

1 Characteristics of tropical clouds with strong updrafts revealed by

2 Doppler velocity measurements from EarthCARE/CPR

3 Haruka Hotta^{1,2}, Kentaroh Suzuki¹, Maki Kikuchi², Shunsuke Aoki², Takuji Kubota²

4 ¹Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, 277-8564, Japan

5 ²Earth Observation Research Center, Japan Aerospace Exploration Agency, Tsukuba, 305-8505, Japan

6 *Correspondence to:* Haruka Hotta (hotta@aori.u-tokyo.ac.jp)

7 **Abstract.** Updrafts within clouds are important for the climate system, yet global assessments have traditionally relied on
8 indirect proxies. The EarthCARE satellite's 94 GHz Cloud Profiling Radar (CPR) provides the first global, spaceborne Doppler
9 velocity (Vd) profiles of clouds, enabling direct constraints on convective updraft intensity beyond proxy-based diagnostics.
10 We analyze CPR cloud-property products over the tropics and extract convectively driven columns. We define *MaxVd* as the
11 maximum upward Vd within the subfreezing portion of each column. Columns with *MaxVd* > 2.5 m s⁻¹ are classified as strong-
12 updraft (SU) columns. They exhibit systematically higher echo-top heights at 0 and 10 dBZ than weaker-updraft columns,
13 linking microphysics to dynamics. The probability of SU occurrence strongly depends on the separation between the cloud top
14 and the 0 dBZ echo top, defined as ΔH . A small ΔH robustly identifies SU, including relatively low-topped systems.
15 Spatiotemporally, SU occurrence is enhanced over land, with notably higher values at the 14:00 local-time overpass than at
16 02:00. In contrast, oceanic regions have a smaller SU fraction and exhibit a weaker difference between the two overpass times.
17 These SU enhancements primarily reflect a shift toward horizontally compact, small- ΔH systems rather than higher cloud tops
18 alone. Doppler folding preferentially occurs in small- ΔH structures, with maxima during the continental afternoon, providing
19 a qualitative tracer of extreme updrafts. The combined constraints from Doppler-derived updraft intensity and echo structure
20 offer a process-oriented benchmark for evaluating the coupling between convective dynamics and microphysics in numerical
21 models.

22 1 Introduction

23 Updrafts within tropical deep clouds promote the activation and condensational growth of cloud droplets and the formation of
24 precipitation particles, thereby exerting strong control over the timing, amount, and intensity of rainfall. The strength of these
25 updrafts also determines the maximum height reached by convective clouds and the horizontal extent of their anvils. Within
26 the Earth's climate system, convective updrafts therefore constitute a key dynamical element. Through the rapid ascent of moist
27 air and the associated release of latent heat, they drive large-scale overturning circulations such as the Hadley and Walker cells

28 and contribute to meridional energy transport from the tropics to the midlatitudes (Manabe et al., 1965; Tiedtke, 1989; Bechtold
29 et al., 2001). Vigorous updrafts shape the spatial distribution of rainfall and the occurrence of extreme precipitation events. In
30 addition, the heights and lifetimes of deep clouds, which are controlled by updrafts, exert a strong influence on the planetary
31 energy budget by reflecting incoming shortwave radiation and trapping outgoing longwave radiation (Ramanathan et al., 1989;
32 Hartmann et al., 2001). Updrafts are also crucial in the context of global warming projections: the representation of convective
33 mixing and mass flux in global models affects simulated climate sensitivity and helps explain the spread in equilibrium climate
34 sensitivity across models (Zhao, 2014; Sherwood et al., 2014).

35 Despite this central role, direct observations of updraft vertical velocity (w) in tropical deep clouds remain sparse, limiting our
36 ability to evaluate and improve its representation in atmospheric models. Surface-based and airborne radars have provided
37 invaluable snapshots of w (Heymsfield et al., 2010; Collis et al., 2013; Giangrande et al., 2016; Schiro et al., 2018; Schumacher
38 et al., 2015), but these measurements are episodic, geographically restricted, and heavily concentrated over land. Consequently,
39 global model evaluation still relies primarily on bulk fields and rainfall statistics rather than on the convective processes
40 themselves (Maloney et al., 2019). General circulation models that employ cumulus parameterizations exhibit several
41 persistent, systematic biases, including the double-ITCZ bias and excessively early diurnal peaks in precipitation amount and
42 frequency. These deficiencies point to structural shortcomings in current parameterizations and motivate a fundamental
43 reassessment (Christopoulos and Schneider, 2021; Tian and Dong, 2020). Even at cloud-resolving scales, state-of-the-art
44 numerical models struggle to reproduce the observed statistics and vertical structure of w and its interaction with cloud
45 microphysics. Recent intercomparisons of global km-scale models reveal substantial spread in the magnitude of updrafts: the
46 fraction of columns in which the maximum vertical velocity exceeds 10–20 m s⁻¹ can differ by more than an order of magnitude
47 across models, and simulated regional patterns of convective strength vary widely (Abbott et al., 2025). Takahashi et al. (2025)
48 similarly demonstrated that global km-scale simulations fail to adequately represent the regional variability of convective
49 intensity and exhibit an unrealistic relationship between updrafts and precipitation formation processes. Together, these
50 discrepancies underscore a critical need for global, observation-based constraints on w to calibrate both parameterized
51 convection in general circulation models (GCMs) and explicitly simulated convection in global km-scale models.

52 Spaceborne measurements have helped address the lack of comprehensive observations of w for model evaluation by providing
53 systematic, globally distributed samples of deep cloud systems. However, because most satellite instruments cannot directly
54 observe vertical motion, satellite-based studies have relied on proxy diagnostics for convective intensity. For instance, infrared
55 imagers use 11–12 μ m brightness temperatures to track overshooting tops and to document the diurnal cycle of cloud-top
56 extent (Bedka et al., 2010; Yang and Slingo, 2001). Attempts have been made to infer cloud-top vertical velocities from the
57 temporal evolution of cloud-top temperature; however, methodological uncertainties and a focus on developing clouds have
58 so far prevented these approaches from yielding a comprehensive, global-scale picture across cloud regimes (Adler and Fenn,
59 1979; Luo et al., 2014; Hamada and Takayabu, 2016). Passive microwave radiometers exploit scattering and absorption at
60 approximately 89 and 166–183 GHz to infer convective intensity (Mohr and Zipser, 1996; Skofronick-Jackson et al., 2017).
61 Other studies use lightning flash rates—which are closely linked to the collision rates of ice particles in strong updrafts—as

62 indicators of the most vigorous convection (Christian et al., 2003; Williams and Stanfill, 2002; Deierling and Petersen, 2008;
63 Cecil et al., 2005). The Tropical Rainfall Measuring Mission (TRMM; 1997–2015) and its successor, the Global Precipitation
64 Measurement (GPM; 2014–present) mission, have provided unprecedented global views of precipitation using spaceborne
65 precipitation radars (Kummerow et al., 1998; Iguchi et al., 2000; Hou et al., 2014; Skofronick-Jackson et al., 2017). From
66 these observations, researchers have developed widely used proxies for convective intensity. One common proxy is the echo-
67 top height (ETH), defined as the highest altitude at which a specified reflectivity threshold (e.g., 20, 30, or 40 dBZ) is detected.
68 ETH is interpreted as the altitude reached by large, precipitating hydrometeors (Zipser et al., 2006; Liu and Zipser, 2005;
69 Romatschke et al., 2010). Collectively, these proxy-based studies have revealed robust climatological features, including
70 enhanced convective intensity over land compared with the ocean (Williams et al., 2005; Liu and Zipser, 2008; Zipser et al.,
71 2006).

72 The A-Train constellation further advanced vertical profiling through CloudSat's 94 GHz Cloud Profiling Radar (CPR), which
73 is sensitive to clouds and light-to-moderate precipitation and resolves the vertical structure of clouds with horizontal and
74 vertical resolutions of approximately 1 km and 240 m, respectively (Stephens et al., 2002; Tanelli et al., 2008; Stephens et al.,
75 2008). Compared with the TRMM (13.8 GHz) and GPM (13.6 and 35.55 GHz) precipitation radars, CPR has higher sensitivity,
76 detecting clouds with reflectivity as low as about -28 dBZ (Stephens et al., 2008), and its smaller horizontal footprint provides
77 more detailed information on convective cloud structure. Several proxy metrics for convective intensity based on CPR profiles
78 have been proposed. One class of metrics uses cloud-top height (CTH) and echo-top height (ETH) at thresholds of 0 or 10
79 dBZ. Stronger updrafts are expected to loft larger hydrometeors to higher levels and therefore result in greater ETH (Luo et
80 al., 2011; Takahashi and Luo, 2014). Another class uses the separation between CTH and ETH at 0 or 10 dBZ: when both
81 small and large particles are carried to similarly high levels, CTH and ETH converge (Luo et al., 2008; Luo et al., 2011;
82 Takahashi and Luo, 2014). Regional composites of these proxies reaffirm geographic variations in convective intensity and
83 relate them to environmental controls. For example, Takahashi et al. (2023) demonstrated a strong land–ocean contrast, with
84 hotspots over equatorial Africa and the Amazon, whereas convection over the Maritime Continent is comparatively weaker.
85 Another diagnostic, the cloud center of gravity (COG), defined as the reflectivity-weighted mean height of the cloud within a
86 column, has also been used to characterize convective structure (Koren et al., 2009). COG is especially high over the tropical
87 West African Basin and the Congo Basin (Pilewskie and L'Ecuyer, 2022).

88 Although many previous studies have sought to characterize convective updraft intensity at the global scale, two major
89 limitations remain. First, a fundamental shortcoming of these approaches is that they do not directly measure vertical motion.
90 Proxy indicators do not have a simple or universal correspondence with w , and their relationships vary across different
91 dynamical regimes (Takahashi and Luo, 2014; Liu et al., 2007). Consequently, even with extensive satellite archives, direct,
92 observation-based constraints on w at the global scale have remained out of reach. Second, most proxy-based climatologies
93 are designed to preferentially sample specific types of clouds. The precipitation radars aboard TRMM and GPM primarily
94 detect fully developed, tall convective systems with strong radar echoes because, owing to their relatively low sensitivity, they
95 must rely on high reflectivity thresholds (20–30 dBZ). These thresholds are intrinsically insensitive to weaker hydrometeors

96 populations. Lightning-based metrics emphasize only the most strongly electrified convective cores, while infrared-based
97 ascent-rate approaches focus exclusively on rapidly developing cloud tops. Even studies using CloudSat, which is capable of
98 detecting weak echoes, have often concentrated on tall, well-developed clouds, partly because only a limited set of observable
99 parameters—essentially radar reflectivity—can be robustly analyzed. Consequently, the resulting “intensity” maps that have
100 guided our understanding of convection primarily reflect the upper tail of convective vigor and under-represent relatively low-
101 topped or weak-echo clouds, as well as life-cycle stages outside peak development (Takahashi and Luo, 2014; Hamada et al.,
102 2015; Xu et al., 2022).

103 A decisive advance has become possible with the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), a joint mission
104 of ESA and JAXA launched in May 2024. EarthCARE carries a 94-GHz Doppler Cloud Profiling Radar (CPR), together with
105 a high-spectral-resolution lidar, a multispectral imager, and broadband radiometers (Illingworth et al., 2015; Wehr et al., 2023).
106 Crucially, the EarthCARE CPR provides nadir profiles of both radar reflectivity and Doppler velocity, enabling the first direct
107 measurements of vertical motions within clouds at the global scale. The high sensitivity of EarthCARE’s 94-GHz radar allows
108 the detection of weak reflectivity, thereby systematically sampling shallow, weak-echo convective clouds as well as deep
109 convective systems. EarthCARE is therefore well suited for evaluating vertical motions across a broad range of convective
110 clouds (Illingworth et al., 2015).

111 Building on this novel capability, this study presents the first global characterization of convective updrafts based on Doppler
112 velocity measurements from the EarthCARE CPR. The primary objectives are threefold: (1) to develop a method for
113 identifying updraft strength in tropical deep convective clouds using quality-controlled Doppler velocities; (2) to investigate
114 how updraft strength relates to the vertical structure of radar reflectivity, thereby probing links between cloud dynamics and
115 microphysical processes and comparing these relationships with those inferred from legacy satellite proxies; and (3) to map
116 the global distribution of updraft intensity and examine its dependence on variations in cloud morphological properties. Sect.
117 2 describes the EarthCARE CPR data and analysis methodology used in this study, Sect. 3 presents the results, and Sect. 4
118 summarizes the findings and discusses their implications.

119 2 Data and analysis method

120 2.1 Datasets

121 We use measurements from the Cloud Profiling Radar (CPR) aboard the EarthCARE satellite. EarthCARE flies in a sun-
122 synchronous, near-polar orbit (inclination 97.05°) with nominal local equator-crossing times near 02:00 local time (ascending)
123 and 14:00 local time (descending) (Wehr et al., 2023). The 94-GHz CPR provides nadir profiles of radar reflectivity and
124 Doppler radial velocity. Its intrinsic vertical resolution is 500 m, while the profiles are sampled every 100 m in the vertical.
125 The instantaneous, beam-limited horizontal footprint is approximately 750 m at nadir, with profiles sampled at about 500 m
126 intervals along track.

127 The variables used in this analysis are taken from the standard CPR one-sensor cloud property product (CPR_CLP, version
128 Bb; JAXA, 2025a), specifically the cloud mask, radar reflectivity factor (Ref), Doppler velocity (Vd), and air temperature.
129 These data have a horizontal resolution of 1 km and a vertical sampling of 100 m. In CPR_CLP, the Level-1B received echo
130 power and Doppler velocities are remapped onto the same grid as the cloud mask. Second-trip echoes (mirror images) are
131 screened following Battaglia (2021), as implemented by Aoki et al. (2026). The cloud mask is derived using noise screening,
132 echo-continuity tests, and surface-echo diagnostics (Sato et al., 2025). Air temperature is provided by a JAXA auxiliary product
133 that interpolates temperatures from ECMWF forecasts (Eisinger et al., 2024) to the EarthCARE Level-2 grid (JAXA, 2025b).
134 In this study, positive (negative) Vd denotes upward (downward) motion.

135 2.2 Column selection criteria

136 We exploit EarthCARE’s Doppler capability to analyze vertical velocity w even in clouds with weak radar echoes. We focus
137 on the tropical region (30° S– 30° N) for the period January–September 2025. Data collected prior to early December 2024 are
138 discarded to avoid known noise in Doppler velocity within weaker echoes associated with operation of a redundant side of the
139 signal processing unit in the CPR instrument (JAXA, 2025c), thereby ensuring data quality. Because Doppler-based
140 diagnostics are restricted to range gates with temperatures below 273.15 K (as discussed in Sect. 2.3), we retain only columns
141 that contain a substantial cold portion. To focus on convectively driven clouds, we extract columns that satisfy all of the
142 following conditions:

- 143 (1) Single-layer cloud. Using the cloud mask, a gate is regarded as “cloudy” when the cloud-mask value is ≥ 20 (weak echo).
144 All gates between the highest and lowest cloudy gates must be classified as cloudy.
- 145 (2) Thermodynamic bounds. The cloud-top temperature (CTT) is < 258.15 K, and the cloud-base temperature is > 273.15 K.
- 146 (3) Geometrical thickness. The difference between cloud-top height and cloud-base height exceeds 5 km.
- 147 (4) Reflectivity strength. The column-maximum Ref exceeds 0 dBZ.

