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Abstract. An accurate representation of the land surface is essential for simulating the exchange of energy, water and carbon
between the land and the atmosphere. This study evaluates the impact of land cover representation on snow simulations in
the Interactions Between Soil, Biosphere and Atmosphere (ISBA) land surface model in Europe between 2010 and 2022.
The study employs the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 atmospheric forcing
dataset. Offline simulation experiments were conducted using two different versions of the model to prescribe land cover.
The most recent version uses the latest land cover data from the European Space Agency's (ESA) Climate Change Initiative
(CCI). The model's ability to reproduce snow dynamics was evaluated through a comparison of the simulations with ESA
CCI satellite snow water equivalent (SWE) retrievals and ERA5 snow analyses. The ERA5 analysis shows the highest level
of agreement with satellite observations of SWE at the domain scale. On average, both the ERA5 and ISBA simulations tend
to overestimate SWE compared to the CCl SWE. However, it is also possible that the CCl SWE product underestimates the
actual SWE. This bias is particularly large during the warm winter of 2020, while the scaled SWE anomalies are comparable
to those observed by ESA CCI and ERAS. Using ESA CCI land cover data reduces the ISBA SWE bias by around 33%,
with this reduction being observed over most of the domain. These findings emphasise the importance of accurate land cover
data for improving snow representation in land surface models and highlight the need for updated vegetation information in

future snow-related applications.

1 Introduction

Land surface models (LSMs) are essential for simulating energy, water and carbon fluxes at the interface between the land
and the atmosphere. They are widely used in weather forecasting, climate modelling and hydrological applications, such as
predicting droughts and floods (Crow et al., 2012; Mishra et al., 2024; Quintana-Segui et al., 2020), as well as informing
land-use and water-use policy (Blyth et al., 2021). However, the accuracy of LSM outputs depends heavily on the quality of

boundary conditions and surface parameters, particularly land cover (LC) data. LC maps are used to define key properties
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such as albedo, roughness, rooting depth and vegetation type. These properties modulate surface fluxes and soil-vegetation—
atmosphere interactions (Bounoua et al., 2002; Levis, 2010). Traditional LC datasets used in LSMs often rely on static or
outdated classifications that may no longer accurately reflect current land use patterns or vegetation changes caused by
climate change and human activity (Maas et al., 2018). Updating these datasets is important in order to better estimate
surface heat fluxes and soil temperature (José et al., 2024). ECOCLIMAP-II (Faroux et al., 2013), for example, has long
been the reference within the SURFEX modelling system (Masson et al., 2013), providing global 1 km resolution maps.
Over Europe, ECOCLIMAP-II is based on data from the early 2000s (Kaptue et al., 2009; Etchanchu et al., 2017). However,
it does not incorporate recent satellite-derived LC changes. To overcome these limitations, a new LC product called
ECOCLIMAP-SG (Calvet and Champeaux, 2020) has been developed. This product integrates LC data from the European
Space Agency (ESA) Climate Change Initiative (CCI) LC v2.0.7 product with vegetation data from the Copernicus Land
Monitoring Service (CLMS). This fusion enables the representation of LC changes at a resolution of 300 metres and
incorporates inter-annual LC variability and seasonal vegetation dynamics (Barella-Ortiz et al., 2022; Li et al., 2018).
Previous research has shown that dynamic, high-resolution LC data can enhance the modelling of vegetation growth, energy
flux partitioning, albedo, and hydrological processes (Lawrence & Chase, 2007; Liu et al., 2021; Wang et al., 2023).
Although improvements to LC datasets can reduce uncertainties in surface parameterisation, it is still important to validate
these updates against independent observations. Satellite-based Earth observation (EO) products provide a valuable way of
assessing the accuracy of model outputs over large areas and long periods of time. Recent advances in EO have enabled the
development of long-term, harmonised satellite products (Gao et al., 2013; de Jeu et al., 2008), which are crucial for
validating and benchmarking LSMs. Notably, the ESA Climate Change Initiative (CCI) has produced global datasets for
critical surface variables, including snow water equivalent (CClI SWE) and land surface temperature (CCI LST). The CCI
products are derived from multi-sensor satellite observations using consistent retrieval algorithms, and have been validated
against ground-based measurements to ensure reliability across various climate regimes (Sun et al., 2025; Ling et al., 2021;
Pérez-Planells et al., 2023; Reiners et al., 2021; Saeedi et al., 2021). Their spatial resolution and temporal coverage make
them suitable for evaluating models at regional to continental scales, helping to identify biases in models and assess
structural or parametric deficiencies (Raoult et al., 2018; Seo and Dirmeyer, 2022).

