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Abstract. Top-down atmospheric CO₂ inversions are essential for estimating surface carbon fluxes, yet significant inter-system 

discrepancies highlight an incomplete understanding of how observational information is transferred to flux estimates. This 

study introduces a diagnostic strategy to explicitly investigate this information transfer, primarily in an Ensemble Kalman 

Filter (EnKF) system, with a comparative analysis of 4D-Var. Using Monte Carlo simulations, we analyze the spatial and 

temporal correlation patterns between CO2 concentrations and fluxes, which play a crucial role in the inversion process by 15 

tracing information flow via the influence matrix. Our results reveal that these correlation scales are dictated by the 

autocorrelation structures of the fluxes themselves. We identify a resonance-like effect wherein correlated fluxes amplify 

concentration-flux correlations, while uncorrelated fluxes suppress them. The absence of this suppression for prescribed fluxes 

(e.g., anthropogenic emissions) can cause systematic signal misattribution. We further demonstrate that 4D-Var relies also 

heavily on flux autocorrelations due to its cost function’s localized gradient. In both methods, the prior’s critical role is 20 

mediated through the transitivity of strong autocorrelations. This process-oriented perspective offers mechanistic insights for 

reconciling inversion results, optimizing observing networks, and strengthening carbon budget assessments. 

1. Introduction 

Anthropogenic emissions of greenhouse gases, most notably CO2, are the principal driver of observed global warming  (IPCC 

AR6, 2021). In response to the climate crisis, the accurate quantification of CO2 sources and sinks has become paramount for 25 

informing mitigation strategies and tracking progress under international agreements. Among the various estimation methods, 

atmospheric inversion—a top-down approach that infers surface fluxes from observed atmospheric CO2 concentrations using 

transport models and data assimilation—has gained prominence. Its value lies in providing a direct, atmospheric constraint on 

net surface-atmosphere exchange, making it a key component in pivotal assessments like the Global Carbon Budget (GCB). 
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The reliance on inversions has grown rapidly, with the GCB incorporating results from 6 systems in 2021 to 14 in 2023 30 

(Friedlingstein et al., 2022, 2023). 

Despite their growing application, CO2 flux inversions still suffer from substantial uncertainty, which lead to significant 

discrepancies between inversion systems (e.g., Jin et al., 2023; Monteil et al., 2020). These uncertainties arise from various 

sources such as inaccuracies in transport models and poorly characterized prior covariance structures (Munassar et al., 2023; 

Schuh et al., 2022; Wang et al., 2020). To improve the reliability of inversion results requires a thorough understanding of 35 

these uncertainty sources. Recent intercomparison studies have quantified the relative contribution of these error sources to 

the final flux uncertainty (e.g., Chen et al., 2019; Munassar et al., 2023). For example, Chen et al. (2019) showed that 

uncertainty in atmospheric transport can result in a spread of CO2 concentrations comparable to the spread induced by a 48% 

uncertainty in natural fluxes. Similarly, Munassar et al. (2023) found that differences in transport models accounted for the 

majority of annual flux discrepancies in Europe, followed by the effects of boundary conditions and inversion schemes.  40 

While such studies have identified key sources of uncertainty, they often focus on the final inversion results—the flux 

estimates themselves. A critical gap remains in understanding the internal processes—specifically, how information from 

sparse, pointwise concentration observations is transferred, transformed, and distributed across space and time to produce a 

flux field estimate. This “information transfer” mechanism is the fundamental process by which an inversion system translates 

measurement into knowledge. Without a mechanistic understanding of this information pathway, it is challenging to optimally 45 

design systems, reconcile their results, or robustly interpret their uncertainties. 

In this study, we address this gap by adopting a mechanism-diagnosing perspective. Our goal is to make the internal process 

of atmospheric inversion more transparent, thereby uncovering the causes of critical uncertainties in flux estimates. We achieve 

this by dissecting the core of the information transfer pathway from fluxes to observations within the Ensemble Kalman Filter 

(EnKF) framework. This pathway is fundamentally encoded in the spatiotemporal correlation structure of the ensemble-50 

derived Kalman gain, which exclusively governs how and where observational constraints can propagate to adjust prior fluxes. 

While a complete EnKF update integrates multiple factors (e.g., the observation-forecast innovation), this correlation structure 

exclusively determines the path and spatial extent through which observational constraints can reduce prior flux uncertainties.  

The EnKF is uniquely suited for this diagnosis because it makes the mathematical kernel governing this assimilation 

pathway—the Kalman gain matrix (�, see Sect 2.1)—explicit and manipulable through an ensemble, which can be directly 55 

computed and analyzed via Monte Carlo simulation. Crucially, within this framework, the spatiotemporal autocorrelation 

structure, a foundational property of parts of � (dominating the spatiotemporal information pathway) that defines how 

uncertainties are presumed to correlate, can be systematically and flexibly manipulated through the generation of ensembles 

with prescribed core parameters (e.g., length scales and statistical distributions), and therefore enabling control over the 

resulting correlation structure in the Kalman gain. This approach allows us to directly test how the prescribed prior covariance 60 

structure fundamentally dominates and shapes the information transfer mechanism, offering a powerful and insightful 

perspective for analyzing data assimilation systems. 
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Therefore, we employ this controlled, large-ensemble EnKF approach to address the following key questions raised by 

theoretical and practical contradictions: (1) What determines the spatiotemporal scale and pattern of the ensemble correlations 

between concentrations and fluxes that drive the EnKF update? (2) How do the autocorrelation properties of prior fluxes, and 65 

the interactions between different flux components (e.g., anthropogenic vs. biospheric), modulate this information flow?  

To provide broader context and highlight the generality of our findings regarding the role of prior covariance, we also 

present a comparative analysis with the four-dimensional variational (4D-Var) method. The equivalence between the Kalman 

filter update and the analytical solution of a 4D-Var problem under linear-Gaussian assumptions (Chevallier et al., 2005; 

Evensen et al., 2022) allows us to interpret our EnKF-based results in light of the 4D-Var formalism, where information 70 

transfer is mediated by the adjoint sensitivity and the prior covariance matrix. This comparison helps clarify how the 

fundamental constraint imposed by the prior covariance structure is a common determinant of information flow across different 

assimilation techniques. 

The remainder of this paper is structured as follows: Section 2 details the methodological framework, including the ensemble 

configuration and the generation of prior perturbations. Section 3.1-3.2 presents results on the structure of concentration-flux 75 

correlations, and the factors influencing them. Section 3.3 provides a comparative perspective based on 4D-Var principles. 

Section 4 discusses the limitations of our approach. Section 5 summarizes the principal conclusions and their implications for 

future inversion studies. 