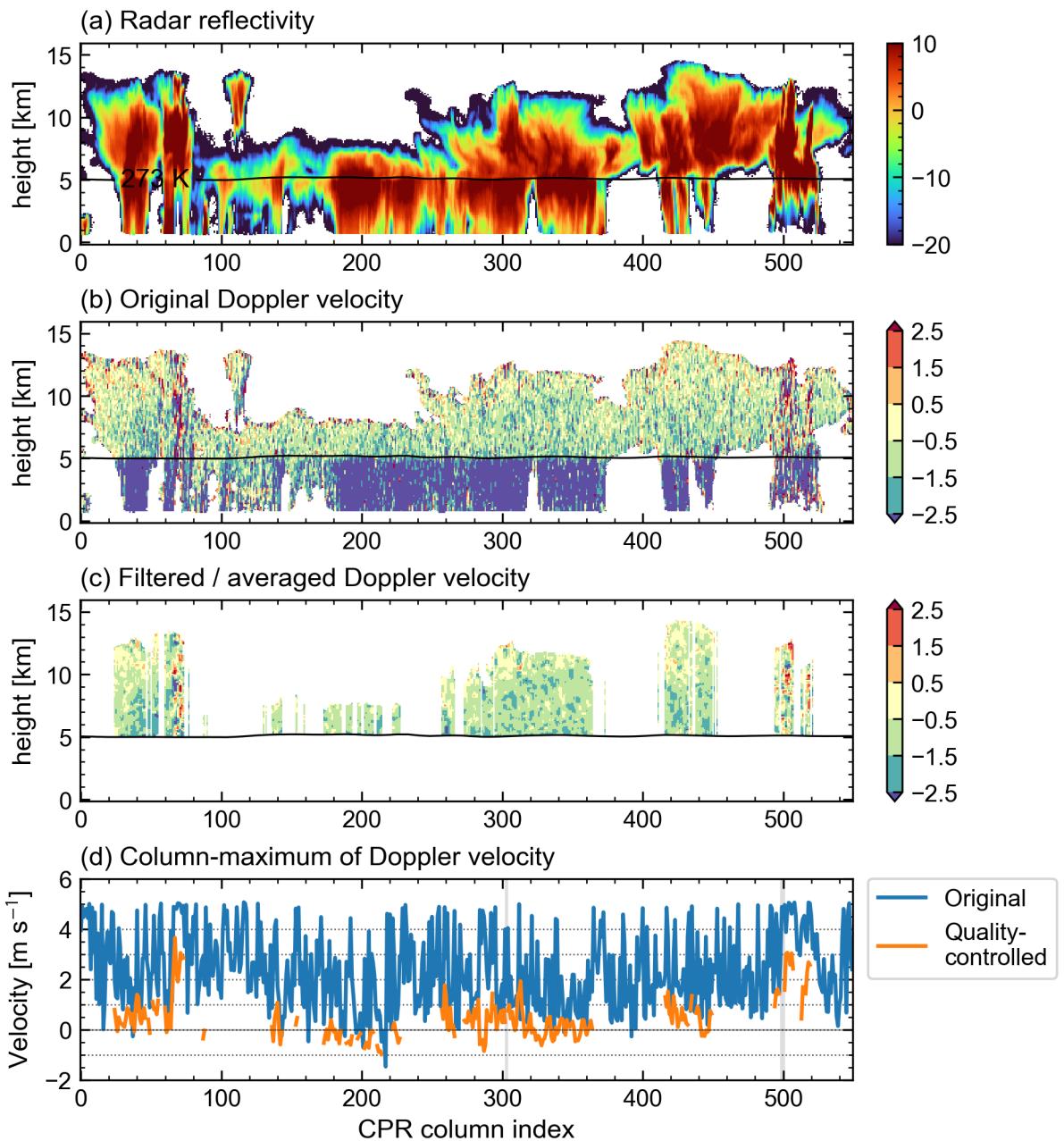
148 2.3 Doppler-velocity quality control

149 CPR Doppler velocities are affected by several sources of error: random noise arising from reduced correlation between
150 successive pulses caused by the rapid motion of the satellite platform ($\varepsilon_{\text{random}}$; Doviak and Zrnic, 2014; Hagihara et al.,
151 2023); pointing uncertainty due to satellite attitude perturbations and antenna thermal distortion ($\varepsilon_{\text{pointing}}$; Tanelli et al.,
152 2005); multiple scattering (ε_{MS} ; Battaglia et al., 2011); non-uniform beam-filling effects ($\varepsilon_{\text{NUBF}}$); and velocity aliasing
153 beyond the Nyquist limit ($\varepsilon_{\text{Nyquist}}$; Sy et al., 2014).

154 To correct for $\varepsilon_{\text{pointing}}$, we apply a bias correction based on the assumption that the Doppler velocity averaged horizontally
155 over 100 km at the surface is zero (Aoki et al., 2026). To limit $\varepsilon_{\text{NUBF}}$, which is large near cloud boundaries and in weak-
156 reflectivity regions, we retain only gates that simultaneously satisfy a cloud-mask value ≥ 20 and Ref ≥ -19 dBZ. To mitigate

157 ε_{MS} , we follow Battaglia et al. (2011) and exclude range bins for which the cumulative reflectivity from the top of the
158 atmosphere down to that gate exceeds a prescribed threshold. The CPR Nyquist (folding) velocity is approximately $\pm 5\text{--}6 \text{ m s}^{-1}$;
159 therefore, large downward (negative) velocities associated with the sedimentation of large particles can be aliased,
160 especially at temperatures above 273.15 K, despite the first-pass dealiasing applied following Hagihara et al. (2023). For this
161 reason, all Doppler-based diagnostics are restricted to subfreezing gates (i.e., temperatures below 273.15 K).

162 **2.4 Metric for updraft strength**


163 We identify columns affected by residual folding (aliasing) at temperatures below 273.15 K as follows. First, for gates colder
164 than 273.15 K, we compute along-track means of V_d over 3 km windows to reduce random error and small-scale turbulent
165 variability. If any pixel within a 3 km window fails the quality filters (cloud-mask value < 20 or $\text{Ref} < -19 \text{ dBZ}$), that window
166 is excluded from the analysis. We then examine vertical differences in the 3 km–averaged V_d profiles and flag as folded those
167 columns in which the jump in V_d between adjacent vertical gates exceeds the Nyquist velocity. The folded columns are used
168 to characterize the strength of convective updrafts, rather than being completely excluded from the analysis.

169 For columns that are not flagged as folded, we define a V_d -based updraft metric to quantitatively characterize the convective
170 intensity of each column. For all remaining gates colder than 273.15 K, V_d is averaged over 3-km along-track windows and
171 then over two adjacent vertical gates (200 m) to reduce random errors and small-scale variability. If any pixel within an
172 averaging window fails the validity filters (cloud-mask value < 20 or reflectivity $< -19 \text{ dBZ}$), that window is discarded. This
173 procedure effectively removes cloud-edge regions. We then define $\text{Max}V_d$, the column-maximum Doppler velocity, as the
174 largest V_d within the portion of the 3-km– and 200-m–averaged profile that is colder than 273.15 K for columns that are not
175 flagged as folded. As a result, columns associated with extremely strong updrafts, for which folding is more likely to occur
176 (Galfione et al., 2025), may be excluded from the $\text{Max}V_d$ -based analysis.

177 Using an extreme-value metric such as the column-maximum Doppler velocity ($\text{Max}V_d$) preferentially captures embedded
178 updraft cores that dominate momentum and mass transport. In contrast, the mean or median V_d is more sensitive to
179 measurement noise. Similar “maximum” or high-percentile Doppler metrics have been used as proxies for convective intensity
180 and for evaluating model clouds (Heymsfield et al., 2010; Abbott et al., 2025). The 3-km along-track and two-gate (200 m)
181 vertical averaging scales are tunable choices; however, the main results are insensitive to reasonable variations in these
182 parameters. We also tested an alternative column metric, namely the volume fraction of gates for which V_d exceeds a fixed
183 threshold. The qualitative conclusions are unchanged when this alternative metric is used instead of $\text{Max}V_d$, indicating that
184 our findings are robust to the specific choice of updraft indicator.

185 **2.5 Case examination of V_d quality control and the updraft metric**

186

187

188 **Figure 1: Example illustrating Doppler-velocity quality control and the definition of the updraft metric *MaxVd* for an**
189 **EarthCARE/CPR scene. (a) Radar reflectivity factor (Ref; dBZ). (b) Native Doppler velocity (Vd ; m s^{-1}) after applying only the**
190 **cloud-mask threshold (cloud mask ≥ 20); positive values indicate upward motion. The black line marks the 273.15 K isotherm. (c)**
191 **Doppler velocity after applying the column-selection criteria and quality control. (d) Column-maximum Doppler velocity as a**
192 **function of column index, computed from the raw field in (b) ("Original"; blue) and from the filtered and averaged field in (c)**
193 **("Quality-controlled"; orange). Grey shading denotes columns flagged as being affected by residual velocity folding.**

194 To illustrate how the column-selection criteria, range restrictions, folding detection, and spatial averaging described in Sects.
195 2.2–2.4 affect the Doppler-velocity diagnostics, we examine the example case shown in Fig. 1. In the radar-reflectivity field
196 (Fig. 1a), the cloud structure is readily identifiable. Several active convective cores with spreading anvils (column indices
197 around 80 and 400), together with an extensive stratiform region exhibiting a bright band (column indices 180–380), are
198 evident. Figure 1b shows the native $1\text{ km} \times 200\text{ m}$ Doppler-velocity field with only the cloud-mask threshold (≥ 20) applied.
199 Above the 273.15 K isotherm, indicated by the black line, the field is speckled with incoherent patches, particularly near cloud
200 edges where reflectivity is weak. These features likely arise from random noise or small-scale turbulence rather than from
201 coherent convective updrafts. Below the 273.15 K isotherm, although negative values are more prevalent, sporadic large
202 positive values also appear, suggesting that strongly negative velocities may have been aliased to positive values.
203 Figure 1c shows the Doppler-velocity field after applying the column-selection and averaging procedures described in Sects.
204 2.2–2.3. The selection criteria in Sect. 2.2 remove multilayer cloud regions (column indices 80–180) and anvil regions near
205 column indices 400 and 480. We then apply the validity filters (cloud-mask value ≥ 20 , Ref $> -19\text{ dBZ}$, and $T < 273.15\text{ K}$) to
206 Vd and average the remaining data over 3 km along track and two vertical gates (200 m), as described in Sect. 2.3. This
207 procedure removes weak-signal outliers that are prone to error, damps small-scale turbulent fluctuations, excludes the impact
208 of folding at temperatures warmer than 273.15 K, and yields smoother and more coherent structures.
209 Figure 1d compares the column-maximum Doppler velocity computed directly from the raw Vd field in Fig. 1b (“Original”;
210 blue) with the column-maximum Doppler velocity computed from the filtered and averaged field in Fig. 1c (“Quality-
211 controlled”; orange). Columns whose 3 km–averaged Vd profiles exhibit discrete vertical jumps with magnitudes exceeding
212 the Nyquist velocity are flagged as folded (as described in Sect. 2.3) and are shaded in grey in Fig. 1d. The original column-
213 maximum Vd fluctuates strongly from column to column, obscuring regime-dependent patterns, whereas the quality-controlled
214 column-maximum Vd (MaxVd) varies smoothly across adjacent columns and shows distinct peaks near column indices 80,
215 300, 500, and 520, albeit with reduced amplitudes.
216 This example motivates our use of MaxVd , computed from the quality-controlled Vd field, as the primary updraft metric. The
217 processing suppresses major sources of error without erasing coherent convective signals, and the modest 3 km (along-track)
218 $\times 200\text{ m}$ (vertical) averaging increases precision while preserving the location and relative magnitude of embedded updraft
219 cores.

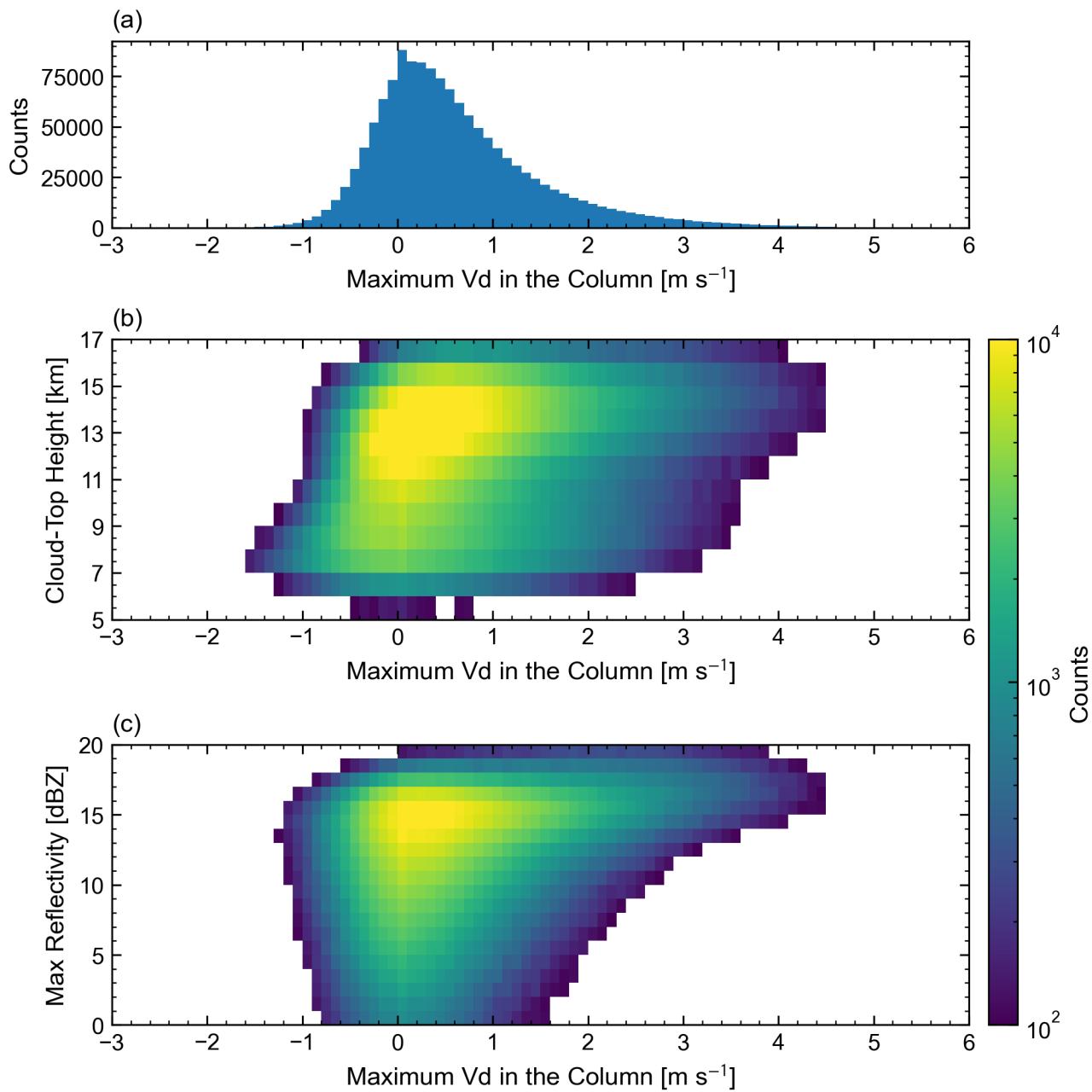
220 **3 Doppler-based identification of strong tropical convective updrafts**

221 We identified 1,171,643 columns after applying the selection criteria described in Sect. 2.2. We then flagged columns as folded
222 using the method described in Sect. 2.3. The analyses in Sects. 3.1–3.2 that use MaxVd are restricted to non-folded columns,
223 because in folded columns, large negative Vd values can be aliased to positive values and erroneously appear as MaxVd ,
224 rendering this metric unreliable. The characteristics of folded columns are assessed separately in Sect. 3.4.

