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Abstract. Top-down atmospheric CO: inversions are essential for estimating surface carbon fluxes, yet significant inter-system
discrepancies highlight an incomplete understanding of how observational information is transferred to flux estimates. This
study introduces a diagnostic strategy to explicitly investigate this information transfer, primarily in an Ensemble Kalman
Filter (EnKF) system, with a comparative analysis of 4D-Var. Using Monte Carlo simulations, we analyze the spatial and
temporal correlation patterns between CO, concentrations and fluxes, which play a crucial role in the inversion process by
tracing information flow via the influence matrix. Our results reveal that these correlation scales are dictated by the
autocorrelation structures of the fluxes themselves. We identify a resonance-like effect wherein correlated fluxes amplify
concentration-flux correlations, while uncorrelated fluxes suppress them. The absence of this suppression for prescribed fluxes
(e.g., anthropogenic emissions) can cause systematic signal misattribution. We further demonstrate that 4D-Var relies also
heavily on flux autocorrelations due to its cost function’s localized gradient. In both methods, the prior’s critical role is
mediated through the transitivity of strong autocorrelations. This process-oriented perspective offers mechanistic insights for

reconciling inversion results, optimizing observing networks, and strengthening carbon budget assessments.

1. Introduction

Anthropogenic emissions of greenhouse gases, most notably CO, are the principal driver of observed global warming (IPCC
ARG, 2021). In response to the climate crisis, the accurate quantification of CO; sources and sinks has become paramount for
informing mitigation strategies and tracking progress under international agreements. Among the various estimation methods,
atmospheric inversion—a top-down approach that infers surface fluxes from observed atmospheric CO concentrations using
transport models and data assimilation—has gained prominence. Its value lies in providing a direct, atmospheric constraint on

net surface-atmosphere exchange, making it a key component in pivotal assessments like the Global Carbon Budget (GCB).
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The reliance on inversions has grown rapidly, with the GCB incorporating results from 6 systems in 2021 to 14 in 2023
(Friedlingstein et al., 2022, 2023).

Despite their growing application, CO, flux inversions still suffer from substantial uncertainty, which lead to significant
discrepancies between inversion systems (e.g., Jin et al., 2023; Monteil et al., 2020). These uncertainties arise from various
sources such as inaccuracies in transport models and poorly characterized prior covariance structures (Munassar et al., 2023;
Schuh et al., 2022; Wang et al., 2020). To improve the reliability of inversion results requires a thorough understanding of
these uncertainty sources. Recent intercomparison studies have quantified the relative contribution of these error sources to
the final flux uncertainty (e.g., Chen et al., 2019; Munassar et al., 2023). For example, Chen et al. (2019) showed that
uncertainty in atmospheric transport can result in a spread of CO, concentrations comparable to the spread induced by a 48%
uncertainty in natural fluxes. Similarly, Munassar et al. (2023) found that differences in transport models accounted for the
majority of annual flux discrepancies in Europe, followed by the effects of boundary conditions and inversion schemes.

While such studies have identified key sources of uncertainty, they often focus on the final inversion results—the flux
estimates themselves. A critical gap remains in understanding the internal processes—specifically, how information from
sparse, pointwise concentration observations is transferred, transformed, and distributed across space and time to produce a
flux field estimate. This “information transfer’” mechanism is the fundamental process by which an inversion system translates
measurement into knowledge. Without a mechanistic understanding of this information pathways, it is challenging to optimally
design systems, reconcile their results, or robustly interpret their uncertainties.

In this study, we address this gap by adopting a mechanism-diagnosing perspective. Our goal is to make the internal process
of atmospheric inversion more transparent, thereby uncovering the causes of critical uncertainties in flux estimates. We achieve
this by dissecting the core of the information transfer pathway from fluxes to observations within the Ensemble Kalman Filter
(EnKF) framework. This pathway is fundamentally encoded in the spatiotemporal correlation structure of the ensemble-
derived Kalman gain, which exclusively governs how and where observational constraints can propagate to adjust prior fluxes.
While a complete EnKF update integrates multiple factors (e.g., the observation-forecast innovation), this correlation structure
exclusively determines the path and spatial extent through which observational constraints can reduce prior flux uncertainties.

The EnKF is uniquely suited for this diagnosis because it makes the mathematical kernel governing this assimilation
pathway—the Kalman gain matrix (K, see Sect 2.1)—explicit and manipulable through an ensemble, which can be directly
computed and analyzed via Monte Carlo simulation. Crucially, within this framework, the spatiotemporal autocorrelation
structure, a foundational property of parts of K (dominating the spatiotemporal information pathway) that defines how
uncertainties are presumed to correlate, can be systematically and flexibly manipulated through the generation of ensembles
with prescribed core parameters (e.g., length scales and statistical distributions), and therefore enabling control over the
resulting correlation structure in the Kalman gain. This approach allows us to directly test how the prescribed prior covariance
structure fundamentally dominates and shapes the information transfer mechanism, offering a powerful and insightful

perspective for analyzing data assimilation systems.
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Therefore, we employ this controlled, large-ensemble EnKF approach to address the following key questions raised by
theoretical and practical contradictions: (1) What determines the spatiotemporal scale and pattern of the ensemble correlations
between concentrations and fluxes that drive the EnKF update? (2) How do the autocorrelation properties of prior fluxes, and
the interactions between different flux components (e.g., anthropogenic vs. biospheric), modulate this information flow?

To provide broader context and highlight the generality of our findings regarding the role of prior covariance, we also
present a comparative analysis with the four-dimensional variational (4D-Var) method. The equivalence between the Kalman
filter update and the analytical solution of a 4D-Var problem under linear-Gaussian assumptions (Chevallier et al., 2005;
Evensen et al., 2022) allows us to interpret our EnKF-based results in light of the 4D-Var formalism, where information
transfer is mediated by the adjoint sensitivity and the prior covariance matrix. This comparison helps clarify how the
fundamental constraint imposed by the prior covariance structure is a common determinant of information flow across different
assimilation techniques.

The remainder of this paper is structured as follows: Section 2 details the methodological framework, including the ensemble
configuration and the generation of prior perturbations. Section 3.1-3.2 presents results on the structure of concentration-flux
correlations, and the factors influencing them. Section 3.3 provides a comparative perspective based on 4D-Var principles.
Section 4 discusses the limitations of our approach. Section 5 summarizes the principal conclusions and their implications for

future inversion studies.

2. Methods
2.1 A statistical derivation of the Kalman Filter for information transfer analysis

The core objective of this study is to diagnose how the a priori representation of uncertainty controls the assimilation of
observational information into state estimates. We achieve this by introducing a perturbation-response strategy within the
Ensemble Kalman Filter (EnKF) framework. The strategy is to design prior ensembles with distinct, prescribed statistical
properties and then analyze how the resulting information pathways—encoded within the Kalman gain matrix—change in
response.