This study evaluates the impact of integrating updated LC information into the Interactions Between Soil, Biosphere and
Atmosphere (ISBA) LSM, by benchmarking simulations driven by old LC data and updated CCI LC data. The aim is to
assess the influence of the updated LC dataset on the simulation of SWE. We use ESA CCI satellite products and the
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5S reanalysis (Kouri et al., 2023) as reference
datasets to evaluate model performance. .

This study is organised as follows: Section 2 presents the model configuration and observational datasets. Section 3
describes the experimental design. Section 4 presents the benchmarking results. Section 5 discusses the findings of this

study. Finally, Section 6 outlines future research directions and provides conclusions.
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2 Model and data
2.1 ISBA model

The ISBA land surface model is integrated within the SURFEX modelling framework, which was developed by the Centre
National de Recherches Météorologiques (CNRM) (Masson et al., 2013). Its purpose is to simulate the exchange of energy,
water and carbon between snow, the soil-plant system, and the atmosphere. ISBA operates in both coupled and offline
modes and is used for a variety of applications, ranging from operational weather forecasting (Giard and Bazile, 2000; Bélair
et al., 2003a,b) to climate simulations (Delire et al., 2020). The ISBA model computes various land surface variables, such as
soil moisture and temperature, as well as heat, water and energy fluxes. The model can operate at different timescales,
ranging from hours to days, and at different spatial scales, ranging from local to global.

This study uses SURFEX version 9 (CNRM, 2023) in offline mode over Europe, i.e. without interacting with an atmospheric
model. The configuration used here to represent the soil-plant system is ISBA-A-gs, which is CO--responsive and explicitly
simulates carbon fluxes, gross primary production, and vegetation growth by resolving leaf-level photosynthesis and
stomatal conductance (gs) processes (Calvet et al., 1998, 2008). This configuration dynamically computes leaf biomass and
leaf area index (LAI) through balancing net carbon assimilation (A) and photosynthesis-dependent senescence using plant
functional type-specific SLA (Specific Leaf Area).

Snow is represented using a medium-complexity snow physics scheme called ISBA-ES (Explicit Snow), which was
developed by Boone and Etchevers (2001) and updated by Decharme et al. (2016). The vertical evolution of soil temperature
and moisture is computed using a multi-layer diffusion scheme (Boone et al., 2000; Decharme et al., 2019). In this study,
snow is represented with twelve layers and the soil is divided into up to 14 layers, with a maximum depth of 12 metres for
temperature and 2 metres for moisture, depending on the characteristics of the vegetation. Simulations of snow water

equivalent (SWE) and land surface temperature (LST) are analysed.

2.2 CCIl SWE data

As part of the ESA CCI, the CCI Snow project provides a long-term, consistent and well-calibrated climate data record of
snow water equivalent (SWE) for the Northern Hemisphere (Luojus et al., 2024). This record is derived from passive
microwave radiometer observations during the winter season (October to May). The SWE product (version 3.1) spans the
period from January 1979 to May 2022, offering daily coverage at a spatial resolution of 0.10°. It is based on measurements
from the SMMR, SSM/I and SSMIS sensors aboard the Nimbus-7 and DMSP platforms. The retrieval algorithm uses the
GlobSnow methodology (Luojus et al., 2021) to combine satellite microwave observations with in situ snow depth data via a
Bayesian assimilation scheme. This enables robust SWE estimates to be generated, masked for mountainous, glaciated, and
coastal regions where retrievals are less reliable. In this study, the daily SWE product from the CCl Snow project is
regridded to a coarser resolution of 0.25° to match the horizontal resolution of the ISBA land surface model outputs. The

focus is on the European domain, where SWE from satellite observations is compared with ISBA-simulated SWE under two
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different land cover configurations. The aim is to evaluate the effect of updating the land cover map on modelled snow mass,
and to assess the spatial and seasonal consistency of modelled and observed SWE patterns. Given its multi-decade
consistency and independence from the ISBA model inputs, the CCl SWE product provides a reference for evaluating the

influence of vegetation representation on snow simulations.

