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Abstract. Sugarcane (Saccharum spp.), an economically important crop in the food and bioenergy industries, has historically
played a central role in the economy of Cuba, shaping its agricultural landscape and international relations. Although
production has declined in recent decades, sugarcane remains a strategic crop, with its byproducts contributing to national
energy and industrial outputs. However, the way in which long-term fertilization interacts with soil microbial communities
under varying edaphoclimatic conditions remains largely unknown. Here, we investigated a traditional sugarcane plantation
to evaluate how distinct fertilizer formulations varying in nitrogen, phosphorus, and potassium affect the soil and rhizosphere
microbiota. Using high-throughput sequencing of 16S rRNA (bacterial) and internal transcribed spacer (fungal) genes, we
identified 421 bacterial and 471 fungal genera from 5,741 amplicon sequence variants across different fertilization regimes.
While microbial composition and diversity did not differ significantly between treatments, co-occurrence network analysis
showed clear nutrient-specific patterns. This indicated that each fertilizer regime shaped distinct interaction networks among
microbial taxa. These shifts suggest modifications in soil and rhizosphere functioning linked to nutrient availability rather than
to taxonomic turnover alone. The findings provide a detailed characterization of the rhizosphere microbiome of Saccharum
spp. in brown sialitic soils (inceptisol), offering ecological insights into its bacterial-fungal associations. This highlights the
importance of understanding how long-term fertilization regimes influence rhizosphere microbial dynamics, which is key to

designing more sustainable soil management and fertilization practices in sugarcane production systems.



35

40

45

50

https://doi.org/10.5194/egusphere-2026-629
Preprint. Discussion started: 18 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Graphical Abstract

Long-term fertilization

Different NPK fertilizer regimes Bacterial and fungal A) Diversity and abundance
communities

Alpha & beta diversity Relative abundance
16S and ITS

oane T o

Sequencing T

L

L

No significant differences
(P>0.05)

B) Bacterial and fungal networking ] -
£_-2
(X 185
. . . g 3 9
) ) B
o O
00,9 @9, §€s°
2E8
NPK regime 1 NPK regime 2 NPKregime3 | © ®

Sugarcane
Cuban Brown Sialitic Soil

1 Introduction

Cultivated across tropical and subtropical regions for sugar and bioethanol production, sugarcane (Saccharum officinarum L.)
is one of the most important industrial crops worldwide (Cherubin et al., 2018; Otto et al., 2022). Sugarcane is predominantly
cultivated as a monoculture under intensive management systems that rely on long-term fertilization practices (Cherubin et al.,
2018; Dinesh Babu et al., 2022; Khan et al., 2023) due to its high biomass productivity and nutrient demand. This results in
cultivation that requires substantial inputs of nitrogen, phosphorus, and potassium fertilizers (Cherubin et al., 2019). Sugarcane
is primarily produced in Brazil, accounting for 38% of global production, followed by India (23%) and China (5%) (Ritchie
et al., 2023). Farmers worldwide have indiscriminately applied nitrogen fertilizers to ensure high crop yields, thereby emitting
nitrous oxide into the environment (Tian et al., 2020). To increase nutrient availability, accumulation, and use efficiency in the
current sugarcane crop system, new fertilization management strategies are needed. In several production systems, fertilizer
application is one of the highest economic and environmental costs of sugarcane farming. This has strong implications for
greenhouse gas emissions, soil acidification, and nutrient leaching (Wang et al., 2024). Therefore, assessing the interactions
between fertilizer regimes and soil microbial communities in sugarcane agroecosystems has become a key priority (Y. Liu et
al., 2024). In Cuba, sugarcane cultivation has historically relied on fixed-dose fertilization schemes, primarily involving
nitrogen, phosphorus, and potassium (FAO, 2003). Even when these schemes account for soil heterogeneity and plant nutrient

demands, sugarcane productivity in Cuba has declined due to inadequate attention to the crop, shortages of fuel and herbicides,
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reduced water availability, and other limitations (FAO, 2003, 2025). Fertilization regimes often do not consider microbial
interactions, which can influence ecosystem functioning (Z. Guo et al., 2020). Nutrient over- or under-application may occur,
leading to reduced yields or environmental problems. This can include soil contamination through nutrient leaching and a loss
of ecosystem services due to reduced microbial diversity (Berger et al., 2024; Du et al., 2025).

Closely related to fertilization systems, soil microbial communities are central regulators of terrestrial ecosystem functioning.
They play essential roles in nutrient cycling, organic matter turnover, soil structure, and plant health (Du et al., 2025). Different
ecosystems, including tropical agroecosystems, can host highly diverse microbial communities adapted to specific
edaphoclimatic environments (Tripathi et al., 2016; J. Guo & Chen, 2022; Zamora-Leiva et al., 2025; Ramos-Tapia et al.,
2023). These microbial consortia are particularly relevant because they directly influence nutrient availability, plant
productivity, and resilience to environmental stress (Antoszewski et al., 2022; Kumar et al., 2023; Nuiez-Salazar et al., 2020;
Ramos-Tapia et al., 2022; Salazar et al., 2020; Souza et al., 2025). Agricultural practices, including tillage, crop rotation,
irrigation, and fertilization regimes, can have strong selective pressures on soil microbiomes. This can lead to shifts in microbial
community composition and functionality (Q. Liu et al., 2021; Orru et al., 2021; Sui et al., 2023). Climatic conditions, such as
high rainfall and intense weathering, which are common in tropical ecosystems, often result in soils that are nutrient-poor,
acidic, and highly leached, with low cation exchange capacity (Oishy et al., 2025). Therefore, understanding how soil microbial
communities respond to different fertilization strategies is crucial to optimizing sustainable crop management and maintaining
soil health.

Although continuous monocropping, combined with sustained fertilizer inputs, can strongly influence soil health and microbial
community structure, the effects are not easily predictable. Long-term fertilization can produce contrasting outcomes, ranging
from enhanced nutrient cycling to reduced microbial diversity and ecosystem resilience (Pan et al., 2014; Kracmarova et al.,
2022; S. Chen et al., 2023; Akter et al., 2025). Nitrogen fertilization has been associated with decreases in microbial alpha
diversity, community shifts toward copiotrophic taxa, and reductions in nitrogen-fixing microorganisms (Sui et al., 2023).
Phosphorus and potassium amendments affect fungal communities, particularly arbuscular mycorrhizal fungi, which are highly
responsive to changes in nutrient availability (Semenov et al., 2022; Yang et al., 2025). This indicates that fertilizer regimes
can shape soil microbial assemblages in ways that alter nutrient cycling processes, soil-plant interactions, and ecosystem
sustainability (de Castro et al., 2022; Mitter et al., 2021). However, the response of soil microbial communities to fertilization
is not uniform across ecosystems and is highly context-dependent (Kracmarova et al., 2022; Moneda et al., 2022). Factors,
such as soil type can influence it (Huang et al., 2025), climate (Du et al., 2025), cropping history (Pan et al., 2014), and
management intensity (Suman et al., 2022). In certain cases, microbial communities show considerable resilience, maintaining
similar diversity and composition across a wide range of fertilization treatments (Philippot and Langenheder, 2021). This
variability complicates extrapolating results from one agroecosystem to another, underscoring the need for site-specific studies
(Souza et al., 2025).