2. Methods 

2.1 A statistical derivation of the Kalman Filter for information transfer analysis 80 

The core objective of this study is to diagnose how the a priori representation of uncertainty controls the assimilation of 

observational information into state estimates. We achieve this by introducing a perturbation-response strategy within the 

Ensemble Kalman Filter (EnKF) framework. The strategy is to design prior ensembles with distinct, prescribed statistical 

properties and then analyze how the resulting information pathways—encoded within the Kalman gain matrix—change in 

response. 85 

There are several ways to derive the Kalman Filter, some of which rely on the normality assumption, while others do not 

(Tanizaki, 1996). We adopt the latter in this work, employing traditional statistical estimation methods to derive the KF (Rao, 

1994; Sengupta and Jammalamadaka, 2020). This approach seeks the optimal linear combination of prior and observational 

information that minimizes the analysis error variance while remaining unbiased, without presupposing any specific error 

distribution (Rao, 1994). The full derivation is provided in the Supplementary Information. 90 

According to the linear estimation theory (Rao, 1994; Sengupta and Jammalamadaka, 2020), when observations and 

backgrounds are uncorrelated, the constrained best linear unbiased estimator (BLUE, linear estimator with minimum variance) 

of the general linear statistical model with constraint is 

�� = �� + ���(��, ��� − ��)[���(��� − ��)]��(�� − ���). (1) 
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where the state variable � = (��, ��
�, … , ��

�)� , the vector of the modeled concentrations �  and different fluxes �� (� =95 

1, ⋯ , �). ��� ≔ �� ≔ ℋ�ℳ(��, ��, … , ��)� is the vector of the modeled concentrations corresponding to the observed 

concentrations at specific locations and times. ��  is the observation vector. ℳ  and ℋ  are the dynamical model (e.g., 

atmospheric transport model) and the observation operator, respectively, both of which need not to be linear. 

Equation (1) can be simplified since the observation �� and the background ��  are uncorrelated (i.e., ���(��, ��) = �): 

�� = �� + ���(��, ��)[���(��) + ���(��)]����� − ���� (2) 100 

Furthermore, insert the covariance matrices �� ≔ ���(��) = ���(��, ��) and � ≔ ���(��), we have 

�� = �� + ����(����� + �)��(�� − ���) (3) 

which is the widely used form of KF (where the projection � is usually replaced with a more general linear operator �) and 

in this form the equation can be treated as the analytical solution to the cost function of 4D-Var when the model and observation 

operator is linear (Evensen et al., 2022). 105 

� ≔ ����(����� + �)�� = ���(��, ��)[���(��) + ���(��)]�� (4) 

is usually referred to the Kalman gain matrix and denoted by �, while �� − �� is known as the innovation vector (Asch et al., 

2016). In the framework of EnKF and sequential assimilation, the covariances and variances in eq. 4 can be easily evaluated 

using ensembles of fluxes and simulated concentrations.  

Given the updated state variable, we can also update the covariance matrix: 110 

�� = ������� = �� − ����(����� + �)����� (5) 

In data assimilation literature, �� and ��  are generally written as �� and ��, where a stands for analysis. 

In the Kalman gain equation, ����  (i.e., ���(��, ��)) is the primary signal or information transfer channel. It explicitly 

maps how uncertainties in specific state variables (e.g., fluxes in a given region) covary with projected observations. Its spatial 

pattern directly determines the pathways and directions in which observational information propagates to update the state. 115 

Therefore, in this study, we adopt a perturbation-response strategy. By designing prior ensembles to systematically alter ��and 

observing the consequential changes in the ensemble-based ����  to probe the sensitivity of the system’s core information-

transfer physics. 

2.2 Transport model and experiment implementation 

We implement this strategy through a series of high-resolution Monte Carlo simulations using the Weather Research and 120 

Forecasting model coupled with the Vegetation Photosynthesis and Respiration Model (WRF-VPRM, version 3.9.1.1). WRF-

VPRM integrates the diagnostic VPRM biosphere model into WRF-Chem. VPRM parameterizes biospheric CO₂ fluxes—

gross ecosystem exchange (GEE) and ecosystem respiration (RES)—as functions of satellite-derived vegetation indices and 

meteorological drivers (Ahmadov et al., 2007; Beck et al., 2011; Mahadevan et al., 2008). We extended the standard VPRM 

formulation by adding five parameters per vegetation type (63 total across seven major types) to better represent the nonlinear 125 

environmental response of respiration, following Gourdji et al. (2022). Default parameter values were drawn from established 
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literature (Dong et al., 2021; Gourdji et al., 2022; Li et al., 2020; Raju et al., 2023), with minor adjustments. The model domain 

covered East Asia at a 27-km horizontal resolution with 39 vertical levels (Fig. S1). All ensemble members were driven by 

identical meteorological fields, constrained by NCEP GDAS/FNL 0.25° analysis data with spectral nudging. The planetary 

boundary layer was parameterized using the ACM2 scheme. Additional WRF model configurations are available in our 130 

previous publications (e.g., Fan et al., 2021; Fan and Li, 2022, 2023; Gao et al., 2022; Li and Li, 2023). To capture distinct 

seasonal regimes, base simulations were conducted for two-week periods in January and July 2016. Due to the high 

computational cost of the 500-member ensemble, shorter one-week simulations were used for specific sensitivity tests (Super 

et al., 2020). 

All experiments use a 500-member ensemble and are driven by identical meteorological fields to isolate the impact of flux 135 

uncertainty. The core of the experimental design lies in manipulating the representation of biosphere flux uncertainty, as shown 

in Table 1. The OFF600 case serves as the baseline, employing offline perturbations with a 600 km spatial correlation. The 

ONLINE case generates uncertainty by perturbing ecological model parameters (producing process-driven covariance with 

larger correlation length scales), while the OFF100 case uses offline perturbations with a shorter correlation length (100 km). 

Anthropogenic and ocean fluxes are perturbed consistently across all cases (see Sect. 2.3). 140 

Table 1. Case design of this study. 
Case   Flux origin Perturbation correlation function Perturbation 

variance 

OFF600 (BASE) FBIO Mean of the ONLINE ensembles Space and time exponential functions and 600 

km, 1 month correlation lengths 

40% of mean 

 

FANT EDGAR-GHG v6.0 The same as FBIO 

FOCE Online calculated using monthly pCO2 and 

modeled concentrations and so on. 

pCO2 perturbed with a space exponential 

function and a 1000km correlation length.  

ONLINE FBIO Online calculated using an ensemble of 

VPRM parameters 

VPRM parameters independently perturbed. 40% of mean 

FANT The same as OFF600 The same as OFF600 

FOCE The same as OFF600 The same as OFF600 

OFF100 FXXX The same as OFF600 but with 100 km space correlation length of FBIO 

Note. XXX in FXXX represents ANT, BIO, or OCE. 

2.3 Generation of ensemble inputs 

The utility of Monte Carlo simulations for understanding the EnKF method has been demonstrated in simple experiments 

by Chen et al. (2019) and explored more extensively in other domain research fields (Miyoshi et al., 2014). In this study, we 145 

extend this approach to analyze the nature of concentration-flux correlations, which play a central role in information transfer. 

