝑘𝑘 , 𝑖𝑖 = 1,2, … ,𝑛𝑛         (6) 

where 𝑛𝑛 represents the number of available observations within the influence radius (set to 200 km in this study) for a 300 

specific target grid cell. The number of observations varies by case. These include: (1) a single radar grid cell, (2) a single 

gauge, (3) multiple gauges, (4) one or more gauges combined with one radar grid cell, and (5) no available gauge or radar 

observations. For the multi-gauge case, a maximum of 20 gauges is used. These correspond to the closest gauges within the 

200 km radius. When a radar observation is also present, the total number of observations does not exceed 21. This system 

size remains computationally manageable. 305 

In Eq. (5), the background-to-observation error correlation terms including 𝜏𝜏𝑖𝑖𝑖𝑖, 𝜏𝜏𝑗𝑗𝑗𝑗 and 𝜏𝜏𝑘𝑘𝑘𝑘, are assumed to be zero. This 

assumption reflects the negligible correlation between background and observation errors and leads directly to the simplified 

formulation in Eq. (6). And then gauge-to-gauge error correlations are assumed to be zero between different locations and 

equal to one at the same location. Under the nearest-point approximation, only a single radar observation is included. 

Gauge–radar error correlations are also assumed to be negligible. Under these assumptions, the error correlation matrix 𝜌𝜌𝑖𝑖𝑖𝑖 310 
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reduces to the identity matrix (𝜌𝜌𝑖𝑖𝑖𝑖 = 𝐈𝐈). The radar observation contributes only through its self-correlation, which is 

represented by the final diagonal element and set to one. 

With these simplifications, the linear system remains computationally efficient in all cases. This efficiency is essential for 

continental-scale applications and is particularly important for real-time monitoring and nowcasting. It also supports the 

efficient production and iterative refinement of long-term historical products at high spatial and temporal resolution. Once 315 

the weights are determined, the analysis value at the target grid cell is computed using Eq. (1), yielding the optimal 

precipitation estimate. 

3.3 Mean bias correction of satellite and radar precipitation estimations 

Bias correction for satellite and radar data followed a method similar to that used for operational radar calibration via a 

Kalman filter, as described by Chumchean et al. (2006), but adapted to the target hourly timescale. Data were first extracted 320 

at gauge locations, ensuring consistent gauge selection across satellite and radar fields, except for gauges located outside the 

radar range where no radar information is available. Bias at each location was estimated using a Kalman filter with an AR(1) 

model to capture temporal dependence, then interpolated spatially using ordinary kriging. The resulting bias field was 

applied multiplicatively to the raw product to produce the corrected product. 

The calibrated radar estimates (R1) used in this study differ from the operational Rainfields product (R0) in both temporal 325 

and spatial configuration. R0 applies bias correction using gauges within a 150-km radius and a 15-min window, constrained 

by latency and the short update interval. In contrast, R1 uses gauges within a 300-km radius and a 1-hour window, allowing 

more gauges to be included and improving correction accuracy. This approach ensures consistent configurations for satellite 

and radar bias correction by using the same set of gauges (accounting for radar range) in both cases. However, this case is 

tailored to the Australian radar system; for different radar operation systems, adjustments can be made based on their own 330 

configuration and production objectives. 

3.4 Error characterisation 

Error characterisation is essential for determining observation weights. It involves estimating the error variance and 

correlation of each data source for both gauged and ungauged locations. Ideally, this error analysis should be conducted at 

each target grid cell to obtain accurate error estimates. For gauged locations, this task is relatively straightforward, as gauge 335 

observations can be used as ground truth to estimate the error characteristics of the background and observational inputs. 

However, for ungauged grid locations (99.9% of the 2-km land grid cells nationally), the process becomes challenging due to 

the absence of gauge observations. To address this, incorporating spatial and temporal windows to gather sufficient samples 

is a common approach. For example, for a target grid cell, one might analyse data from one month before the target hourly 

time step and include available hourly gauges within a 10° × 10° longitude-latitude extent. However, implementing these 340 

configurations in practice is infeasible at the km-scale used in this study, as a 2 km resolution product in Australia involves 
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over 5 million grid cells (including ocean areas of interest, see Fig. 1d). Additionally, the sparse distribution of hourly 

gauges necessitates adaptive spatial and temporal windows rather than fixed ones, requiring adjustments based on the 