Microbial communities are commonly studied through high-throughput sequencing techniques (Lahlali et al., 2021). These

technologies have substantially expanded our ability to explore the structure and function of microbial communities in
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environmental samples, describing the taxonomic composition and relative abundance of microbial taxa across diverse
ecosystems (Lahlali et al., 2021). However, while attention has been traditionally focused on how community composition
and diversity shift under different environmental or management conditions, an equally important aspect lies in the
relationships among microbial taxa (Zamkovaya et al., 2021). These interactions, whether cooperative, competitive, or neutral,
shape the functional stability and resilience of microbial ecosystems (Freilich et al., 2011). Network-based approaches are
powerful tools to explore these relationships, allowing the identification of co-occurrence patterns, ecological clusters, and
potential keystone taxa that play central roles in ecosystem functioning (Shaw et al., 2020). Integrating network analysis with
community profiling can provide a deeper understanding of how microbial communities respond to environmental factors,
such as fertilization regimes (Gao et al., 2022).

In the context of Cuban agriculture, sugarcane is largely cultivated on brown sialitic soils, which are mineral-rich soils with
relatively underexplored microbiological dynamics. Understanding how fertilization interacts with local edaphoclimatic
conditions is essential for improving sustainable management strategies and maintaining soil function in tropical
agroecosystems. However, traditional fertilization recommendations in Cuba, such as those from SERFE (Servicio de
Recomendaciones de Fertilizantes), primarily focus on crop nutritional requirements and do not explicitly account for soil
microbial processes. Notably, available yield records from the long-term fertilization trial, established in 1998 at the Sugar
Cane Research Institute in Santiago de Cuba, indicate that while fertilized plots consistently outperform non-fertilized controls,
sugarcane yield tends to plateau across a wide range of NPK fertilization regimes, with limited differences among moderate
and high input treatments (Supplementary table 1, Tamayo-Isaac et al., 2024). This apparent decoupling between fertilizer
dose and yield response suggests that factors other than nutrient availability alone may regulate system functioning under long-
term management. We therefore hypothesized that sustained fertilization under tropical conditions leads to physicochemical
homogenization of these soils, generating changes in microbial community composition and promoting nutrient-specific
reorganization of microbial interactions within the rhizosphere. To test this hypothesis, we leveraged the long-term fertilization
trial established in 1998 at the Sugar Cane Research Institute in Santiago de Cuba, which provides a rare opportunity to assess
the legacy effects of sustained fertilization on soil microbial network structure. Using high-throughput sequencing of bacterial
(16S rRNA gene) and fungal (internal transcribed spacer; ITS region) markers, we evaluated how gradients of nitrogen,
phosphorus, and potassium (NPK) inputs shape both microbial composition and co-occurrence networks in rhizosphere and

bulk soil samples.
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2 Materials and methods
2.1 Experimental design and sample collection
2.1.1 Profile of the experimental site

The long-term experiment, encompassing different mineral fertilization rates, was established in 1998 on sialitic brown soil at
the Estacion Territorial de Investigaciones de la Caiia de Azucar (ETICA) Oriente Sur. It is located in the municipality of
Palma Soriano in the province of Santiago de Cuba (Sieiro & Pablos, 2021). Sialitic brown soils have moderate organic matter
content, high clay fraction, and a dominance of exchangeable Ca*" and Mg**. These properties contribute to a relatively stable
pH and high cation exchange capacity. The area is characterized by a humid tropical climate, with an average annual rainfall
of 1,375 mm, and two well-defined periods: rainy (May—October) and dry (November—April) (Hernandez-Jiménez et al.,
2019). The study reproduced the traditional sugarcane cultivation system used in Cuba, with manual planting and harvesting,
as well as replenishment cycles, after five cuts. In the present study, the third cycle was underway, and the second ratoon vine

was planted in spring with cultivar C86-12.

2.1.2 Experimental design

The completely randomized block experiment included 11 treatments, with different co-concentrations of nitrogen,
phosphorus, and potassium, all expressed in kg/ha (Table 1): (i) NO (NOP25K50), no nitrogen application; (ii) N1
(N50P25K50), as a basal application of nitrogen, phosphorus and potassium; (iii) N2 (N100P25K50), medium nitrogen
application; (iv) N3 (N150P25K50), high nitrogen application; (v) N4 (N200P25K50), very high nitrogen application; (vi) N5
(N50P0K50), no phosphorus; (vii) P1 (N50P75K50), medium phosphorus application; (viii) P2 (N50P100K50), high
phosphorus application; (ix) K1 (N50P25K100), medium potassium application; (x) K3 (N50P25K200), high potassium
application; and (xi) K4 (N50P25K300), very high potassium application.

Table 1. Concentration of fertilization for the treatments

Sample Characteristic Nitrogen Phosphorus Potassium
NO Non-nitrogen 0 25 50

N1 Basal treatment 50 25 50

N2 Medium nitrogen 100 25 50

N3 High nitrogen 150 25 50

N4 Very high nitrogen 200 25 50

N5 Only nitrogen 50 0 0

P1 High phosphorus 50 75 50

P2 Very high phosphorus 50 100 50
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K1 Medium potassium 50 25 100
K3 High potassium 50 25 200
K4 Very high potassium 50 25 300

Derived from the experimental design, three comparison groups were generated to evaluate different parameters (Table 2): (i)

effect of the increase in nitrogen, (ii) effect of the increase in phosphorus, and (iii) effect of the increase in potassium.

140  Table 2. Fertilization regimes and comparison groups

145

Sample Characteristic Nitrogen (N) Phosphorus (P) Potassium (K)
N changes — P+K do not change

NO Non-nitrogen 0 25 50
N1 Basal treatment 50 25 50
N2 Medium nitrogen 100 25 50
N3 High nitrogen 150 25 50
N4 Very high nitrogen 200 25 50
P changes — N+K do not change

N1 Basal treatment 50 25 50
P1 High phosphorus 50 75 50
P2 Very high phosphorus 50 100 50
K changes — N+P do not change

N1 Basal treatment 50 25 50
K1 Medium potassium 50 25 100
K3 High potassium 50 25 200
K4 Very high potassium 50 25 300

Two controls were considered, namely, soil without planting (control 1) and rhizosphere without fertilization (control 2). Each

treatment was repeated three times, and each replicate was 48 m?. The chemical fertilizers applied were urea (46% N), calcium

superphosphate (12% P20s), and potassium chloride (60% K20). All fertilizers were applied at the bottom of the furrow before

planting and 20 d post-harvest, manually and without fractioning doses (INICA, 1990). The evaluated plot had received three

fertilizer applications by the sampling date, with planting in spring 2020 and sampling in March 2022, corresponding to the

initial application plus those made after each cutting/ratoon.
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2.1.3 Soil sampling

These were shaken to remove excess soil not adhering to the roots. The samples were stored in 50 mL Falcon™ tubes (Thermo
Fisher Scientific, Waltham, MA, USA) and transported to the laboratory (Zamora-Leiva et al., 2025). The tubes were
immediately sealed to avoid environmental contamination, labeled, and stored at 4 °C during the laboratory transport (Ramos-
Tapia et al., 2022). Enriched soil samples were obtained from each experimental plot for chemical analysis and soil respiration,
developed by ETICA (Tamayo-Isaac et al., 2023, 2024). The sampling was conducted in March, which is one of the driest
months (Centella et al., 2006; Duran, 2012). For physicochemical parameters, pH in water and KCl was measured with
potentiometric method (soil:solution ratio 1:2.5); organic matter with Walkey—Black colorimetric method, digestion with
H2S04, K2Cr207 1N (ox.) and FeSO4 x7 H20 0.5 N (red.), using Vam Bemmen's factor (1.724) to convert carbon into organic
matter; assimilable phosphorus as P.Os mg/100g with Oniani method, extraction with 0.1 N H2SOs4, soil:solution ratio 1:2.5,
determination by colorimetry; assimilable potassium as K20 mg/100g with Oniani method, extraction with 0.1 N H2SO4,
soil:solution ratio 1:2.5, by flame photometry; and exchangeable bases (K+, Ca2+, Mg2+, Na+) as cmol(+)/kg with extraction
with IN NH4OAc at pH 7, determining calcium and magnesium by EDTA titration, sodium and potassium by flame photometry
(INICA, 1990; Tamayo-Isaac et al., 2024).