225 3.1 Relationship between updraft strength and vertical reflectivity structure

226 To examine the relationship between updraft strength, cloud development, and precipitation formation, and to evaluate the
227 proxies used in CloudSat-based studies, we relate the updraft-intensity metric $MaxVd$ to several diagnostics derived from the
228 vertical structure of radar reflectivity.

229 3.1.1 Overall statistics of updrafts and their link to cloud properties


230 We first examine the frequency distribution of $MaxVd$ for all non-folded columns to characterize its behavior and compare it
231 with representative updraft velocities reported in previous studies (Fig. 2a). Owing to the Nyquist velocity constraint, $MaxVd$
232 is limited to approximately $+5 \text{ m s}^{-1}$. The distribution peaks between 0 and 1 m s^{-1} , which is smaller than typical values reported
233 from aircraft-borne Doppler radar observations, where column-maximum updrafts often exceed 10 m s^{-1} (Heymsfield et al.,
234 2010), as well as from cloud-top ascent rates inferred from temporal changes in infrared brightness temperature, which are on
235 the order of $1\text{--}3 \text{ m s}^{-1}$ (Hamada and Takayabu, 2016; Li et al., 2021). A likely reason for this apparent underestimation is the
236 difference in the cloud life-cycle stages targeted. Whereas those previous studies primarily sampled fully developed or rapidly
237 developing convective clouds, our statistics also include clouds in their decaying stages, thereby shifting the distribution toward
238 weaker updrafts. In addition, the exclusion of aliased columns and the spatial averaging applied to Vd both tend to shift $MaxVd$
239 toward smaller values. In terms of its shape, the $MaxVd$ distribution exhibits clear positive skewness, with a long positive
240 (upward) tail, consistent with previous findings (LeMone and Zipser, 1980; Lucas et al., 1994; Hamada and Takayabu, 2016).
241 This indicates that columns with strong updrafts are relatively rare compared with those with weak or moderate updrafts.

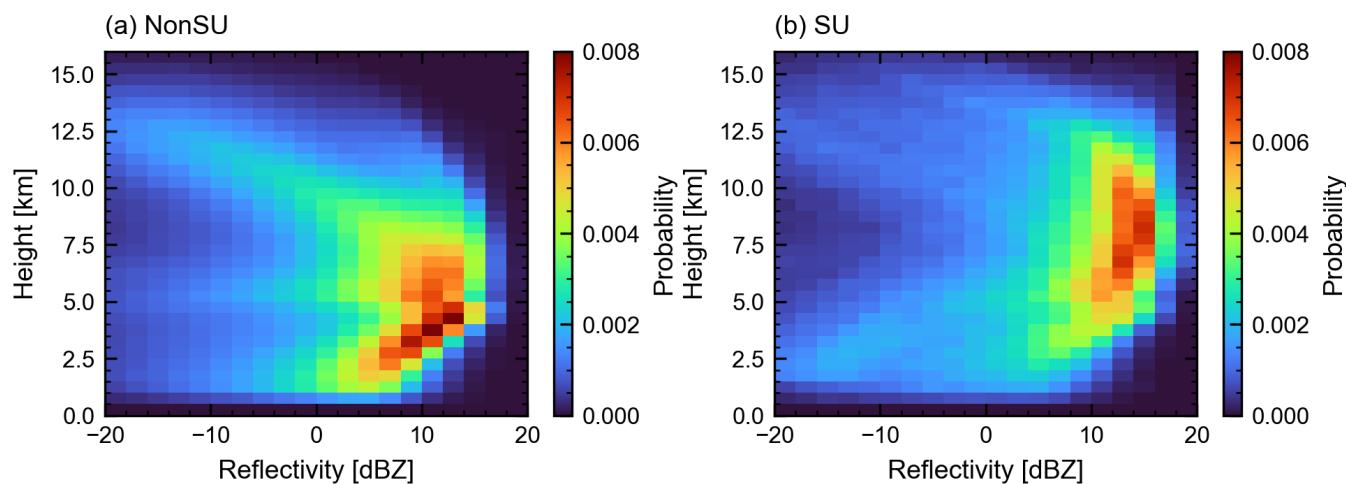
242 To relate updraft strength to cloud vertical development, we construct a two-dimensional histogram of CTH versus $MaxVd$
243 (Fig. 2b). CTH is defined as the highest altitude in a column where the cloud-mask value is ≥ 20 . The histogram clearly shows
244 that, as CTH increases, the mode of the $MaxVd$ distribution systematically shifts toward higher values. For example, clouds
245 with CTHs of $8\text{--}10 \text{ km}$ exhibit a modal $MaxVd$ near 0 m s^{-1} , whereas those with CTHs of $14\text{--}16 \text{ km}$ show a mode close to 1 m s^{-1} . This pattern indicates that taller convective systems are generally more likely to contain strong updraft cores. This height
246 dependence is qualitatively consistent with previous studies, which have reported that higher cloud tops tend to be associated
247 with stronger convective intensity (Price and Rind, 1992; Song and Sohn, 2020).

248 The relationship between $MaxVd$ and the column-maximum radar reflectivity (MaxRef), which is closely linked to
249 hydrometeor size and precipitation intensity, is even more apparent (Fig. 2c). The occurrence frequency of large $MaxVd$ values
250 increases nonlinearly with increasing MaxRef, indicating that large particles are more readily generated and/or maintained in
251 environments with relatively strong updrafts. This statistical covariation between reflectivity and updraft strength is consistent
252 with previous observations from aircraft radars, although the absolute magnitudes depend on observational conditions, such
253 as radar frequency (Heymsfield et al., 2010). Because of strong attenuation at 94 GHz , however, MaxRef is likely
254 underestimated in regions with very high reflectivity (Matrosov, 2007; Kollias et al., 2022).

256

257

258 **Figure 2: Statistical distribution of the Doppler-derived updraft metric ($MaxVd$) and its relationship to cloud vertical development**
259 **and precipitation intensity for all analyzed non-folded tropical columns. (a) Histogram of $MaxVd$ ($m s^{-1}$).**
260 **(b) Two-dimensional histogram of $MaxVd$ versus cloud-top height. (c) Two-dimensional histogram of $MaxVd$ versus column-maximum radar reflectivity**
261 **($MaxRef$; dBZ). Shading in (b) and (c) indicates sample counts (logarithmic color scale); only bins with ≥ 100 samples are shown.**



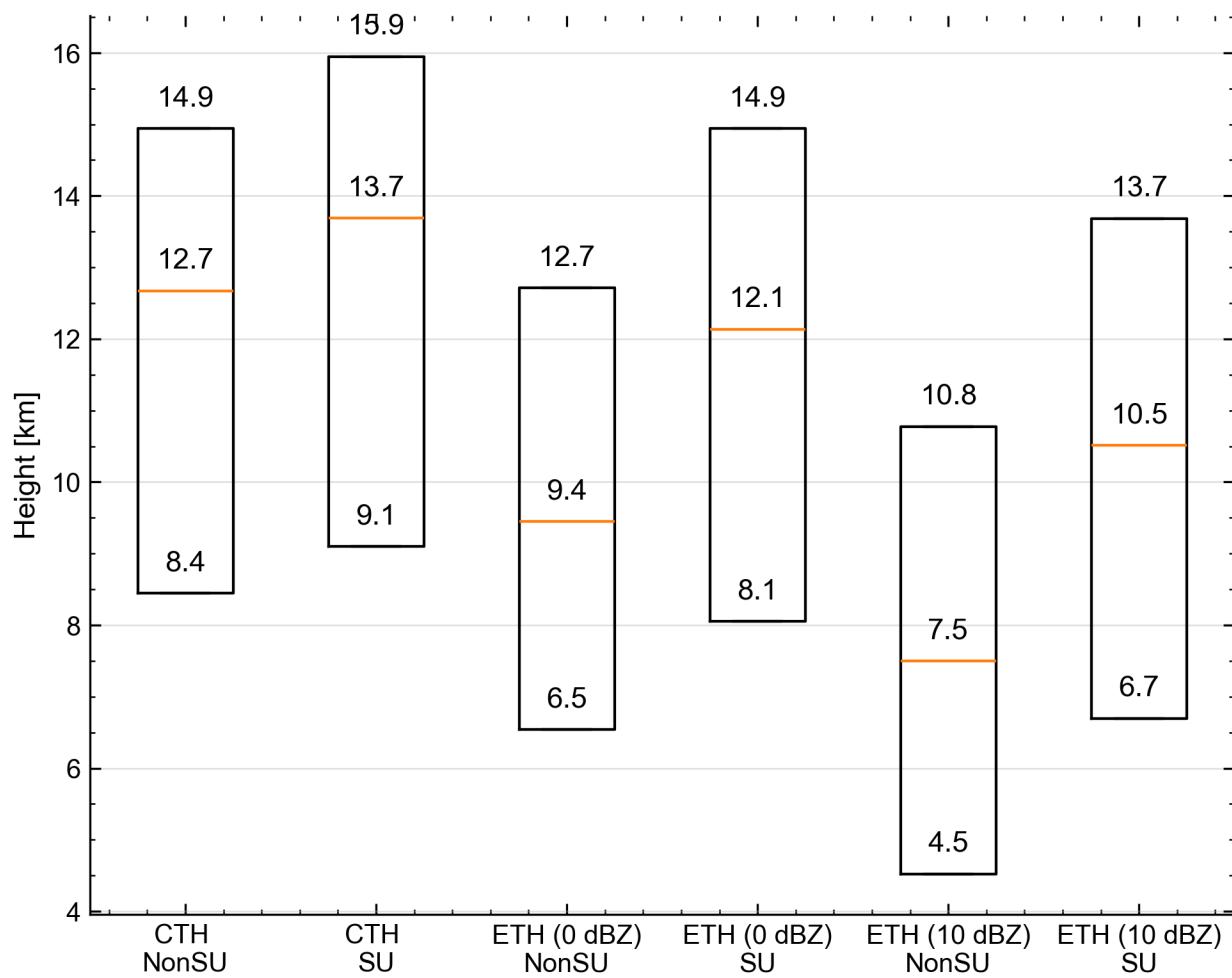
262 3.1.2 Vertical structure of reflectivity depending on updraft strength

263 To further investigate the vertical structure of radar reflectivity, we classified the columns into two categories based on their
264 $MaxVd$. Strong-updraft (SU) columns are defined as those with $MaxVd > 2.5 \text{ m s}^{-1}$, totaling 75,449 columns (6.66% of all non-
265 folded columns). The remaining non-folded columns are classified as non-SU (NonSU). This threshold isolates a relatively
266 rare but dynamically distinct subset of strong-updraft cases.

267 We then use normalized Contoured Frequency-by-Altitude Diagrams (normalized CFADs; Luo et al., 2009) to compare the
268 statistical distributions of reflectivity profiles for the two categories (Fig. 3). The normalized CFADs reveal clear structural
269 contrasts between SU and NonSU columns. SU columns exhibit a significantly larger fraction of high-reflectivity bins (≥ 10
270 dBZ) at high altitudes ($> 8 \text{ km}$), indicating that strong updrafts loft large hydrometeors deep into the upper troposphere. The
271 observed Doppler velocity (Vd) is the sum of the particle fall speed and the vertical motion of the ambient air. Because greater
272 radar reflectivity generally corresponds to faster particle fall speeds (Seiki et al., 2025, submitted), which act to reduce Vd, the
273 occurrence of high reflectivity at high altitudes in SU columns implies particularly strong updrafts. Below the melting layer
274 ($< 5 \text{ km}$), by contrast, reflectivity in SU is smaller than in NonSU, likely due to stronger radar attenuation, a feature consistent
275 with previous studies (Luo et al., 2014).

276

277

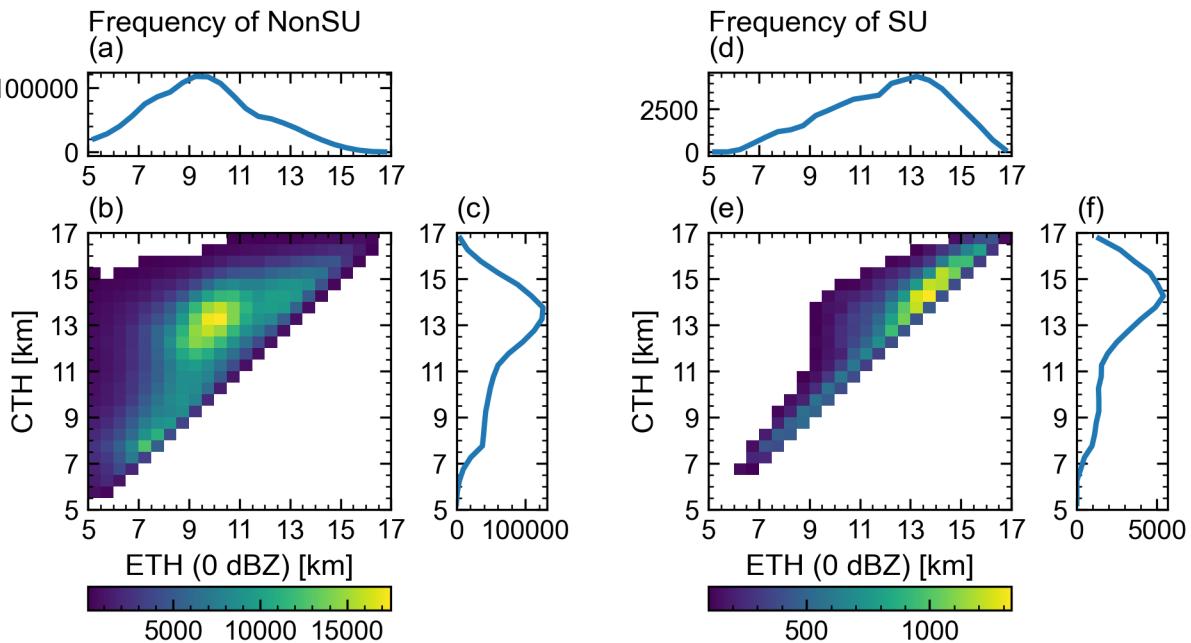

278 **Figure 3: Normalized contoured frequency-by-altitude diagrams (CFADs) of EarthCARE/CPR radar reflectivity (Ref; dBZ) for (a)**
279 **non-strong-updraft (NonSU) columns and (b) strong-updraft (SU) columns, where SU is defined by a column-maximum Doppler**
280 **velocity of $MaxVd > 2.5 \text{ m s}^{-1}$. Reflectivity is binned in 2 dBZ intervals, and the vertical coordinate is binned in 500 m intervals. Each**
281 **panel is normalized by its total sample count such that the color indicates probability (i.e., the sum over all bins in each panel equals**
282 **1).**

283 3.1.3 Relationship between CTH, ETH, and Updraft Strength

284 This structural difference in reflectivity between the SU and NonSU columns is further quantified using box-and-whisker plots
285 of various height metrics (Fig. 4). The median CTH of SU columns is approximately 900 m higher than that of NonSU columns.
286 The contrast is even more pronounced for ETH at higher reflectivity thresholds. The median ETH at 0 dBZ, denoted as ETH(0),
287 is approximately 2.6 km higher in SU columns, while the median ETH at 10 dBZ, denoted as ETH(10), is approximately 3.0
288 km higher. The substantially larger difference in ETH compared with CTH indicates that ETH is a more direct and sensitive
289 proxy for updraft strength than CTH.