availability of hourly gauges for each specific grid cell and time step. This approach would demand substantial effort and 

fine-tuning. 345 

To simplify the process, we estimated regional error characteristics by dividing the analysis into subregions. Satellite errors 

showed latitude dependence, with greater errors occurring in tropical northern Australia. In contrast, radar error 

characteristics are more radar-specific, with errors differing depending on local topography around the radar range, 

differences in the radar type and hardware configuration, and site-specific Z-R parameters. In addition, the bias correction of 

radar data helped reduce range-dependent error to some extent. For simplicity and consistency, in the first instance, the same 350 

regional divisions were applied to both the satellite and radar error characterisations. Specifically, the Australian domain was 

divided into tropical, subtropical, and temperate subregions. Curves for error variances and error correlations were fitted 

within each subregion. Error characteristics were calculated using data from gauged locations and then applied to ungauged 

locations within the same subregion. 

For error variances, we calculated the squared differences between satellite (or radar) estimates and gauge observations. The 355 

error variance increases with precipitation intensity, making this relationship suitable for fitting error variance curves. To 

capture this, precipitation intensities were divided into bins, and within each bin, the mean squared error between satellite (or 

radar) estimates and gauge observations was calculated as the error variance. This analysis showed that error variance is a 

function of precipitation intensity. Various curve-fitting models were tested to represent the scatter, and the optimised 

parameters for the best-fitting curves were obtained. 360 

For error correlations, pairs of satellite (or radar) estimates and gauge observations were collected, and the error correlation 

was calculated for each pair along with their corresponding distance. Distances were similarly divided into bins, and within 

each bin, the mean error correlation was calculated. This revealed that error correlation is a function of distance. As with 

error variances, different curve-fitting models were applied to the scatter, and the optimised parameters for the best-fitting 

curves were determined. 365 

3.5 Evaluation strategies 

As the overarching goal is to develop a blended precipitation product using three sources (i.e., satellite, radar and gauge) and 

transition it to operational use, we have two main objectives. First, the blended three-source product (i.e., satellite-radar-

gauge) should demonstrate improvements over any individual source (i.e., satellite, radar and gauge) as well as over two-

source combinations (i.e., satellite-gauge blending), confirming that the blending process effectively leverages the strengths 370 

of all datasets. In particular, the blended product should outperform the current operational method, which relies on inverse 

distance weighting (IDW) interpolation of sub-daily gauges, thereby indicating its potential for operational adoption. Second, 

the sub-daily blended product should perform comparably to, or ideally better than, the current daily operational product (i.e., 
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AGCD). These objectives ensure that the blended product is robust, accurate, and operationally viable, addressing the 

limitations of individual sources and existing interpolation techniques while aligning with current operational practices. To 375 

achieve these objectives, we used the following data sources for evaluation: 

- Hourly gauges (Fig. 1a): Used in 20-fold cross-validation to assess hourly performance of both the blended BRAIN 

product and IDW interpolation. 

- Daily gauges (Fig. 1b): Independent of the hourly dataset, used for an additional and complementary assessment. 

- IDW-based interpolation: Included as a benchmark for comparison with the blended product, as it is currently used 380 

as the operational method in Australia for estimating hourly rainfall. 

- AGCD daily gridded product: Used for comparison at the daily scale as it is the operational product in Australia 

(Jones et al. 2009). 

Cross-validation was applied to both blended BRAIN product and IDW-based interpolation using hourly gauge data. A 20-

fold approach was used, with 95% of the data for blending/interpolation and 5% for validation in each fold, repeated 20 385 

times without replacement. For the statistical evaluation of the blended product, we primarily used correlation and root mean 

square error (RMSE) as performance metrics. Correlation measures the strength and direction of the linear relationship 

between the blended product and gauge observations. Higher correlation values indicate better agreement, with values closer 

to 1 representing stronger performance. RMSE quantifies the magnitude of errors between the blended product and gauge 

observations. Lower RMSE values indicate smaller errors and better overall accuracy of the blended product. In addition, 390 

bias was included to quantify the systematic overestimation or underestimation of the blended product relative to 

observations. All metrics were calculated individually for each gauge to ensure a detailed assessment of performance across 

all locations. The spatial match between the gridded data and gauge locations was established using nearest interpolation. 

For the trialled implementation, a two-year dataset from 2022 to 2023 was used in this study. 