2.1.4 DNA extraction, PCR, and sequencing

For each sample, genomic DNA was extracted from a total of 0.5 g of fresh soil using the DNeasy Powersoil DNA isolation
kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. DNA concentration and purity were checked
with a Qubit dSDNA HS Assay kit and Qubit 4.0 fluorometer (Thermo Fisher Scientific). The V3-V4 hypervariable regions of
the 16S rRNA gene were amplified with the primers 5-CCTACGGGGGNGGCWGCAG-3' and 5'-
GACTACHVGGGTATCTAATCC-3' (Klindworth et al., 2013). Meanwhile, for the fungal ITS1 and ITS2 regions, the primers
5-CTTGGTCATTTAGAGGAAGTAA-3' and 5-GCTGCGTTCTTCATCGATGC-3' were used (Orgiazzi et al., 2012).
Amplification and bulk sequencing were performed with [llumina MiSeq technology by Austral-Omics (Universidad Austral
de Chile). The sequencing process was performed with the Miseq Reagent v3 600-cycle kit (2x 250 pair-end). The sequences

were imported as FASTQ files with forward and reverse for each sample.

2.1.5 Bioinformatic analysis

The FASTQ files were processed using QIIME 2 v2025.7 (Caporaso et al., 2010). Read quality was evaluated using FastQC
v0.11.9 (Andrews, 2010). Based on this evaluation, the adapters were removed, and the lengths of the forward and reverse
sequences were trimmed for bacterial and fungal sequences at 260 and 205 bases, and 250 and 220 bases, respectively, using
the DADA2 denoise-paired plugin (Callahan et al., 2020). Quality was maintained using PHRED 20 (Callahan et al., 2020).
Taxonomic assignment was performed using the classify-sklearn plugin in the SILVA database version 138.2 (Quast et al.,

2013) and UNITE database version 10.0 (Abarenkov et al., 2024), for bacterial and fungal classification, respectively, both
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preprocessed with RESCRIPt (Robeson et al., 2021). New unified Amplicon Sequence Variant (ASVs) with 99% identity were
aligned using MAFFT (Katoh & Standley, 2013). The maximum likelihood was inferred using FastTree v2.2.0 (Price et al.,
2009). The abundance, taxonomy, phylogeny, and metadata of the ASVs were integrated into a Microeco object for subsequent
analyses using the Microeco v1.15.0 R package (C. Liu et al., 2021), in R v4.3.2 (https://www.r-project.org). ASVs assigned
to archaea, mitochondria, chloroplasts, metagenomes and ambiguous taxa were deleted, as well as fungal ASV on bacterial
analysis, and bacterial ASVs for fungal analysis. Samples with <1,000 reads were excluded. ASVs that were not observed
more than twice in at least 10% of the samples were excluded (Callahan et al., 2017). Samples were analyzed with both
unassigned ASVs removed and retained. The Microeco object was used to calculate alpha and beta diversities and for
constructing relative abundance plots (C. Liu et al., 2021). Alpha diversity was calculated using Chaol, that is, an estimate of
richness by species, observed features—species richness on samples, Shannon—entropic information on abundance of
observed ASVs, and Simpson (1-dominance) indices. To determine beta diversity, all samples were compared across sampling
points using the Bray—Curtis, Canberra, Jaccard, Robust Aitchison, Unifrac, and weighted Unifrac matrices. Significant
differences were evaluated with Permutational Multivariate Analysis of Variance (PERMANOVA) and Kruskal-Wallis tests.
ASVs were transformed into proportions, and relative abundance was used to measure the composition of prokaryotic
communities at the phylum, class, order, family, and genus levels. All the samples were rarefied according to the minimum
sample size of 11,248 and 18,829 for bacteria and fungi, respectively. The differential abundance of taxa was analyzed by
implementing linear discriminant analysis effect size (LEfSe, LDA value>2, a=0.05), supported with an Analysis of
Compositions of microbiomes with Bias Correction 2 (ANCOM-BC2) analysis.

For the co-occurrence network analysis, the bacterial and fungal datasets were merged. To account for differences in
sequencing depth, the complete dataset was rarefied to the lowest sample size, i.e., 11,248 reads per sample, using the
trans_rarefy function from the Microeco R package. Co-occurrence networks were constructed using the cal network function
in Microeco, an R package that implements the igraph v2.1.4 R package. The Spearman correlation method was used to
compute pairwise correlations between taxa (Looney & Hagan, 2011). Network modularity was defined as the extent to which
a network is organized into cohesive subgroups of nodes (modules), with higher within-module connectivity than between
modules. Modules were detected using the cluster fast greedy algorithm, and modularity values were computed with the
modularity function in the igraph R package. Network hubs were identified based on within-module connectivity (Zi) and
among-module connectivity (Pi) using the get node table function from the Microeco R package. The network was
constructed by retaining only significant positive co-occurrences between taxa and visualized using Gephi v0.10.1 (Bastian et
al., 2009).

To compare the structure and composition of microbial co-occurrence networks among fertilization regimes, individual
networks were constructed for each treatment (Table 2). Each network was built following the same rarefaction, correlation,
and filtering criteria described above, using the cal network function from the Microeco R package. The networks were
constructed as undirected graphs using the cluster fast greedy modularity optimization algorithm to ensure comparability

across treatments. Overlap and unique taxa among treatments were assessed using the meconetcomp v0.6.1 R package. The
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node_comp and edge comp functions from the Microeco R package were used to identify shared and exclusive nodes and
connections (edges) among ASVs across treatment-specific networks. The resulting intersections were summarized and

visualized as a Venn diagram.

3 Results
3.1 Physicochemical characterization of brown sialitic soils under different fertilization regimes

The physicochemical properties of soils across fertilization treatments are summarized in Table 3. The data showed minimal
variation among treatments, suggesting strong homogenization of soil conditions across the experimental site. Soil pH values
remained nearly constant, ranging from 6.4 to 6.5 (HCI) and 7.7 to 7.9 (H=0). This indicates a slightly acidic to neutral reaction
typical of sialitic soils. This stability is consistent with the buffering capacity conferred by high levels of exchangeable calcium
(58-69 cmol(+)’kg) and magnesium (0.4—11 cmol(+)/kg). The Ca/Mg ratios fluctuated only slightly among treatments,
reinforcing the notion of a chemically equilibrated soil system. Organic matter (OM) content varied between 2.9 and 3.9%,
without clear trends associated with fertilization. Similarly, available phosphorus (P-Os) and potassium (K-O) concentrations
exhibited broad ranges (P-Os: 63—139 mg/100g; K-O: 25-88 mg/100g). However, these variations did not translate into distinct
patterns of nutrient enrichment in response to applied fertilizers. This lack of correlation suggests that rapid nutrient turnover
or leaching, potentially driven by intense rainfall and the clay-rich matrix of sialitic soils, may diminish the effect of

fertilization inputs.