We investigate their general characteristics in space and time and identify key influencing factors such as flux autocorrelations 

(which relate to the background covariance matrix) and the interactions between uncorrelated flux components (e.g., 

anthropogenic and biospheric fluxes). 
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To run Monte Carlo simulations, proper input ensembles must be generated before the run. For regional CO2 transport 150 

simulations, the primary inputs (aside from meteorological fields) are CO2 fluxes, initial concentrations (IC), and lateral 

boundary conditions (BC). We will investigate the impacts of BC in another work. Accordingly, ensembles were constructed 

for both fluxes and IC. A critical design element in ensemble generation for CO2 flux inversion is the characterization of 

spatiotemporal correlation structures. There is limited discussion in the literature regarding the spatial correlation of IC; we 

thus followed the approach of Miyoshi et al. (2014) by using CO2 fields at different time steps from an independent simulation 155 

to represent different ensemble members. The independent simulation uses another transport model (Community Multiscale 

Air Quality model, CMAQ, version 5.4) with CO2 fluxes that differ from those employed in the Monte Carlo simulations. 

For anthropogenic emissions over land that are spatially regridded and temporally allocated from the monthly EDGAR-

GHG (v6.0) (Janssens-Maenhout et al., 2019; Crippa et al., 2020), we implemented a simple space-time correlation function, 

characterized by an exponential function with correlation lengths of 600 km (following Ma et al. (2019) for other anthropogenic 160 

emission species) and 1 month (considering the time resolution in the emission inventory), see Fig. S2 for an example of the 

correlation functions. An ensemble of Gaussian fields with a standard deviation of 40% was generated based on this space-

time correlation function using a Python toolbox GStools (Müller et al., 2022). 

For biospheric fluxes, the ONLINE case utilized online-calculated fluxes derived from an ensemble of VPRM parameters. 

This approach is conceptually similar to that of Super et al. (2020) , who applied ensemble methods to fossil fuel emissions. 165 

The ensemble of VPRM parameters is generated independently by drawing from a normal distribution with averages the same 

as some reported values in previous studies (see Sect. 2.2) and a standard deviation of 40%. The ensemble means of GEE and 

RES from these simulations were subsequently used as the baseline fluxes for the OFF600 case. To generate two ensembles 

for OFF600, these mean GEE and RES were perturbed using the same method as that applied to anthropogenic emissions. 

For oceanic fluxes, we implemented a module to calculate the fluxes online using the monthly surface ocean partial pressure 170 

of CO2 (pCO2) (Fay et al., 2021), the modeled atmospheric CO2 concertation, and the parameterized gas transfer velocity 

(Wanninkhof, 2014). This is similar to the biospheric fluxes in the sense of online calculation, but the oceanic fluxes rely more 

on the atmospheric and oceanic concentrations and may have different correlation structures compared to biospheric fluxes. 

The monthly pCO2 was perturbed using GStools with a space exponential correlation function that has a correlation length of 

1000 km. The standard deviation of the perturbation was also 40%, as is the case with other fluxes.  175 

2.4 Diagnostic analysis and choice of observation sites 

The core diagnostic metric is the ensemble sample correlation between simulated concentrations at observation points and 

prior fluxes across the entire spatiotemporal domain. These correlation patterns directly estimate the influence functions within 

the Kalman gain �, thereby mapping the information transfer pathways under a given prior �. 

For diagnostic analysis of concentration-flux response, we need to set up observation sites. For surface CO2, we choose the 180 

GAW sites within our domain (Global Atmosphere Watch Station Information System, 2024) and some additional sites in 

China. For satellite XCO2, we select multiple locations somewhat arbitrarily along the OCO2 track over land and are also 
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denoted as “sites” for convenience (OCO-2/OCO-3 Science Team et al., 2024). The locations of the 111 CO2 sites and the 41 

XCO2 sites are shown in Fig. S3. For further spatial illustration, we select 26 CO2 sites with available data at some time (World 

Data Centre for Greenhouse Gases, 2025), excluding two sites in Japan that are too close to others, leaving 24 sites. Similarly, 185 

we select 24 sites from the 41 XCO2 sites for further illustration. Only half of the 24 sites are shown in the main text when 

illustrating the correlation patterns, while the others are included in the SI when necessary. 

Since our simulations in different months are relatively short, we need to check IC’s influence first. The autocorrelation of 

modeled CO2 at a site with IC at the same site decreases rapidly, and this reduces is relatively homogeneous in space, except 

for some sites occasionally (Fig. S4). Therefore, a one- or two-week simulation can be used to explore the transport behavior 190 

of ensemble fluxes. In addition, our modeled FBIO, FOCE, surface CO2, and XCO2 are not far from widely used results (Fig. S5), 

demonstrating the relevance of our simulations to real applications. 

3. Results and discussions 

3.1 Spatial structures of concentration-flux correlations 

3.1.1 Spatial patterns of correlations 195 

In EnKF-based CO2 inversion systems, the information from observations is primarily transferred through correlations 

between observed concentrations and unobserved fluxes. Thus, analyzing the correlation structures between CO2 

concentrations and fluxes is essential. This study uses results from 500-member simulations to characterize these correlation 

structures. To illustrate the typical spatial influence of fluxes, we compute the correlation between the prior flux state at the 

initial time and the resulting ensemble concentrations after one week of transport (at hour 168). This choice partially reflects 200 

the sequential update logic of an EnKF (Houtekamer and Mitchell, 2001), where observations constrain fluxes within a time 

window one by one. While this provides a representative snapshot, the correlation structures are qualitatively similar at other 

times (temporal evolution is analyzed in Sect. 3.2). 

In the 500-member simulations, the spatial correlation patterns are demonstrated, showing large values near the observation 

sites and minimal noise-like values (i.e., randomly mixed positive and negative values) in remote areas if the sites are 205 

influenced by a specific flux (Figs. 1 and S6). For example, in January, the LAN, RYO, and WLG sites exhibit strong 

correlations between surface CO2 and nearby FANT (Fig. 1Ag), FOCE (Fig. 1Al), and FBIO (Fig. 1Ec), respectively. Similarly, in 

July, the TAP, HAT, and WLG sites exhibit strong correlations (Figs. 1Ci, h, and c). Many other sites also show significant 

correlations, suggesting the feasibility of using surface observations to invert CO2 fluxes. In general, the correlation between 

surface CO2 and nearby FANT is more potent in winter (January) than in summer (July), with notable correlations primarily 210 

observed in the eastern China, Korea, and Japan (Figs. 1A and C), where the FANT is large and concentrated. In contrast, the 

influence of FBIO is more pronounced in the western region, with strong correlations present in both winter and summer (Figs. 