290

291


292 **Figure 4: Box-and-whisker summaries of cloud vertical extent for non-strong-updraft (NonSU) and strong-updraft (SU) columns,**
293 **shown for cloud-top height (CTH) and echo-top heights at reflectivity thresholds of 0 and 10 dBZ [ETH(0) and ETH(10)].** For each
294 **metric, the box spans the 10th–90th percentiles and the central line indicates the median (50th percentile).** Numeric labels denote
295 **the 10th, 50th, and 90th percentile heights (km).**

296

297 To further explore the interplay between these height-based metrics, we examine the joint distributions of CTH and ETH(0)
separately for NonSU (Fig. 5b) and SU columns (Fig. 5e). Because ETH(0) is, by definition, equal to or lower than CTH, the

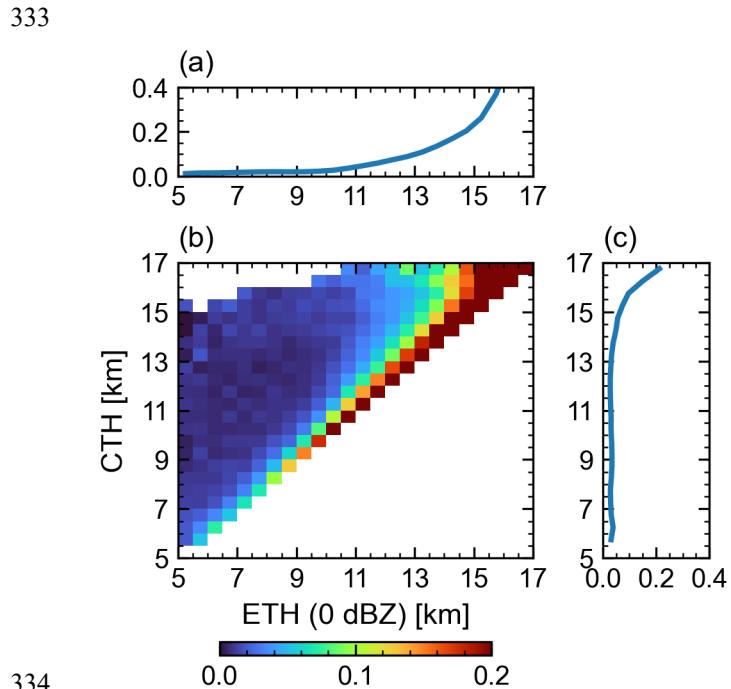
298 populated region in the CTH–ETH(0) plane is confined to the triangular area above the 1:1 line. For both SU and NonSU
 299 columns, ETH(0) and CTH are strongly and positively correlated, consistent with previous satellite- and radar-based studies
 300 that have related differences between cloud-top and precipitation-top heights to convective intensity and life-cycle stage (e.g.,
 301 Masunaga et al., 2005; Masunaga and Kummerow, 2006; Kikuchi and Suzuki, 2019). However, their detailed characteristics
 302 differ markedly. NonSU columns are, on average, shallower and exhibit a broad distribution with a large separation between
 303 ETH(0) and CTH. In contrast, SU columns are systematically taller, and their joint distribution lies much closer to the 1:1 line,
 304 indicating a smaller gap between ETH(0) and CTH.

305

306

307 **Figure 5: Relationship between cloud-top height (CTH) and the 0 dBZ echo-top height [ETH(0)] for non-strong-updraft (NonSU)
 308 and strong-updraft (SU) columns. Two-dimensional histograms of CTH versus ETH(0) are shown for (b) NonSU and (e) SU; shading
 309 indicates sample counts per bin, and only bins with ≥ 100 samples are colored. The corresponding marginal distributions are shown
 310 for ETH(0) in (a) NonSU and (d) SU, and for CTH in (c) NonSU and (f) SU.**

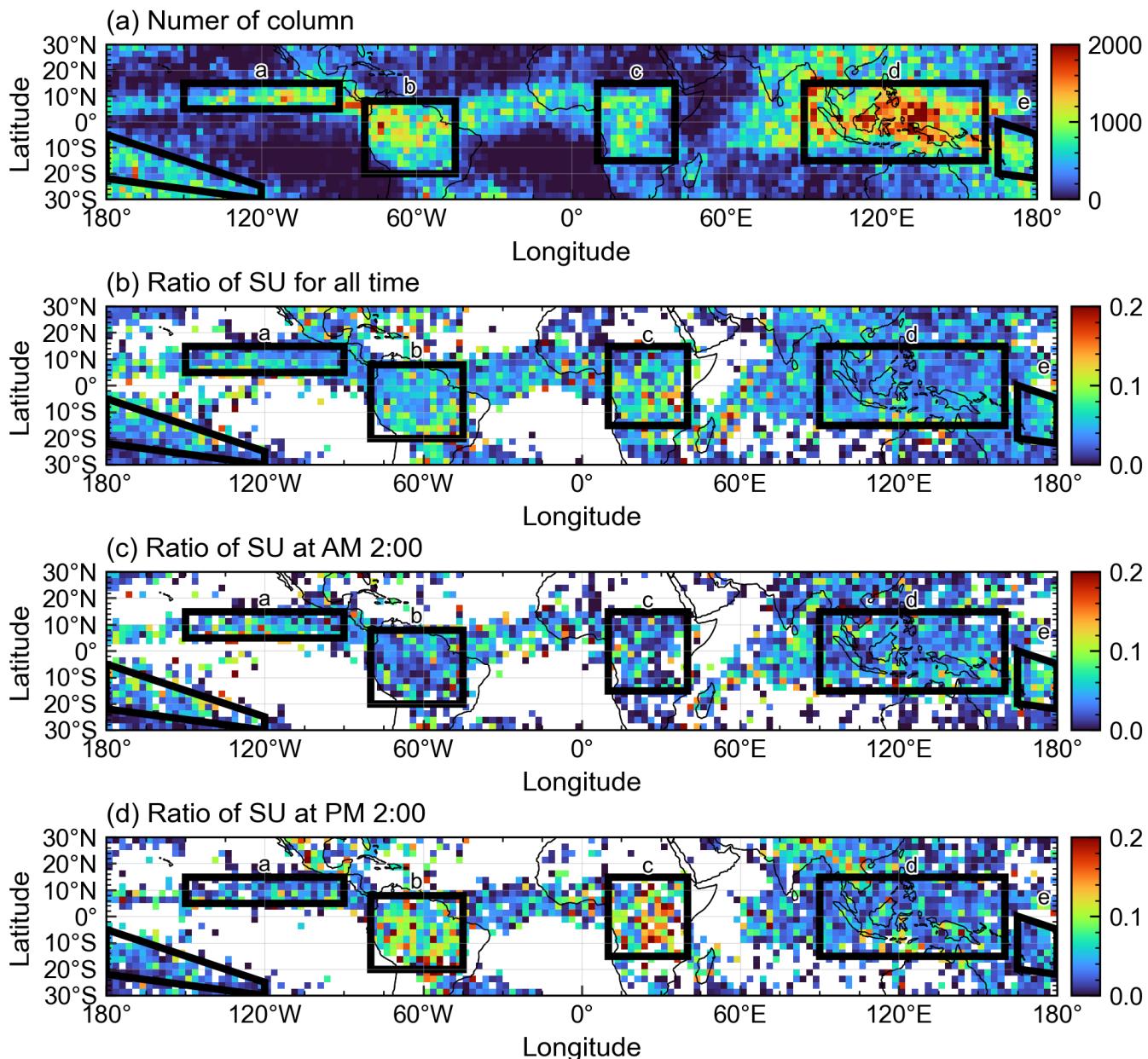
311


Building on Fig. 5, Fig. 6 further quantifies how the probability of SU occurrence varies with CTH and ETH(0), thereby more
 clearly characterizing the distinct nature of SU columns. The SU ratio (defined as the number of SU columns divided by the
 total number of columns, i.e., SU plus NonSU) increases monotonically with CTH (Fig. 6c), remaining below 0.05 for shallow
 clouds ($CTH \leq 8$ km) and approaching 0.10 for the tallest clouds ($CTH \geq 16$ km). A similar but even sharper increase is
 observed for ETH(0): the SU ratio rises monotonically with ETH(0) (Fig. 6a), from below 0.03 for $ETH(0) \leq 7$ km to more
 than 0.30 for $ETH(0) \geq 15$ km.

317

The two-dimensional map of the SU ratio (Fig. 6b) shows that the likelihood of SU occurrence increases jointly with CTH and
 ETH(0) and is maximized in the upper-right region of the ETH(0)–CTH phase space, that is, for tall cloud systems in which

319 ETH(0) approaches CTH. For a fixed CTH, bins with larger ETH(0) exhibit higher SU fractions, indicating a clear dependence
 320 on the separation between CTH and ETH(0). Conversely, when the separation between ETH(0) and CTH is large (i.e., far from
 321 the 1:1 line), SU occurrence is strongly suppressed. Notably, even at moderate CTH (CTH < 10 km), columns with small
 322 CTH–ETH(0) separation still show a substantial probability of being classified as SU. This suggests that a steep reflectivity
 323 gradient near the cloud top is a strong indicator of vigorous updrafts. This behavior directly addresses a historical blind spot
 324 in proxy climatologies of intense convection, which often impose reflectivity thresholds at high altitudes and therefore
 325 overlook low-topped convective columns (Zipser et al., 2006; Romatschke et al., 2010; Liu and Zipser, 2015).
 326 These results highlight the importance of the separation between CTH and ETH(0). We therefore define $\Delta H \equiv CTH - ETH(0)$
 327 as a compact diagnostic that links dynamics and microphysics. Small ΔH corresponds to the presence of large particles near
 328 the cloud top in developing convective cores, whereas large ΔH characterizes decaying or weakly forced columns in which
 329 larger hydrometeors are confined to lower levels. This interpretation is consistent with conceptual models of convective
 330 evolution and with CloudSat-based intensity proxies that emphasize small CTH–ETH(0) separation (Takahashi and Luo,
 331 2014); however, it is here validated using direct Doppler velocity measurements and extended to low-topped convective
 332 populations.


334
 335 **Figure 6: Occurrence ratio of strong-updraft (SU) columns as a function of the 0 dBZ echo-top height [ETH(0)] and cloud-top height**
 336 **(CTH). The SU ratio is defined as the number of SU columns divided by the total number of columns (SU + NonSU) within each bin.**
 337 **(a) Marginal SU ratio as a function of ETH(0). (b) Two-dimensional distribution of the SU ratio in the CTH–ETH(0) phase space;**
 338 **colors indicate the SU fraction. White areas denote bins with no data. (c) Marginal SU ratio as a function of CTH.**

339 **3.2 Spatial and diurnal characteristics**

340 **3.2.1 Spatial and diurnal pattern of strong updraft column**

341 To place the column-wise updraft statistics in a geographical and diurnal context, we analyze where and when strong-updraft
342 columns (SU; $MaxVd > 2.5 \text{ m s}^{-1}$) occur at two local times (02:00 and 14:00 LT) and how their occurrence relates to regional
343 cloud structure. We begin by examining the spatial distribution of all non-folded columns within the analysis domain (Fig. 7a).
344 These columns are predominantly concentrated over well-known hotspots of deep convection (Zipser et al., 2006; Liu and
345 Zipser, 2015), including the eastern Pacific Intertropical Convergence Zone (EPAC-ITCZ), the Amazon basin, central Africa,
346 the Maritime Continent, and the South Pacific Convergence Zone (SPCZ), and are relatively sparse over the subtropical oceans.
347 This geographical pattern confirms that our procedure effectively isolates columns embedded within convective cloud systems.
348 We define five large-sample regions (Fig. 7a): the EPAC-ITCZ ($5\text{--}15^\circ \text{ N}$, $150\text{--}90^\circ \text{ W}$), central Africa ($15^\circ \text{ S}\text{--}15^\circ \text{ N}$, $10\text{--}40^\circ$
349 E), the Amazon basin ($20^\circ \text{ S}\text{--}8^\circ \text{ N}$, $80\text{--}45^\circ \text{ W}$), the Maritime Continent ($15^\circ \text{ S}\text{--}15^\circ \text{ N}$, $90\text{--}160^\circ \text{ E}$), and the SPCZ,
350 approximated by a triangle with vertices at (0° N , 165° E), (20° S , 165° E), and (30° S , 120° W). These regions are used
351 throughout the subsequent analysis to quantify regional differences in the occurrence and structure of SU columns.
352 The SU fraction, defined as the ratio of SU columns to all non-folded columns within each $2.5^\circ \times 2.5^\circ$ grid box, exhibits
353 pronounced regional contrasts (Fig. 7b). In most grid boxes, the SU fraction is below 0.10, and only a small number of boxes
354 exceed 0.15. Local maxima are generally collocated with regions of intense continental convection over central Africa and the
355 Amazon basin, whereas the Maritime Continent exhibits comparatively lower SU fractions. Representative values for
356 convectively active regions are summarized in Table 1, highlighting an enhancement over continental regions (Amazon: 5.3%,
357 central Africa: 5.9%) relative to oceanic convective zones (EPAC-ITCZ: 4.6%, Maritime Continent: 3.8%, SPCZ: 4.2%).
358

359
 360 **Figure 7: Spatial distribution of the analyzed columns and the occurrence of strong-updraft (SU) columns. (a)** Number of selected
 361 non-folded columns per $2.5^\circ \times 2.5^\circ$ grid box over 30°S – 30°N . **(b)** Fraction of SU columns ($\text{Max}Vd > 2.5 \text{ m s}^{-1}$) relative to all non-
 362 folded columns in each grid box. **(c-d)** Same as (b), but separated by local overpass time: **(c)** late night (~02:00 LT; ascending node)
 363 and **(d)** early afternoon (~14:00 LT; descending node). Grid boxes with fewer than 100 total columns are masked in (b-d). Black
 364 rectangles labeled a–e indicate the regions used for the regional analyses (EPAC–ITCZ, Amazon, central Africa, Maritime Continent,
 365 and SPCZ).

366 When the statistics are separated by local overpass time—late night (ascending node, around 02:00 LT) versus early afternoon
367 (descending node, around 14:00 LT)—the regional contrast becomes clearer (Figs. 7c–d, Table 1). Over the Maritime
368 Continent, the EPAC-ITCZ, and the SPCZ, SU fractions are slightly higher at night than in the early afternoon. In contrast,
369 central Africa and the Amazon basin exhibit a pronounced daytime enhancement, with early-afternoon SU fractions of 9.3%
370 and 8.1%, respectively, nearly twice the tropical-mean value of 4.3% computed across all regions and local times. This
371 geographical and diurnal pattern is consistent with prior satellite-based characterizations using other convective-intensity
372 metrics, such as echo-top height (ETH) and lightning flash rate (Nesbitt and Zipser, 2003; Christian et al., 2003; Liu and Zipser,
373 2005; Zipser et al., 2006; Liu et al., 2008; Cecil et al., 2014; Pilewskie and L’Ecuyer, 2022).

374 **3.2.2 Structural origin of regional and diurnal contrasts**

375 What differences in cloud properties account for the particularly elevated early-afternoon SU fractions over central Africa and
376 the Amazon, while remaining modest in other convective regions (Sect. 3.2.1; Table 1)? Guided by the column-wise radar-
377 reflectivity structural analysis in Sect. 3.1, we address this question by examining the median CTH, ETH(0), and their
378 separation, $\Delta H \equiv CTH - ETH(0)$. In addition, we consider a simple morphology metric—the cloud length—defined as the
379 along-track length of contiguous cloudy segments.

380 As summarized in Table 2, clouds over central Africa and the Amazon during the early afternoon do not stand out as being
381 exceptionally tall. The tropical-mean median CTH across all columns and local times is 12.7 km, compared with 12.1 km over
382 central Africa and 12.8 km over the Amazon at 14:00 LT. Similarly, the median ETH(0) is 9.5 km in the tropical mean and
383 9.1 km and 9.8 km over central Africa and the Amazon, respectively, during the early afternoon. These values are comparable
384 to, or even slightly lower than, those in other convective regions, such as the Maritime Continent, the EPAC-ITCZ, and the
385 SPCZ. Thus, the enhanced SU fractions in continental afternoon regimes cannot be explained simply by systematically higher
386 cloud or echo tops.