There are several ways to derive the Kalman Filter, some of which rely on the normality assumption, while others do not
(Tanizaki, 1996). We adopt the latter in this work, employing traditional statistical estimation methods to derive the KF (Rao,
1994; Sengupta and Jammalamadaka, 2020). This approach seeks the optimal linear combination of prior and observational
information that minimizes the analysis error variance while remaining unbiased, without presupposing any specific error
distribution (Rao, 1994). The full derivation is provided in the Supplementary Information.

According to the linear estimation theory (Rao, 1994; Sengupta and Jammalamadaka, 2020), when observations and
backgrounds are uncorrelated, the constrained best linear unbiased estimator (BLUE, linear estimator with minimum variance)
of the general linear statistical model with constraint is

Z = 7% + Cov(Z®, PZ> — y°)[Var(PZ® — y°)]7*(y° — PZP). (1)
3
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where the state variable Z = (y7,ET, ..., EL)T, the vector of the modeled concentrations y and different fluxes E; (i =
1,-,k). PZV = yP =3 (M (yo,Eq, -, E k)) is the vector of the modeled concentrations corresponding to the observed
concentrations at specific locations and times. y° is the observation vector. M’ and H are the dynamical model (e.g.,
atmospheric transport model) and the observation operator, respectively, both of which need not to be linear.

Equation (1) can be simplified since the observation y° and the background Z? are uncorrelated (i.e., Cov(y°, Z?) = 0):

Z = 7% + Cov(Zb,y")[Var(y*) + Var(y°)]"*(y° — PZP) (2)

Furthermore, insert the covariance matrices B? := Var(Z") = Cov(Z?, Z") and R := Var(y°), we have

Z =27" + B°PT(PB’PT + R)"'(y° — PZ") 3)
which is the widely used form of KF (where the projection P is usually replaced with a more general linear operator H) and
in this form the equation can be treated as the analytical solution to the cost function of 4D-Var when the model and observation
operator is linear (Evensen et al., 2022).

K := B’PT(PBYPT + R)™! = Cov(Z?,y")[Var(y?) + Var(y°)]* (4)
is usually referred to the Kalman gain matrix and denoted by K, while y° — y” is known as the innovation vector (Asch et al.,
2016). In the framework of EnKF and sequential assimilation, the covariances and variances in eq. 4 can be easily evaluated
using ensembles of fluxes and simulated concentrations.

Given the updated state variable, we can also update the covariance matrix:

B =Var(Z) = B> - B°P"(PB"P" + R)"'PB’ (5)
In data assimilation literature, Z and B are generally written as Z* and B%, where a stands for analysis.

In the Kalman gain equation, B?PT (i.e., Cov(Z”,y")) is the primary signal or information transfer channel. It explicitly
maps how uncertainties in specific state variables (e.g., fluxes in a given region) covary with projected observations. Its spatial
pattern directly determines the pathways and directions in which observational information propagates to update the state.
Therefore, in this study, we adopt a perturbation-response strategy. By designing prior ensembles to systematically alter B?and
observing the consequential changes in the ensemble-based B? PT to probe the sensitivity of the system’s core information-

transfer physics.

2.2 Transport model and experiment implementation

We implement this strategy through a series of high-resolution Monte Carlo simulations using the Weather Research and
Forecasting model coupled with the Vegetation Photosynthesis and Respiration Model (WRF-VPRM, version 3.9.1.1). WRF-
VPRM integrates the diagnostic VPRM biosphere model into WRF-Chem. VPRM parameterizes biospheric CO: fluxes—
gross ecosystem exchange (GEE) and ecosystem respiration (RES)—as functions of satellite-derived vegetation indices and
meteorological drivers (Ahmadov et al., 2007; Beck et al., 2011; Mahadevan et al., 2008). We extended the standard VPRM
formulation by adding five parameters per vegetation type (63 total across seven major types) to better represent the nonlinear

environmental response of respiration, following Gourdji et al. (2022). Default parameter values were drawn from established

4
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literature (Dong et al., 2021; Gourdji et al., 2022; Li et al., 2020; Raju et al., 2023), with minor adjustments. The model domain
covered East Asia at a 27-km horizontal resolution with 39 vertical levels (Fig. S1). All ensemble members were driven by
identical meteorological fields, constrained by NCEP GDAS/FNL 0.25° analysis data with spectral nudging. The planetary
boundary layer was parameterized using the ACM2 scheme. Additional WRF model configurations are available in our
previous publications (e.g., Fan et al., 2021; Fan and Li, 2022, 2023; Gao et al., 2022; Li and Li, 2023). To capture distinct
seasonal regimes, base simulations were conducted for two-week periods in January and July 2016. Due to the high
computational cost of the 500-member ensemble, shorter one-week simulations were used for specific sensitivity tests (Super
et al., 2020).

All experiments use a 500-member ensemble and are driven by identical meteorological fields to isolate the impact of flux
uncertainty. The core of the experimental design lies in manipulating the representation of biosphere flux uncertainty, as shown
in Table 1. The OFF600 case serves as the baseline, employing offline perturbations with a 600 km spatial correlation. The
ONLINE case generates uncertainty by perturbing ecological model parameters (producing process-driven covariance with
larger correlation length scales), while the OFF100 case uses offline perturbations with a shorter correlation length (100 km).

Anthropogenic and ocean fluxes are perturbed consistently across all cases (see Sect. 2.3).

Table 1. Case design of this study.

Case Flux origin Perturbation correlation function Perturbation
variance
OFF600 (BASE) | Fgio Mean of the ONLINE ensembles Space and time exponential functions and 600 | 40% of mean
km, 1 month correlation lengths
Fant EDGAR-GHG v6.0 The same as Fgio
Foce Online calculated using monthly pCO, and | pCO, perturbed with a space exponential
modeled concentrations and so on. function and a 1000km correlation length.
ONLINE Fgio Online calculated using an ensemble of | VPRM parameters independently perturbed. 40% of mean
VPRM parameters
Fant The same as OFF600 The same as OFF600
Foce The same as OFF600 The same as OFF600
OFF100 Fxxx The same as OFF600 but with 100 km space correlation length of Fgio

Note. XXX in Fxxx represents ANT, BIO, or OCE.