2.3 ERA5 SWE data

In this study, we include SWE data from the ERAS reanalysis in order to provide an additional, model-based reference with
which to compare ISBA simulations and satellite observations. ERA5 is the fifth generation of ECMWF atmospheric
reanalyses and offers a consistent, physically constrained representation of atmospheric and surface variables globally
(Hersbach et al., 2020). The SWE variable takes into account both new snowfall and snow metamorphosis processes. It is
computed using a multi-layer snow scheme within the Integrated Forecasting System (IFS), which models processes such as
snow compaction, melting and sublimation. Since 2004, ERA5 has assimilated the Interactive Multi-sensor Snow and Ice
Mapping System (IMS) product at altitudes below 1500 m. The IMS (Chiu et al., 2020; Orsolini et al., 2019) is produced by
the National Oceanic and Atmospheric Administration (NOAA). It combines microwave, visible, and infrared satellite data
to produce snow cover data for the Northern Hemisphere with a spatial resolution of 4 km. ERA5 snow depth data is
available with an hourly temporal resolution and a horizontal resolution of approximately 31 km, globally, since 1979. In our
study, daily averages of snow depth are extracted and interpolated onto the same 0.25° grid as the ISBA outputs over the
European domain. Although not an observational product, ERAS5 provides a valuable, physically consistent estimate of

snowpack evolution that can contextualise differences between model simulations and satellite retrievals.

2.4 CCI LST data

The land surface temperature (LST) data used in this study originate from the ESA CCI LST project, which produces various
products from different sensors (Pérez-Planells et al., 2023). Thanks to its validated accuracy and temporal consistency, the
high-resolution product derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) observations is
widely used in climate studies and land surface modelling. The MODIS LST data are available for daytime and night-time
overpasses, enabling the characterisation of the diurnal surface temperature cycle across different land types and climate
zones. In this study, we use a pre-release version 4 of the Aqua MODIS CCI LST dataset, which is more recent and has been
processed at a resolution of 0.05°. This version provides consistent daily LST estimates corresponding to satellite overpass
times of approximately 13:30 and 01:30 local solar time (LT), based on Aqua MODIS observations. This temporal resolution
allows day and night surface temperature dynamics to be separated. The LST CCI product has been resampled to a resolution
of 0.25°.
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2.5 CCI LC data

This study investigates the impact of incorporating ESA CCI Land Cover (LC) data into the ISBA land surface model. Two
datasets are considered: ECOCLIMAP-II (Faroux et al., 2013) and the updated ECOCLIMAP-SG (Calvet and Champeaux,
2020). These LC products are used within the SURFEX platform to define biophysical parameters associated with vegetation
types by classifying them into plant functional types (PFTs). These PFTs include categories such as broadleaf and needleleaf
forests, C3/C4 crops, irrigated areas, bare soil, grasslands and more. Surface parameters of the ISBA model are associated
with each PFT and can vary depending on the local cover composition. For the purposes of this study, a configuration of 12
PFTs has been set. While ECOCLIMAP-II relies on older land cover inventories (Corine Land Cover 2000, GLC2000),
ECOCLIMAP-SG integrates higher-resolution ESA CCI LC data at 300 m and accounts for recent land use changes. This
study uses LC v2.0.7 for the year 2010. Figure 1 illustrates the dominant land cover types over Europe at a spatial resolution
of 0.25°, as represented in ECOCLIMAP-II and ECOCLIMAP-SG. These will be referred to as Old LC and New LC,
respectively, throughout the rest of this study.