1E and G). At island sites, the influence of FOCE can be significant, especially in summer when the monsoon is directed 
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landward. The specific spatial morphology of correlations at individual sites—such as their asymmetry and elongation 

direction—clearly reflects the modulating influence of local atmospheric transport processes. 215 

Conversely, the overall spatial correlations pattern exhibits a relatively regular distribution, showing maximum values near 

the sites and a stable decline with distance. The locations of the strongest correlations are typically at or near the observation 

sites, mainly downwind of the monsoon directions. However, some sites exhibit “remote” correlations for surface CO2 and 

XCO2 (e.g., Figs. 1Ah, Ej, and Fl). One notable characteristic of the spatial patterns is that the values are almost universally 

positive. This means that more emissions result in higher concentrations, which is expected in atmospheric transport. However, 220 

negative values occasionally arise and cannot be dismissed as mere noise, as illustrated in Fig. 1Bg. These negative correlations 

may be attributed to negative diffusivity, which differs from positive diffusivity (where fluxes move from high to low 

concentration) by indicating a flux from low concentration to high concentration. Such negative diffusion has been observed 

in fine-grid simulations using the WRF model and is suggested to result from sharp gradients in tracer mass immediately after 

release (Fathi et al., 2023). Indeed, the negative correlations are usually near a relatively large point source in the case of FANT. 225 

Nevertheless, these “real” negative correlations have effects similar to positive correlations in the inversions, so we do not 

explore them further. When we ignore these rare “real” negative correlations, only universally positive correlations remain, 

and this monotonicity of correlations has an important implication. Observation at specific site can only influence a 

neighborhood’s fluxes by increasing or decreasing them overall. In contrast, prior fluxes in this neighborhood may exceed the 

true values in some locations while falling short in others. Therefore, only a sufficient combination of observations can 230 

potentially recover the true fluxes from the prior estimates by both increasing and decreasing the fluxes across the 

neighborhood. 

Additionally, the correlation patterns between XCO2 and fluxes (Figs. 1B, D, F, and H) are remarkably consistent with those 

derived from surface CO2. A direct comparison between surface sites and nearby XCO2 sampling locations reveals nearly 

identical spatial structures in their respective correlation maps (e.g., Fig. 1Ah vs. Bk). This finding is also consistent with the 235 

substantial similarity between CO2-flux correlations at the surface and those at higher altitudes (see Fig. S7 for the 100m and 

1000m results). This strong similarity implies that, in terms of diagnosing the information transfer pathway, the flux signals 

captured by XCO2 and nearby surface observations are dominated by common source regions (e.g., Figs. 1Ah and Bk, and Ec 

and Fd). However, it should be noted the difference in the observation innovations can change the contributions of surface 

CO2 and XCO2 in the inversion. 240 
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Figure 1. Spatial patterns of 500-member correlations between CO2 concentrations at the 168th hour at sites and CO2 fluxes at the initial 
time in the whole domain. Eight parts (A‒H) are separated by bold red lines, and each part shows the same 12 sites (a‒l) indicated by the 
yellow stars (the site codes are shown at the top of each panel), which are ordered in column by longitude. (A) is for surface CO2 and the 
combined FANT and FOCE in January while (C) is in July. (B) and (D) are the same as (A) and (C) but for XCO2. (E)‒(H) are for FBIO.  245 
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3.1.2 The influence of flux autocorrelations on the spatial correlation patterns 

The spatial pattern of concentration-flux correlations is statistically similar to that of flux autocorrelation (compare Figs. 1Ec 

and S2a), which shows a clear decline with distance. Although the specific shapes of correlations vary across sites, the average 

decay scale of their spatial influence seems aligns closely with the autocorrelation length of the prior fluxes. For instance, the 

strong correlation areas for CO2-FOCE are larger than those for anthropogenic CO2-FANT or biogenic CO2-FBIO fluxes, consistent 250 

with its longer autocorrelation length 1000 km of FBIO than the 600 km of the other fluxes (e.g., compare Figs. 1Ch and Gc, 

and Dj and Hd). To further prove this, we introduce two additional simulation cases: ONLINE, which utilizes an online 

perturbed FBIO with land-cover-based autocorrelation patterns and has larger correlation length scales, and OFF100, which 

employs a shorter spatial correlation length of 100 km (see Table 1). Figure 2 illustrates the spatial correlations between CO2 

concentrations and FBIO for these two cases, which can be compared to Figs. 1E‒H for the OFF600 case. 255 

As expected, the ONLINE case exhibits larger correlation scales in space than the OFF600 case, and the spatial patterns of 

correlations are predominantly influenced by land cover. Similarly, the OFF100 case shows a smaller correlation scale than 

the OFF600 case, consistent with the 100 km correlation length. These two additional cases clearly illustrate that the 

autocorrelation lengths of fluxes largely determine the basic spatial patterns of the concentration-flux correlations, despite that 

transport processes may translate the high-value areas and deform the shapes of the patterns to some extent. This property 260 

provides a more precise explanation of why the autocorrelation scales of the fluxes are critical in flux inversion, as 

CarbonTracker identifies them as one of the two primary “tuning knobs” (Jacobson et al., 2023). This is because these scales 

determine the possible spatiotemporal extent to which a concentration observation can contribute to inverting the fluxes.  

In addition to the scale of correlation, the strength of the correlation between concentrations and fluxes is also influenced 

by the autocorrelation length of the fluxes. Notably, both the correlation scale and strength diminish simultaneously in the 265 

OFF100 case compared to the OFF600 case (e.g., compare Figs. 1Fl and 2Fl, and 1Gc and 2Gc). Moreover, the correlation 

strength in the ONLINE case is greater than in the OFF600 case. This weaker correlation in cases with smaller correlation 

lengths for fluxes and a stronger correlation in cases with more considerable correlation lengths suggests a form of “resonance” 

of fluxes at different locations during transport, enhancing the maximum correlations observed. Different from the scale of the 

correlation, such a “resonance” does not simply result from the transitivity of correlations because transitivity does not 270 

necessarily enhance correlations. This “resonance” effect essentially stems from the integrative amplification of spatially and 

temporally coherent signals, which is also enabled by strong autocorrelations, by atmospheric transport. When fluxes are 

strongly positively correlated over a large region (i.e., have a long autocorrelation lengths), the CO2 signals released from these 

areas exhibit similar phases and variation trends during transport. Integrated by atmospheric flow and arriving at the 

observation site, their contributed concentration fluctuations add up coherently, thereby producing a stronger concentration-275 

flux correlation. Conversely, if the spatial correlation scale of the fluxes is short, the emission signals from different upwind 

grid cells are independent of each other and randomly cancel out, resulting in a weak net signal at the site and consequently a 

lower correlation. 
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These two effects, directly or indirectly imposed by flux autocorrelations, make it more challenging to configure the space–

time autocorrelation functions of fluxes (i.e., to specify the prior covariance matrix �). While data-driven methods that 280 

construct correlation functions directly from observations tend to yield shorter (i.e., <100 km) spatial correlation lengths 

(Kountouris et al., 2015, 2018) in Europe. Our results indicate that a shorter correlation length not only reduces the correlation 

scale but also weakens the correlation strength, further amplifying the limitations of sparse observations.  

