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Abstract.

Coarse-mode aerosol particles influence the environment, climate, and human health in diverse ways depending on their type.
While mineral dust and sea spray aerosol (SSA) dominate this size range, rarer biological particles can have outsized impacts,
for example by initiating ice formation at relatively warm temperatures. Hence, accurate, type-specific characterization of
coarse-mode aerosol is essential for understanding their roles in climate and the environment. Using laboratory measurements
of single-particle ultraviolet light-induced fluorescence (UV-LIF) spectroscopy and morphology, we provide a new reference
dataset for coarse-mode aerosols from common sources, including pollen, dust, bacteria, and microplastics. Comparisons with
previously published datasets reveal consistent source-dependent fluorescence features, but also highlights similarities between
biological and non-biological particles that can bias classifications based on fluorescence alone.

We present an improved machine learning-based classification algorithm that integrates fluorescence and morphology using
laboratory data for training, and evaluate its performance using observations made at Zeppelin Observatory, Svalbard. We
apply domain adaptation using field data to improve the identification of combustion-sourced particles, and to better distinguish
dust from SSA. The new algorithm reproduces the previously published annual bioaerosol cycle, yields higher concentrations
than a fluorescence-only approach, and maintains comparable correlations with biological and combustion tracers. This open-
source algorithm provides a basis for quantifying bioaerosols across diverse environments, can revise bioaerosol estimates in

previously analyzed observations, and can be refined as additional characterization data become available.
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1 Introduction

The chemical and physical properties of aerosol particles determine how they interact with atmospheric radiation and moisture,
and thus influence climate and weather. Detailed knowledge about these parameters is therefore important for understanding
and predicting their impacts. Among primary coarse-mode (defined as supermicron-scale) aerosols, dust and sea spray aerosols
(SSA) dominate the global aerosol mass burden (Choobari et al., 2014; Textor et al., 2006) and contribute substantially to
solar radiation extinction (Glif3 et al., 2021). Both play key roles in atmospheric processes: mineral dust can nucleate ice and
trigger heterogeneous freezing in mixed-phase clouds at temperatures <20°C (Murray et al., 2012; Hoose and Méhler, 2012;
Adebiyi et al., 2023), whereas SSA provide highly hygroscopic surfaces that facilitate important chemical reactions (Bertram
et al., 2018; Schiffer et al., 2018). Primary biological aerosol particles (PBAPs), such as pollen, bacteria, fungal spores, and
decomposing biological matter, are important for biology, ecology, and human society as vectors of genetic material and
pathogens; however, they can also influence climate. In the atmosphere, PBAPs can nucleate ice at much warmer temperatures
than dust, with some airborne bacteria being capable of initiating freezing at temperatures as high as -2°C (Maki et al., 1974).
Although PBAPs are far less abundant and highly variable, typically between 10~3-10' L', even low concentrations in mixed-
phase clouds may substantially affect cloud properties due to highly efficient glaciation feedbacks (Huang et al., 2021).

Attaining robust information on aerosol type, provenance, and composition is not trivial. Offline analysis can offer valuable
information about aerosol type, but it is labor-intensive, placing limitations on sampling. Online aerosol mass spectrometry
offers higher time resolution for chemical composition, but it can typically resolve only one size range per instrument (Nash
et al., 2006; Pratt and Prather, 2012). Single-particle mass spectrometry can offer valuable, highly resolved particle composition
information, but has highly size-dependent, low (<50%) detection efficiencies (e.g. Jacquot et al. 2024) and is costly and
difficult to miniaturize, making its employment quite rare (Lai et al., 2025). Similarly, quantifying PBAP concentrations with
offline methods generally requires labor-intensive analysis using e.g. flow cytometry or microscopy (Després et al., 2012).

Fluorescence is a composition-dependent phenomenon that can provide information about particle type. It has long been
implemented in offline analytical methods and, more recently, in online particle detectors. Fluorescence refers to the relaxation
of electronically excited molecules by emitting photons in the visible range after excitation by absorbing light, usually in the
ultraviolet (UV) or (less commonly) visible spectrum. The emitted light has a longer wavelength than the excitation light
(Fu and Finney, 2018). Fluorophores, such as the amino acid tryptophan and coenzymes such as riboflavin, are common in
biological material; thus, bioaerosols often fluoresce strongly (Pohlker et al., 2012).