(a) ECOCLIMAP-1I ECOCLIMAP-SG

WONOUAEWNR

Figure 1: Dominant land cover type over Europe at a spatial resolution of 0.25° x 0.25° as derived from (a) Old LC ECOCLIMAP-
Il (Faroux et al., 2013), (b) New LC ECOCLIMAP-SG (Calvet and Champeaux, 2020), with CCI LC v2.0.7 2010. The 12
dominants land cover types are indicated in the colour bar: 1 - flooded shrubs or grass, 2 - tropical grasslands, 3 - temperate
grasslands, 4 - flooded trees, 5 - C4 crops (e.g. maize), 6 - C3 crops (e.g. wheat), 7 - broadleaf evergreen trees, 8 - coniferous trees, 9
- deciduous broadleaf trees, 10 - permanent snow and ice, 11 —rocks, urban, 12 — ocean and water bodies, 13 — bare soil with no
vegetation.

Substantial regional differences emerge due to variations in the source data and methodology. The Old LC tends to
underestimate forest cover, particularly coniferous forests, across northern Europe. These forests are more extensively
represented in New LC. In contrast, New LC, which integrates more recent, higher-resolution, satellite-derived vegetation
products, exhibits finer spatial variability and improved delineation of agricultural and wetland areas. Notably, C4 crops are
more accurately localised in southern and Eastern Europe in New LC. There is less bare soil in Mediterranean regions and
the Middle East. Irrigation is no longer categorised as a land surface type. Instead, it relies on independent irrigation maps,
meaning that all vegetation types can be irrigated (Druel et al., 2022).
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3 Experimental setup and model evaluation

Two offline experiments were conducted using the SURFEX v9 framework over the European domain (28.125°N-
71.875°N, 25.875°W-63.875°E) to evaluate the sensitivity of the ISBA simulations to land cover input. The experiments
used Old LC and New LC data. These offline simulations cover the period from January 2010 to September 2022 and are not
coupled with an atmospheric model. Instead, they are driven by hourly ERAS5 atmospheric reanalysis data (Mufioz-Sabater et
al., 2021), which has been interpolated to the ISBA grid at a resolution of 0.25° x 0.25° using bilinear interpolation. LAl and
SWE are calculated interactively and are not constrained by satellite observations. Both LC simulations use the ISBA-A-gs
and ISBA-ES configurations and have the same model structure and physical parameterisations. To ensure equilibrium of
deep soil temperature and root-zone moisture, long spin-up integrations preceded both setups. Specifically, a generic spin-up
lasting 200 years was followed by a specific spin-up for Old LC and New LC. The 1981-1989 and 2010-2019 simulations
were repeated four times for each, in line with the recommendations of Liu et al. (2025). This ensures stable initial
conditions for the evaluation period. The model's outputs are updated every three hours (00:00 UTC, 03:00 UTC, 06:00 UTC
and so on) for land grid cells excluding large water bodies, rocks and urban surfaces. The number of valid land grid cells
ranges from 34,801 for the Old LC to 35,775 for New LC. These outputs are then compared with satellite observations of
snow water equivalent (SWE) and land surface temperature (LST) from the ESA CCI datasets. The ISBA SWE simulations
are also compared with ERA5 SWE simulations. We conduct two distinct analyses to benchmark ISBA-simulated skin
temperature against LST observations: one for daytime (12:00 UTC) and one for night-time (00:00 UTC), over a subdomain
that covers the westernmost part of the domain (10°W-30°E, 28.125°N-71.875°N). This separation improves the assessment
of model performance in capturing diurnal temperature variations, which are essential for energy balance and hydrological
modelling. This enables us to benchmark the model's performance and quantify the impact of land cover updates. We
consider the Pearson correlation coefficient (R), the root-mean square difference (RMSD) and the unbiased RMSD
(ubRMSD) score values, together with the mean bias (MB). The square of the RMSD value is equal to the sum of the
squares of the ubRMSD and the MB.