387 Instead, the most distinctive feature of early-afternoon convection over central Africa and the Amazon is a markedly smaller
388 ΔH . The tropical-mean median ΔH across all local times is 2.4 km, whereas it is only 1.9 km over central Africa and the
389 Amazon during the afternoon—smaller than in any other region-local-time combination listed in Table 2. By contrast, the
390 Maritime Continent and the SPCZ exhibit substantially larger ΔH values (3.0 km and 2.9 km, respectively, at 14:00 LT). A
391 complementary perspective is obtained by comparing the median ΔH with the difference between the median CTH and median
392 ETH(0). For the tropics as a whole, the median ΔH is 2.4 km, whereas the difference between the median CTH and median
393 ETH(0) is 3.2 km. The contrast is even more pronounced for afternoon central Africa and the Amazon, for which the
394 corresponding values are 1.9 km and 3.0 km. These comparisons indicate that the ΔH distributions are skewed toward small
395 values and that clouds with small CTH-ETH(0) separation occupy a disproportionately large fraction of the population, with
396 this tendency being particularly pronounced in early-afternoon convection over central Africa and the Amazon.

397 Horizontal cloud length, summarized in Table 2, provides an additional clue to the nature of the underlying convective systems.
398 The tropical-mean median cloud length is 482 km, but it is only 283 km and 294 km over central Africa and the Amazon,
399 respectively, during the early afternoon. In contrast, the SPCZ and the Maritime Continent exhibit substantially larger median
400 cloud lengths (567 km and 504 km, respectively, at 14:00 LT). These statistics suggest that early-afternoon convection over
401 central Africa and the Amazon is dominated by relatively compact systems, whereas oceanic regions—especially the SPCZ
402 and the Maritime Continent—more frequently host large, organized systems.
403 To further characterize regional differences in the CTH–ETH(0) relationship, we examine deviations of the two-dimensional
404 histograms of CTH versus ETH(0) from a tropics-wide reference distribution (constructed by combining all regions and local
405 times), as shown in Fig. 8a–c. For early-afternoon convection over central Africa and the Amazon, the difference maps indicate
406 a reduced occurrence of stratiform-like profiles characterized by large ΔH , together with an enhanced occurrence of profiles
407 exhibiting small ΔH and moderate-to-high cloud tops ($CTH \approx 6–15$ km). When considered alongside the relatively short cloud
408 lengths, these features indicate a cloud population skewed toward developing or mature convective columns, rather than
409 decaying systems with extensive stratiform regions.
410 We next examine in greater detail how these structural differences relate to the enhanced occurrence of SU columns. To this
411 end, we analyze deviations in the SU fraction as a function of CTH and ETH(0) from the tropical-mean distribution (cf. Fig.
412 6), as shown in Figs. 9a–c. Over early-afternoon convection in central Africa and the Amazon, the SU fraction is enhanced
413 across much of the (CTH, ETH(0)) phase space, with particularly strong positive anomalies along and near the 1:1 line, where
414 ΔH is small. In other words, columns with small CTH–ETH(0) separation are both more common and more likely to host
415 strong updrafts than in the tropical mean. The elevated regional SU fractions therefore arise from a combination of (i) a shift
416 in the underlying cloud population toward small- ΔH structures and (ii) an increased probability that a given small- ΔH column
417 contains strong Doppler updrafts, rather than from an overall increase in extremely tall clouds.
418 The Maritime Continent provides a useful contrast. Despite having relatively high median CTH and ETH(0), comparable to
419 or exceeding those over central Africa and the Amazon (Table 2), SU fractions over the Maritime Continent remain close to
420 or slightly below the tropical mean and are therefore substantially lower than those over these continental regions (Table 1).
421 Structurally, clouds over the Maritime Continent tend to exhibit larger ΔH and longer horizontal extents, indicating a greater
422 prevalence of deep convective systems with broad stratiform regions. This pattern is also evident in Fig. 8c, which shows an
423 enhanced frequency of clouds with high CTH but relatively low ETH(0). Furthermore, the SU fraction at a given (CTH,
424 ETH(0)) pair (Fig. 9c) tends to be somewhat suppressed for developing clouds with moderate CTH and small ΔH , conditions
425 under which strong updrafts are more common over central Africa and the Amazon. The combined effects of more frequent
426 stratiform profiles and a reduced SU fraction during the developing stage therefore lead to overall smaller SU fractions over
427 the Maritime Continent.
428 These regional patterns are consistent with previous satellite-based analyses of deep convective intensity across the three major
429 tropical “chimney zones,” which show that convection over tropical Africa exhibits the strongest updrafts, Amazonia is
430 intermediate, and the tropical warm-pool/Maritime Continent regime displays the weakest convective intensity when measured

431 using radar echo-top heights and related proxies (e.g., Takahashi and Luo, 2014; Takahashi et al., 2017, 2023; Liu et al., 2007;
 432 Zipser et al., 2006). These studies argue that stronger land convection arises from a more efficient conversion of convective
 433 available potential energy into vertical kinetic energy, associated with deeper and drier boundary layers and higher lifting
 434 condensation levels, which produce broader and more buoyant convective cores that are less susceptible to dilution by
 435 entrainment. In contrast, convection over the warm-pool/Maritime Continent regime tends to exhibit narrower cores and larger
 436 entrainment rates, resulting in weaker updrafts (Lucas et al., 1994; Williams and Stanfill, 2002; Takahashi et al., 2017, 2023).
 437 Our results support these findings by showing the same regional ordering of convective intensity based on direct Doppler
 438 velocity measurements. Furthermore, by analyzing radar reflectivity and Doppler velocity as independent variables, we
 439 demonstrate clear regional differences in updraft strength in developing-stage clouds characterized by moderate-to-high CTH
 440 and small CTH–ETH(0) separation.

441

442 **Table 1: Regional occurrence of strong-updraft (SU) columns. For each domain and local overpass time ($\approx 02:00$ and $\approx 14:00$ LT),**

443 the table lists the total number of selected non-folded cloud columns, the number of columns classified as SU ($MaxVd > 2.5 \text{ m s}^{-1}$),

444 and the resulting SU ratio (%). “ALL” denotes the tropical aggregate (30°S – 30°N). Region definitions are shown in Fig. 7a (see Sect.

445 3.2.1).

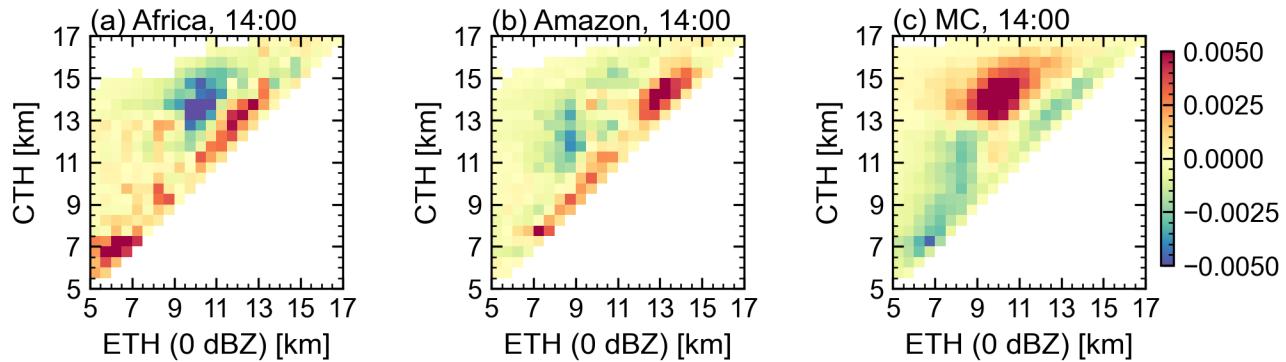
	Local Time	ALL	Central Africa	Amazon	Maritime Continent	EPAC-ITCZ	SPCZ
	All	1.20E+06	6.27E+04	1.04E+05	2.93E+05	5.38E+04	8.30E+04
	02:00 LT	6.29E+05	3.78E+04	6.29E+04	1.52E+05	2.59E+04	4.20E+04
Total Count	14:00 LT	5.74E+05	2.49E+04	4.12E+04	1.41E+05	2.79E+04	4.09E+04
	All	5.12E+04	3.68E+03	5.54E+03	1.12E+04	2.47E+03	3.51E+03
	02:00 LT	2.55E+04	1.36E+03	2.19E+03	6.05E+03	1.47E+03	2.11E+03
SU count	14:00 LT	2.57E+04	2.32E+03	3.35E+03	5.16E+03	1.01E+03	1.39E+03
	All	4.3%	5.9%	5.3%	3.8%	4.6%	4.2%
	02:00 LT	4.1%	3.6%	3.5%	4.0%	5.6%	5.0%
SU ratio	14:00 LT	4.5%	9.3%	8.1%	3.7%	3.6%	3.4%

446

447 **Table 2: Regional median structural metrics. Regional medians of cloud-top height (CTH; km), 0 dBZ echo-top height [ETH(0);**

448 km], their separation $\Delta H \equiv CTH - ETH(0)$ (km), and along-track cloud length (km) for the tropical aggregate and five convective

449 regions (central Africa, Amazon, Maritime Continent, EPAC-ITCZ, and SPCZ), stratified by local overpass time (All, $\approx 02:00$ LT,


450 and $\approx 14:00$ LT). Region definitions are shown in Fig. 7a (see Sect. 3.2.1).

	Local Time	ALL	Central Africa	Amazon	Maritime Continent	EPAC-ITCZ	SPCZ
cloud top height	All	12.7	12.2	12.6	13.4	13.0	13.0
	02:00 LT	12.6	12.3	12.4	13.3	13.0	13.0

	14:00 LT	12.8	12.1	12.8	13.5	12.9	13.0
	All	9.5	8.9	9.4	9.9	10.0	9.7
	02:00 LT	9.4	8.8	9.0	9.9	10.2	9.9
echo (0 dBZ) top height	14:00 LT	9.6	9.1	9.8	9.9	9.9	9.6
	All	2.4	2.3	2.3	2.7	2.3	2.7
	02:00 LT	2.3	2.5	2.5	2.5	2.0	2.4
cloud - echo (0 dBZ)	14:00 LT	2.5	1.9	1.9	3.0	2.5	2.9
	All	482	418	416	503	472	560
	02:00 LT	495	516	534	500	449	557
cloud length	14:00 LT	468	283	294	504	484	567

451

452

Figure 8: Deviations in the joint probability density function (PDF) of cloud-top height (CTH) and the 0 dBZ echo-top height [ETH(0)] relative to the tropics-wide reference distribution (all regions and local times combined; non-folded columns only). Panels show early afternoon (~14:00 LT) convection over (a) central Africa, (b) the Amazon, and (c) the Maritime Continent. Bin size is 0.5 km in both dimensions; only bins with $N \geq 100$ columns are shown.

453

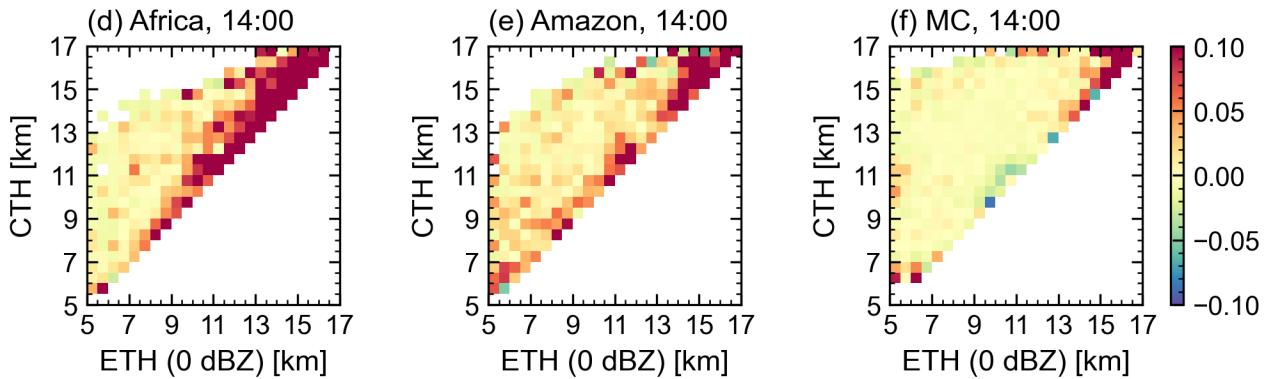


Figure 9: Deviations in the SU fraction conditioned on cloud-top height (CTH) and the 0 dBZ echo-top height [ETH(0)] relative to the tropics-wide conditioned SU fraction (as in Fig. 6b). Panels show early afternoon (~14:00 LT) convection over (a) central Africa, (b) the Amazon, and (c) the Maritime Continent. Bin size is 0.5 km in both dimensions; only bins with $N \geq 100$ columns are shown.

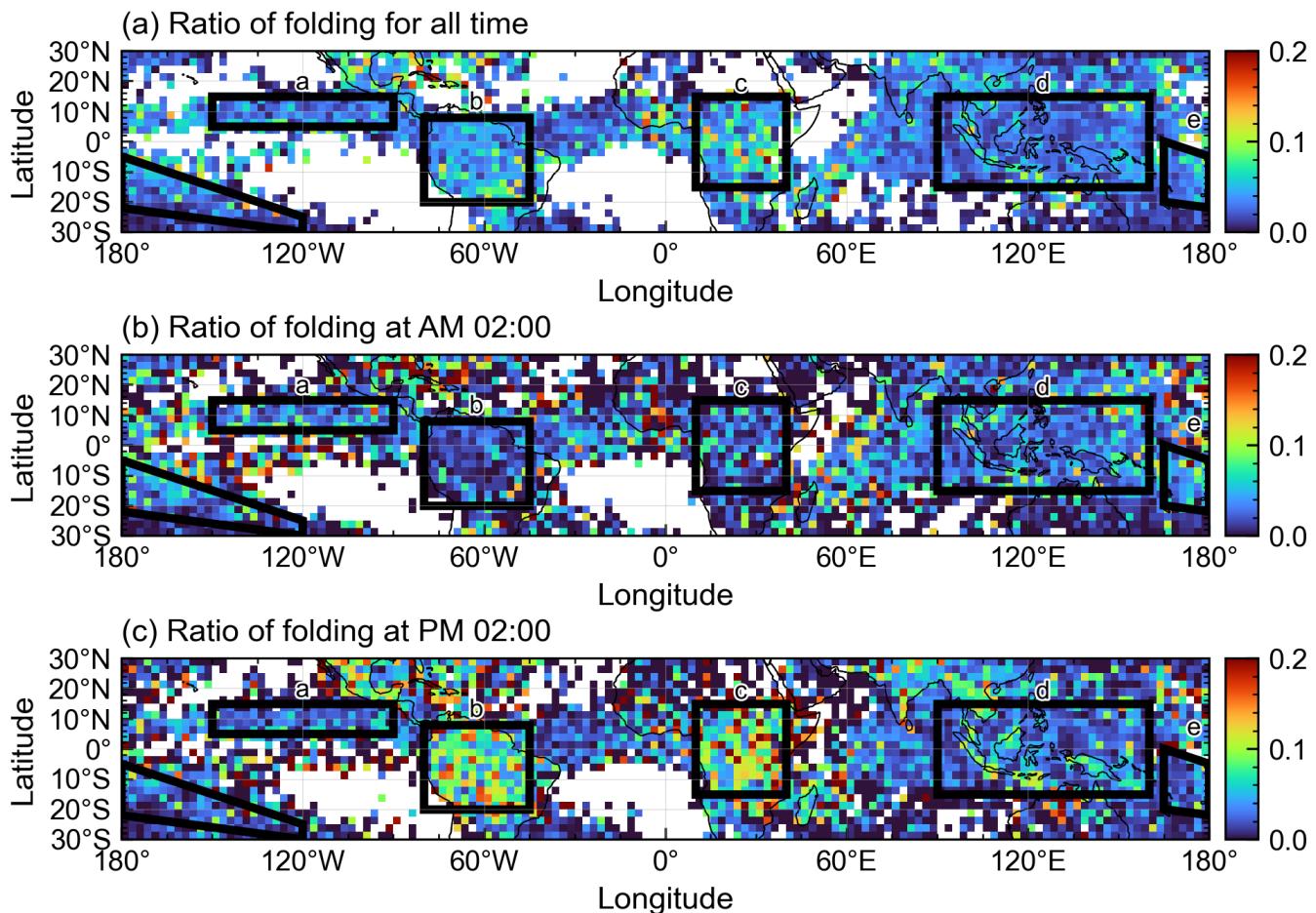
3.3 Implication from Doppler-velocity folding

In Sects. 3.1–3.2, our analysis was restricted to non-folded columns to ensure robust quantitative statistics of Doppler-derived updraft strength. In this subsection, we shift focus to columns in which Doppler-velocity folding (aliasing) is detected. Previous Doppler-radar studies have shown that the most intense convective cores often generate radial velocities exceeding the instrument Nyquist limit, resulting in folded spectra and aliased velocity measurements (Battaglia et al., 2011; Kollias et al., 2014; Sy et al., 2014). Although these folded velocities cannot be used directly as quantitative estimates of updraft magnitude, the presence of velocity folding itself provides a qualitative indicator of extreme vertical motions (Galfione et al., 2025). After applying the column-selection and Doppler quality-control procedures described in Sects. 2.2–2.3, we identify 38,235 columns (3.2% of the total 1,394,477 columns) as exhibiting at least one folding (aliasing) event, whereas 1,133,408 columns (96.74%) show no evidence of folding. To relate velocity folding to cloud properties, we compute the folded-column fraction as a function of cloud-top height (CTH) and the 0-dBZ echo-top height, ETH(0) (Fig. 10). The resulting pattern closely mirrors the structural relationships documented for strong updrafts in Sect. 3.1 (cf. Fig. 6): the folding fraction increases systematically with both CTH and ETH(0) and becomes particularly large when $\Delta H \equiv CTH - ETH(0)$ is small. This behavior indicates that folding preferentially occurs in structures most likely to host intense updrafts.