An additional independent hourly dataset from approximately 2000 gauges (see Fig. S13) was collated after completion of 395 

the main analyses and used for supplementary evaluation. This independent dataset provides additional and robust external 

evidence supporting the reliability of the evaluation outcomes derived from the primary hourly cross-validation analysis. 

There are several existing global precipitation products (e.g., Beck et al., 2019; Ma et al., 2025) that could be used for 

comparison and evaluation of the blended BRAIN product. However, these products are developed for different objectives 

and application contexts, and therefore such comparisons are not considered in this study. First, most global products have 400 

either coarser spatial resolution or lower temporal resolution than BRAIN, which limits the meaningfulness of direct 

comparisons at same spatial and temporal resolutions. Second, the BRAIN product is explicitly designed as an operational 

product for Australia, with an update latency of less than one hour. This near-real-time capability represents a key advantage 

that is not shared by most global products. Third, the BRAIN framework incorporates a large number of sub-daily gauge 

observations available in Australia as a core data source. Many of these gauges have not been used in the development of 405 
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existing global products, resulting in a fundamentally different observational basis. Given these differences in spatial and 

temporal resolution, operational objectives, and observational inputs, direct comparison with global precipitation products 

would be neither fully fair nor particularly informative. Instead, the focus of this study is placed on evaluating the internal 

consistency, added value, and performance gains of the BRAIN framework relative to its constituent data sources and 

blending configurations. On this basis, we expect the blended BRAIN product to demonstrate clear advantages and improved 410 

performance within its intended operational and regional context. 

4 Results and discussion 

4.1 Satellite and radar bias correction 

Figure 3 demonstrates the spatial and statistical improvements in mean bias error for satellite and radar precipitation data 

after bias correction, evaluated against hourly gauge observations across Australia during the 2022–2023 period. 415 

Before correction, satellite data (Fig. 3a) exhibits a clear latitude-dependent bias pattern, with notable overestimation in 

tropical areas that decreases progressively in subtropical and temperate regions (also see Fig. S1a). The corresponding 

histogram (Fig. 3e) reveals a highly positive-skewed distribution, indicating substantial overestimation across most hourly 

gauges. After correction, biases (Fig. 3b) are significantly reduced where initial errors were large, and the error distribution 

(Fig. 3f and Fig. S1c) becomes narrower and more symmetric. 420 

For radar data, the operational Rainfields product (R0, Fig. 3c) shows no clear latitude-dependent bias but exhibits localised 

errors, particularly over the eastern coast (also see Fig. S1b). The histogram (Fig. 3g) indicates a general tendency toward 

overestimation. After the bias correction used in this study (R1, Fig. 3d), spatial consistency improves, and large biases are 

reduced. The error distribution (Fig. 3h and Fig. S1d) become more symmetric and centred around zero.  

These results highlight the importance of bias correction as a critical pre-processing step to reduce systematic errors and 425 

improve the quality of inputs for blending.  
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Figure 3. Spatial distribution of mean bias error (mm/h) for (a, b) satellite precipitation before (S0) and after (S1) bias 

correction, and (c, d) radar precipitation calibrated using the operational Rainfields system (R0) and the method in this study 

(R1). The Rainfields system calibration (R0) utilizes sub-daily gauges within a 150-km radius and a 15-min time window, 430 

whereas the calibration in this study (R1) is expanded to a 300-km radius and a 1-hour time window. The analysis includes 

all available hourly gauges from 2022 to 2023. Histograms illustrate the error distributions across all hourly gauges for the 

corresponding datasets, with the dashed line marking zero bias. Note that the number of gauges in satellite plots differs from 

radar plots because gauges outside the radar coverage are excluded from the radar analysis. An extended analysis in different 

subregions is provided in Fig. S1. 435 
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4.2 Error characterisation 

Figure 4 presents a subregion-dependent analysis of error variance and error correlation for satellite and radar products. 

Figure 4a shows that error variance increases quadratically with precipitation intensity for both products. Satellite data have 

higher variance than radar across all intensities, especially in tropical regions, where the fitted curve is steepest. Radar 

consistently shows lower error variance, reflecting its generally higher accuracy and justifying its greater weighting in 440 

blending. The constant term of the quadratic fit was fixed to ensure an approximate 2:1 error ratio between satellite and radar. 

To account for gauge errors, the error variance of a gauge was defined as the precipitation intensity plus one. This was based 

on empirical estimates from Xie and Xiong (2011), due to the limited availability of sub-daily gauge data in Australia. 