2.3 Generation of ensemble inputs

The utility of Monte Carlo simulations for understanding the EnKF method has been demonstrated in simple experiments
by Chen et al. (2019) and explored more extensively in other domain research fields (Miyoshi et al., 2014). In this study, we
extend this approach to analyze the nature of concentration-flux correlations, which play a central role in information transfer.
We investigate their general characteristics in space and time and identify key influencing factors such as flux autocorrelations
(which relate to the background covariance matrix) and the interactions between uncorrelated flux components (e.g.,

anthropogenic and biospheric fluxes).
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To run Monte Carlo simulations, proper input ensembles must be generated before the run. For regional CO; transport
simulations, the primary inputs (aside from meteorological fields) are CO; fluxes, initial concentrations (IC), and lateral
boundary conditions (BC). We will investigate the impacts of BC in another work. Accordingly, ensembles were constructed
for both fluxes and IC. A critical design element in ensemble generation for CO, flux inversion is the characterization of
spatiotemporal correlation structures. There is limited discussion in the literature regarding the spatial correlation of IC; we
thus followed the approach of Miyoshi et al. (2014) by using CO; fields at different time steps from an independent simulation
to represent different ensemble members. The independent simulation uses another transport model (Community Multiscale
Air Quality model, CMAQ, version 5.4) with CO> fluxes that differ from those employed in the Monte Carlo simulations.

For anthropogenic emissions over land that are spatially regridded and temporally allocated from the monthly EDGAR-
GHG (v6.0) (Janssens-Maenhout et al., 2019; Crippa et al., 2020), we implemented a simple space-time correlation function,
characterized by an exponential function with correlation lengths of 600 km (following Ma et al. (2019) for other anthropogenic
emission species) and 1 month (considering the time resolution in the emission inventory), see Fig. S2 for an example of the
correlation functions. An ensemble of Gaussian fields with a standard deviation of 40% was generated based on this space-
time correlation function using a Python toolbox GStools (Miiller et al., 2022).

For biospheric fluxes, the ONLINE case utilized online-calculated fluxes derived from an ensemble of VPRM parameters.
This approach is conceptually similar to that of Super et al. (2020) , who applied ensemble methods to fossil fuel emissions.
The ensemble of VPRM parameters is generated independently by drawing from a normal distribution with averages the same
as some reported values in previous studies (see Sect. 2.2) and a standard deviation of 40%. The ensemble means of GEE and
RES from these simulations were subsequently used as the baseline fluxes for the OFF600 case. To generate two ensembles
for OFF600, these mean GEE and RES were perturbed using the same method as that applied to anthropogenic emissions.

For oceanic fluxes, we implemented a module to calculate the fluxes online using the monthly surface ocean partial pressure
of CO; (pCO») (Fay et al., 2021), the modeled atmospheric CO, concertation, and the parameterized gas transfer velocity
(Wanninkhof, 2014). This is similar to the biospheric fluxes in the sense of online calculation, but the oceanic fluxes rely more
on the atmospheric and oceanic concentrations and may have different correlation structures compared to biospheric fluxes.
The monthly pCO» was perturbed using GStools with a space exponential correlation function that has a correlation length of

1000 km. The standard deviation of the perturbation was also 40%, as is the case with other fluxes.

2.4 Diagnostic analysis and choice of observation sites

The core diagnostic metric is the ensemble sample correlation between simulated concentrations at observation points and
prior fluxes across the entire spatiotemporal domain. These correlation patterns directly estimate the influence functions within
the Kalman gain K, thereby mapping the information transfer pathways under a given prior B.

For diagnostic analysis of concentration-flux response, we need to set up observation sites. For surface CO,, we choose the
GAW sites within our domain (Global Atmosphere Watch Station Information System, 2024) and some additional sites in

China. For satellite XCO», we select multiple locations somewhat arbitrarily along the OCO2 track over land and are also

6
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denoted as “sites” for convenience (OCO-2/0OCO-3 Science Team et al., 2024). The locations of the 111 CO; sites and the 41
XCO:; sites are shown in Fig. S3. For further spatial illustration, we select 26 CO; sites with available data at some time (World
Data Centre for Greenhouse Gases, 2025), excluding two sites in Japan that are too close to others, leaving 24 sites. Similarly,
we select 24 sites from the 41 XCO; sites for further illustration. Only half of the 24 sites are shown in the main text when
illustrating the correlation patterns, while the others are included in the SI when necessary.

Since our simulations in different months are relatively short, we need to check IC’s influence first. The autocorrelation of
modeled CO at a site with IC at the same site decreases rapidly, and this reduces is relatively homogeneous in space, except
for some sites occasionally (Fig. S4). Therefore, a one- or two-week simulation can be used to explore the transport behavior
of ensemble fluxes. In addition, our modeled Fgio, Fock, surface CO», and XCO, are not far from widely used results (Fig. S5),

demonstrating the relevance of our simulations to real applications.

3. Results and discussions
3.1 Spatial structures of concentration-flux correlations
3.1.1 Spatial patterns of correlations

In EnKF-based CO, inversion systems, the information from observations is primarily transferred through correlations
between observed concentrations and unobserved fluxes. Thus, analyzing the correlation structures between CO»
concentrations and fluxes is essential. This study uses results from 500-member simulations to characterize these correlation
structures. To illustrate the typical spatial influence of fluxes, we compute the correlation between the prior flux state at the
initial time and the resulting ensemble concentrations after one week of transport (at hour 168). This choice partially reflects
the sequential update logic of an EnKF (Houtekamer and Mitchell, 2001), where observations constrain fluxes within a time
window one by one. While this provides a representative snapshot, the correlation structures are qualitatively similar at other
times (temporal evolution is analyzed in Sect. 3.2).

In the 500-member simulations, the spatial correlation patterns are demonstrated, showing large values near the observation
sites and minimal noise-like values (i.e., randomly mixed positive and negative values) in remote areas if the sites are
influenced by a specific flux (Figs. 1 and S6). For example, in January, the LAN, RYO, and WLG sites exhibit strong
correlations between surface CO; and nearby Fanr (Fig. 1Ag), Foce (Fig. 1Al), and Fgio (Fig. 1Ec), respectively. Similarly, in
July, the TAP, HAT, and WLG sites exhibit strong correlations (Figs. 1Ci, h, and c). Many other sites also show significant
correlations, suggesting the feasibility of using surface observations to invert CO, fluxes. In general, the correlation between
surface CO, and nearby Fanr is more potent in winter (January) than in summer (July), with notable correlations primarily
observed in the eastern China, Korea, and Japan (Figs. 1A and C), where the Fanr is large and concentrated. In contrast, the
influence of Fpio is more pronounced in the western region, with strong correlations present in both winter and summer (Figs.

1E and G). At island sites, the influence of Focg can be significant, especially in summer when the monsoon is directed
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landward. The specific spatial morphology of correlations at individual sites—such as their asymmetry and elongation
direction—clearly reflects the modulating influence of local atmospheric transport processes.