The geographical and diurnal characteristics of folding further support this interpretation. Fig. 11 shows the spatial distribution of the fraction of columns exhibiting at least one folding event, and Table 3 summarizes the corresponding regional and local-time statistics. In the tropical mean, the folding fraction is 3.2%, increasing modestly from the nighttime overpass (02:00 LT; 2.9%) to the early afternoon overpass (14:00 LT; 3.6%). Continental regions characterized by vigorous afternoon convection stand out: over central Africa and the Amazon, folding fractions averaged over all local times reach 4.9% and 4.2%, respectively, and increase to 8.8% and 7.3% during the 14:00 LT overpass, compared with only 2.3% and 1.9% at 02:00 LT (Table 3). In contrast, oceanic convergence zones such as the Maritime Continent, EPAC-ITCZ, and SPCZ exhibit smaller

483 folding fractions of around 3% and a much weaker diurnal contrast. These regional and diurnal patterns closely parallel those
484 of strong-updraft columns (SU) discussed in Sect. 3.2. Afternoon continental regions (central Africa and the Amazon) show
485 concurrent enhancements in both the SU fraction (Table 1) and the folding fraction (Table 3), whereas oceanic regions remain
486 relatively muted in both diagnostics.

487 In terms of radar reflectivity structure, as well as geographical and diurnal characteristics, folded columns exhibit trends that
488 are largely consistent with those identified for non-folded SU columns. Taken together, this consistency suggests that Doppler
489 folding, despite arising from a measurement limitation, serves as a useful qualitative tracer of environments that favor extreme
490 updrafts. In particular, the co-location of high folding fractions with tall, small- ΔH columns in early-afternoon continental
491 convection reinforces the interpretation that such structures are strongly associated with the most intense convective cores
492 sampled by EarthCARE/CPR.


493

494

495 **Figure 10: Fraction of columns affected by Doppler-velocity folding (aliasing) as a function of cloud-top height (CTH) and the 0 dBZ**
496 **echo-top height, ETH(0). The folding ratio is defined as the number of columns with at least one detected folding event divided by**
497 **the total number of selected columns within each bin. (b) Two-dimensional distribution of the folding ratio in the CTH-ETH(0)**
498 **plane. (a) Marginal folding ratio as a function of ETH(0). (c) Marginal folding ratio as a function of CTH.**

499

500
 501 **Figure 11: Spatial distribution of Doppler-velocity folding (aliasing) occurrence over the tropics (30°S–30°N).** Colors indicate, for
 502 each $2.5^\circ \times 2.5^\circ$ grid box, the fraction of selected columns in which at least one folding event is detected in the Doppler-velocity
 503 profiles (Sect. 2.3). (a) All overpasses combined. (b) Nighttime overpasses (~02:00 LT; ascending node). (c) Daytime overpasses
 504 (~14:00 LT; descending node). Grid boxes with fewer than 100 total columns are masked. Black rectangles labeled a–e indicate the
 505 regions used for the regional analyses (EPAC-ITCZ, Amazon, central Africa, Maritime Continent, and SPCZ).

506
 507 **Table 3: Regional folding occurrence.** Regional and local-time statistics of Doppler-velocity folding (aliasing). For each domain and
 508 local overpass time (All, $\approx 02:00$ LT, and $\approx 14:00$ LT), the table lists the total number of selected columns, the number of columns in
 509 which at least one folding event is detected in the Doppler-velocity profiles (Sect. 2.3), and the resulting folding fraction (%), defined
 510 as $(\text{folded columns} / \text{total columns}) \times 100$. Region definitions follow Fig. 11 (see Sect. 2.2).

	orbit	ALL	Central Africa	Amazon	Maritime Continent	EPAC-ITCZ	SPCZ
Total Count	All	1394477	76292	115889	340435	63878	92246

	02:00 LT	724377	46276	67803	175238	31052	46973
	14:00 LT	670100	30016	48086	165197	32826	45273
	All	45317	3706	4821	9730	1918	2761
	02:00 LT	20896	1076	1287	5035	1088	1637
Folding count	14:00 LT	24421	2630	3534	4695	830	1124
	All	3.2%		4.9%	4.2%	2.9%	3.0% 3.0%
	02:00 LT	2.9%		2.3%	1.9%	2.9%	3.5% 3.5%
Folding ratio	14:00 LT	3.6%		8.8%	7.3%	2.8%	2.5% 2.5%

511

512 4 Summary and Discussion

513 This study exploits the first global, spaceborne Doppler velocity observations from the EarthCARE/CPR to diagnose updraft
514 strength in tropical convective clouds and to relate it to the vertical structure of W-band (94 GHz) radar reflectivity. Whereas
515 most previous satellite studies have inferred convective intensity using indirect proxies, we directly analyze vertical particle
516 motions. Importantly, we examine not only mature deep convective systems but also lower-topped convective clouds, which
517 are often underrepresented in legacy intensity metrics.

518 We analyzed EarthCARE/CPR observations from January to September 2025 over the tropical region (30° S– 30° N) and
519 applied a Doppler velocity (Vd) quality-control procedure that masks weak echoes, restricts quantitative diagnostics to range
520 gates colder than 273.15 K, applies modest spatial averaging, and flags residual velocity folding. We define *MaxVd* as the
521 maximum upward (positive) Doppler velocity within the subfreezing portion of each profile and classify strong-updraft
522 columns (SU) as those with $MaxVd > 2.5 \text{ m s}^{-1}$.

523 These SU columns account for approximately 6.7% of all nonfolded columns, indicating that they are relatively rare yet
524 dynamically important. Examining SU occurrence as a function of cloud-top height (CTH), the 0 dBZ echo-top height
525 [ETH(0)], and the 10 dBZ echo-top height [ETH(10)], we find that SU columns exhibit systematically higher CTH and, more
526 notably, higher ETH(0) and ETH(10). Mapping the SU fraction onto the two-dimensional space spanned by CTH and ETH(0)
527 further shows that SU occurrence is concentrated where $\Delta H \equiv CTH - ETH(0)$ is small. This small ΔH suggests that large
528 hydrometeors are lofted to near the cloud top. Although large ETH and small ΔH have traditionally been used as indirect
529 proxies for convective intensity (Luo et al., 2008; Luo et al., 2011; Takahashi and Luo, 2014), this study demonstrates the

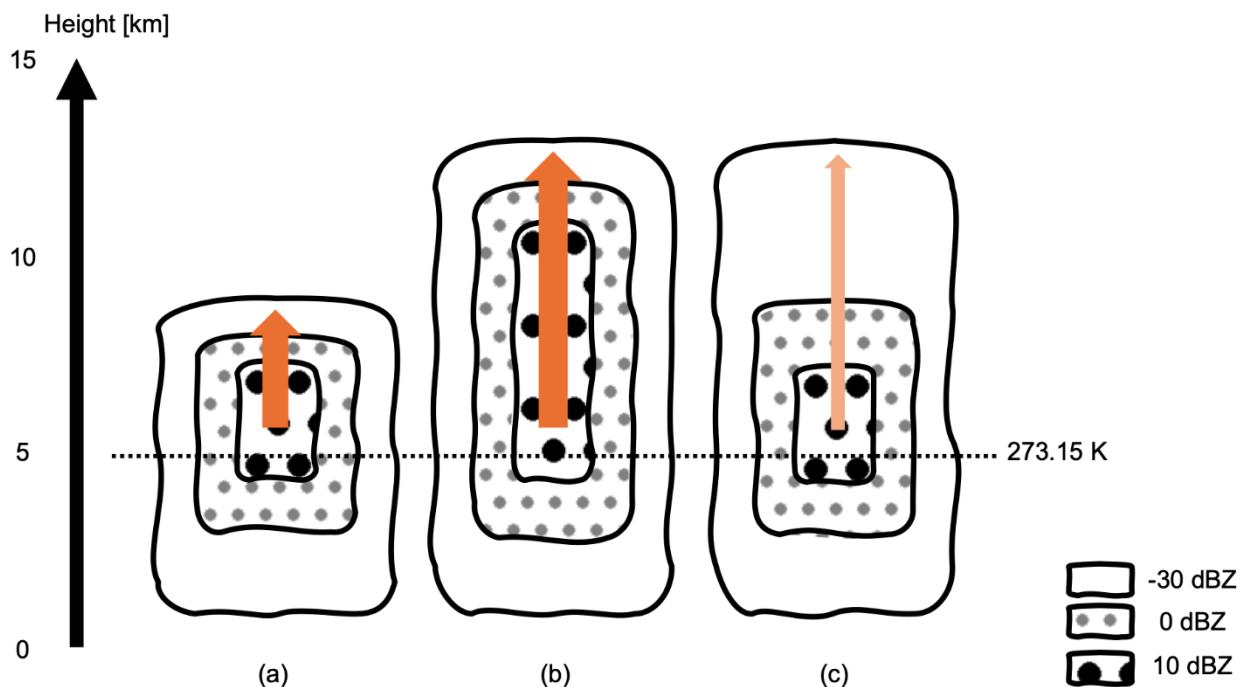
530 validity of these proxies through direct measurements of Vd and further identifies which proxy is most closely associated with
531 Vd.

532 Figure 12 summarizes the relationship between updraft strength and the vertical structure of radar reflectivity. When the 0 and
533 10 dBZ echo-top heights rise close to the cloud top, the separations CTH–ETH(0) and CTH–ETH(10) become small, and
534 columns tend to host strong updrafts even when the cloud-top height itself is modest (Fig. 11a,b). In contrast, when reflectivity
535 increases gradually downward from the cloud top and both the 0 and 10 dBZ levels remain well below the CTH, updrafts are
536 typically weak (Fig. 11c). These results indicate that the reflectivity structure beneath the cloud top can serve as a robust proxy
537 for updraft strength: smaller CTH–ETH(0) separations correspond to stronger updrafts, whereas larger separations correspond
538 to weaker updrafts.

539 This finding provides direct observational support for CloudSat-era intensity proxies based on small CTH–ETH(0) separations
540 (e.g., Takahashi and Luo, 2014; Takahashi et al., 2017, 2023; Liu et al., 2007). The novelty of this study lies in leveraging
541 direct Doppler velocity measurements to move beyond the proxy-based estimates of convective intensity used in previous
542 satellite studies. Our results support the central premise of proxy approaches but also refine it by ranking the tested indicators:
543 the cloud-top–echo-top separation ΔH (CTH – ETH(0)) is the most informative metric for identifying strong updrafts, followed
544 by ETH(10), ETH(0), and finally CTH. This interpretation is consistent with the physical picture described by Takahashi et al.
545 (2023), in which strong updrafts in developing convective cores are accompanied by a rapid upward extension of the radar
546 echo top.

547 Regionally, SU columns occur more frequently over continental areas such as central Africa and the Amazon Basin and less
548 frequently over oceanic convergence zones (e.g., the eastern Pacific ITCZ and the SPCZ) and mixed land–sea regions such as
549 the Maritime Continent. When comparing the 02:00 and 14:00 LT overpasses, oceanic regions exhibit either a slight nighttime
550 enhancement of SU or little diurnal contrast, whereas continental regions tend to show significantly higher SU occurrence at
551 14:00 LT. Structurally, during the afternoon over Africa and the Amazon, CTH and ETH(0) are not exceptionally large in
552 absolute terms; instead, the separation $\Delta H = CTH - ETH(0)$ remains consistently small. Moreover, across most (CTH, ETH(0))
553 combinations, the local SU fraction in these continental hotspots substantially exceeds the tropical-mean value, indicating that
554 the environment favors stronger updrafts even for clouds with comparable vertical development. We interpret this enhancement
555 as reflecting a greater contribution from developing-to-mature convective cores characterized by small ΔH , rather than from
556 unusually tall clouds, thereby explaining the elevated SU occurrence.

557 Taken together, these results reinforce the interpretation in Fig. 12 that ΔH is a key structural discriminator of strong updrafts.
558 Regional and diurnal variations in SU occurrence are governed not by how high clouds grow but by how closely the radar echo
559 top approaches the cloud top. Continental afternoon environments, characterized by a high frequency of horizontally compact
560 convective columns with small ΔH , are particularly conducive to strong Doppler-derived updrafts, whereas regimes dominated
561 by horizontally extensive, stratiform-rich systems tend to exhibit lower SU fractions even when cloud tops are high. This
562 establishes a physically consistent link between regional contrasts in Doppler-derived updrafts and the vertical reflectivity
563 structure of tropical convective systems.



564 Even after quality control, velocity folding is detected in approximately 3.3% of columns. The folding frequency increases
565 with increasing CTH and ETH(0) and is especially high where ΔH is small. Folding occurs most frequently over continental
566 early-afternoon hotspots of intense convection, such as central Africa and the Amazon Basin. In both their vertical radar-
567 reflectivity structure and their spatiotemporal characteristics, columns affected by folding closely resemble those with high SU
568 fractions. Although folding cannot be used as a quantitative metric of updraft strength, its occurrence serves as a useful
569 qualitative tracer of extreme updrafts. Because the analyses in Sects. 3.1 and 3.2 are restricted to unfolded columns, it is likely
570 that the most intense convective cases are not fully represented in these analyses.