Figure 4b shows that satellite error correlation declines exponentially with distance, consistent across all subregions. 

Tropical areas exhibit the highest short-range correlations, followed by subtropical and temperate zones. Only satellite error 445 

correlations are shown, as radar–radar and radar–gauge correlations were not considered. These results highlight region-

specific error characteristics. The quadratic relationship with intensity underscores the need for intensity-dependent error 

handling, while the exponential decay in correlation reflects the spatially localised nature of precipitation errors. 

 

Figure 4. (a) Error variance as a function of precipitation intensity for satellite and radar precipitation products across 450 

tropical, subtropical, and temperate regions. Quadratic functions are fitted to the data for each region and dataset. (b) Error 

correlation as a function of distance for satellite precipitation products in the same regions, with exponential decay functions 

fitted to the data. These results highlight the dependency of error variance on precipitation intensity and the spatial structure 
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of error correlation across climatic zones. The radar error variance in different zones does not fully reflect the spatial 

characteristics of individual radars, as their errors are more radar-specific. For simplicity, we grouped radars within the same 455 

subregions and derived the error variance curves accordingly. 

4.3 Evaluation  

4.3.1 Comparison of blended product and individual data sources 

To evaluate the effectiveness of the blended product (BR-SRG; BRAIN with satellite-radar-gauge blending), we compared it 

against its input sources (satellite, radar and gauge) under a consistent framework. Two validation approaches were used: (1) 460 

cross-validation using hourly gauges, where the target gauges were excluded from the blending process, and (2) additional 

evaluation using daily gauges not involved in the blending. These evaluations covered both radar-covered and non-radar 

regions (Figs. 5–6; spatial maps in Figs. S5–S10). The boxplots summarise the distribution of performance metrics using 

both the median and interquartile range, providing a robust comparison across data sources and products. 

https://doi.org/10.5194/egusphere-2026-666
Preprint. Discussion started: 5 February 2026
c© Author(s) 2026. CC BY 4.0 License.



20 

 

 465 

Figure 5. Combined 20-fold cross-validation for different products evaluated against hourly gauges, separated by location: 

(a, c, e) within radar range and (b, d, f) outside radar range (see Fig. 1a). Panels show correlation (a, b), RMSE (c, d), and 

mean bias (e, f). Higher correlation, lower RMSE, and bias closer to zero indicate better performance. Products include raw 

satellite (S0), bias-corrected satellite (S1), original radar (R0), bias-corrected radar (R1), two-source blend (BR-SG; BRAIN 

with satellite and gauge), three-source blend (BR-SRG; BRAIN with satellite radar and gauge), and gauge-based 470 

interpolation (IDW). In each fold, hourly gauges for evaluation were selected without replacement. 
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Figure 6. Evaluation using daily gauges for different products: (a, c, e) within radar range and (b, d, f) outside radar range 

(see Fig. 1b). Panels show correlation (a, b), RMSE (c, d), and mean bias (e, f). Higher correlation, lower RMSE, and bias 

closer to zero indicate better performance. Products include raw satellite (S0), bias-corrected satellite (S1), original radar 475 

(R0), bias-corrected radar (R1), two-source blend (BR-SG; BRAIN with satellite and gauge), three-source blend (BR-SRG; 

BRAIN with satellite radar and gauge), and gauge-based interpolation (IDW). 

Compared with satellite-only products, BR-SRG (BRAIN with satellite, radar and gauge) consistently outperforms both the 

raw satellite estimates (S0) and the bias-corrected satellite product (S1) across both hourly and daily evaluations. 

Improvements are evident across all three metrics. In terms of correlation, BR-SRG exhibits higher median values than S0 480 

and S1, indicating a stronger agreement with gauge observations. RMSE is also substantially reduced, reflecting improved 
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accuracy in representing rainfall magnitude. In addition, BR-SRG shows markedly reduced mean bias, with median values 

closer to zero and a narrower interquartile range, indicating improved bias control and more consistent performance across 

gauges. These performance gains are observed both within radar-covered regions and outside radar range, demonstrating that 

the benefits of multi-source blending extend beyond areas directly observed by radar. This highlights the added value of 485 

integrating radar and gauge observations with satellite estimates within the statistical interpolation framework, improving 

both spatial representativeness and quantitative accuracy. Although bias correction improves S1 relative to S0, the satellite-

only products remain clearly inferior to the multi-source blended analyses across all metrics and temporal scales. 