Conversely, the overall spatial correlations pattern exhibits a relatively regular distribution, showing maximum values near
the sites and a stable decline with distance. The locations of the strongest correlations are typically at or near the observation
sites, mainly downwind of the monsoon directions. However, some sites exhibit “remote” correlations for surface CO, and
XCO; (e.g., Figs. 1Ah, Ej, and F1). One notable characteristic of the spatial patterns is that the values are almost universally
positive. This means that more emissions result in higher concentrations, which is expected in atmospheric transport. However,
negative values occasionally arise and cannot be dismissed as mere noise, as illustrated in Fig. 1Bg. These negative correlations
may be attributed to negative diffusivity, which differs from positive diffusivity (where fluxes move from high to low
concentration) by indicating a flux from low concentration to high concentration. Such negative diffusion has been observed
in fine-grid simulations using the WRF model and is suggested to result from sharp gradients in tracer mass immediately after
release (Fathi et al., 2023). Indeed, the negative correlations are usually near a relatively large point source in the case of Fanr.
Nevertheless, these “real” negative correlations have effects similar to positive correlations in the inversions, so we do not
explore them further. When we ignore these rare “real” negative correlations, only universally positive correlations remain,
and this monotonicity of correlations has an important implication. Observation at specific site can only influence a
neighborhood’s fluxes by increasing or decreasing them overall. In contrast, prior fluxes in this neighborhood may exceed the
true values in some locations while falling short in others. Therefore, only a sufficient combination of observations can
potentially recover the true fluxes from the prior estimates by both increasing and decreasing the fluxes across the
neighborhood.

Additionally, the correlation patterns between XCO» and fluxes (Figs. 1B, D, F, and H) are remarkably consistent with those
derived from surface CO,. A direct comparison between surface sites and nearby XCO, sampling locations reveals nearly
identical spatial structures in their respective correlation maps (e.g., Fig. 1 Ah vs. Bk). This finding is also consistent with the
substantial similarity between CO»-flux correlations at the surface and those at higher altitudes (see Fig. S7 for the 100m and
1000m results). This strong similarity implies that, in terms of diagnosing the information transfer pathway, the flux signals
captured by XCO, and nearby surface observations are dominated by common source regions (e.g., Figs. 1Ah and Bk, and Ec
and Fd). However, it should be noted the difference in the observation innovations can change the contributions of surface

CO; and XCO3 in the inversion.
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3.1.2 The influence of flux autocorrelations on the spatial correlation patterns

The spatial pattern of concentration-flux correlations is statistically similar to that of flux autocorrelation (compare Figs. 1Ec
and S2a), which shows a clear decline with distance. Although the specific shapes of correlations vary across sites, the average
decay scale of their spatial influence seems aligns closely with the autocorrelation length of the prior fluxes. For instance, the
strong correlation areas for CO»-Fock are larger than those for anthropogenic CO»-Fanr or biogenic CO»-Fgio fluxes, consistent
with its longer autocorrelation length 1000 km of Fgio than the 600 km of the other fluxes (e.g., compare Figs. 1Ch and Ge,
and Dj and Hd). To further prove this, we introduce two additional simulation cases: ONLINE, which utilizes an online
perturbed Fgio with land-cover-based autocorrelation patterns and has larger correlation length scales, and OFF100, which
employs a shorter spatial correlation length of 100 km (see Table 1). Figure 2 illustrates the spatial correlations between CO;
concentrations and Fgio for these two cases, which can be compared to Figs. 1E-H for the OFF600 case.

As expected, the ONLINE case exhibits larger correlation scales in space than the OFF600 case, and the spatial patterns of
correlations are predominantly influenced by land cover. Similarly, the OFF100 case shows a smaller correlation scale than
the OFF600 case, consistent with the 100 km correlation length. These two additional cases clearly illustrate that the
autocorrelation lengths of fluxes largely determine the basic spatial patterns of the concentration-flux correlations, despite that
transport processes may translate the high-value areas and deform the shapes of the patterns to some extent. This property
provides a more precise explanation of why the autocorrelation scales of the fluxes are critical in flux inversion, as
CarbonTracker identifies them as one of the two primary “tuning knobs” (Jacobson et al., 2023). This is because these scales
determine the possible spatiotemporal extent to which a concentration observation can contribute to inverting the fluxes.

In addition to the scale of correlation, the strength of the correlation between concentrations and fluxes is also influenced
by the autocorrelation length of the fluxes. Notably, both the correlation scale and strength diminish simultaneously in the
OFF100 case compared to the OFF600 case (e.g., compare Figs. 1F1 and 2F], and 1Gc and 2Gc). Moreover, the correlation
strength in the ONLINE case is greater than in the OFF600 case. This weaker correlation in cases with smaller correlation
lengths for fluxes and a stronger correlation in cases with more considerable correlation lengths suggests a form of “resonance”
of fluxes at different locations during transport, enhancing the maximum correlations observed. Different from the scale of the
correlation, such a “resonance” does not simply result from the transitivity of correlations because transitivity does not
necessarily enhance correlations. This “resonance” effect essentially stems from the integrative amplification of spatially and
temporally coherent signals, which is also enabled by strong autocorrelations, by atmospheric transport. When fluxes are
strongly positively correlated over a large region (i.e., have a long autocorrelation lengths), the CO» signals released from these
areas exhibit similar phases and variation trends during transport. Integrated by atmospheric flow and arriving at the
observation site, their contributed concentration fluctuations add up coherently, thereby producing a stronger concentration-
flux correlation. Conversely, if the spatial correlation scale of the fluxes is short, the emission signals from different upwind
grid cells are independent of each other and randomly cancel out, resulting in a weak net signal at the site and consequently a

lower correlation.

10
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These two effects, directly or indirectly imposed by flux autocorrelations, make it more challenging to configure the space—
time autocorrelation functions of fluxes (i.e., to specify the prior covariance matrix B). While data-driven methods that
construct correlation functions directly from observations tend to yield shorter (i.e., <100 km) spatial correlation lengths
(Kountouris et al., 2015, 2018) in Europe. Our results indicate that a shorter correlation length not only reduces the correlation
scale but also weakens the correlation strength, further amplifying the limitations of sparse observations.

Therefore, in the context of sparse surface observations, it is not recommended to strictly follow suggestions that advocate
very short spatial autocorrelation lengths (e.g., 100 km). This issue is more clearly illustrated in Fig. 3, which shows the sum
of localized (Gaspari and Cohn, 1999) concentration—flux correlations across all the 24 sites. When a spatial autocorrelation
length of 600 km is used, the summed correlations cover most of the domain except South Asia and some weak-flux regions
(Figs. 3a and c¢), indicating that fluxes over most regions can be constrained by observations from these 24 sites. In contrast,
using a much shorter spatial autocorrelation length results in extensive blank areas, indicating that fluxes over most regions
cannot be effectively constrained by these observations (Figs. 3b and d).