571 These measurements help close a long-standing observational gap in global constraints on convective updrafts and enable the
572 development of a new dynamical climatology. This climatology can be used to calibrate convective parameterizations in global
573 climate models (GCMs) and to benchmark explicitly resolved convection in global kilometer-scale simulations. A key question
574 for numerical models is whether they reproduce (i) regional and diurnal contrasts in the frequency of strong updrafts and (ii)
575 the joint statistics of updraft intensity and radar-echo structure documented here. Takahashi et al. (2025) compared deep
576 convective clouds simulated by global storm-resolving models with CloudSat observations over three tropical “chimney”
577 regions: tropical Africa, tropical Amazonia, and the tropical warm pool. Within that framework, cloud-top height and radar-
578 derived echo-top metrics could be evaluated against CloudSat observations; however, updraft intensity could not be validated
579 because CloudSat lacks Doppler velocity measurements. Consequently, comparisons of updraft strength were necessarily
580 limited to inter-model differences and proxy-based diagnostics. These studies identified substantial biases in convective
581 intensity and precipitation formation: updraft indicators in the tropical warm pool are often too strong, while precipitation
582 forms at unrealistically high altitudes under weak vertical velocities, indicating inconsistencies between cloud dynamics and
583 microphysics. Our EarthCARE-based diagnostics overcome this limitation by directly linking *MaxVd* to the vertical structure
584 of radar reflectivity and by quantifying regional and diurnal variations in the occurrence of strong updrafts (SU). These
585 constraints enable rigorous tests of whether models not only reproduce observed cloud-top and precipitation-top heights but
586 also associate these structures with realistic updraft velocities, thereby providing a process-oriented pathway to improve the
587 coupling between convective dynamics and microphysics in both parameterized and explicitly resolved convection.

588 Despite these advances, this study has several limitations that highlight priorities for future work. First, our analysis is based
589 on a nine-month record, which is too short to characterize the full range of intraseasonal and interannual variability, including
590 the Madden–Julian Oscillation (MJO) and the El Niño–Southern Oscillation (ENSO). Extending the analysis to multi-year
591 data sets will be essential for quantifying how long-period variability modulates convective updrafts. Second, to ensure data
592 quality in the quantitative analyses in Sects. 3.1 and 3.2, we excluded columns affected by Doppler velocity folding. Because
593 folding preferentially occurs in the strongest updrafts, our statistics likely underestimate both the frequency and magnitude of
594 the most extreme convective events. This under-sampling may also reduce the apparent land–ocean contrast relative to
595 climatologies based on precipitation-radar echo-top heights from GPM (Houze et al., 2015; Liu and Zipser, 2015) and
596 lightning-based proxies (Albrecht et al., 2016). Developing a physically based unfolding algorithm for the CPR is therefore a
597 high priority to mitigate this bias. Third, we restricted the diagnosis to subfreezing regions (temperature < 273.15 K) to avoid

598 Doppler velocity aliasing from large-particle sedimentation. This restriction excludes cloud systems with cloud-top
599 temperatures above 273.15 K from the analysis and limits the assessment of updrafts to the upper levels of the targeted clouds.
600 Fourth, because the CPR operates at W band, it is susceptible to strong attenuation in heavy precipitation, which can obscure
601 reflectivity at lower altitudes, as suggested by SU columns (Fig. 5). As a result, we cannot yet directly evaluate echo-top-
602 height climatologies at 20–40 dBZ derived from the TRMM and GPM precipitation radars.
603 Future work should integrate this unique Doppler-velocity dataset with complementary observing systems. Combining
604 EarthCARE Doppler-velocity measurements with GPM precipitation estimates (Aoki et al., 2026), lightning observations, and
605 cloud life-cycle metrics from geostationary satellites would enable a more holistic characterization of deep convection. Such
606 an integrated framework would allow for the systematic evaluation and recalibration of legacy intensity proxies and support
607 the development of a comprehensive intensity index that integrates ETH, ΔH , electrification, and life-cycle phase.
608
609

610

611 **Figure 12:** Conceptual schematic of typical radar-reflectivity structures associated with strong and weak updraft columns. Grey,
612 dotted, and filled-dot outlines indicate the regions exceeding -30 , 0 , and 10 dBZ, respectively. Orange arrows illustrate updraft
613 strength qualitatively. Panels (a–b) show strong-updraft cases in which the 0 and 10 dBZ echo tops rise close to the cloud top (small
614 CTH–ETH(0)), including a moderately deep cloud (a). Panel (c) shows a weak-updraft case characterized by a top-light structure in
615 which reflectivity increases gradually downward and both ETH(0) and ETH(10) remain well below the cloud top.

616

617 **Data availability**

618 The EarthCARE/CPR L2A CPR one-sensor Cloud Products (<https://doi.org/10.57746/EO.01jdvd2gqq34e6yz9p8kfe68x5>,
619 JAXA, 2025a) used in this study can be downloaded from the JAXA G-Portal (<https://gportal.jaxa.jp/gpr/>).

620 **Author contributions**

621 HH conceptualized the study, performed the formal analysis, developed the methodology, and prepared the visualizations. KS
622 contributed to the conceptualization and acquired the funding. MK and SA conducted the investigation and provided feedback
623 on the results. TK conducted the investigation and supervised the study. HH wrote the original draft of the manuscript. KS,
624 MK, SA, and TK contributed to the review and editing of the manuscript.

625 **Competing interests**

626 The contact author has declared that none of the authors has any competing interests.

627 **Special issue statement**

628 This article is part of the special issue “Early results from EarthCARE (AMT/ACP/GMD inter-journal SI)”. It is not associated
629 with a conference.

630 **Acknowledgements**

631 ChatGPT was used to assist the editing the language of parts of the manuscript. All content was subsequently reviewed and
632 edited by the authors, who take full responsibility for the final version of the manuscript. We would also like to thank Editage
633 (www.editage.jp) for English language editing.

634 **Financial support**

635 This study was supported by JAXA/EarthCARE project, MEXT program for the Advanced Studies of Climate Change
636 Projection (SENTAN) (Grant JPMXD0722680395), and JST Moonshot R&D (Grant JPMJMS2281).

637 **References**

638 Abbott, T. H., Jeevanjee, N., Cheng, K.-Y., Zhou, L., and Harris, L.: The land-ocean contrast in deep convective intensity in
639 a global storm-resolving model, *J. Adv. Model. Earth Syst.*, 17, 5, <https://doi.org/10.1029/2024MS004467>, 2025.

640 Adler, R. F. and Fenn, D. D.: Thunderstorm vertical velocities estimated from satellite data, *Mon. Weather Rev.*, 107, 1747–
641 1754, [https://doi.org/10.1175/1520-0469\(1979\)036<1747:TVVEFS>2.0.CO;2](https://doi.org/10.1175/1520-0469(1979)036<1747:TVVEFS>2.0.CO;2), 1979.

642 Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., and Christian, H. J.: Where Are the Lightning Hotspots on
643 Earth?, *B. Am. Meteorol. Soc.*, 97, 2051–2068, <https://doi.org/10.1175/BAMS-D-14-00193.1>, 2016.

644 Aoki, S., Kubota, T., and Turk, F. J.: Exploring vertical motions in convective and stratiform precipitation using spaceborne
645 radar observations: Insights from EarthCARE and GPM coincidence dataset, *Atmos. Meas. Tech.*, 19, 79–100,
646 <https://doi.org/10.5194/amt-19-79-2026>, 2026.

647 Battaglia, A., Augustynek, T., Tanelli, S., and Kollias, P.: Multiple scattering identification in spaceborne W-band radar
648 measurements of deep convective cores, *J. Geophys. Res.-Atmos.*, 116, D19, <https://doi.org/10.1029/2011JD016142>, 2011.

649 Battaglia, A.: Impact of second-trip echoes for space-borne high-pulse-repetition-frequency nadir-looking W-band cloud
650 radars, *Atmos. Meas. Tech.*, 14, 7809–7820, <https://doi.org/10.5194/amt-14-7809-2021>, 2021.

651 Bechtold, P., Bazile, E., Guichard, F., Mascart, P., and Richard, E.: A mass-flux convection scheme for regional and global
652 models, *Q. J. R. Meteorol. Soc.*, 127, 869–886, <https://doi.org/10.1002/qj.49712757309>, 2001.

653 Bedka, K., Brunner, J., Dworak, R., Feltz, W., Otkin, J., and Greenwald, T.: Objective satellite-based detection of overshooting
654 tops using infrared window channel brightness temperature gradients, *J. Appl. Meteor. Climatol.*, 49, 181–202,
655 <https://doi.org/10.1175/2009JAMC2286.1>, 2010.

656 Cecil, D. J., Goodman, S. J., Boccippio, D. J., Zipser, E. J., and Nesbitt, S. W.: Three years of TRMM precipitation features.
657 Part I: Radar, radiometric, and lightning characteristics, *Mon. Weather Rev.*, 133, 543–566, <https://doi.org/10.1175/MWR-2876.1>, 2005.

658 Christian, H. J., Blakeslee, R. J., Boccippio, D. J., Boeck, W. L., Buechler, D. E., Driscoll, K. T., Goodman, S. J., Hall, J. M.,
659 Koshak, J. M., Mach, D. M., and Stewart, M. F.: Global frequency and distribution of lightning as observed from space by the
660 Optical Transient Detector, *J. Geophys. Res. Atmos.*, 108, ACL 4-1-ACL 4-15, <https://doi.org/10.1029/2002JD002347>, 2003.

661 Christopoulos, C. and Schneider, T.: Assessing biases and climate implications of the diurnal precipitation cycle in climate
662 models, *Geophys. Res. Lett.*, 48, e2021GL093017, <https://doi.org/10.1029/2021GL093017>, 2021.

663 Collis, S., Protat, A., May, P. T., and Williams, C.: Statistics of storm updraft velocities from TWP-ICE including verification
664 with profiling measurements, *J. Appl. Meteor. Climatol.*, 52, 1909–1922, <https://doi.org/10.1175/JAMC-D-12-0230.1>, 2013.

665 Deierling, W. and Petersen, W. A.: Total lightning activity as an indicator of updraft characteristics, *J. Geophys. Res. Atmos.*,
666 113, D16, <https://doi.org/10.1029/2007JD009598>, 2008.

667 Doviak, R. J. and Zrnić, D. S.: Doppler Radar & Weather Observations: Second Edition, Academic Press, ISBN 148329482X,
668 9781483294827, 2014.

669 Eisinger, M., Marnas, F., Wallace, K., Kubota, T., Tomiyama, N., Ohno, Y., Tanaka, T., Tomita, E., Wehr, T., and Bernaerts,
670 D.: The EarthCARE mission: science data processing chain overview, *Atmos. Meas. Tech.*, 17, 839–862,
671 <https://doi.org/10.5194/amt-17-839-2024>, 2024.

673 Galfione, A., Battaglia, A., Puigdomènec Treserras, B., and Kollias, P.: First insights into deep convection by the Doppler
674 velocity measurements of the EarthCARE Cloud Profiling Radar, *Atmos. Meas. Tech.*, 18, 6747–6763,
675 <https://doi.org/10.5194/amt-18-6747-2025>, 2025.

676 Giangrande, S. E., Toto, T., Jensen, M. P., Bartholomew, M. J., Feng, Z., Protat, A., Williams, C. R., Schumacher, C., and
677 Machado, L.: Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during
678 GoAmazon2014/5, *J. Geophys. Res.-Atmos.*, 121, 12891–12913, <https://doi.org/10.1002/2016JD025303>, 2016.

679 Houze, R. A., Jr., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R.: The variable nature of convection in the tropics and
680 subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission (TRMM) satellite, *Rev. Geophys.*, 53, 994–1029,
681 <https://doi.org/10.1002/2015RG000488>, 2015.

682 Haghara, Y., Ohno, Y., Horie, H., Roh, W., Satoh, M., and Kubota, T.: Global evaluation of Doppler velocity errors of
683 EarthCARE cloud-profiling radar using a global storm-resolving simulation., *Atmos. Meas. Tech.*, 16, 3211–3219,
684 <https://doi.org/10.5194/amt-16-3211-2023>, 2023.

685 Hamada, A., Takayabu, Y. N., C. Liu, and E. J. Zipser: Weak linkage between the heaviest rainfall and tallest storms, *Nat.*
686 *Commun.*, 6, 6213, <https://doi.org/10.1038/ncomms7213>, 2015.

687 Hamada, A. and Takayabu, Y. N.: Convective cloud top vertical velocity estimated from geostationary satellite rapid-scan
688 measurements, *Geophys. Res. Lett.*, 43, 5435–5441, <https://doi.org/10.1002/2016GL068962>, 2016.

689 Hartmann, D. L., Moy, L. A., and Fu, Q.: Tropical convection and the energy balance at the top of the atmosphere, *J. Climate*,
690 14, 4495–4511, [https://doi.org/10.1175/1520-0442\(2001\)014<4495:TCATEB>2.0.CO;2](https://doi.org/10.1175/1520-0442(2001)014<4495:TCATEB>2.0.CO;2), 2001.

691 Heymsfield, G. M., Tian, L., Heymsfield, A. J., Li, L., and Guimond, S.: Characteristics of deep tropical and subtropical
692 convection from nadir-viewing high-altitude airborne Doppler radar, *J. Atmos. Sci.*, 67, 285–308,
693 <https://doi.org/10.1175/2009JAS3132.1>, 2010.

694 Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., and Iguchi,
695 T.: The Global Precipitation Measurement mission, *Bull. Amer. Meteor. Soc.*, 95, 701–722, <https://doi.org/10.1175/BAMS-D-13-00164.1>, 2014.

696 Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., and Okamoto, K.: Rain-profiling algorithm for the TRMM precipitation radar,
697 *J. Appl. Meteor.*, 39, 2038–2052, [https://doi.org/10.1175/1520-0450\(2001\)040<2038:RPAFTT>2.0.CO;2](https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2), 2000.

698 Illingworth, A. J., Barker, H. W., Beljaars, A., Ceccaldi, M., Chepfer, H., Clerbaux, N., Cole, J., Delanoë, J., Domenech, C.,
699 Donovan, D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T., Nakajima, T., Nakajima, T.
700 Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K., Satoh, M., Shephard, M., Velázquez-Blázquez, A., Wandinger,
701 U., Wehr, T., and van Zadelhoff, G.-J.: The EarthCARE Satellite: The next step forward in global measurements of clouds,
702 aerosols, precipitation and radiation, *B. Am. Meteorol. Soc.*, 96, 1311–1332, <https://doi.org/10.1175/BAMS-D-12-00227.1>,
703 2015.

704 JAXA, EarthCARE/CPR L2A CPR one-sensor Cloud Products.
705 <https://doi.org/10.57746/EO.01jdvd2gqq34e6yz9p8kfe68x5>, last access: 5 January 2026, 2025a.

707 JAXA, EarthCARE JAXA Level 2 Algorithm Theoretical Basis Document (L2 ATBD),
708 https://www.eorc.jaxa.jp/EARTHCARE/document/JAXAL2ProductList/ATBD/NDX-110018N_EarthCARE_L2_ATBD_draft_rev2.pdf, last access: 5 January 2026, 2025b.

710 JAXA, Release notes for the EarthCARE/CPR Level-1b Product, available from
711 https://www.eorc.jaxa.jp/EARTHCARE/document/L1ProductList/ReleaseNote/CPR/SEC-2024057-0D_Release_Notes_for_EarthCARE_CPR_L1b_Product.pdf, last access: 5 January 2026, 2025c.

713 Kikuchi, M. and Suzuki, K.: Characterizing vertical particle structure of precipitating cloud system from multiplatform
714 measurements of A - Train constellation. *Geophys. Res. Lett.*, 46, 1040–1048, <https://doi.org/10.1029/2018GL081244>, 2019.

715 Kollias, P., Tanelli, S., Battaglia, A., and Tatarevic, A.: Evaluation of EarthCARE cloud profiling radar Doppler velocity
716 measurements in particle sedimentation regimes, *J. Atmos. Oceanic Technol.*, 31, 366–386, <https://doi.org/10.1175/JTECH-D-11-00202.1>, 2014.

718 Kollias, P., Battaglia, A., Lamer, K., Treserras, B. P., and Braun, S. A.: Mind the gap-part 3: Doppler velocity measurements
719 from space, *Front. Remote Sens.*, 3, 860 84, <https://doi.org/10.3389/frsen.2022.860284>, 2022.