Table 3. Physicochemical characterization of sites

Treatment Characteristic = Microbial P20Os K:O pHCI pH Ca Mg
respiration  (mg/100g) (mg/100g) H:0
(mg COy)
Control Bulk soil 1,650.70 78.13 324 6.51 7.94 49.6 11.2
(no 1,655.60 83.05 33.12 6.55 7.85 49.8 11.1
rhizosphere) 1,657.90 80.59 32.76 6.53 7.89 494 11.1
Blank Rhizosphere 1,914.18 63.77 29.88 6.5 7.92  50.6 10.2
(no 1,912.75 63.57 32.76 6.45 7.78 50.3 10.2
fertilization) 1,911.51 71.24 34.21 6.47 7.79  50.7 10.3
NO NoP25Kso 1,933.42 93.48 38.34 6.44 7.76  64.9 2.55
1,930.74 76.95 32.04 6.48 7.79 644 2.56
1,931.43 73.41 29.88 6.52 7.87 643 2.54
N1 NsoP25Kso 1,667.17 92.5 35.51 6.44 7.76  62.15 7.68
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1,908.56 98.99 40.46 6.49 7.78  62.1 7.65
1,912.36 87.97 433 6.52 779 624 7.69
N2 NiooP25Ks0 2,076.42 97.62 37.63 6.5 771  62.15 4.83
2,075.10 86.6 25.57 6.52 7.83  62.15 4.81
2,076.57 98.6 27.01 6.51 7.82  62.1 4.83
N3 Nis0P25Kso 2,097.77 68.1 33.85 6.47 7.61 583 4.4
2,100.24 62.39 29.52 6.43 7.66  58.5 4.15
2,098.69 65.93 29.88 6.48 7.79  58.7 43
N4 N200P25Kso 1,913.86 108.83 33.49 6.5 7.76  62.7 0.48
1,914.70 108.05 29.52 6.45 7.79  62.8 0.48
1,913.74 112.57 37.63 6.5 7.68 624 0.48
N5 NsoPoKo 1,990.90 96.44 29.88 6.49 7.72  56.1 7.08
1,989.55 86.79 28.08 6.47 7.73 56 7.1
1,992.67 67.7 31.32 6.46 7.72 563 7.05
Pl NsoP75Ks0 1,889.90 80.49 29.88 6.51 7.79 693 2.9
1,887.51 83.45 30.24 6.49 7.82  69.5 291
1,899.67 93.48 39.04 6.46 7.81 69 2.9
P2 NsoP100Kso 2,096.22 119.27 39.75 6.5 7.85 60 0.76
2,095.27 132.84 433 6.42 7.82 60 0.77
2,098.32 114.15 433 6.45 7.75 60 0.76
K1 NsoP25Ki100 1,562.32 106.28 40.46 6.44 7.74  56.7 6.87
1,564.90 93.68 40.46 6.46 7.81 56.5 6.85
1,563.25 105.88 44.72 6.47 7.8 56.1 6.86
K3 NsoP25K200 1,747.80 138.95 73.5 6.48 7.79 68 4.1
1,743.30 138.16 88.02 6.52 7.83  68.1 4.15
1,745.90 121.43 49 6.51 7.82 683 4.13
K4 NsoP25K300 1,440.90 100.96 34.21 6.5 777 67.6 1.3
1,443.60 106.47 33.49 6.46 7.8 67.4 1.29
1,444.88 86.2 39.75 6.47 775 672 1.27

Soil respiration, i.e., microbial CO: release after 9 d of incubation, ranged between 1,440 and 2,100 mg CO-, with no significant
differences among treatments. However, slightly higher activity was observed in plots with intermediate and high nitrogen,

and medium phosphorus fertilization (>2,000 mg CO: in each case). This may reflect a relatively uniform microbial metabolic
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activity across the experimental field, consistent with the observed chemical homogeneity. Crop yield also showed minor
fluctuations, ranging from 87.7 to 99.8 t/ha, and appeared to be negatively affected by high nitrogen fertilizer levels, with the
high (N150) and very high (N200) treatments yielding the lowest among the fertilized plants. Despite the application of nutrient

gradients, soil and plant responses remained stable.

3.2 Characterization of bacterial and fungal communities

Microbial DNA was obtained from the 33 rhizosphere samples, including 11 treatments, three control (non-fertilized), and
three bulk soil (non-rhizosphere) samples. For the bacterial and fungal analysis, we obtained 3,034 and 2,707 ASVs identified
post quality filters among all the samples, with a median of 16,883 and 48,883 reads per sample, respectively. Taxonomic
assignments were made at the phylum (98.26% and 91.28%), class (96.94% and 85.52%), order (89.46% and 84.97%), family
(68.98% and 73.59%), and genus (34.46% and 66.89%) levels, in bacteria and fungi, respectively. The percentage of classified
ASVs diminished substantially for the bacterial sequences. Meanwhile, the fungal sequences had almost twice the classified
ASVs at the genus level.

Across all the fertilization treatments, the bacterial communities associated with the rhizosphere of Saccharum spp. were
dominated by a limited number of major phyla. This reflected a relatively stable community structure. The most abundant
bacterial phyla were Actinomycetota, Pseudomonadota, and Acidobacteriota, which together accounted for approximately
60.4% of the total relative abundance. Subdominant groups included Bacillota and Planctomycetota, each representing less
than 16.6% of the total sequences (Figure 1A). Within these major lineages, members of Bacilli (Bacillota),
Alphaproteobacteria (Pseudomonadota), Vicinamibacteria (Acidobacteriota), and Thermoleophilia (Actonomycetota) were
present across all treatments with relative abundance higher than 11%. This suggests that the fertilization regime did not
substantially alter the core microbiota composition (Figure 1B). Minor variations were observed in the relative abundance of
Actinomycetota, which increased in soils receiving higher nitrogen inputs. However, these differences were not statistically
significant (Kruskal-Wallis, P > 0.05). While Actinomycetota is the dominant phylum, from class to genus levels, the most
represented taxa belonged to Bacillota. This demonstrated that most ASVs in this phylum were successfully classified. At the
order level, the number of incertae sedis and unclassified taxa increases, representing the fifth and sixth in relative abundance,
respectively, with 7.4 and 3.1% of the total relative abundance (Figure 1C). Relative abundances at the genus level are detailed
in Supplementary Figure 1.