4 Results
4.1 Climatological features and anomaly patterns in ISBA simulations

The results of New LC are presented in Figure 2, with a focus on key surface variables: LAI, LST, and SWE. Panels (), (c)
and (e) show the climatological means of LAI, LST and SWE over Europe for the period 2010-2022, respectively. LAI
(panel a) is higher in forested areas. LST (panel c) follows latitudinal climatic forcing patterns, with higher values in
southern Europe and progressively cooler conditions towards the north. SWE (panel e) is largely confined to northern
latitudes and alpine regions, consistent with colder conditions and zones of seasonal snow accumulation. These spatial

distributions highlight the expected climate-driven gradients and confirm the physical consistency between surface water,
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energy and vegetation processes as modelled in ISBA. The standardised Hovméller diagrams (panels b, d and f) show how
scaled anomalies in LAI, LST and SWE vary across different latitudes and over time. LAl anomalies (panel b) reveal strong
seasonal dynamics and interannual variability, particularly in the middle latitudes, where positive anomalies were prominent
in 2016 and in 2020. These shifts in vegetation activity may reflect climatic influences, such as warm winters, heatwaves or

190 droughts. LST anomalies (panel d) exhibit a consistent latitudinal pattern, featuring the warm winter of 2020 that coincides
with SWE deficits in mid-latitude regions and SWE excess at high latitudes (panel f).
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195 Figure 2: New LC simulations over the whole European domain forced by ERA5 atmospheric variables from 2010 to 2022 at a
spatial resolution of 0.25 degree x 0.25 degree: Mean values (a, ¢, €) and Hovmoller plot (b, d, f) of scaled anomalies (z-score) of (a,
b) LAI, (c, d) LST, and (e, f) SWE.
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4.2 Assessment of New LC SWE simulations

Figure 3 shows the time series of the snow water equivalent (SWE) averaged over the entire European domain from 2010 to
2022. It compares the SWE derived from ESA CCI satellite data with the SWE simulated by Old LC and New LC, as well as
the ERA5 SWE. All datasets capture the expected seasonal cycle of snow accumulation and melt, with consistent timing
across years. However, the simulations consistently overestimate peak SWE values compared to the ESA CCI product,
especially during the warm winter of 2020, when discrepancies between models and observations exceed 30 mm. Using New
LC reduces the overestimation compared to the Old LC, narrowing the gap with the observations. ERA5 performs better in
terms of amplitude and variability. However, some discrepancies remain with the satellite product, particularly during the

warm winter of 2020.

SWE Comparison

80

60

IS
S

SWE (mm)

2010 2012 2014 2016 2018 2020 2022

Figure 3: Time series of daily mean SWE values over the whole European domain from 2010 to 2022, based on the CClI SWE
dataset, New LC, Old LC, and the ERA5 SWE.

Figure 4 presents the spatial patterns of SWE. The maps compare the mean SWE fields from CCI observations and New LC
for the period 2010-2022, along with the difference between them. While the model generally captures the large-scale
distribution of SWE, regional biases are evident, particularly in northern Europe. In regions like Sweden and Finland, the

model underestimates SWE despite its tendency to overestimate peak values in the time series shown in Fig. 3.
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Figure 4: Maps of mean SWE values at altitudes below 1500 m across the whole of Europe from 2010 to 2022 derived from: (a)
CCI SWE, (b) New LC, and (c) the difference between New LC and CCIl SWE.

The statistical evaluation summarised in Table 1 provides further support for these findings. Using New LC results in a slight
increase in the mean Pearson correlation coefficient between the modelled and observed SWE (from 0.70 to 0.71), indicating
a marginal improvement in temporal agreement. While the mean ubRMSD remains unchanged at 16.9 mm, the overall
RMSD is notably reduced from 29.2 mm to 23.3 mm. This reduction in RMSD is caused by the decrease in MB from 23.8
mm to 16.0 mm, suggesting that the improvement in alignment with the observed snow mass is the main cause of the
reduction in RMSD. This suggests that the more detailed and updated land cover dataset better constrains snow accumulation
processes in ISBA.