720 Koren, I., Altaratz, O., Feingold, G., Levin, Z., and Reisin, T.: Cloud's Center of Gravity – a compact approach to analyze
721 convective cloud development, *Atmos. Chem. Phys.*, 9, 155–161, <https://doi.org/10.5194/acp-9-155-2009>, 2009.

722 Kummerow, C., Barnes, W., Kozu, T., Shiue, J., and Simpson, J.: The Tropical Rainfall Measuring Mission (TRMM) sensor
723 package, *J. Atmos. Oceanic Technol.*, 15, 809–817, [https://doi.org/10.1175/1520-0426\(1998\)015<0809:TTRMMT>2.0.CO;2](https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2),
724 1998.

725 LeMone, M. A., and E. J. Zipser: Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux, *J.*
726 *Atmos. Sci.*, 37, 2444–2457, [https://doi.org/10.1175/1520-0469\(1980\)037<2444:CVVEIG>2.0.CO;2](https://doi.org/10.1175/1520-0469(1980)037<2444:CVVEIG>2.0.CO;2), 1980.

727 Li, Y., Liu, Y., Chen, Y., Chen, B., Zhang, X., Wang, W., Shu, Z., and Huo, Z.: Characteristics of Deep Convective Systems
728 and Initiation during Warm Seasons over China and Its Vicinity, *Remote Sensing*, 13, 4289,
729 <https://doi.org/10.3390/rs13214289>, 2021.

730 Liu, C. and Zipser, E. J.: Global distribution of convection penetrating the tropical tropopause, *J. Geophys. Res. Atmos.*, 110,
731 D23104, <https://doi.org/10.1029/2005JD006063>, 2005.

732 Liu, C., Zipser, E. J., and Nesbitt, S. W.: Global distribution of tropical deep convection: different perspectives from TRMM
733 infrared and radar data, *J. Climate*, 20, 489–503, <https://doi.org/10.1175/JCLI4023.1>, 2007.

734 Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood: A cloud and precipitation feature database from nine years
735 of TRMM observations, *J. Appl. Meteorol. Climatol.*, 47, 2712–2728, <https://doi.org/10.1175/2008JAMC1890.1>, 2008.

736 Liu, C. and Zipser, E. J.: The global distribution of largest, deepest, and most intense precipitation systems, *Geophys. Res.*
737 *Lett.*, 42, 3591–3596, <https://doi.org/10.1002/2015GL063776>, 2015.

738 Lucas, C., Zipser, E. J., and LeMone, M. A.: Vertical velocity in oceanic convection off tropical Australia in early morning:
739 Roles of buoyancy and dynamic pressure, *J. Atmos. Sci.*, 51, 3183–3193, [https://doi.org/10.1175/1520-0469\(1994\)051<3183:VVIODOCO>2.0.CO;2](https://doi.org/10.1175/1520-0469(1994)051<3183:VVIODOCO>2.0.CO;2), 1994.

741 Luo, Y., Zhang, R., and Wang, H.: Comparing occurrences and vertical structures of hydrometeors between eastern China and
742 the Indian monsoon region using CloudSat/CALIPSO data. *J. Climate*, 22, 1052-1064,
743 <https://doi.org/10.1175/2008JCLI2606.1>, 2009.

744 Luo, Y., Zhang, R., Qian, W., Luo, Z., and Hu, J.: Intercomparison of deep convection over the Tibetan Plateau–Asian
745 monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data, *J. Climate*, 24, 2164–2177,
746 <https://doi.org/10.1175/2010JCLI4032.1>, 2011.

747 Luo, Z. J., Liu, C., and Stephens, G. L.: CloudSat adding new insight into tropical penetrating convection, *Geophys. Res. Lett.*,
748 35, 19, <https://doi.org/10.1029/2008GL035330>, 2008.

749 Luo, Z. J., Jeyaratnam, J., Iwasaki, S., Takahashi, H., and Anderson, R.: Convective vertical velocity and cloud internal vertical
750 structure: An A-Train perspective, *Geophys. Res. Lett.*, 41, 723–729, <https://doi.org/10.1002/2013GL058922>, 2014.

751 Masunaga, H. and Kummerow, C. D.: Observations of tropical precipitating clouds ranging from shallow to deep convective systems,
752 *Geophys. Res. Lett.*, 33, L16805, <https://doi.org/10.1029/2006GL026547>, 2006.

753 Maloney, E. D., Gettelman, A., Ming, Y., Neelin, J. D., Barrie, D., Mariotti, A., Chen, C.-C., Coleman, D. R. B., Kuo, Y.-H., Singh, B., Annamalai, H., Berg, A., Booth,
754 J. F., Camargo, S. J., Dai, A., Gonzalez, A., Hafner, J., Jiang, X., Jing, X., Kim, D., Kumar, A., Moon, Y., Naud, C. M., Sobel,
755 A. H., Suzuki, K., Wang, F., Wang, J., Wing, A. A., Xu, X., and Zhao, M.: Process-Oriented Evaluation of Climate and
756 Weather Forecasting Models, *B. Am. Meteorol. Soc.*, 100, 1665–1686, <https://doi.org/10.1175/bams-d-18-0042.1>, 2019.

757 Manabe, S., Smagorinsky, J., and Strickler, R. F.: Simulated climatology of a general circulation model with a hydrologic
758 cycle, *Mon. Weather Rev.*, 93, 769–798, [https://doi.org/10.1175/1520-0493\(1965\)093<0769:SCOAGC>2.3.CO;2](https://doi.org/10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2), 1965.

759 Masunaga, H., L'Ecuyer, T. S., and Kummerow, C. D.: Variability in the characteristics of precipitation systems in the tropical
760 Pacific. Part I: Spatial structure. *J. Climate*, 18, 823–840., <https://doi.org/10.1175/JCLI-3304.1>, 2005.

761 Matrosov, S. Y.: Potential for attenuation-based estimations of rainfall rate from CloudSat, *Geophys. Res. Lett.*, 34, 5,
762 <https://doi.org/10.1029/2006GL029161>, 2007

763 Mohr, K. I. and Zipser, E. J.: Defining mesoscale convective systems by their 85-GHz ice scattering signatures, *B. Am.
764 Meteorol. Soc.*, 77, 1179–1190, [https://doi.org/10.1175/1520-0477\(1996\)077<1179:DMCSBT>2.0.CO;2](https://doi.org/10.1175/1520-0477(1996)077<1179:DMCSBT>2.0.CO;2), 1996.

765 Nesbitt, S. W., and Zipser, E. J.: The diurnal cycle of rainfall and convective intensity according to three years of TRMM
766 measurements. *J. Climate*, 16, 1456–1475, [https://doi.org/10.1175/1520-0442\(2003\)016<1456:TDCORA>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<1456:TDCORA>2.0.CO;2), 2003

767 Pilewskie, J. A. and L'Ecuyer, T. S.: The Global Nature of Early-Afternoon and Late-Night Convection Through the Eyes of
768 the A-Train, *J. Geophys. Res.-Atmos.*, 127, e2022JD036438, <https://doi.org/10.1029/2022JD036438>, 2022.

769 Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning distributions, *J. Geophys. Res.-
770 Atmos.*, 97, 9919–9933, <https://doi.org/10.1029/92JD00719>, 1992.

771 Ramanathan, V. L., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., Ahmad, E., and Hartmann, D.: Cloud-radiative
772 forcing and climate: Results from the Earth Radiation Budget Experiment, *Science*, 243, 57–63,
773 <https://doi.org/10.1126/science.243.4887.57>, 1989.

774 Romatschke, U., Medina, S., and Houze, R. A., Jr.: Regional, seasonal, and diurnal variations of extreme convection in the
775 South Asian region, *J. Climate*, 23, 419–439, <https://doi.org/10.1175/2009JCLI3140.1>, 2010.

776 Sato, K., Okamoto, H., Nishizawa, T., Jin, Y., Nakajima, T. Y., Wang, M., Satoh, M., Roh, W., Ishimoto, H., and Kudo, R.:
777 JAXA Level 2 cloud and precipitation microphysics retrievals based on EarthCARE radar, lidar, and imager: the CPR_CLP,
778 AC_CLP, and ACM_CLP products, *Atmos. Meas. Tech.*, 18, 1325–1338, <https://doi.org/10.5194/amt-18-1325-2025>, 2025.

779 Schiro, K. A. and Neelin, J. D.: Tropical continental downdraft characteristics: mesoscale systems versus unorganized
780 convection, *Atmos. Chem. Phys.*, 18, 1997–2010, <https://doi.org/10.5194/acp-18-1997-2018>, 2018.

781 Schumacher, C., Stevenson, S. N., and Williams, C. R.: Vertical motions of the tropical convective cloud spectrum over Darwin,
782 Australia., *Q. J. Roy. Meteorol. Soc.*, 141, 2277–2288, <https://doi.org/10.1002/qj.2520>, 2015

783 Sherwood, S. C., Bony, S., and Dufresne, J.-L.: Spread in model climate sensitivity traced to atmospheric convective mixing,
784 *Nature*, 505, 37–42, <https://doi.org/10.1038/nature12829>, 2014.

785 Skofronick-Jackson, G., Petersen, W., Berg, W., Kidd, C., Stocker, E., Kirschbaum, D., Kakar, R., Braun, S., Huffman, G.,
786 Iguchi, T., Kirstetter, P., Kummerow, C., Meneghini, R., Oki, R., Olson, W., Takayabu, Y., Furukawa, K., and Wilheit, T.:
787 The Global Precipitation Measurement (GPM) mission for science and society, *B. Am. Meteorol. Soc.*, 98, 1679–1695,
788 <https://doi.org/10.1175/BAMS-D-15-00306.1>, 2017.

789 Song, H.J., Kim, S., Roh, S. and Lee, H: Difference between cloud top height and storm height for heavy rainfall using TRMM
790 measurements, *J. Meteorol. Soc. Jpn.*, 98, 901-914, <https://doi.org/10.2151/jmsj.2020-044>, 2020.

791 Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O'Connor, E. J., Rossow, W.
792 B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A., Mitrescu, C., and the CloudSat Science Team: The cloudsat
793 mission and the A-train, *Bull. Amer. Met. Soc.*, 83, 1771–1790, <https://doi.org/10.1175/BAMS-83-12-1771>, 2002.

794 Stephens, G., Vane, D. G., Tanelli, S., Im, E., Durden, S., Rokey, M., Reinke, D., Partain, P., Mace, G. G., Austin, R., L'Ecuyer,
795 T., Haynes, J., Lebsack, M., Suzuki, K., Waliser, D., Wu, D., Kay, J., Gettelman, A., Wang, Z., and Marc hand, R. : CloudSat
796 mission: Performance and early science after the first year of operation, *J. Geophys. Res.-Atmos.*, 113, D8,
797 <https://doi.org/10.1029/2008JD009982>, 2008.

798 Sy, O. O., Tanelli, S., Takahashi, N., Ohno, Y., Horie, H., and Kollias, P.: Simulation of EarthCARE spaceborne Doppler radar
799 products using ground-based and airborne data: Effects of aliasing and nonuniform beam-filling, *IEEE Trans. Geosci. Remote
800 Sens.*, 52, 1463–1479, <https://doi.org/10.1109/TGRS.2013.2251639>, 2014.

801 Takahashi, H. and Luo, Z. J.: Characterizing tropical overshooting deep convection from joint analysis of CloudSat and
802 geostationary satellite observations, *J. Geophys. Res.-Atmos.*, 119, 112–121, <https://doi.org/10.1002/2013JD020972>, 2014.

803 Takahashi, H., Luo, Z. J., and Stephens, G. L.: Level of neutral buoyancy, deep convective outflow, and convective core: New
804 perspectives based on 5 years of CloudSat data, *J. Geophys. Res. Atmos.*, 122, 2958–2969,
805 <https://doi.org/10.1002/2016JD025969>, 2017.

806 Takahashi, H., Luo, Z. J., Stephens, G., and Mulholland, J. P.: Revisiting the Land-Ocean Contrasts in Deep Convective Cloud
807 Intensity Using Global Satellite Observations, *Geophysical Research Letters*, 50, e2022GL102089,
808 <https://doi.org/10.1029/2022GL102089>, 2023.

809 Takahashi, H., Wu, L., Smalley, M. A., Stephens, G., Suzuki, K., and Posselt, D. J., Land - Ocean Differences in Tropical
810 Deep Convective Clouds: Intercomparison of DYAMOND Simulations and CloudSat Observations, *J. Geophys. Res.-Atmos.*,
811 130, 23, <https://doi.org/10.1029/2025JD044688>, 2025.

812 Tanelli, S., Im, E., Mascelloni, S. R., and Facheris, L.: Spaceborne Doppler radar measurements of rainfall: correction of errors
813 induced by pointing uncertainties, *J. Atmos. Oceanic Technol.*, 22, 1676–1690, <https://doi.org/10.1175/JTECH1797.1>, 2005.

814 Tanelli, S., Durden, S. L., Im, E., Pak, K. S., Reinke, D. G., Partain, P., Haynes, J. M., and Marchand, R. T.: CloudSat's Cloud
815 Profiling Radar After Two Years in Orbit: Performance, Calibration, and Processing, *IEEE T. Geosci. Remote*, 46, 3560–3573,
816 doi:10.1109/TGRS.2008.2002030, 2008.

817 Tian, B. and Dong, X.: The Double-ITCZ Bias in CMIP3, CMIP5, and CMIP6 Models Based on Annual Mean Precipitation,
818 *Geophys. Res. Lett.*, 47, e2020GL087232, <https://doi.org/10.1029/2020GL087232>, 2020.

819 Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale models, *Mon. Weather Rev.*,
820 117, 1779–1800, [https://doi.org/10.1175/1520-0493\(1989\)117<1779:ACMFSF>2.0.CO;2](https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2), 1989.

821 Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H., Ohno, Y., Koopman, R., Rusli, S., Kikuchi, M., Eisinger, M.,
822 Tanaka, T., Taga, M., Deghaye, P., Tomita, E., and Bernaerts, D.: The EarthCARE mission – science and system overview,
823 *Atmos. Meas. Tech.*, 16, 3581–3608, <https://doi.org/10.5194/amt-16-3581-2023>, 2023.

824 Williams, E. R. and Stanfill, S.: The physical origin of the land-ocean contrast in lightning activity, *C. R. Physique*, 3, 1277–
825 1292, [https://doi.org/10.1016/S0169-8095\(02\)00025-1](https://doi.org/10.1016/S0169-8095(02)00025-1), 2002.

826 Williams, E. R., Mushtak, V., Rosenfeld, D., Goodman, S., and Boccippio, D.: Thermodynamic conditions favorable to
827 superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, *Atmos. Res.*, 76, 288–306,
828 <https://doi.org/10.1016/j.atmosres.2004.11.010>, 2005

829 Xu, W., Chen, H., Wei, H., Luo, Y., and Zhao, T.: Extreme Precipitation Produced by Relatively Weak Convective Systems
830 in the Tropics and Subtropics, *Geophys. Res. Lett.*, 49, e2022GL098048, <https://doi.org/10.1029/2022GL098048>, 2022.

831 Yang, G.-Y. and Slingo, J.: The diurnal cycle in the tropics, *Mon. Weather Rev.*, 129, 784–801, [https://doi.org/10.1175/1520-0493\(2001\)129<0784:TDCITT>2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2), 2001.

833 Zhao, M.: An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model, *J. Climate*, 27, 1845–1862, <https://doi.org/10.1175/JCLI-D-13-00145.1>, 2014.

835 Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W., and Yorty, D. P.: Where are the most intense thunderstorms on Earth?, *Bull. Amer. Meteor. Soc.*, 87, 1057–1071, <https://doi.org/10.1175/BAMS-87-8-1057>, 2006.