Therefore, in the context of sparse surface observations, it is not recommended to strictly follow suggestions that advocate 

very short spatial autocorrelation lengths (e.g., 100 km). This issue is more clearly illustrated in Fig. 3, which shows the sum 285 

of localized (Gaspari and Cohn, 1999) concentration–flux correlations across all the 24 sites. When a spatial autocorrelation 

length of 600 km is used, the summed correlations cover most of the domain except South Asia and some weak-flux regions 

(Figs. 3a and c), indicating that fluxes over most regions can be constrained by observations from these 24 sites. In contrast, 

using a much shorter spatial autocorrelation length results in extensive blank areas, indicating that fluxes over most regions 

cannot be effectively constrained by these observations (Figs. 3b and d).  290 

Consequently, for many applications it may be reasonable not to strictly follow observation-derived correlation lengths, but 

instead to adopt longer ones (e.g., Chandra et al., 2022; van der Laan-Luijkx et al., 2017).This study demonstrates that, for the 

current sparse surface observation network in East Asia, adopting a flux spatial autocorrelation length of approximately 600 km 

is appropriate. It is important to clarify that this length scale is not directly “measured” from the observations but rather serves 

as a parametric representation based on the physical understanding of flux spatial continuity in the region. Our analysis shows 295 

that this scale assumption most effectively organizes the sparse observational information, enabling the inversion system to 

meaningfully constrain fluxes over a wide area (as illustrated in Fig. 3). The inversion results constitute an optimal probabilistic 

estimate driven by the observational data within this prior framework. 

Denser XCO2 observations may alleviate the limitations on autocorrelation length scales imposed by surface observation 

sparsity; however, the spatiotemporal sampling of XCO2 is irregular, and its information “content” is generally lower than that 300 

of surface CO2 observations. It therefore remains unclear to what extent these limitations can be mitigated. Nevertheless, when 

only surface CO2 observations are used, the flux autocorrelation length should not be too short. In the future, as observational 

density increases, this optimal scale may change, which could enable more details spatial pattern of the inversion. The 

methodology presented here provides a quantitative tool for evaluating and determining such scales. 
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 305 

Figure 2. Spatial patterns of 500-member correlations between CO2 concentrations at the 168th hour at sites and CO2 fluxes at the initial 
time in the whole domain in the ONLINE and OFF100 cases. (A)‒(D) are the same as Figs. 1E‒G but for online perturbed FBIO. (E)‒(H) are 
the same as Figs. 1E‒G but with a shorter (~100 km) correlation length in space. 
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Figure 3. The summation of correlations over the 24 sites. (a) is for the 168th CO2 and initial flux in January in the OFF600 case and (b) in 310 
the OFF100 case. (c) and (d) are for July. 

3.1.3 Multi-flux coexistence and signal “dilution”  

The “resonance” effect, whereby coherent flux signals amplify correlations, implies a complementary phenomenon that can 

influence the spatial patterns of correlations: correlation “dilution” can occur when neighboring or coexisting flux types are 

uncorrelated. This is particularly relevant in atmospheric inversions, where multiple uncertain flux types jointly influence 315 

observed CO2 concentrations. In FBIO inversions, FANT is usually fixed to reduce the degree of freedom. This is a practical 

necessity because observations are limited and sparse. However, as mentioned earlier, this approach raises theoretical concerns 

since multiple flux types influence CO2 concentrations and may exhibit correlation “dilution”. Fixing one flux may alter the 

correlation between other fluxes and CO2 concentrations, effectively removing the “dilution”.  

To assess the impact of fixing FANT on the correlations between FBIO and CO2 concentrations, as well as the implications of 320 

using the CO2ANT tracer, we modeled three different CO2 tracers corresponding to the three types of fluxes: CO2ANT, CO2BIO, 

and CO2OCE. Figure 4 illustrates the correlations of CO2 tracers with their corresponding fluxes. Compared to the correlations 

obtained with all fluxes varying simultaneously (Figs. 1A, C, E, and G), fixing non-target fluxes leads to widespread and often 

substantial increases in correlation strength (Fig. 4, right-column difference panels)., These increases are most pronounced 

where bulk CO2 concentration correlations were originally weak—for instance, especially for FANT in July (Figs. 4D), FBIO in 325 

January (Figs. 4F), and FOCE in both January and July (Figs. 4A and D). Conversely, the increases in correlations for FANT in 

January (Figs. 4D) and FBIO in July (Figs. 4H) are less significant, as their correlations with bulk CO2 concentrations are already 

strong at many sites. 

The significant enhancement of correlations upon fixing other fluxes confirms that correlation “dilution” is a real effect in 

multi-flux systems. A key implication is that simply fixing FANT in a FBIO inversion may be methodologically problematic: the 330 

observational information that actually constrains FANT could be misattributed to FBIO, distorting its solution. Conversely, at 

sites where bulk CO2 already shows strong correlations with a given flux (e.g., FANT in January (Figs. 4D) or FBIO in July (Figs. 

4H)), the correlation increases due to fixing other fluxes is minimal. This indicates that where information is intrinsically 

strong, random errors or uncertainties in coexisting fluxes have negligible “diluting” impact. 

In summary, fixing FANT in the inversion of FBIO can introduce disadvantages without offering significant benefits (except 335 

for numerical calculation). Nevertheless, these disadvantages will disappear if CO2 tracer measurements are used instead of 

bulk CO2 concentrations. In such cases, when bulk CO2 concentrations are underestimated due to the underestimation of FANT, 
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the CO2BIO tracer remains unaffected, making the strong correlation beneficial. Currently, there is no simple CO2BIO tracer, but 

the CO2ANT tracer has been successfully applied in FANT inversions (Basu et al., 2016, 2020). However, some sites exhibit low 

correlations even for tracers (e.g., Figs. 4Ab and d), highlighting the limitations of using tracers. Conversely, as mentioned 340 

above, sites that show minimal correlation increases due to already strong correlations (e.g., Figs. 4Ag and h) may provide an 

opportunity to invert FANT effectively using bulk CO2 concentrations. It should be noted, however, this opportunity is not 

guaranteed but only works for some circumstances.  
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Figure 4. Spatial patterns of 500-member correlations between CO2 tracers at the 168th hour at sites and corresponding fluxes at the initial 345 
time in the whole domain. (A) and (C) are for CO2ANT-FANT and CO2OCE-FOCE, and (E) and (G) for CO2BIO-FBIO.  (B), (D), (F), and (H) are 
correlation changes caused by fixing to zeros the other types of fluxes than the target ones, that is, the differences between (A), (C), (E), and 
(G) and Figs. 1A, 1C, 1E, and 1G. 
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3.2 Temporal structures of concentration-flux correlations 

3.2.1 Time variations of correlations 350 

The temporal dynamics of the information transfer pathway are diagnosed by analyzing the time series of the Maximum 

Regional Correlation (MRC) within a ~1200 km domain surrounding each observation site. In Figure 5, each line traces the 

evolution of the MRC between a flux impulse, of FANT, FOCE, and FBIO emitted at a specific hour, and the CO2 concentrations 

at the site over subsequent hours. A key observation is the extensive overlap of these lines in many panels, indicating that the 

concentration at a given time exhibits similar correlation strength with flux impulses from many different prior hours. 355 

Conversely, where lines are separated, they reflect distinct correlation levels for fluxes emitted at different times for same 

source. Unlike the monotonic decay observed in space, these temporal MRC series frequently exhibit sustained plateaus or 

complex fluctuations patterns, changing with seasons and height. The MRCs for different flux types often vary in a 

complementary manner, as one weakens, another strengthens, particularly in regions of moderate correlation (e.g., Fig. 5Bd). 

This anti-phase behavior suggests that shifting transport pathways alternately enhance the influence of different source regions 360 

at the receptor site.  