Consequently, for many applications it may be reasonable not to strictly follow observation-derived correlation lengths, but
instead to adopt longer ones (e.g., Chandra et al., 2022; van der Laan-Luijkx et al., 2017).This study demonstrates that, for the
current sparse surface observation network in East Asia, adopting a flux spatial autocorrelation length of approximately 600 km
is appropriate. It is important to clarify that this length scale is not directly “measured” from the observations but rather serves
as a parametric representation based on the physical understanding of flux spatial continuity in the region. Our analysis shows
that this scale assumption most effectively organizes the sparse observational information, enabling the inversion system to
meaningfully constrain fluxes over a wide area (as illustrated in Fig. 3). The inversion results constitute an optimal probabilistic
estimate driven by the observational data within this prior framework.

Denser XCO, observations may alleviate the limitations on autocorrelation length scales imposed by surface observation
sparsity; however, the spatiotemporal sampling of XCO; is irregular, and its information “content” is generally lower than that
of surface CO; observations. It therefore remains unclear to what extent these limitations can be mitigated. Nevertheless, when
only surface CO; observations are used, the flux autocorrelation length should not be too short. In the future, as observational
density increases, this optimal scale may change, which could enable more details spatial pattern of the inversion. The

methodology presented here provides a quantitative tool for evaluating and determining such scales.
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Figure 2. Spatial patterns of 500-member correlations between COz concentrations at the 168™ hour at sites and CO> fluxes at the initial
time in the whole domain in the ONLINE and OFF100 cases. (A)—(D) are the same as Figs. 1E—G but for online perturbed Fasio. (E)-(H) are

the same as Figs. 1E—G but with a shorter (~100 km) correlation length in space.
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3.1.3 Multi-flux coexistence and signal “dilution”

The “resonance” effect, whereby coherent flux signals amplify correlations, implies a complementary phenomenon that can
influence the spatial patterns of correlations: correlation “dilution” can occur when neighboring or coexisting flux types are
uncorrelated. This is particularly relevant in atmospheric inversions, where multiple uncertain flux types jointly influence
observed CO, concentrations. In Fgjo inversions, Fanr is usually fixed to reduce the degree of freedom. This is a practical
necessity because observations are limited and sparse. However, as mentioned earlier, this approach raises theoretical concerns
since multiple flux types influence CO; concentrations and may exhibit correlation “dilution”. Fixing one flux may alter the
correlation between other fluxes and CO, concentrations, effectively removing the “dilution”.

To assess the impact of fixing Fant on the correlations between Fgio and CO, concentrations, as well as the implications of
using the COzant tracer, we modeled three different CO, tracers corresponding to the three types of fluxes: COzant, COzgio,
and COxock. Figure 4 illustrates the correlations of CO; tracers with their corresponding fluxes. Compared to the correlations
obtained with all fluxes varying simultaneously (Figs. 1A, C, E, and G), fixing non-target fluxes leads to widespread and often
substantial increases in correlation strength (Fig. 4, right-column difference panels)., These increases are most pronounced
where bulk CO» concentration correlations were originally weak—for instance, especially for Fant in July (Figs. 4D), Fgio in
January (Figs. 4F), and Foce in both January and July (Figs. 4A and D). Conversely, the increases in correlations for Fant in
January (Figs. 4D) and Fgio in July (Figs. 4H) are less significant, as their correlations with bulk CO, concentrations are already
strong at many sites.

The significant enhancement of correlations upon fixing other fluxes confirms that correlation “dilution” is a real effect in
multi-flux systems. A key implication is that simply fixing Fant in a Fgio inversion may be methodologically problematic: the
observational information that actually constrains Fant could be misattributed to Fgio, distorting its solution. Conversely, at
sites where bulk CO; already shows strong correlations with a given flux (e.g., Fanr in January (Figs. 4D) or Fgio in July (Figs.
4H)), the correlation increases due to fixing other fluxes is minimal. This indicates that where information is intrinsically
strong, random errors or uncertainties in coexisting fluxes have negligible “diluting” impact.

In summary, fixing Fanr in the inversion of Fpio can introduce disadvantages without offering significant benefits (except
for numerical calculation). Nevertheless, these disadvantages will disappear if CO, tracer measurements are used instead of

bulk CO; concentrations. In such cases, when bulk CO, concentrations are underestimated due to the underestimation of Fanr,
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the COspio tracer remains unaffected, making the strong correlation beneficial. Currently, there is no simple COzgio tracer, but
the COaanr tracer has been successfully applied in Fanr inversions (Basu et al., 2016, 2020). However, some sites exhibit low
correlations even for tracers (e.g., Figs. 4Ab and d), highlighting the limitations of using tracers. Conversely, as mentioned
above, sites that show minimal correlation increases due to already strong correlations (e.g., Figs. 4Ag and h) may provide an
opportunity to invert Fant effectively using bulk CO, concentrations. It should be noted, however, this opportunity is not

guaranteed but only works for some circumstances.
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Figure 4. Spatial patterns of 500-member correlations between CO» tracers at the 168" hour at sites and corresponding fluxes at the initial
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15



350

355

360

365

370

375

380

https://doi.org/10.5194/egusphere-2026-615
Preprint. Discussion started: 11 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

3.2 Temporal structures of concentration-flux correlations
3.2.1 Time variations of correlations

The temporal dynamics of the information transfer pathway are diagnosed by analyzing the time series of the Maximum
Regional Correlation (MRC) within a ~1200 km domain surrounding each observation site. In Figure 5, each line traces the
evolution of the MRC between a flux impulse, of Fant, Foce, and Fgio emitted at a specific hour, and the CO; concentrations
at the site over subsequent hours. A key observation is the extensive overlap of these lines in many panels, indicating that the
concentration at a given time exhibits similar correlation strength with flux impulses from many different prior hours.
Conversely, where lines are separated, they reflect distinct correlation levels for fluxes emitted at different times for same
source. Unlike the monotonic decay observed in space, these temporal MRC series frequently exhibit sustained plateaus or
complex fluctuations patterns, changing with seasons and height. The MRCs for different flux types often vary in a
complementary manner, as one weakens, another strengthens, particularly in regions of moderate correlation (e.g., Fig. 5SBd).
This anti-phase behavior suggests that shifting transport pathways alternately enhance the influence of different source regions
at the receptor site.

The MRC evolution for ocean fluxes (Foce) shows distinct regimes across the observation network, reflecting the interplay
of geography, atmospheric transport, and source-receptor connectivity. At predominantly remote oceanic or downwind coastal
locations (e.g., Fig. 5Ae, Ah, Aj, Ce, Ch, and Cj), Focg exhibits dominant MRC. This occurs because these sites are persistently
influenced by marine air masses, where the ocean source is strong and contiguous. However, its absolute MRC magnitude is
moderated by the simultaneous presence and competition from co-varying terrestrial fluxes. A clear example is the Nansha
site (e.g., Fig. 5Ce), where the column airmass is extremely minimally diluted by terrestrial fluxes, allowing a clear and stable
oceanic signal to dominate the concentration variability; In contrast, at deep inland or strongly continentally influenced sites,
the MRC for Foce is relatively low or even near zero. At first three stations in Fig. 5, where the marine air masses rarely reach
the receptor under typical transport regimes, the MRC is zero. The majority stations, typically situated in coastal transition
zones or eastern China (Figs. 5d, f, g, j, and k), show low, stable and dense MRC, displaying a characteristic of baseline
ensemble. At these locations, the ocean-derived CO> contributes a persistent, near-constant background concentration.