Among fungal communities, the phylum Ascomycota was dominant across all treatments, with a relative abundance exceeding
69%. This was followed by Basidiomycota and Chytridiomycota, which together represented almost 18% of relative
abundance (Figure 2A). Six minor groups, such as Kickxellomycota, Glomeromycota, Calcarisporiellomycota,
Mucoromycota, Neocallimastigomycota, and Zoopagomycota, were present in lower abundances (<1%) and did not show
significant treatment-related variation (Figure 2A). At the class level, even when several taxa appeared to be involved in the
ecosystem, only three classes represent more than 65.4% (Sordariomycetes, Eurotiomycetes, and Leotiomycetes), which

belong to the Ascomycota phylum (Figure 2B). This behavior repeats at the order level, where six taxa (Eurotiales, Helotiales,
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Hypocreales, Sordariales, Chaetothyriales, and Pleosporales) that belong to the phylum Ascomycota represent more than 54%
of the total (Figure 2C). This result underscores the importance and prevalence of a few representatives of the phylum

270 Ascomycota in sugarcane communities. Relative abundances at the genus level are detailed in Supplementary Figure 2.
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Figure 1: Bacterial relative abundance at three different taxonomic levels. (A) 10 most abundant bacteria per sample at the phylum
level, (B) 10 most abundant bacteria per sample at the class level, and (C) 10 most abundant bacteria per sample at the order level.
Sample abbreviations: K1, medium potassium application; K3, high potassium application; K4, very high potassium application;
NO, no nitrogen application; N1, low nitrogen application; N2, medium nitrogen application; N3, high nitrogen application; N4, very
high N application; NS, low nitrogen application; P1, medium phosphorus application; P2, high phosphorus application.
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Figure 2. Fungal relative abundance at three different taxonomic levels. (A) 10 most abundant fungi per sample at the phylum level,
(B) 10 most abundant fungi per sample at the class level, and (C) 10 most abundant fungi per sample at the order level. Sample
abbreviations: K1, medium potassium application; K3, high potassium application; K4, very high potassium application; N0, no
nitrogen application; N1, low nitrogen application; N2, medium nitrogen application; N3, high nitrogen application; N4, very high
N application; N5, low nitrogen application; P1, medium phosphorus application; P2, high phosphorus application.
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3.4 Alpha and beta diversity analysis

Alpha diversity indices, namely, Observed, Chaol, Shannon, and Simpson, showed no significant differences among
fertilization treatments for either the bacterial or fungal communities (Kruskal-Wallis, P > 0.05, Supplementary Figures 3 and
4, respectively). This pattern indicates that nutrient fertilization did not significantly affect within-sample diversity. Microbial
communities remained compositionally stable despite long-term exposure to different NPK regimes (Figure 3). Even so,
bacterial communities exhibited relatively high species richness and evenness, with average Shannon indices ranging from 4.9
to 5.9. Meanwhile, fungal diversity indices were lower, ranging from 2.9-4.3, suggesting a more specialized community

structure in the rhizosphere.
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Figure 3. Alpha diversity for rhizosphere and soil samples based on the Shannon index. (A) Bacterial and (B) Fungal. Dunn’s
Kruskal-Wallis test, non-significant. Sample abbreviations: K1, medium potassium application; K3, high potassium application;
K4, very high potassium application; N0, no nitrogen application; N1, low nitrogen application; N2, medium nitrogen application;
N3, high nitrogen application; N4, very high N application; N5, low nitrogen application; P1, medium phosphorus application; P2,
high phosphorus application.

Based on six indices, beta diversity analysis showed no clear clustering of samples according to fertilization treatment
(PERMANOVA, P > 0.05; Figure 4). This implies that other environmental factors, such as soil texture, OM, or rainfall
regime, may have a stronger influence on microbial assemblages than the applied fertilization treatments. Principal Coordinate
Analysis (PCoA) does not reveal clustering among samples across different fertilization treatments. The microbial
communities associated with Saccharum spp. in brown sialitic soils are compositionally rich, yet functionally stable, showing

limited responsiveness to changes in nutrient fertilization.

15



305

310

https://doi.org/10.5194/egusphere-2026-629
Preprint. Discussion started: 18 February 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere\

A B
02 KA1 o K4 .
: ° c Control °
Control Group 02 N1 Group
BU|k.SO'| & | Bulk soi (8| Buksoi
0.1- K1 p ] K3 —
T ° IN1 ®Bulk Soil ; Control Comr.o\ N2 :.N1 ; Control
Control, Yoy o] 0.1- Ka, la]
_ e (o] ks - N2 I ol a3
Koo Bulk Soil N2 g ®N2,&—K3 L8] e < |&f
. ° 5 00- °
, N1—e @ | No 200 e Bulk Soil L& e
N Control .N2 a | N1 N K1 &l N
O — Q R L
& o4 [&] N2 g Control L8] N2
Ka N3 0.1 L4 N3
° N4 N4
°
Ka® N5 K1 N5
02- 0.2~
02 . p1 o P1
K3 P2 K1 P2
® °
03- K3 il ®
031 0.3 Bulk Soil k4 .Bulk Soil
INg N Ng o R &
PCo1 [13.5%] PCo1 [10.6%]
C D
a 1.0 a
0.71
0.9
a a
) )
£ < 2 & a
® 0.6 a a ® a a
S S
@ a 3 a o 0.8
£ a € a
=1 a =3
3 - 3 a a
& . g
m 0.5 o 0.7 a
= : =
- g
0.41 0.6
S eI S &SI
¥ o Na o
& ¢ > ©

Figure 4. Beta diversity for rhizosphere and soil samples. Principal coordinate analysis determined by using the Bray—Curtis method
test for (A) Bacterial and (B) Fungal communities; and group distances calculated with Dunn’s Kruskal-Wallis test for (C) Bacterial
and (D) Fungal communities, with non-significant differences.

3.5 Co-occurrence between bacterial and fungal taxa

The co-occurrence network for the bacterial and fungal datasets indicated a complex and heterogeneous microbial structure,

encompassing a total of 371 nodes and 747 edges, represented as bacterial and fungal (Figure 5) and by the phylum of each

node (Supplementary Figure 5). Taxonomic annotations showed a dominance of fungal taxa, with Ascomycota being the most

abundant phylum in the network. This was followed by bacterial groups, such as Basidomycota, Pseudomonadota, Bacillota,
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Actinomycetota, and Planctomycetota. This indicates that fungi constitute the structural backbone of the rhizosphere-
associated microbiome in sugarcane cultivated in brown sialitic soils. Meanwhile, bacterial taxa contribute to peripheral but
functionally diverse connections. The genus Methylomirabilota appears among the ASVs with the highest node numbers,

including when it represents 1.8% of the relative abundance.

- Bacteria
e

Positive corelation

Negative corelation

4 \.ﬂ

ey / \D
BN —AV%\ ¢

A 85 2

Figure 5. Microbial interaction network. Bacterial and fungal ASVs are graphed as nodes (bacteria, green dots; fungi, orange dots),
while the relationship between nodes is displayed as edges (positive relations, blue line; negative correlations, red). Significant
positive Spearman correlations are graphed as edges (p > 0.6, false discovery rate adjusted P <0.01, two-sided).

The network was constructed from 48 modules, indicating that independent clusters of microorganisms coexist rather than a
few groups with high correlations. Among these, one ASV was classified as a potential hub or keystone taxon, belonging to
the Pseudomonadota phylum, but with no classified genus (Supplementary Figure 6). Among the bacteria, highly connected
taxa included members of Pseudomonadota, such as Pseudomonas and Steroidobacter, and Actinomycetota (Gaiella,
Streptomyces). Meanwhile, fungi showed greater connectivity than bacteria, with higher degrees within the network. Even
though the largest number of nodes belonged to the phylum Ascomycota, Basidiomycota, and Mortierellomycota also showed
higher connectivity than bacteria with higher node numbers. The interactions seem to be even between bacteria and fungi.
(Supplementary Figure 7).