Compared with radar-based products, within radar-covered regions, the bias corrected radar product (R1) exhibits hourly 

performance that is comparable to, and in some cases slightly better than, BR-SRG in terms of correlation and RMSE (Fig. 490 

5). This behaviour is expected, as R1 is calibrated using more available gauges, which favours performance at hourly 

timescales within radar coverage. When evaluated using additional daily gauge observations, BR-SRG consistently 

outperforms R1 in both correlation and RMSE (Fig. 6), indicating improved robustness and reduced sensitivity to radar-

specific errors. This improvement is also reflected in the mean bias statistics at both hourly and daily evaluations, where BR-

SRG shows median values closer to zero and a narrower interquartile range than R1, suggesting more stable bias control 495 

across gauges. Outside radar coverage, radar-based observations are not applicable, whereas BR-SRG maintains stable 

performance by leveraging satellite, radar and gauge information through spatial proximity, further highlighting the 

advantage of the multi-source blending framework. 

Compared with the current operational gauge-based IDW method, BR-SRG shows consistently better performance in both 

hourly and daily evaluations (Figs. 5–6), particularly within radar-covered regions. Outside the radar range, BR-SRG 500 

continues to achieve higher correlation but exhibits higher daily RMSE than IDW. Several factors help explain this 

behaviour. First, sub-daily rainfall exhibits short error correlation length scales (see Fig. 4b), which restrict the spatial 

influence of gauge observations within the statistical interpolation framework. As a result, BR-SRG increasingly relies on 

satellite estimates as the distance from gauges grows. In contrast, IDW always incorporates gauge observations regardless of 

distance and can extract some information even from distant stations (see Fig. S3 and Text S2b). Second, the availability of 505 

sub-daily gauge observations decreases substantially with distance, especially outside the radar coverage, reducing the 

effectiveness of satellite calibration. As a result, residual satellite biases may propagate into the blended product (see Fig. 

S9a and Fig. S10a). Because BR-SRG increasingly depends on satellite information in these regions, such residual biases can 

adversely affect performance (see Fig. 1a, Fig. S2, and Text S2a). Third, IDW may benefit from partial error cancellation 

when sub-daily estimates are aggregated to daily values, which can lead to lower daily RMSE despite weaker sub-daily 510 

performance (see Fig. 6f and Fig. S10c). It is also important to note that the evaluation outside radar coverage is constrained 

by the sparse availability of daily gauge observations. Nevertheless, IDW consistently underperforms BR-SRG within radar-

covered areas and is markedly less effective at representing spatial rainfall structure (Fig. 7), underscoring the overall 

advantage of the multi-source blended approach. 
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Overall, BR-SRG outperforms each individual data source by effectively combining satellite, radar, and gauge observations. 515 

It performs best within radar coverage and remains competitive outside. The performance outside radar range is largely 

influenced by satellite quality, suggesting the need to further improve both satellite retrieval algorithms and calibration 

methods.  

An additional independent hourly dataset (~2000 gauges) was collated after completion of the main analyses and used for 

supplementary evaluation (Fig. S14), and the results strongly reinforce the finding that the blended product (BR-SRG) 520 

exhibits superior overall performance compared with satellite, radar, and gauge products. 

4.3.2 Comparison of three-source and two-source blending 

The three-source blended product (BR-SRG; satellite–radar–gauge) was also compared with the two-source combination 

(BR-SG; satellite–gauge) using both hourly cross-validation and additional daily validation (Figs. 5–6). Across both 

temporal scales, BR-SRG consistently outperforms BR-SG both within and beyond radar coverage, demonstrating the added 525 

value of incorporating radar observations into the blending framework.  

Within radar-covered regions, the inclusion of radar data leads to clear improvements in both correlation and RMSE at the 

hourly scale, reflecting the ability of radar to capture fine-scale spatial and temporal rainfall variability that cannot be 

resolved by satellite and gauge data alone. These improvements persist, albeit to a lesser extent, in the daily evaluation, 

indicating that the benefits of radar assimilation extend beyond short-term variability and contribute to improved 530 

accumulation accuracy. The reduction in mean bias and interquartile range further suggests that radar data help stabilise the 

blended estimates across gauges. 