The current features of site correlations related to ocean sources, which align intuitively with geography and climate, are
largely attributable to and directly validate the reasonable prior’s setting on perturbing monthly pCO; fields. Ocean surface
pCO; and its fluxes vary slowly on synoptic scales, with dominant variations occurring on seasonal scales. Setting the prior
temporal autocorrelation to 30 days essentially encodes this physical understanding into the inversion system. Consequently,
the simulated information transfer pathways show that at sites influenced by the ocean, ocean signals manifest as a long-term,
stable statistical entity. The reasonableness of site characteristics, such as which sites exhibit strong, moderate, or weak ocean
influence, is precisely the expected outcome of this reasonable prior setting when processed through a realistic atmospheric
transport model. If the ocean prior were set to a short decay time (e.g., 3 days), the system would assume that ocean flux

information from a few days ago is nearly irrelevant, even at actual ocean sites. This would result in a loss of stable high
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correlations at ocean sites, replaced by rapidly decaying and highly fluctuating correlations and a disappearance of the “ocean
background source” concept in the information transfer pathways, which would entirely contradict our fundamental physical
understanding of ocean carbon exchange.

In contrast, the MRC for anthropogenic fluxes (Fant, grey lines) display highly heterogeneous and site-specific trajectories,
including complex oscillations. This diversity should stem from the interaction between its prior specification and atmospheric
dynamics, establishing a statistical tendency for information from older fluxes to weaken. In some extreme cases, the variation
can show a decay trend rather than an oscillation (e.g., Fig. 5Ag and k, or more prominently, Fig. S8 Ak). However, at most of
stations, this underlying decay of Fanr is powerfully modulated by transport processes, such as shifting winds, boundary layer
effect, creating complex fluctuations. A visible decay trend emerges only where transient transport variability is minimal (e.g.,
Fig. 5Ag, and k), allowing the prior’s statistical attenuation to be expressed clearly in the temporal trajectory of a single flux
impulse’s influence.

The biospheric fluxes (Fpio, green lines) frequently exhibit a separation into two parallel strata with distinct correlation
levels, within which lines follow coherent, wavelike paths. This pattern is a visual encoding of the prior’s structural definition:
daytime (GEE) and nighttime (RES) fluxes are treated as independent processes. The information pathway faithfully preserves
this prescribed discontinuity, leading to the clustered strata. The coherent oscillations within each stratum reflect the diurnal
and synoptic-scale variability of these biological signals as they are transported, illustrating how a process-informed prior
structure is carried through the physical system. These non-monotonic behavior highlights the critical modulating role of
atmospheric transport dynamics.

The similarities in MRC between CO; concentration and different fluxes at various hours enable the inversions of fluxes in
a period using a single observation, thereby reducing the need for continuous monitoring at a site. This aligns with the
discussion by Chevallier et al. (2012), which suggests that the temporal density of observations is much less informative than
spatial coverage. However, high temporal density can be beneficial due to the variations in correlations between CO,
concentration at various hours and a particular flux. If an observation with weak correlations to fluxes is used by chance, the
inverted flux will not be optimal. High-density temporal observations can enhance the reliability of the information because a
strong correlation at neighboring hours can complement a weak correlation at one hour. This is particularly important when
strong correlations are rare and may be missed by low-density observations (e.g., Fig. 5Ci, Fgio). Furthermore, obtaining a
reliable estimation of fluxes from prior fluxes requires a sufficient combination of observations, as discussed in Sect. 3.1.1.
Thus, high-density temporal observations can improve the robustness of flux inversions by reducing the influence of
inaccuracies in concentration modeling that arise from factors other than uncertain fluxes, ultimately leading to more accurate

and reliable results.
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Figure 5. Timeseries of maximum correlations between CO2 concentrations at the 12 sites and nearby (~1200 x1200 km? box) fluxes. Grey
lines indicate Fant, blue Fock, and green Fio. (A) is for surface COz in January, and (C) in July. (B) and (D) are for XCOsz. There are 335
(14%24-1) lines in each panel, and each line starts at different hours (since the initial hour). The zeroth hour of each line (one hour before
the first hour, not shown) corresponds to the flux and the other hours correspond to the COz concentrations. The orders of panels (a—1) is the
same as those in Fig. 1.

3.2.2 Multi-flux coexistence revisited

It is observed in Sect. 3.2.1 that the MRC at an observation site for different flux types often vary in a complementary manner.
This can be more clearly illustrated when we spread the “observation sites” on the whole domain: we calculate the MRC for
an observation site in Fig.5, and this calculation is then applied across all model grids to generate Figure 6 for specific times.
Like the temporally complementary variation of different fluxes in Fig. 5, the three types of fluxes exhibit spatially
complementary distributions in Fig. 6. In January, most areas in China, South Korea, and Japan show relatively strong
correlations between surface CO, and Fanr, with numerous small hotspots in India and Central Asia (Figs. 5a—c). Other land
areas generally show strong correlations between surface CO; and Fgio (Figs. 5g—i). In the continental seas near China, South
Korea, and Japan, the correlations between surface CO, and Fanr are also strong. In contrast, the southern continental seas
display stronger correlations between surface CO, and Fgio. In contrast, the open ocean, distant from the continent, shows
strong correlations between surface CO, and Foce (Figs. Sm—o). In July, the overall patterns are similar, but the influence of
Fant becomes concentrated in smaller areas (Figs. 5d—f). Meanwhile, the influence of Fgio increases significantly in southern

China, Korea, and Japan (Figs. 5d—f); however, the two-week-average does not increase very significantly due to the larger

18



435

440

445

450

455

https://doi.org/10.5194/egusphere-2026-615
Preprint. Discussion started: 11 February 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere®

diurnal variations of correlations in July (compare Figs. 5A and C, Fgio). Over the ocean, the influence of Foce becomes much
stronger than in January, especially in the Indian Ocean and along the western margin of the Pacific Ocean (Figs. Sp-r).

The complementary distributions of MRCs for different types of fluxes implies the signal “dilution” discussed in Sect. 3.1.3
from another point of view. When some type of flux (e.g., Fanr) is fixed, the MRC of that type of flux will be zero, and
therefore the other type of flux will fill the absent MRC. Consequently, there will be signal misattributions.