In UV light-induced fluorescence (UV-LIF) techniques, sampled particles are exposed to UV light and their visible fluo-
rescence is measured in order to detect fluorophores. UV-LIF spectroscopy additionally resolves the fluorescence emission’s
spectral dependence, providing proxy information for particle composition at high sampling resolution. This technique has
been implemented in several single-particle bioaerosol detectors, including the Wideband Integrated Bioaerosol Sensor (WIBS;
Droplet Measurement Technologies, LLC, USA), UV Aerodynamic Particle Sizer (UVAPS; TSI Inc., USA), SwisensPoleno
bioaerosol monitor (Swisens AG, Switzerland; Sauvageat et al. 2020), Real-time Airborne Particle Identifier (RAPID; Plair

SA, Switzerland; Sikoparija et al. 2024), and Multiparameter Bioaerosol Spectrometer (MBS; University of Hertfordshire,
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UK; Ruske et al. 2017). Many of these instruments target the fluorescence of proteins such as tryptophan (excited at 280 nm),
while some use multiple excitation wavelengths to probe for a wider range of fluorophores (Pohlker et al., 2012). Besides
PBAPs, biogenic compounds, including fluorophores, can occasionally be present in dust and SSA, potentially influencing
atmospheric processes such as ice nucleation (Tobo et al., 2014; Conen and Yakutin, 2018; Wolf et al., 2020; Hartmann et al.,
2025). Most UV-LIF instruments also measure optical properties that describe particle morphology, which can be combined
with fluorescence spectra for particle characterization. Although fluorescence is not an exact or quantitative technique for
determining composition, these instruments provide ample information with which to identify and quantify PBAPs.

A key challenge is that fluorophores are also common in non-biological particles, posing potential problems for PBAP
identification. Polycyclic aromatic hydrocarbons (PAHs) are highly fluorescent (Zhang et al., 2017) and are emitted by the
combustion of biomass and fossil fuels. PAHs can also coat co-emitted soot and other non-biological particles, causing them
to fluoresce (e.g. Toprak and Schnaiter 2013; Yu et al. 2016). Plastic polymers may contain trace amounts of PAHs from
production and thus fluoresce, a property used to detect airborne and marine microplastics (Morgana et al., 2024; Gratzl et al.,
2024; Pandey et al., 2022). Although the primary target of the instruments listed above is bioaerosol detection, identifying and
quantifying particles of anthropogenic origin may also be a useful application for UV-LIF methods in environmental science.

In this study, we characterized coarse-mode particles from climate-relevant sources and likely interferents in the laboratory
to build a reference dataset and improve ambient detection. Fluorescence and morphology measurements were made using
the MBS, a single-particle UV-LIF spectrometer that also measures optical scattering properties (Section 3.1). We compared
our results with published laboratory datasets (Section 3.2) and assessed the implications for particle identification, and built
a generalized machine learning (ML) particle classification algorithm trained on these data (Section 3.3). Finally, we applied
the algorithm to field observations made with the MBS at the Zeppelin Observatory at Svalbard and validated its performance
against parallel measurements of relevant tracer species and PBAP estimates from a previously used decision-tree particle

classifier based solely on fluorescence (Section 3.4).

2 Methods and materials
2.1 The multiparameter bioaerosol spectrometer

We use a Multiparameter Bioaerosol Spectrometer (MBS; University of Herefordshire, UK), a UV-LIF spectroscopy device
developed for detecting bioaerosols in ambient air (Ruske et al., 2017). The MBS operates at an adjustable fixed instrument flow
rate, typically between 1-2.5 L min™!, but particle measurement frequency is constrained by coded triggering sequences. A fixed
fraction of the total flow (0.165) is drawn as sample flow with the remainder serving as sheath flow. In the measurement stage,
each particle passes sequentially through a low-power laser beam for sizing and a high-power pulsed laser beam for diffraction
pattern measurement and is then exposed to a Xenon flash lamp emitting 280 nm to excite fluorescence. Light scattered from
the sizing laser is detected using a photomultiplier, and the particle’s size is estimated using Mie scattering theory. The high-
power laser emits a 10 us pulse of light for each particle; light scattered by the particle is directed through a beam splitter to