More than half of the network nodes corresponded to unclassified taxa from both fungal and bacterial groups. This indicates
that a substantial portion of the microbial diversity in this soil remains taxonomically unresolved. The network topology was

dominated by positive correlations, with only five negative correlations, all between Pseudomonadota and Bacillota ASVs.
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This result reflects potential mutualistic or commensal relationships among microorganisms rather than competitive exclusion.
This predominance of cooperative interactions may contribute to the observed ecological stability of these soils, where
community composition remained largely unchanged across fertilization regimes.

To evaluate the effect of fertilization regimes on microbial co-occurrence, we constructed ASV-level networks for each
treatment (Table 2) and compared their structure across conditions (Figure 6 and Supplementary Figure 8). These analyses
enabled us to examine both the compartment-specific effects on the soil, control, and fertilized rhizosphere (Figure 6) and the
variation along nutrient gradients (Supplementary Figure 8).

The nitrogen treatments induced shifts in microbial co-occurrence patterns (Figure 6A, 6C). Under nitrogen-only conditions
(NsoPoKo; Figure 6A), the rhizosphere network shared few nodes with the control or bulk soil. This indicates that nitrogen
addition alone promotes a distinct set of microbial interactions. The basal fertilization regime (NsoP25Kso; Figure 6B) showed
slightly greater overlap between compartments; however, each retained several unique nodes. This suggests that microbial
associations remain strongly compartmentalized, even under balanced fertilization. When nitrogen concentration increased
(100-200 kg N ha™*; Figure 6C), the number of unique nodes in the rhizosphere networks increased, particularly under high
nitrogen conditions. The comparison among nitrogen treatments (N1-N4) confirmed this pattern. High nitrogen conditions
(N3-N4) harbored most of the unique nodes, while low-nitrogen treatments (N1-N2) exhibited greater overlap. This indicates
limited microbial restructuring under low nitrogen input (Supplementary Figure 8A). These findings suggest that nitrogen
availability is a major ecological driver influencing microbial network assembly and favoring nutrient-specific co-occurrence
patterns.

In contrast, phosphorus variation generated a more complex and non-linear response in network topology (Figure 6D). From
the basal condition (25 kg P ha™), the total number of nodes decreased at moderate P levels (75 kg P ha™"), from 2,116 to 1,450
nodes, indicating a loss of microbial connectivity under intermediate phosphorus availability. However, at high-P input (100
kg P ha™'), the network expanded to 4,616 nodes, the highest among all the treatments. This suggests a strong stimulation of
microbial associations under phosphorus abundance. This indicates that phosphorus has a threshold-dependent effect on the
rhizosphere microbiota, where moderate enrichment may restrict certain microbial interactions. Meanwhile, higher
concentrations could favor the proliferation of specialized or opportunistic taxa, leading to a dense and highly connected
network. The comparison among phosphorus regimes further supports this view (Supplementary Figure 8B). This shows that
high-P conditions (P2) harbored the largest fraction of exclusive nodes, implying that phosphorus enrichment favored distinct
microbial groups rather than gradually modifying the community structure.

Potassium variation (Figure 6E) generated a more consistent response, with a moderate increase in unique nodes and
connections at higher potassium concentrations. The networks from the high-potassium treatments (K3-K4) overlap
(Supplementary Figure 8C). This suggests that microbial assemblages may stabilize under conditions of potassium abundance.
Although K appears to exert less influence than phosphorus, its consistent effect on node uniqueness and overlap suggests a

role in modulating rhizosphere network stability under nutrient-enriched conditions. The response of microbial communities
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Figure 6. Venn diagram of shared nodes on ASVs networks of different fertilization regimes vs non-fertilization conditions (Soil and
Control Rhizosphere). A) Nitrogen-only effect (NSOP0KO); B) Basal condition, NSOP25K50 (kg/ha); C) Nitrogen variation (100-200

375

kg/ha) with phosphorus and potassium identical to basal condition; D) Phosphorus variation (75-100 kg/ha) with nitrogen and

potassium identical to basal condition; E) Potassium variation (100-300 kg/ha) with nitrogen and phosphorus identical to basal
condition. The number of nodes is represented as a number inside the circle. The edges are represented as a number in parentheses

below the number of nodes.
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4 Discussion
4.1. Sialitic soils have homogeneous physicochemical properties

As Cuba is one of the few countries that uses a nationally developed soil classification system (Hernandez-Jiménez et al.,
2019), brown sialitic soils are rarely referenced in the literature. Therefore, in this study, we have provided one of the first
integrative characterizations of rhizosphere-associated microbial communities of Saccharum spp. cultivated on this soil type.
However, the Cuban classification can be linked to international systems. Brown sialitic soils correspond to inceptisols in Soil
Taxonomy (USDA) and cambisols in the World Reference Base (WRB, FAO) system (Sanchez, 2019).

Inceptisols are young soils with weak horizon development, widely distributed across diverse landscapes (USDA, 2015). They
typically have low natural fertility (Syamsiyah et al., 2018), characterized by limited availability of nitrogen, phosphorus, and
potassium; low OM content and slightly acidic pH (Sofyan et al., 2024). These conditions contribute to nutrient leaching, with
most N losses in inceptisols occurring within the first week after fertilization (Sofyan et al., 2024). When nutrient uptake by
plants during that time is insufficient, crops may experience long-term nutrient limitation (Rashid et al., 2024). Slow-release
fertilizers are an effective strategy to mitigate nutrient leaching in inceptisols (Hakim et al., 2022). Therefore, this may be
relevant for improving fertilizer efficiency in Cuban sugarcane production systems.

Although fertilization has a substantial effect on soil and rhizosphere microbial composition in agricultural crops (de Castro
et al., 2022; Lopes et al., 2021; Pan et al., 2014; Y. Zhang et al., 2023), relatively few studies have examined how fertilization
reshapes the interactions and co-occurrence patterns among microorganisms (Moneda et al., 2022). This knowledge gap is
especially relevant in Cuban sugarcane systems, as the crop is predominantly cultivated as a monoculture (Monzote, 2016), a
management practice that intensifies nutrient depletion and reduces microbial diversity over time (Hu et al., 2025; Tayyab et
al., 2021). Understanding how microbial interactions respond to fertilization is crucial for sustaining long-term soil
productivity.