Beyond radar coverage, BR-SRG continues to show modest but consistent improvements over BR-SG. Although radar 

observations are not directly available in these regions, their influence propagates through the statistical interpolation 

framework over short distances, particularly near the radar boundary. This short-range extrapolation allows radar 535 

information to indirectly constrain the blended field, leading to improved performance relative to the two-source 

configuration. The magnitude of these gains decreases with distance from radar coverage, consistent with the short spatial 

correlation length scales of sub-daily precipitation errors. 

Overall, the comparison between BR-SRG and BR-SG confirms that radar observations provide complementary information 

to satellite and gauge data, enhancing both the accuracy and robustness of blended precipitation estimates. These results 540 

highlight the importance of retaining radar data within national-scale blending systems where available, while also 

demonstrating that the multi-source framework remains effective under heterogeneous observational coverage, a key 

requirement for operational applications. 
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4.3.3 Comparison of hourly blended product and daily operational product 

Figure 7 (with further details in Fig. S4 and Tables S1 and S2) compares the hourly blended product (BR-SRG) with the 545 

AGCD daily product and hourly gauge-based IDW interpolation for two extreme precipitation events: 24 December 2022 

and 14 December 2023. While all products capture large-scale rainfall patterns, BR-SRG clearly outperforms AGCD and 

IDW in representing fine-scale spatial structure and intensity. 

 

Figure 7. Comparison of the blended product (BR-SRG; 2-km and hourly), the AGCD product (5-km and daily), and the 550 

gauge-based IDW interpolation (2-km and hourly) for two extreme precipitation events: (a–c) 24-hour accumulation on 24 

December 2022 and (d–f) 24-hour accumulation on 14 December 2023. BR-SRG is derived from hourly data accumulated 

over 9 am–9 am local time, while AGCD is a daily gauge-based product, and IDW is derived from sub-daily gauge 

interpolation. The “×” symbol marks the gauge location with the highest observed precipitation for each event. For the 24 

December 2022 event, the observed gauge totals are 168.2 mm (from hourly gauges) and 208.0 mm (from daily gauges). 555 

Corresponding values in each product are: 110.8 mm in BR-SRG (a), 175.8 mm in AGCD (b), and 132.5 mm in IDW (c). 

For the 14 December 2023 event, the observed gauge totals are 479.2 mm (from hourly gauges) and 572.4 mm (from daily 

gauges). Corresponding values in each product are: 456.3 mm in BR-SRG (d), 410.6 mm in AGCD (e), and 261.3 mm in 

IDW (f). Further details are provided in Fig. S4 and Tables S1 and S2. 
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For the 24 December 2022 event, BR-SRG (Fig. 7a) shows localised high-intensity rainfall across northern Australia, while 560 

IDW (Fig. 7c) underestimates peaks and lacks spatial detail. AGCD (Fig. 7b) captures the maximum rainfall centre 

reasonably well due to the availability of multiple daily gauges (Fig. S4b and Table S1) in the area but it is too smooth due to 

not processing enough fine-scale information. For the 14 December 2023 event, BR-SRG (Fig. 7d) again provides a detailed 

representation of extreme rainfall patterns in northern and southeastern Australia, supported by a denser sub-daily gauge 

network (Fig. S4c and Table S2). AGCD (Fig. 7e) fails to capture the peak at Cape Tribulation, likely due to delayed or 565 

excluded gauge data (Fig. S4d and Table S2). IDW (Fig. 7f) reproduces the general pattern but underestimates intensity. 

These results highlight the strength and added value of BR-SRG in generating high-resolution hourly fields that preserve the 

spatial detail of extreme events, reinforcing its operational potential. Incorporating daily gauges could further improve 

performance, though this must be balanced against the timeliness required for near-real-time applications. 

4.4 Spatial and temporal performance of the blended product 570 

Figure 8 shows the spatial performance of the blended product (BR-SRG) using correlation and RMSE metrics against 

hourly gauge observations. High correlations are observed across most regions, particularly where gauge density is higher 

(Fig. 8a–c). RMSE is generally lower in coastal and well-observed areas, with higher values in regions with sparse gauges or 

greater rainfall variability (Fig. 8d–f). Some outliers may result from imperfect gauge quality control or residual errors in 

satellite and radar inputs (see Fig. S6). Evaluation may also be biased at gauges with limited data, such as those operating 575 

only during wet seasons. Additional assessments of daily spatial performance (Fig. S11) and monthly temporal performance 

at both hourly and daily scales (Fig. S12) are provided in the Supplementary Material. Overall, BR-SRG performs strongly 

across Australia, with room for improvement in sparsely gauged regions. 
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Figure 8. Spatial performance of the blended product (BR-SRG) on hourly gauges across Australia. (a) Spatial distribution 580 

of correlation between BR-SRG and hourly gauge observations, with higher values (blue) indicating better performance. (d) 

Spatial distribution of RMSE (mm/h), with lower values (red) indicating better performance. (b, e) Longitudinal variations of 

(b) correlation and (e) RMSE averaged across gauges. (c, f) Latitudinal variations of (c) correlation and (f) RMSE averaged 

across gauges. 