The MRC evolution for ocean fluxes (FOCE) shows distinct regimes across the observation network, reflecting the interplay 

of geography, atmospheric transport, and source-receptor connectivity. At predominantly remote oceanic or downwind coastal 

locations (e.g., Fig. 5Ae, Ah, Aj, Ce, Ch, and Cj), FOCE exhibits dominant MRC. This occurs because these sites are persistently 

influenced by marine air masses, where the ocean source is strong and contiguous. However, its absolute MRC magnitude is 365 

moderated by the simultaneous presence and competition from co-varying terrestrial fluxes. A clear example is the Nansha 

site (e.g., Fig. 5Ce), where the column airmass is extremely minimally diluted by terrestrial fluxes, allowing a clear and stable 

oceanic signal to dominate the concentration variability; In contrast, at deep inland or strongly continentally influenced sites, 

the MRC for FOCE is relatively low or even near zero. At first three stations in Fig. 5, where the marine air masses rarely reach 

the receptor under typical transport regimes, the MRC is zero. The majority stations, typically situated in coastal transition 370 

zones or eastern China (Figs. 5d, f, g, j, and k), show low, stable and dense MRC, displaying a characteristic of baseline 

ensemble. At these locations, the ocean-derived CO2 contributes a persistent, near-constant background concentration.  

The current features of site correlations related to ocean sources, which align intuitively with geography and climate, are 

largely attributable to and directly validate the reasonable prior’s setting on perturbing monthly pCO2 fields. Ocean surface 

pCO2 and its fluxes vary slowly on synoptic scales, with dominant variations occurring on seasonal scales. Setting the prior 375 

temporal autocorrelation to 30 days essentially encodes this physical understanding into the inversion system. Consequently, 

the simulated information transfer pathways show that at sites influenced by the ocean, ocean signals manifest as a long-term, 

stable statistical entity.  The reasonableness of site characteristics, such as which sites exhibit strong, moderate, or weak ocean 

influence, is precisely the expected outcome of this reasonable prior setting when processed through a realistic atmospheric 

transport model. If the ocean prior were set to a short decay time (e.g., 3 days), the system would assume that ocean flux 380 

information from a few days ago is nearly irrelevant, even at actual ocean sites. This would result in a loss of stable high 
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correlations at ocean sites, replaced by rapidly decaying and highly fluctuating correlations and a disappearance of the “ocean 

background source” concept in the information transfer pathways, which would entirely contradict our fundamental physical 

understanding of ocean carbon exchange.  

In contrast, the MRC for anthropogenic fluxes (FANT, grey lines) display highly heterogeneous and site-specific trajectories, 385 

including complex oscillations. This diversity should stem from the interaction between its prior specification and atmospheric 

dynamics, establishing a statistical tendency for information from older fluxes to weaken. In some extreme cases, the variation 

can show a decay trend rather than an oscillation (e.g., Fig. 5Ag and k, or more prominently, Fig. S8Ak). However, at most of 

stations, this underlying decay of FANT is powerfully modulated by transport processes, such as shifting winds, boundary layer 

effect, creating complex fluctuations. A visible decay trend emerges only where transient transport variability is minimal (e.g., 390 

Fig. 5Ag, and k), allowing the prior’s statistical attenuation to be expressed clearly in the temporal trajectory of a single flux 

impulse’s influence. 

The biospheric fluxes (FBIO, green lines) frequently exhibit a separation into two parallel strata with distinct correlation 

levels, within which lines follow coherent, wavelike paths. This pattern is a visual encoding of the prior’s structural definition: 

daytime (GEE) and nighttime (RES) fluxes are treated as independent processes. The information pathway faithfully preserves 395 

this prescribed discontinuity, leading to the clustered strata. The coherent oscillations within each stratum reflect the diurnal 

and synoptic-scale variability of these biological signals as they are transported, illustrating how a process-informed prior 

structure is carried through the physical system. These non-monotonic behavior highlights the critical modulating role of 

atmospheric transport dynamics. 

The similarities in MRC between CO2 concentration and different fluxes at various hours enable the inversions of fluxes in 400 

a period using a single observation, thereby reducing the need for continuous monitoring at a site. This aligns with the 

discussion by Chevallier et al. (2012), which suggests that the temporal density of observations is much less informative than 

spatial coverage. However, high temporal density can be beneficial due to the variations in correlations between CO2 

concentration at various hours and a particular flux. If an observation with weak correlations to fluxes is used by chance, the 

inverted flux will not be optimal. High-density temporal observations can enhance the reliability of the information because a 405 

strong correlation at neighboring hours can complement a weak correlation at one hour. This is particularly important when 

strong correlations are rare and may be missed by low-density observations (e.g., Fig. 5Ci, FBIO). Furthermore, obtaining a 

reliable estimation of fluxes from prior fluxes requires a sufficient combination of observations, as discussed in Sect. 3.1.1. 

Thus, high-density temporal observations can improve the robustness of flux inversions by reducing the influence of 

inaccuracies in concentration modeling that arise from factors other than uncertain fluxes, ultimately leading to more accurate 410 

and reliable results. 

https://doi.org/10.5194/egusphere-2026-615
Preprint. Discussion started: 11 February 2026
c© Author(s) 2026. CC BY 4.0 License.



 

18 
 

 

Figure 5. Timeseries of maximum correlations between CO2 concentrations at the 12 sites and nearby (~1200 ×1200 km2 box) fluxes. Grey 
lines indicate FANT, blue FOCE, and green FBIO. (A) is for surface CO2 in January, and (C) in July. (B) and (D) are for XCO2. There are 335 
(14×24-1) lines in each panel, and each line starts at different hours (since the initial hour). The zeroth hour of each line (one hour before 415 
the first hour, not shown) corresponds to the flux and the other hours correspond to the CO2 concentrations. The orders of panels (a‒l) is the 
same as those in Fig. 1. 

3.2.2 Multi-flux coexistence revisited 

It is observed in Sect. 3.2.1 that the MRC at an observation site for different flux types often vary in a complementary manner. 

This can be more clearly illustrated when we spread the “observation sites” on the whole domain: we calculate the MRC for 420 

an observation site in Fig.5, and this calculation is then applied across all model grids to generate Figure 6 for specific times. 

Like the temporally complementary variation of different fluxes in Fig. 5, the three types of fluxes exhibit spatially 

complementary distributions in Fig. 6. In January, most areas in China, South Korea, and Japan show relatively strong 

correlations between surface CO2 and FANT, with numerous small hotspots in India and Central Asia (Figs. 5a‒c). Other land 

areas generally show strong correlations between surface CO2 and FBIO (Figs. 5g‒i). In the continental seas near China, South 425 

Korea, and Japan, the correlations between surface CO2 and FANT are also strong. In contrast, the southern continental seas 

display stronger correlations between surface CO2 and FBIO. In contrast, the open ocean, distant from the continent, shows 

strong correlations between surface CO2 and FOCE (Figs. 5m‒o). In July, the overall patterns are similar, but the influence of 

FANT becomes concentrated in smaller areas (Figs. 5d‒f). Meanwhile, the influence of FBIO increases significantly in southern 

China, Korea, and Japan (Figs. 5d‒f); however, the two-week-average does not increase very significantly due to the larger 430 
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diurnal variations of correlations in July (compare Figs. 5A and C, FBIO). Over the ocean, the influence of FOCE becomes much 

stronger than in January, especially in the Indian Ocean and along the western margin of the Pacific Ocean (Figs. 5p‒r). 