Table 1: Mean grid-cell level score values of the New LC and Old LC simulations for SWE and LST (both daytime and nighttime)
over the 2010-2022 period. SWE score values are over the whole European domain. LST score values are for the westernmost part
of the domain (10°W-30°E, 28.125°N-71.875°N). The number of observations and score values for ERAS are also shown.

Model vs. CCl variable R RMSD ubRMSD MB Number

ERAS5 SWE 0.73 18.1 14.6 10.7 83,962,378
Old LC (mm) 0.70 29.2 16.9 23.8 84,043,641
New LC 0.71 23.3 16.9 16.0 84,106,230
ERAS5 Daytime LST 0.96 4.8 4.4 -1.8 18,056,129
Old LC (K) 0.96 6.0 4.8 -3.6 19,311,176
New LC 0.96 6.1 4.9 -3.7 19,311,164
ERA5 Nighttime LST 0.97 3.0 25 1.6 23,109,907
Old LC (K) 0.95 3.2 3.1 0.8 24,259,011
New LC 0.95 3.1 3.0 0.8 24,274,817

To further evaluate the impact of land cover representation on ISBA snow simulations, we move beyond domain-averaged
statistics (see Table 1) and analyse the spatial distribution of performance score differences in relation to CClI SWE

observations. Figure 5 shows the difference in performance between simulations using New LC and Old LC.
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(a) Corr: New LC - Old LC

(c) Mean: New LC - Old LC
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Figure 5: Spatial differences in the statistical performance metrics of New LC and Old LC SWE simulations with respect to CCI
SWE observations over the whole European domain, over the 2010-2022 period: difference in (a) R, (b) RMSD and (c) mean
difference of SWE between the two simulations. For R and RMSD, red zones indicate improvement (e.g. higher correlations or
lower errors) when using New LC, while blue zones indicate degradation.

The comparison reveals a heterogeneous spatial response to changes in land cover. While improvements are evident in
regions such as the Carpathians and parts of South-Eastern Europe, clear degradation is evident across large areas of
northern Europe, particularly in Southern Sweden, and Finland. Conversely, reductions in the overestimation of SWE are
observed in Northern Sweden and the Urals region.

Figure 6 illustrates the comparison between New LC SWE simulations and ERA5 SWE with respect to CCl SWE
observations. The correlation difference map shows that, in general, ERA5 achieves a higher level of agreement with
satellite-derived snow dynamics than the ISBA simulation, particularly across central and northern Europe. The RMSD
difference map further highlights ERAS5’s superior performance across much of the domain, as indicated by the large areas
of blue showing lower total errors. However, specific regions such as France and Northern Italy show local advantages for
ISBA. The SWE difference map shows that New LC consistently produces higher mean SWE values than the ERA5
simulations across large areas, particularly in high-latitude and mountainous regions. These patterns align with the SWE

biases in New LC (Fig. 4c), indicating that SWE positive biases are less pronounced in ERAS.

(a) Corr: New LC - ERAS

70°N = "‘,\.“de 70°n B

(b) RMSD: New LC - ERAS (c) Mean: New LC - ERAS

A — A —— g A —
-0.4 -0.2 0.0 0.2 0.4 -30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
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Figure 6: As in Fig. 5, except for differences between New LC and ERAS.

10



https://doi.org/10.5194/egusphere-2026-65
Preprint. Discussion started: 26 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Figure 7 shows the cumulative distribution functions (CDFs) of score values to complement this spatial assessment,

summarising model performance across all grid cells.
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Figure 7: Cumulative distribution functions (CDFs) of (a) R, (b) RMSD, and (c) ubRMSD, alongside (d) the probability density
function (PDF) of the bias, for SWE simulations from Old LC, New LC, and ERA5 (red, green, and blue, respectively),
benchmarked against CClI SWE the whole European domain for the period 2010-2022.