As hypothesized, our results indicate high physicochemical homogeneity across all samples, including both the soil and the
rhizosphere. This likely results from intrinsic soil properties, agricultural practices, such as tilling of sugarcane, and external
climatic influences (McDonald et al., 2024; Peng et al., 2024; Skidmore et al., 2023). Brown sialitic soils have mid-to-high
nutrient loss rates (Hernandez et al., 2015; Kaur et al., 2024), and under long-term cultivation and repeated fertilizer inputs,
nutrient redistribution via rainfall and leaching can lead to chemical homogenization within the soil matrix. In tropical systems
with high precipitation and sediment movement, fertilization gradients can be rapidly diluted or redistributed (Oishy et al.,
2025). This may explain the absence of significant differences in microbial taxonomic composition observed in this study.
Inceptisols, including sialitic soils, often favor the formation of stable soil aggregates due to their mineralogical properties and
clay activity (Liao et al., 2020). This is especially relevant to long-term fertilization, as the addition of organic and inorganic
fertilizers increases the amounts of organic and inorganic carbon and cation exchange capacity in macroaggregates (Meena et
al., 2022; Niu et al., 2022). These aggregates become physically protected microhabitats. Here, plant roots, fungal hyphae, and

bacterial extracellular polymers bind particles together and create localized niches with steep gradients of oxygen, carbon
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availability, moisture, and nutrients (Wilpiszeski et al., 2019; Zhong et al., 2017). The distribution and relative abundance of
micro- and macroaggregates also influence the bulk properties of soil, including organic carbon content, water content, and
niche availability. The interiors of aggregates can exhibit properties distinct from the surrounding matrix (Wilpiszeski et al.,
2019). The rhizosphere promotes soil aggregate stability where microorganisms coexist (Li et al., 2020). In these protected
environments, microbial communities can assemble structured and persistent interaction networks, including when broader
soil conditions appear uniform. This is consistent with the results of the present study, in which microbial co-occurrence
networks showed nutrient-dependent restructuring despite the absence of substantial changes in community composition. Such
findings support the hypothesis that the rhizosphere functions as a microenvironment that maintains biological organization,

even when the surrounding soil has been homogenized by long-term fertilization and environmental processes.

4.2 Long-term fertilization does not change the composition of microbial communities

All fertilization treatments in the study exhibit similar patterns in bacterial and fungal abundance. Long-term fertilization can
directly and indirectly impact the soil microbiota, either decreasing or increasing the abundance of certain taxa (S. Zhang et
al., 2022). Alpha and beta diversity analyses showed no significant differences among fertilization treatments, indicating that
microbial community composition remained relatively stable across nutrient gradients (Supplementary Figures 3 and 4). This
could reflect the adaptation of microbial communities to persistent management regimes, as seen in other intensively cultivated
soils (Kostin et al., 2021). In such systems, microbial assemblages may reach a resilient equilibrium, maintaining taxonomic
structure despite environmental or nutritional variations. Similar results have been reported in long-term agricultural trials
(Lori et al., 2023; Luo et al., 2023). Here, nutrient additions did not produce substantial shifts in richness or evenness but
influenced community function and metabolic potential. Furthermore, the results showed no difference relative to non-
fertilized soil or bulk soil, suggesting that the microbial consortia associated with sugarcane in brown silty soils are resilient
to variations in nitrogen, phosphorus, and potassium availability. Such resilience may be linked to the soil physicochemical
properties and climatic conditions in eastern Cuba, characterized by high rainfall and seasonal variability (Centella et al.,
2006). These conditions could homogenize nutrient availability and microbial niches across treatments. Another possible
explanation is that natural conditions, including heavy rain, could mobilize nutrients through leaching and translocation (lateral
movement), thereby homogenizing soil physicochemical properties and microbial communities (Stover & Henry, 2018).

When the bacterial and fungal communities were analyzed at the genus level, a considerable fraction of the identified ASVs
remained taxonomically unresolved and were either unclassified or incertae sedis. In the bacterial datasets, approximately 65%
of all sequences could not be assigned to any known genus. Meanwhile, for fungi, this proportion reached 33%. The
unclassified ASVs at the genus level spanned multiple bacterial and fungal phyla, with representation from Actinomycetota,
Acidobacteriota, and Bacillota among bacteria, and Ascomycota, Basidiomycota, and Chytridiomycota among fungi. These
groups are typically associated with key ecological processes in soil systems, including carbon decomposition
(Actinomycetota, Ascomycota, Basidiomycota) (Singavarapu et al., 2023), nutrient cycling under oligotrophic conditions

(Acidobacteriota) (Gongalves et al., 2024), stress tolerance and sporulation (Bacillota) (Filippidou et al., 2016), lignin decay
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and soil aggregate formation (Basidiomycota) (Datta et al., 2017), and the degradation of complex biopolymers
(Chytridiomycota) (Zeghal et al., 2021). The presence of numerous unclassified taxa within these ecologically important
groups suggests that brown sialitic soils may harbor poorly described or potentially novel microbial lineages that contribute to
the unique functioning of these tropical, nutrient-leached systems. This taxonomic ambiguity is likely related to two major
factors: (i) the limited representation of tropical and Caribbean soil microorganisms in public reference databases, such as
SILVA and UNITE, and (ii) the physicochemical characteristics of sialitic soils, which may select for endemic or highly
specialized microbial taxa, such as Stretpomyces (Andam et al., 2016; Martiny, 2016). Despite the classification limitations,
these unassigned ASVs are an important component of the microbial diversity in this agroecosystem. This highlights the need
to expand genomic reference databases to better represent tropical soil microbiomes. The proportion of incertae sedis taxa
remained relatively constant across all fertilization treatments. This further supports the observation that nutrient inputs had
minimal effect on the composition and diversity of the microbial community. However, their consistent presence across
samples reflects the potential of these soils as reservoirs of unexplored microbial diversity, with implications for
biotechnological discovery and sustainable agriculture in tropical systems.

Bacteria have a lower percentage of unclassified taxa at the phylum level than fungi at 1.7% and 8.8%, respectively. However,
at lower taxonomic levels, bacteria could be classified to a lesser extent than fungi at 65.5% and 33.1%, respectively. This
further emphasizes the limited reference coverage for bacterial taxa from tropical soils. Both bacterial and fungal community
structures showed taxonomic stability across the nutrient fertilization gradient, suggesting that the microbiota inhabiting these

soils are resilient to moderate variations in nutrient inputs.

4.3 Insights from co-occurrence networks

Although long-term fertilization did not substantially shift community composition or diversity, network topology showed
pronounced changes in microbial co-occurrences. While diversity metrics were relatively stable, the co-occurrence network
analysis indicated strong nutrient-specific effects on microbial interactions. Network topology, modularity, and node
distribution differed across fertilization regimes. This finding highlights that even when composition remains unchanged,
community connectivity and potential functional relationships can shift. This is consistent with nutrient enrichment
homogenizing bulk soil conditions over time through leaching, repeated inputs, and microbial convergence. Meanwhile, the
rhizosphere remains structured by plant-driven microenvironments. Root exudates and microbial extracellular polymers
promote soil aggregation (Liao et al., 2020; Wilpiszeski et al., 2019), generating microsites with distinct nutrient, carbon, and
oxygen dynamics. These can harbor highly structured and functionally specialized microbial associations (Wilpiszeski et al.,
2019). Such soil aggregates act as ecological refuges that stabilize microbial communities and promote network-level
interactions, even when taxonomic profiles remain similar (Akter et al., 2025; Li et al., 2020; Meena et al., 2022; Wilpiszeski
et al., 2019). Therefore, the observed reconfiguration of bacterial-fungal co-occurrence networks may reflect functional

reorganization within rhizosphere microhabitats rather than changes in species presence alone.
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Only a minor fraction of ASVs was shared among all fertilization regimes, comprising 7.4% of bacteria and 14% of fungi,
suggesting a limited core microbiome in these soils. This implies that network stability is primarily maintained through
dynamic, treatment-specific microbial associations rather than a fixed set of taxa. Fungal nodes, particularly those from
Ascomycota, dominated the central modules, underscoring their potential keystone role in structuring soil microbial networks.
The presence of bacterial phyla such as Pseudomonadota, Actinomycetota, and Bacillota in co-occurrence cores points to
functional interdependence between bacteria and fungi in nutrient turnover and soil structure maintenance (Fabian et al., 2017).
Notably, similar patterns have been reported across diverse ecosystems, where functional conservation is often stronger than
taxonomic conservation, and ecosystem processes are maintained by different taxa performing equivalent ecological roles
(Hou et al., 2021). In this context, microbial taxa with unique or specialized functions may exert a disproportionate influence
on ecosystem functioning, promoting shifts in microbial interactions and network organization even in the absence of major
taxonomic changes (Tang et al., 2023). This functional redundancy and specialization likely underpins the dynamic, treatment-
specific microbial networks observed in these soils.