There is another implication of Fig. 6. A large value means a strong correlation between surface CO; and nearby fluxes,
suggesting that observations from these locations can be effectively used to invert fluxes. In other words, observation data
collected from areas with strong correlations provide more valuable information about fluxes, making these locations ideal for
establishing measurement sites. Conversely, sites located in areas with weak correlation are less informative for flux inversion.
Due to the rapid and significant variations in atmospheric dynamics, optimal measurement locations may change quickly,
meaning our findings are not definitive. However, the complementary distributions of correlations for different fluxes highlight

the potential for identifying new measurement sites based on the correlation analysis.
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Figure 6. Maximum absolute values of correlation coefficients between surface CO2 concentration at a model grid and nearby (a~1200%x1200
km? box) fluxes. (a) is for surface COz at the 168" hour and the Fanr at the initial time (06:00 UTC) in January, while (b) is for the CO2 at
the 180" hour and Fanr at the 12 hour (18:00 UTC). (c) is the two-week average of correlations between all CO> and all Fanr at 00:00,
06:00, 12:00, and 18:00 on each day (excluding the first three days for CO2 concentrations). (d)—(f) are for July. (g)—(1) are for Fsio and (m)—
(r) for Fock.

3.3. Comparison with 4D-Var

Many inversion systems are based on 4D-Var. These systems also encounter a similar information transfer problem: how
observations influence the unobserved fluxes. Here, we analyze this problem for a 4D-Var system. However, this analysis is

partial because the solution to the inverse problem is iterative.
The starting point of 4D-Var is a cost function J(E) = %(E - EY)"B™Y(E - E?) +§(yb —y°)TR 1 (y? — y°), and the
goal is to minimize the cost function iteratively based on the gradient g := dJ/0dE. The iteration directions, which are closely

related to the gradients, determine how the fluxes are modified after assimilating observations and can thus be interpreted as
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information transfer pathways. Since fluxes are typically modified most significantly in the first few iterations (see Fig. 4 of

Niwa et al., 2022), the overall iteration direction may be roughly approximated by the first iteration direction.
The gradient has two parts, which can be better understood by defining J,, := % (y? — y°)TR™(y” — y°). Thus, the gradient

is given by g = B"*(E — E®) + 0],,/0E. The first part B~'(E — E”) can be directly calculated if B is invertible, while the
second part usually relies on adjoint models of transport models. Here we use the CMAQ (v5.0) model and its adjoint, CMAQ-
ADJ (Zhao et al., 2020), to calculate this part of the gradient. Choosing the 24 surface sites to form the cost function, with
pseudo-observations y° from the independent run (see Sect. 2.3) and setting the observation variances to 2.5 ppmv? for
simplicity, we obtain 9], /0E (Fig. 7A) which is the gradient g, since E = E b1t can be seen that the gradients with respect
to daily fluxes are concentrated on a very small neighborhood of observation sites, resembling concentration footprints (see
Fig. 4 of Storm et al., 2023).

Next, we calculate the iteration direction. Suppose we use the simple steepest descent method in the iteration. In that case,

the iteration direction at the first iteration will be — g, meaning only fluxes in areas very close to observation sites are modified
o . . . . . a
after assimilating observations. At the second iteration, we obtain the new gradient g, = B~1(E — E?) + % =—-yB7 g, +

d],/0E, where y is the step size of the first iteration. Even if B is invertible and computationally feasible to calculate, B 19
will still be concentrated in a small neighborhood around the observation sites. As a result, fluxes cannot be significantly
modified after assimilating observations except for areas close to observation sites.

In practice, other methods than the simple steepest descent method are used, such as conjugate gradient and quasi-Newton
methods (Chevallier et al., 2007; Niwa et al., 2017b), and specific techniques can expand the regions where fluxes can be
modified (Fisher, 1998). In both methods, the key is to calculate Bg (possibly with some modifications) instead of B~1g.
From the perspective of Newton’s methods, this is equivalent to approximating the Hessian, B~* + HT R™1H, with B™1, and
the iterations may be seen as refinements of this approximation. Using the same correlation function as in the OFF600 case
and a uniform standard deviation of 10 mol s grid™! (~0.0142 gC m d*!), we calculate Bg, (Fig. 7B). The areas where fluxes
can be modified are significantly enlarged compared to g, (Fig. 7A) but remain concentrated around observation sites.
Additionally, these areas are similar to the patterns of correlation functions and concentration-flux correlation patterns in
Monte Carlo simulations (e.g., Fig. 4) after possible weightings. Therefore, similar to KF-based systems, 4D-Var-based

inversion systems also rely heavily on background correlation functions to transfer observational information (via the
regularization term % (E — E®)TB~*(E — EP)), while transport plays only a minor role in determining the spatial and temporal

extent of the inversion (though not the strength). This minor contribution arises because the cost function gradient is restricted
to small areas around observation sites. Indeed, if we retain only the gradient values very near observation sites while setting
“remote” gradients to zero, the patterns of Bg, remain unchanged to a large extent (Fig. S9). This minor contribution does not

change even when extending the simulation time, as demonstrated by the one-month results (Figs. 7C and D).
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In summary, we intuitively show that the KF and 4D-Var solutions to the CO; inversion problem under the linear assumption
are mainly equivalent, as formally demonstrated by others (e.g., Chevallier et al., 2005; Evensen et al., 2022). However, since
KF is typically implemented as EnKF, the small ensemble size can lead to spurious correlations (Fig. S10), necessitating
localization in EnKF. This means the spatial extents of the two solutions may differ, especially in observation-sparse areas
(Liu et al., 2016).

With these insights into the 4D-Var method, we can better understand why the spatial patterns of concentration-flux
correlations are primarily shaped by flux autocorrelations, as previously discussed for EnKF. Since the first-order sensitivity
of concentrations to fluxes is limited to small areas, concentration-flux correlations are likely constrained to small areas.
However, flux-flux autocorrelations are strong over larger regions (depending on the correlation functions), meaning that
concentration-flux correlations can extend over larger areas due to the transitivity of strong correlations (Sotos et al., 2009).
In this way, the prior information embedded in the background covariance matrix plays a role in transferring information from
observed concentrations to unobserved fluxes.

