

Effect of using CCI land cover on ISBA Leaf Area index (LAI) simulations over Europe

In order to better understand the downstream impacts of changes in land cover, we analysed the differences in leaf area index (LAI) climatology between the new land cover derived from the Climate Change Initiative (CCI) and the old land cover (ECOCLIMAP-SG and ECOCLIMAP-II, respectively). As shown in Figure S1, significant LAI variations, frequently surpassing $1 \text{ m}^2 \text{ m}^{-2}$ and occasionally exceeding $2 \text{ m}^2 \text{ m}^{-2}$ in certain regions of Spain and France, demonstrate the substantial sensitivity of the modelled vegetation state to land cover inputs. These LAI differences are consistent with transitions in land cover classes. For instance, a transition from bare soil or rocks in ECOCLIMAP-II to crops or deciduous forests in ECOCLIMAP-SG results in a larger simulated LAI. Decreases in LAI are also observed in urban areas, as larger cities are better represented in ECOCLIMAP-SG.

Figure S1 – Mean LAI differences between ISBA simulations using CCI land cover vs. pre-existing LC (“New LC” and “Old LC”, respectively), from 2019 to 2022.

Assessment of ISBA LST simulations

Table S1: Same as Table 1 LST results, except for snow-free conditions only.

Model	vs. CCI variable	R	RMSD	ubRMSD	Mean bias	Number
ERA5	Daytime LST (K)	0.95	4.8	4.4	-1.8	17,028,884
ISBA Old LC		0.95	6.1	4.8	-3.7	18,470,996
ISBA New LC		0.95	6.2	4.9	-3.8	18,475,517
ERA5	Nighttime LST (K)	0.95	2.9	2.3	1.7	20,000,058
ISBA Old LC		0.93	2.9	2.8	0.9	21,266,313
ISBA New LC		0.93	2.9	2.8	0.9	21,296,545

Table S2: Same as Table 1 LST results, except for the DJF season only.

Model	vs. CCI variable	R	RMSD	ubRMSD	Mean bias	Number
ERA5	Daytime LST (K)	0.96	3.7	3.6	-0.2	889,017
ISBA Old LC		0.94	4.9	4.5	-1.9	1,081,712
ISBA New LC		0.94	4.9	4.6	-1.8	1,081,706
ERA5	Nighttime LST (K)	0.93	3.2	3.0	1.3	3,474,492
ISBA Old LC		0.88	3.9	3.9	0.4	3,805,975
ISBA New LC		0.89	3.8	3.8	0.6	3,805,923

Note: DJF stands for December-January-February

Table S3: Same as Table 1 LST results, except for the DJF season and snow-free conditions only.

Model	vs. CCI variable	R	RMSD	ubRMSD	Mean bias	Number
ERA5	Daytime LST (K)	0.95	3.7	3.7	-0.2	646,537
ISBA Old LC		0.93	5.1	4.6	-2.3	819,387
ISBA New LC		0.93	5.1	4.7	-2.2	823,023
ERA5	Nighttime LST (K)	0.85	2.8	2.4	1.4	1,993,240
ISBA Old LC		0.70	3.0	3.0	0.6	2,238,276
ISBA New LC		0.71	3.0	2.9	0.7	2,250,248

Note: DJF stands for December-January-February