Nitrogen variation resulted in clear differentiation among treatments, with the highest nitrogen levels (150-200 kg/ha)
harboring the greatest number of unique nodes. This suggests that high nitrogen promotes specialized microbial associations
that are potentially linked to copiotrophic taxa and nitrogen cycling microorganisms (Nie et al., 2018). Lower nitrogen levels
showed greater overlap, indicating functional redundancy at low nitrogen inputs. Conversely, phosphorus showed a non-linear
response. Connectivity decreased at moderate concentrations (75 kg/ha), but increased substantially at high levels (100 kg/ha).
This suggests a threshold effect, where intermediate phosphorus availability may constrain certain microbial interactions.
Meanwhile, higher availability promotes the proliferation of phosphorus-tolerant or phosphorus-responsive taxa, including
arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria (Mu et al., 2024). This nonlinear response may reflect
differential nutrient limitation dynamics in sialitic soils. Potassium variation exhibited a more gradual and consistent effect,
with higher potassium levels (200-300 kg/ha) increasing the number of nodes and edges. This implies that potassium
enrichment supports microbial diversification and enhanced co-occurrence. The overlap between high-potassium treatments
indicates a potential stabilization or saturation effect under nutrient-rich conditions. These results suggest that microbial co-
occurrence patterns in sugarcane rhizosphere soils are strongly structured by nitrogen availability. The absence of unique taxa
in low-nitrogen treatments (N1, N2) may indicate a homogenization effect under nutrient limitation. Meanwhile, the emergence
of exclusive modules in high nitrogen soils (N3, N4) reflects the enrichment of specialized bacterial and fungal groups adapted
to nitrogen-rich conditions. When comparing nutrient-specific effects, nitrogen showed the strongest filtering influence on
microbial network composition. Meanwhile, phosphorus and potassium induced more subtle, yet detectable, shifts. The lower
proportion of shared ASVs across all treatments for each element indicates that, regardless of type, nutrient enrichment leads
to community specialization and microbial co-occurrence network fragmentation. This is relevant because soils in tropical
zones, and inceptisols in particular, exhibit significant N deficiencies, which are typically lost through leaching or evaporation,

depending on the fertilization method. In areas with abundant clay, N can become adsorbed to soil colloids (Harahap et al.,
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2021; Motasim et al., 2021). N and K are the main nutrients required by Saccharum spp., both for biomass production and for

various physiological processes (da Silva et al., 2018; Zeng et al., 2020).

4.4 Ecological and agronomic implications

The observed resilience in diversity but plasticity in network structure indicates that microbial ecosystems in brown sialitic
soils maintain compositional stability while adapting interaction patterns under changing fertilization regimes. Fungal—
bacterial networks emerge from trophic exchanges, metabolite fluxes, and the physical architecture of hyphae, biofilms, and
soil aggregates. Their structure and functioning vary with environmental factors, such as pH, soil moisture, aggregate type and
size, and management practices (Gao et al., 2024; Matazimov et al., 2025). These networks can coordinate biogeochemical
cycles and influence plant nutrition, and contribute to soil structure and system-level resilience. Within biogeochemical cycles,
these networks regulate nitrogen and phosphorus mobilization, influencing nutrient retention or leaching (Tedersoo & Bahram,
2019). Their enhancement can increase functional enzyme activity, enabling a 25-50% substitution of synthetic nitrogen with
organic nitrogen, while also supporting carbon, nitrogen, and phosphorus cycling (Gao et al., 2024). Likewise, biocrusts
formed by fungal-bacterial networks improve the connectivity of carbon pools, stimulating or suppressing carbon uptake
depending on the dominant guild, and modulating soil organic carbon gains (Naylor et al., 2020; Tedersoo & Bahram, 2019).
Common mycorrhizal networks connect plant roots and facilitate the movement of key nutrients, such as carbon and nitrogen
(Matazimov et al., 2025). Fungal hyphae bind soil particles, while bacterial extracellular polymeric substances contribute to
aggregate stabilization, influencing pore connectivity and water retention. Fungal-bacterial networks can help suppress
pathogens in the rhizosphere through antibiosis, resource competition, and the induction of plant defenses, enhancing system
resilience (Matazimov et al., 2025).

From an agronomic perspective, these findings suggest that further intensification of nitrogen and phosphorus fertilization may
not significantly alter microbial diversity but can reorganize microbial connectivity. This potentially affects functional stability
and soil health. Therefore, sustainable fertilization strategies should aim to preserve network connectivity while avoiding

nutrient thresholds that disrupt microbial cooperation.

5 Conclusions

This study demonstrates that long-term fertilization in brown sialitic soils can profoundly influence the organization of
rhizosphere microbial communities by reshaping their interaction networks, even in the absence of significant changes in
taxonomic composition or diversity metrics. Contrary to our initial expectation that fertilization would primarily alter
community structure through shifts in abundance, our results support the hypothesis that nutrient inputs act mainly by
reorganizing microbial associations, revealing hidden ecological responses that are not captured by conventional diversity-

based approaches.
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The distinct network responses observed for nitrogen, phosphorus, and potassium indicate that each nutrient imposes a specific
ecological constraint on microbial community assembly. Nitrogen promoted a gradual differentiation of microbial interactions,
consistent with its role as a primary growth-limiting nutrient. In contrast, phosphorus exhibited a non-linear effect, reducing
network connectivity at intermediate concentrations but strongly enhancing it at high levels, suggesting a threshold-driven
reorganization of microbial interactions. Potassium, meanwhile, led to progressive network stabilization, indicating a buffering
or saturation effect under increasing availability. Together, these patterns suggest that fertilization modifies the functional
architecture of microbial communities rather than their taxonomic identity.

Importantly, the stability of soil physicochemical properties and microbial composition across treatments highlights the
rhizosphere as a microscale ecological niche, in which microbial interactions respond to nutrient availability independently of
bulk soil homogenization. In highly weathered tropical soils such as sialitic soils, microbial networks may therefore represent
a key mechanism for maintaining ecosystem functioning under long-term agricultural management.

Overall, our findings emphasize that microbial interaction networks provide crucial insights into soil ecosystem responses to
fertilization that are not evident from diversity or abundance data alone. Incorporating network-based perspectives is thus
essential for understanding the ecological consequences of fertilization practices and for designing more sustainable nutrient

management strategies in tropical agroecosystems.
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