5 Conclusions and future directions 585 

In this study, we developed and trialled BRAIN, a national-scale multi-source precipitation analysis system that blends 

Himawari satellite rainfall estimates, Rainfields radar products, and hourly gauge observations to generate a 2-km, hourly 

gridded rainfall dataset for Australia. The system addresses a long-standing need for high-resolution, sub-daily rainfall 

information by combining methodological rigor with computational scalability under realistic operational constraints. 

Comprehensive evaluation over a two-year trial period (2022–2023) demonstrates that the blended product consistently 590 

outperforms individual data sources, two-source blending configurations, and the operational gauge-based IDW approach, 

while producing spatially coherent and quantitatively consistent rainfall fields suitable for both historical analysis and near–

real-time applications.  

The key conclusions of this study can be summarised as follows: 

(1) The high-frequency Himawari CRRPH product is demonstrated to be an effective background field for national-595 

scale precipitation blending. Its key role is to provide a spatially complete first guess at very high spatial and 

temporal resolution, onto which higher-accuracy radar and gauge observations can be consistently integrated where 

available. In regions where ground-based observations are sparse or absent, the satellite background effectively fills 

spatial gaps, ensuring continuity and stability of the blended rainfall field across the continent. 

(2) The continental-scale trial implementation successfully integrates all currently available and operationally 600 

manageable observation-based data sources in Australia, including satellite, radar, and gauge observations, within a 

unified statistical framework. The system is already under active testing within the Bureau’s internal environment 

and is technically ready for operationalisation. In the longer term, the framework is designed to support both 

historical reconstruction and near–real-time product generation, providing a consistent and flexible rainfall analysis 

capability for a wide range of users. 605 

(3) The error-informed localisation strategy embedded within the statistical interpolation framework is shown to be 

effective at continental scale. In particular, the nearest-point approximation for gridded radar source substantially 

reduces modelling and computational complexity, enabling multi-source blending at kilometre and hourly 

resolutions over large spatial domains. This strategy preserves the dominant information content of each data source 

while making high-resolution, sub-daily national analyses computationally feasible. 610 
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(4) The added value of the blended product is confirmed through comprehensive comparisons against individual data 

sources, alternative blending configurations, and existing operational methods and products. The blended analyses 

consistently outperform single-source fields and two-source blending approaches and exhibit strong spatial and 

quantitative consistency with the daily operational AGCD product, supporting their reliability for both sub-daily 

and aggregated applications. 615 

Future development of BRAIN will focus on improving input data quality, refining error characterisation, and enhancing 

spatial and temporal resolution. Anticipated upgrades to the Himawari-based CRRPH product are expected to further 

improve performance, particularly in tropical and radar-sparse regions, while ongoing radar recalibration efforts are likely to 

enhance local accuracy. The integration of complementary satellite products (e.g. IMERG), additional ground-based 

observations (including daily gauges and third-party sub-daily data), and improved representation of error characteristics in 620 

sparsely observed regions will further strengthen the system. 

Overall, BRAIN represents an important step towards an operational national sub-daily rainfall analysis capability for 

Australia. Beyond its immediate regional relevance, this study provides an additional reference for large-scale multi-source 

precipitation analysis systems at kilometre and hourly resolutions under heterogeneous observational conditions. 

Data availability 625 

The Himawari CRRPH satellite precipitation data can be accessed via the National Computational Infrastructure (NCI) Data 

Catalogue (https://dx.doi.org/10.25914/qc2q-mx21). Radar precipitation data are also available through the NCI Data 

Catalogue (https://dx.doi.org/10.25914/5cb686a8d9450). The BRAIN product is currently on pre-production test and 

working to allow its transition into production. Other datasets that are not openly accessible can be requested from the 

Australian Bureau of Meteorology. 630 
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