The complementary distributions of MRCs for different types of fluxes implies the signal “dilution” discussed in Sect. 3.1.3 

from another point of view. When some type of flux (e.g., FANT) is fixed, the MRC of that type of flux will be zero, and 

therefore the other type of flux will fill the absent MRC. Consequently, there will be signal misattributions. 435 

There is another implication of Fig. 6. A large value means a strong correlation between surface CO2 and nearby fluxes, 

suggesting that observations from these locations can be effectively used to invert fluxes. In other words, observation data 

collected from areas with strong correlations provide more valuable information about fluxes, making these locations ideal for 

establishing measurement sites. Conversely, sites located in areas with weak correlation are less informative for flux inversion. 

Due to the rapid and significant variations in atmospheric dynamics, optimal measurement locations may change quickly, 440 

meaning our findings are not definitive. However, the complementary distributions of correlations for different fluxes highlight 

the potential for identifying new measurement sites based on the correlation analysis. 

 

Figure 6. Maximum absolute values of correlation coefficients between surface CO2 concentration at a model grid and nearby (a ~1200×1200 
km2 box) fluxes. (a) is for surface CO2 at the 168th hour and the FANT at the initial time (06:00 UTC) in January, while (b) is for the CO2 at 445 
the 180th hour and FANT at the 12th hour (18:00 UTC). (c) is the two-week average of correlations between all CO2 and all FANT at 00:00, 
06:00, 12:00, and 18:00 on each day (excluding the first three days for CO2 concentrations). (d)‒(f) are for July. (g)‒(l) are for FBIO and (m)‒
(r) for FOCE. 

3.3. Comparison with 4D-Var 

Many inversion systems are based on 4D-Var. These systems also encounter a similar information transfer problem: how 450 

observations influence the unobserved fluxes. Here, we analyze this problem for a 4D-Var system. However, this analysis is 

partial because the solution to the inverse problem is iterative. 

The starting point of 4D-Var is a cost function �(�) =
�

�
(� − ��)����(� − ��) +

�

�
(�� − ��)����(�� − ��), and the 

goal is to minimize the cost function iteratively based on the gradient � ≔ ��/��. The iteration directions, which are closely 

related to the gradients, determine how the fluxes are modified after assimilating observations and can thus be interpreted as 455 
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information transfer pathways. Since fluxes are typically modified most significantly in the first few iterations (see Fig. 4 of 

Niwa et al., 2022), the overall iteration direction may be roughly approximated by the first iteration direction. 

The gradient has two parts, which can be better understood by defining �� ≔
�

�
(�� − ��)����(�� − ��). Thus, the gradient 

is given by � = ���(� − ��) + ���/��. The first part ���(� − ��) can be directly calculated if � is invertible, while the 

second part usually relies on adjoint models of transport models. Here we use the CMAQ (v5.0) model and its adjoint, CMAQ-460 

ADJ (Zhao et al., 2020), to calculate this part of the gradient. Choosing the 24 surface sites to form the cost function, with 

pseudo-observations ��  from the independent run (see Sect. 2.3) and setting the observation variances to 2.5 ppmv2 for 

simplicity, we obtain ���/�� (Fig. 7A) which is the gradient �� since � = ��. It can be seen that the gradients with respect 

to daily fluxes are concentrated on a very small neighborhood of observation sites, resembling concentration footprints (see 

Fig. 4 of Storm et al., 2023).  465 

Next, we calculate the iteration direction. Suppose we use the simple steepest descent method in the iteration. In that case, 

the iteration direction at the first iteration will be −��, meaning only fluxes in areas very close to observation sites are modified 

after assimilating observations. At the second iteration, we obtain the new gradient �� = ���(� − ��) +
���

��
= −������ +

���/��, where � is the step size of the first iteration. Even if � is invertible and computationally feasible to calculate, ����� 

will still be concentrated in a small neighborhood around the observation sites. As a result, fluxes cannot be significantly 470 

modified after assimilating observations except for areas close to observation sites. 

In practice, other methods than the simple steepest descent method  are used, such as conjugate gradient and quasi-Newton 

methods (Chevallier et al., 2007; Niwa et al., 2017b), and specific techniques can expand the regions where fluxes can be 

modified (Fisher, 1998). In both methods, the key is to calculate �� (possibly with some modifications) instead of ����. 

From the perspective of Newton’s methods, this is equivalent to approximating the Hessian, ��� + ������, with ���, and 475 

the iterations may be seen as refinements of this approximation. Using the same correlation function as in the OFF600 case 

and a uniform standard deviation of 10 mol s-1 grid-1 (~0.0142 gC m-2 d-1), we calculate ��� (Fig. 7B). The areas where fluxes 

can be modified are significantly enlarged compared to ��  (Fig. 7A) but remain concentrated around observation sites. 

Additionally, these areas are similar to the patterns of correlation functions and concentration-flux correlation patterns in 

Monte Carlo simulations (e.g., Fig. 4) after possible weightings. Therefore, similar to KF-based systems, 4D-Var-based 480 

inversion systems also rely heavily on background correlation functions to transfer observational information (via the 

regularization term 
�

�
(� − ��)����(� − ��)), while transport plays only a minor role in determining the spatial and temporal 

extent of the inversion (though not the strength). This minor contribution arises because the cost function gradient is restricted 

to small areas around observation sites. Indeed, if we retain only the gradient values very near observation sites while setting 

“remote” gradients to zero, the patterns of ��� remain unchanged to a large extent (Fig. S9). This minor contribution does not 485 

change even when extending the simulation time, as demonstrated by the one-month results (Figs. 7C and D).  
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In summary, we intuitively show that the KF and 4D-Var solutions to the CO2 inversion problem under the linear assumption 

are mainly equivalent, as formally demonstrated by others (e.g., Chevallier et al., 2005; Evensen et al., 2022). However, since 

KF is typically implemented as EnKF, the small ensemble size can lead to spurious correlations (Fig. S10), necessitating 

localization in EnKF. This means the spatial extents of the two solutions may differ, especially in observation-sparse areas 490 

(Liu et al., 2016). 

With these insights into the 4D-Var method, we can better understand why the spatial patterns of concentration-flux 

correlations are primarily shaped by flux autocorrelations, as previously discussed for EnKF. Since the first-order sensitivity 

of concentrations to fluxes is limited to small areas, concentration-flux correlations are likely constrained to small areas. 

However, flux-flux autocorrelations are strong over larger regions (depending on the correlation functions), meaning that 495 

concentration-flux correlations can extend over larger areas due to the transitivity of strong correlations (Sotos et al., 2009). 

In this way, the prior information embedded in the background covariance matrix plays a role in transferring information from 

observed concentrations to unobserved fluxes. 