Finally, it should be noted that the above discussion assumes continuous observation data. Under these conditions, the cost
function gradient is continuously “renewed” as new observation data enter, ensuring that large gradient values persist near
observation sites. If observation data are instantaneous, the gradient will not show large values for fluxes remote in time,
making it appear extended in space (see Fig. S11). This is the typical way results related to gradients or sensitivities are
presented in previous studies (e.g., Liu et al., 2015; Niwa et al., 2017a). However, since the largest gradient values always
appear near (both in time and space) the observations, and these values are the most critical for assimilation, analysis based on
instantaneous observations may not directly apply to understanding inversion systems. If only a single observation time is used
to invert yearly or monthly fluxes, incidental transport errors at that time may significantly distort results, as no other
observations are available to compensate for such errors. However, in observation-sparse areas, remote observations may still
provide valuable information, which could also contribute to the differences between EnKF and 4D-Var, as EnKF cannot

utilize remote observations effectively.
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Figure 7. Spatial patterns of daily gradients and iteration directions. (A) is the gradient of the cost function to the daily fluxes. (B) is the
iteration directions of the first iteration, B g, and is calculated using the same correlation function as in case OFF600 and a uniform standard
deviation of 10 mol s! grid! (~0.0142 gC m d'!). Rows represent different months, and columns represent different days. (C) and (D) are
the same as (A) and (B) but for the 1-month simulation. The values of (D) are divided by four (four weeks) for the purpose of illustration.
The unit of (A) and (C) is (gC m? d!)"!, and of (B) and (D) is gC m?2 d-'.

4. Limitations and future work

This study excludes the impact of transport errors when analyzing the EnKF solution for flux inversions due to the complexity
of the inversion system. Munassar et al. (2023) demonstrated that variations in transport models can lead to discrepancies
exceeding 50% between two inversion systems. Consequently, it is essential to investigate how these transport errors affect
the inversion results and, more precisely and more relevant to this study, how they may influence the correlation patterns of
unobserved fluxes and observed concentrations. Such an analysis could serve as a natural extension of the work by Chen et al.
(2019), which primarily examined variances. Transport errors will likely influence correlations and variances, potentially

leading to less distinct correlation patterns than those presented in this study.
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This study also overlooks the variability of boundary conditions of CO, concentrations, which is the second most important
factor contributing to the discrepancies in different regional inversion systems, as shown by Munassar et al. (2023). While we
might expect the influence of BCs on correlation patterns to be minimal, similar to the small impacts of initial conditions, this
assumption may warrant further investigation. This will be investigated in a following study.

It is important to clarify that a small influence on correlation patterns does not necessarily mean a small influence on
inversion results. While correlation is a key parameter that characterizes the transfer of information from observed
concentrations to unobserved fluxes, it does not determine the overall “content” of information. Efficient information transfer
does not imply that the information itself is abundant. More technically, inversion results depend not only on the covariance
matrix but also on the innovations, which are determined by the differences between modeled concentrations and observations.
These innovations can be affected by transport errors, uncertainties in initial and boundary conditions, and other factors.
Consequently, these factors can significantly influence inversion results. This study does not address uncertainties in modeling
concentrations and, therefore, presents only a partial view of the overall situation.

In the analysis of the 4D-Var, only the first iteration is examined. This may be valid when the approximation of the Hessian
B~ + HTR™'H by B! is reasonable. In a complete 4D-Var system, iterations are further complicated by the variances of the
prior fluxes, and an analysis based on normalization that removes the influence of variances becomes more challenging.
Nevertheless, examining results from additional iterations would be beneficial, even through an analysis based on iteration-
by-iteration normalizations.

Finally, this study serves as an initial analysis of how observed CO; concentrations are utilized to invert unobserved fluxes,
focusing specifically on correlations at particular locations and times. As previously mentioned, inversion results represent a
combination of various monotonic changes relative to prior fluxes. However, it remains unclear how this combination yields

reliable inversion outcomes.

5. Conclusions

There is an urgent need for reliable CO; flux inversions to address the challenges of climate change. This study adopts a
diagnostic perspective aimed at elucidating the internal information transfer mechanisms of inversion systems, analyzing the
core process by which observational information is translated into flux estimates in atmospheric CO, inversions. Through a
combination of large-ensemble (EnKF) Monte Carlo simulations and comparative analysis with the 4D-Var method, we have
clearly articulated and quantified the decisive role of the prior flux covariance structure in shaping and dominating the entire
information flow.

Our findings show that spatiotemporal scales of information transfer are primarily set by the autocorrelation structure of the
prior fluxes, while atmospheric transport processes primarily modulate the specific morphology of correlations at individual
sites (e.g., directionality and asymmetry). Flux autocorrelations induce “resonance” and “dilution” effects that profoundly

impact inversion efficiency and accuracy. When fluxes are strongly positively correlated over a large region (long
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autocorrelation length), their released CO, signals coherently superimpose during transport, producing a “resonance” effect
that enhances the maximum concentration-flux correlation. Conversely, when multiple flux types (e.g., anthropogenic and
biospheric) coexist and are uncorrelated, their signals interfere with each other, causing a “dilution” effect that weakens the
discernible correlation between any single flux type and the total concentration. This explains why, under sparse observations,
using overly short autocorrelation lengths (e.g., <100 km) not only shrinks the spatial influence of information but also
systematically reduces the information extraction efficiency of the inversion system, leading to extensive “blank areas” of
observational constraint.

A direct consequence of the “dilution” effect is that when inverting one flux type (e.g., Fgio), simply fixing another (e.g.,
Fant) misattributes observational information originally meant to constrain the fixed flux to the target flux, thereby distorting
its solution. This misallocation is particularly severe in regions where the target flux itself has a weak correlation with the total
concentration. Using flux-specific tracers (e.g., '*CO,) is the fundamental way to avoid this issue. However, in the absence of
tracers, the interactions among multiple fluxes must be fully recognized and handled with caution.

Comparative analysis with the 4D-Var framework reveals that its information transfer also relies heavily on the prior
covariance B. The adjoint-derived gradient is inherently local; it is the scaling by the B matrix that projects observational
influence to broader areas. This demonstrates the essential equivalence of EnKF and 4D-Var in their information-transfer
kernel under linear-normality assumptions: both utilize the prior covariance matrix as the conduit to distribute the constraint
from point observations across larger space and time. Their primary practical differences stem from the spurious correlations
in EnKF due to limited ensemble size and the consequent need for localization.

This study elucidates the fundamental principles governing the transfer of observational information in CO- flux inversions
by establishing a mechanism-diagnostic ensemble simulation framework. Moving beyond the traditional evaluation of final
flux estimates, we dissect the internal workings of data assimilation systems, revealing the decisive role of the prior error
covariance structure in shaping the information propagation pathways. By making the internal process of constraint
propagation explicit, we lay the foundation for building more transparent, interpretable, and trustworthy flux estimation

systems.

Data availability

The metadata for the surface CO, observation data can be obtained from the World Data Centre for Greenhouse Gases
(WDCGG) at https://gaw.kishou.go.jp/ (World Data Centre for Greenhouse Gases, 2025). The satellite XCO2 data can be
accessed through the Goddard Earth Sciences Data and Information Services Center (GES DISC) at https://disc.gsfc.nasa.gov/
(OCO-2/0CO-3 Science Team et al., 2024).
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