265 Over half of the points have correlation values above 0.8, indicating that all three models (ERAS5, Old LC and New LC)
accurately depict the seasonal changes in snow water equivalent (SWE). Over 90% of the domain has RMSD values below
40 mm, indicating generally low errors in snow estimation. ERA5 displays the lowest RMSD and ubRMSD overall, with
fewer instances of SWE overestimation. Although the bias spread of New LC is not reduced compared to the Old LC,
instances of systematic overestimation are significantly reduced. Figure 7 also shows a slight improvement in the correlation

270 CDF.

11
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4.3 Assessment of ISBA LST simulations

Figure 9 shows that there is a persistent cold bias in ISBA daytime skin temperature over the westernmost part of the
domain, while nighttime LST is slightly overestimated. As shown in Table 1, using New LC has a limited impact on the
daytime and nighttime LST bias. It also shows that, while ERA5 LST is more consistent with observations than ISBA in

275 terms of RMSD and ubRMSD, its nighttime warm bias is larger (1.6 K compared to 0.8 K for ISBA). ERAS LST bias is
reduced during the day compared with New LC (-1.8 K and -3.7 K, respectively).
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Figure 8: Time series of mean LST value over westernmost part of the domain (10°W-30°E, 28.125°N-71.875°N) from CCI LST,
Old LC and New LC from 2010 to 2022: (a) daytime values at 13:30 LT for the observations, (b) nighttime at 01:30 LT,
280 corresponding to ISBA simulations at 12:00 and 00:00 UTC, respectively.

When considering only snow-free conditions (see Table S1), the LST score values are not fundamentally different to those

shown in Table 1. When considering the December—January—February (DJF) winter season only (Table S2), the MB values

are reduced, but the ubRMSD values of New LC increase. Considering snow-free conditions and the DJF season
285 simultaneously (Table S3) yields smaller unRMSD values for New LC but not for ERA5.
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5 Discussion
5.1 What causes the models' SWE bias?

As shown in Table 1 and Figure 3, both Old LC and New LC, as well as ERA5, tend to overestimate SWE with respect to
the CCI SWE data. Using New LC reduces the mean SWE bias from 23.8 mm to 16.0 mm. As New LC has little impact on
the daytime cold bias or the nighttime warm bias, the overestimation of SWE cannot be explained by mean LST biases

alone. Figure 9 shows the daytime and nighttime LST bias of New LC over the westernmost part of the domain.
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> 70°N =

50°N

40°N

30N [l

ok

g 4
g i
5°W 0° S5°E 10°E 15°E 20°E 25°E

5°W  0° 5°E 10°E H E 5°W 0° 5°E 10°E 15°E 20°E 25°E

E— |
270 280 290 300 310 320 330 -20 -10 0 10 20
(K) (K)
(d) ESA-CCI Night (e) New LC Night (f) Diff Night (Model - Sat)

LIRS e
20°E 25°E

°  5°E 10°E 15°E 20°E 25°E

270 275 280 285 290 295 -6 -4 =2

0 2 4 6
(K) (K)

Figure 9: Maps showing the mean (a,b,c) daytime and (d,e,f)) nighttime (bottom) LST values over westernmost part of the domain
(10°W-30°E, 28.125°N-71.875°N), derived from (a, d) CCI LST, (b, e) New LC and (c, f) the difference between New LC and CCI
LST.

The cold bias in daytime LST is more pronounced in southern regions (North Africa and Spain) than in areas prone to snow.
Conversely, the night-time warm bias is more pronounced in the north-eastern part of the domain, where snowfall is more
frequent. These results suggest that improving LC is beneficial for representing SWE, but this improvement cannot be
explained by a better representation of LST. The limited response of daytime and nighttime LST to New LC can be

attributed to the structural aspects of the ISBA model. This likely reflects the complex interplay of vegetation, turbulent
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fluxes, solar radiation and soil heat storage. These factors go beyond static vegetation descriptors and cannot easily be
corrected through land cover updates alone. New LC introduces a denser coniferous forest canopy in southern Sweden and
Finland than Old LC (see Fig. 1). Interactions between snow cover and forests are complex and can lead to increased model
errors (Deschamps-Berger et al., 2025). New LC may also affect LAI throughout the seasons. The effect of using New LC
on LAI simulations is presented in the supplementary material (Fig. S1). ERA5 also overestimates CCl SWE. Since ERA5
incorporates IMS snow observations, it is possible that the CCl SWE product itself may underestimate the actual SWE. A
known limitation of the CCl SWE product is that the algorithm can only retrieve SWE data for snow packs with a thickness
of less than 1 m. This is because the microwave brightness temperature signal saturates beyond a depth of 1 m or in the

presence of wet snow (Barella et al., 2024).