Finally, it should be noted that the above discussion assumes continuous observation data. Under these conditions, the cost 

function gradient is continuously “renewed” as new observation data enter, ensuring that large gradient values persist near 500 

observation sites. If observation data are instantaneous, the gradient will not show large values for fluxes remote in time, 

making it appear extended in space (see Fig. S11). This is the typical way results related to gradients or sensitivities are 

presented in previous studies (e.g., Liu et al., 2015; Niwa et al., 2017a). However, since the largest gradient values always 

appear near (both in time and space) the observations, and these values are the most critical for assimilation, analysis based on 

instantaneous observations may not directly apply to understanding inversion systems. If only a single observation time is used 505 

to invert yearly or monthly fluxes, incidental transport errors at that time may significantly distort results, as no other 

observations are available to compensate for such errors. However, in observation-sparse areas, remote observations may still 

provide valuable information, which could also contribute to the differences between EnKF and 4D-Var, as EnKF cannot 

utilize remote observations effectively. 
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 510 

Figure 7. Spatial patterns of daily gradients and iteration directions. (A) is the gradient of the cost function to the daily fluxes. (B) is the 
iteration directions of the first iteration, ���, and is calculated using the same correlation function as in case OFF600 and a uniform standard 
deviation of 10 mol s-1 grid-1 (~0.0142 gC m-2 d-1). Rows represent different months, and columns represent different days. (C) and (D) are 
the same as (A) and (B) but for the 1-month simulation. The values of (D) are divided by four (four weeks) for the purpose of illustration. 
The unit of (A) and (C) is (gC m-2 d-1)-1, and of (B) and (D) is gC m-2 d-1.  515 

4. Limitations and future work  

This study excludes the impact of transport errors when analyzing the EnKF solution for flux inversions due to the complexity 

of the inversion system. Munassar et al. (2023) demonstrated that variations in transport models can lead to discrepancies 

exceeding 50% between two inversion systems. Consequently, it is essential to investigate how these transport errors affect 

the inversion results and, more precisely and more relevant to this study, how they may influence the correlation patterns of 520 

unobserved fluxes and observed concentrations. Such an analysis could serve as a natural extension of the work by Chen et al. 

(2019), which primarily examined variances. Transport errors will likely influence correlations and variances, potentially 

leading to less distinct correlation patterns than those presented in this study. 
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This study also overlooks the variability of boundary conditions of CO2 concentrations, which is the second most important 

factor contributing to the discrepancies in different regional inversion systems, as shown by Munassar et al. (2023). While we 525 

might expect the influence of BCs on correlation patterns to be minimal, similar to the small impacts of initial conditions, this 

assumption may warrant further investigation. This will be investigated in a following study. 

It is important to clarify that a small influence on correlation patterns does not necessarily mean a small influence on 

inversion results. While correlation is a key parameter that characterizes the transfer of information from observed 

concentrations to unobserved fluxes, it does not determine the overall “content” of information. Efficient information transfer 530 

does not imply that the information itself is abundant. More technically, inversion results depend not only on the covariance 

matrix but also on the innovations, which are determined by the differences between modeled concentrations and observations. 

These innovations can be affected by transport errors, uncertainties in initial and boundary conditions, and other factors. 

Consequently, these factors can significantly influence inversion results. This study does not address uncertainties in modeling 

concentrations and, therefore, presents only a partial view of the overall situation. 535 

In the analysis of the 4D-Var, only the first iteration is examined. This may be valid when the approximation of the Hessian 

��� + ������ by ��� is reasonable. In a complete 4D-Var system, iterations are further complicated by the variances of the 

prior fluxes, and an analysis based on normalization that removes the influence of variances becomes more challenging. 

Nevertheless, examining results from additional iterations would be beneficial, even through an analysis based on iteration-

by-iteration normalizations. 540 

Finally, this study serves as an initial analysis of how observed CO2 concentrations are utilized to invert unobserved fluxes, 

focusing specifically on correlations at particular locations and times. As previously mentioned, inversion results represent a 

combination of various monotonic changes relative to prior fluxes. However, it remains unclear how this combination yields 

reliable inversion outcomes.  

5. Conclusions  545 

There is an urgent need for reliable CO2 flux inversions to address the challenges of climate change.  This study adopts a 

diagnostic perspective aimed at elucidating the internal information transfer mechanisms of inversion systems, analyzing the 

core process by which observational information is translated into flux estimates in atmospheric CO2 inversions. Through a 

combination of large-ensemble (EnKF) Monte Carlo simulations and comparative analysis with the 4D-Var method, we have 

clearly articulated and quantified the decisive role of the prior flux covariance structure in shaping and dominating the entire 550 

information flow. 

Our findings show that spatiotemporal scales of information transfer are primarily set by the autocorrelation structure of the 

prior fluxes, while atmospheric transport processes primarily modulate the specific morphology of correlations at individual 

sites (e.g., directionality and asymmetry). Flux autocorrelations induce “resonance” and “dilution” effects that profoundly 

impact inversion efficiency and accuracy. When fluxes are strongly positively correlated over a large region (long 555 
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autocorrelation length), their released CO2 signals coherently superimpose during transport, producing a “resonance” effect 

that enhances the maximum concentration-flux correlation. Conversely, when multiple flux types (e.g., anthropogenic and 

biospheric) coexist and are uncorrelated, their signals interfere with each other, causing a “dilution” effect that weakens the 

discernible correlation between any single flux type and the total concentration. This explains why, under sparse observations, 

using overly short autocorrelation lengths (e.g., <100 km) not only shrinks the spatial influence of information but also 560 

systematically reduces the information extraction efficiency of the inversion system, leading to extensive “blank areas” of 

observational constraint. 

A direct consequence of the “dilution” effect is that when inverting one flux type (e.g., FBIO), simply fixing another (e.g., 

FANT) misattributes observational information originally meant to constrain the fixed flux to the target flux, thereby distorting 

its solution. This misallocation is particularly severe in regions where the target flux itself has a weak correlation with the total 565 

concentration. Using flux-specific tracers (e.g., 14CO2) is the fundamental way to avoid this issue. However, in the absence of 

tracers, the interactions among multiple fluxes must be fully recognized and handled with caution. 

Comparative analysis with the 4D-Var framework reveals that its information transfer also relies heavily on the prior 

covariance �. The adjoint-derived gradient is inherently local; it is the scaling by the � matrix that projects observational 

influence to broader areas. This demonstrates the essential equivalence of EnKF and 4D-Var in their information-transfer 570 

kernel under linear-normality assumptions: both utilize the prior covariance matrix as the conduit to distribute the constraint 

from point observations across larger space and time. Their primary practical differences stem from the spurious correlations 

in EnKF due to limited ensemble size and the consequent need for localization. 

This study elucidates the fundamental principles governing the transfer of observational information in CO2 flux inversions 

by establishing a mechanism-diagnostic ensemble simulation framework. Moving beyond the traditional evaluation of final 575 

flux estimates, we dissect the internal workings of data assimilation systems, revealing the decisive role of the prior error 

covariance structure in shaping the information propagation pathways. By making the internal process of constraint 

propagation explicit, we lay the foundation for building more transparent, interpretable, and trustworthy flux estimation 

systems. 
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