5.2 Are the SWE estimates from the warm winter of 2020 consistent?

Figure 10 shows the scaled anomalies (z-score) of SWE for winter 2019-2020, which was a particularly warm winter season
over Europe. All datasets reveal predominantly negative SWE anomalies across much of Europe, which is consistent with
the mild temperatures and reduced snow persistence reported for that winter in the mid-latitudes (Brown et al., 2020;
Twardosz et al., 2021). Localised bands of positive anomalies appear in Russia, Kazakhstan, and Northern Scandinavia,
which are likely to be associated with cold spells or above-average precipitation. The spatial patterns of the New LC and Old
LC SWE anomalies show good agreement with the CCl SWE anomalies, particularly with regard to capturing the large-scale
negative anomaly across central and western Europe. However, the simulations tend to overestimate the extent and
magnitude of positive anomalies in the northern and eastern regions. ERA5 successfully reproduces the broad anomaly
structure, although it shows slightly more widespread positive anomalies in these regions. Conversely, the weaker positive

anomalies of CCl SWE in these regions could suggest microwave signal saturation.
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15



330

335

340

345

350

355

https://doi.org/10.5194/egusphere-2026-65
Preprint. Discussion started: 26 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

6 Conclusion

This study assessed the impact of incorporating the ECOCLIMAP-SG land cover dataset (derived from the ESA CCI land
cover) into the SURFEX version 9 ISBA land surface model across Europe between 2010 and 2022. The focus was on the
simulation performance of snow water equivalent (SWE). Benchmarking against ESA CCI SWE and ERA5 revealed that the
updated land cover improved the ISBA model's performance, reducing the root mean square deviation (RMSD) by around 8
mm and marginally enhancing the correlation. Spatial analyses demonstrate that ECOCLIMAP-SG notably enhances SWE
simulation in central and south-eastern Europe. Conversely, performance deteriorated in certain forested regions in the north,
likely due to altered snow-vegetation interactions. ERA5 remains the best-performing dataset in terms of absolute error, but
ISBA with ECOCLIMAP-SG more accurately captures the spatial variability of snow accumulation. Beyond SWE, our
analysis of land surface temperature (LST) revealed potential model biases that could affect snow simulations. Specifically,
ISBA shows cold and warm biases during the daytime and nighttime, respectively, compared to ESA CCI LST. However,
these biases alone cannot fully account for the overestimation of SWE. It is possible that the CClI SWE product itself

underestimates the actual SWE.

Code availability. SURFEX can be downloaded freely at https://www.umr-cnrm.fr/surfex/data/OPEN-
SURFEX/open_surfex v9 0 0 20231024.tar.gz (last access: January 2026; CNRM, 2023). It is provided under a CECILL-
C License (French equivalent to the L-GPL licence).

Data availability. ESA Land Cover Climate Change Initiative (Land_Cover_cci) Global Land Cover Maps, Version 2.0.7,
are available from https://catalogue.ceda.ac.uk/uuid/b382ebe6679d44b8b0e68eadef4b701c (last access: January 2026), CCI

global Aqua MODIS LST data (version 4) are available from https://gws-
access.jasmin.ac.uk/public/esacci_Ist AQUA MODIS_L3C_0.01/4.00/ (last access: January 2026)
(https://doi.org/10.5285/d56a6215ce394ddd8dffébea5dbb0780), CCI global SWE data (version 3.1) are available from
https://catalogue.ceda.ac.uk/uuid/9d9bfc488ec54b1297eca2c9662f9c81/ (last access: January 2026), ERA5 global SWE data

are available from the C3S Climate Data Store https://cds.climate.copernicus.eu/datasets/reanalysis-eras-single-

levels?tab=download (last access: January 2026).

Supplement. The supplement related to this article is available online at:
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