two 512-pixel complementary metal oxide semiconductor (CMOS) arrays positioned on the left (L) and right (R) sides of the
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beam. These arrays measure chords across the particle’s diffraction pattern, providing optical scattering information, serving
as proxies for morphology. The arrays are offset from the beam centerline by a distance set for the instrument’s target particle
size range. Consequently, the morphology metrics derived from diffraction are inherently size-dependent because diffraction
pattern scales vary with particle size, whereas the array spacing is fixed. Fluorescence emitted after excitation is collected by
a hemispheric mirror, dispersed using a diffraction grating, and measured in eight acceptance intervals (bands, channels) with
roughly equidistant central wavelengths spanning approximately 315-640 nm (Fig. S3). Fluorescence intensity is not measured
in physical units; we report absolute fluorescence as a detector signal in arbitrary units (au). Fluorescence signals in individual
channels may saturate if intensities exceed the detector’s upper sensitivity limit. The maximum particle measurement rate is

also limited by the xenon lamp’s recharge time, yielding an upper rate of about 100 particles s'.
2.2 Data treatment

The MBS periodically measures the background fluorescence, i.e. without sample flow, once when beginning the measurement
and then typically after 30,000 samples. This provides an estimate of the instrument’s baseline, which is subtracted from each
particle’s measured spectrum. Fluorescence intensity can be expressed in terms of standard deviations (o) above the mean
background. Because the MBS’s sampling efficiency drops below 50% for sizes <0.8 um (Ruske et al., 2017), we exclude all
particles smaller than this from our analysis. Particle morphology parameters are calculated by the MBS software from the
two CMOS array scattering signals. These parameters distill characteristics of particle scattering properties into statistical and
shape descriptors. For each array, the software calculates the mean and variance of signal intensity, as well as the skew and
kurtosis (treating each detected curve as a normal distribution). It also locates peaks using a user-defined local peak-trough
threshold and derives peak width (width at half maximum of the strongest peak), peak-to-mean ratio (PTMR; also based on the
strongest peak), and peak count for each array. Mirror symmetry, defined as the similarity between the bottom and top halves
of the signal, is calculated for each array and given as a percentage. Because particles align with the flow and have arbitrary
rotational orientations in the detection stage, we report array-specific parameters using an arbitrary array of choice (right; R)
for visualization. Two additional asymmetry parameters are provided: left-right (L-R) pixel-wise asymmetry, and pixel-wise
asymmetry with one array inverted, both calculated as a percentage.

Freitas et al. (2022) developed a heuristic decision tree (DT)-based classification of particles measured by the MBS based on
fluorescence, which was later applied and validated in subsequent studies (Freitas et al., 2023a; Zinke et al., 2024; Freitas et al.,
2024; Kojoj et al., 2024). In this classification scheme (Fig. 2 in Freitas et al. 2022), particles are classified as fluorescent (3-9c
fluorescence in any channel), highly fluorescent particles (HFPs; > 9¢ signal in any channel), and fluorescent PBAPs (fPBAPs),
defined as HFPs with a fluorescence maximum in the second (B) channel. It is well documented that PBAPs, especially bacteria,
commonly show pronounced fluorescence around 350-400 nm due to fluorophores such as tryptophan (Pshlker et al., 2012).
This feature underpins the MBS’s design and is widely used in UV-LIF-based PBAP detection (e.g. Crawford et al. 2015; Tang
et al. 2022; Gao et al. 2024). In this study, we used this DT-based method as a benchmark for PBAP identification. As an
additional metric of the shapes of fluorescence spectra, we calculate a fluorescence ratio defined as the sum of channels A and

B divided by the sum of channels C-H, with higher values indicating a stronger peak in the earlier channels.
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2.3 Samples and laboratory characterization experiments

The samples characterized with the MBS in this study are selected to represent aerosols relevant to the Northern Hemisphere,
including boreal/tree pollen, marine bacteria, dust, and synthetic contaminants (Table 1). Cellulose, a major component of
plant cell walls, was chosen as an analog to plant matter debris and as a constituent of pollen (e.g. Winiwarter et al. 2009; Yttri
et al. 2011; Bozzetti et al. 2016). We used pure, synthesized crystalline cellulose (Sigma Aldrich, cat. no. 435236) ground into
particles.

Pollen were sourced from various locations in the Czech Republic by Pharmallerga CZ s.r.o. (LiSov, Czech Republic). The
species of trees from which pollen was sourced for this study were ash (Fraxinus excelsior), black alder (Alnus glutinosa), birch
(Betula pendula), hazel (Corylus avellana), juniper (Juniperus communis), Scotch pine (Pinus sylvestris), and willow (Salix
caprea). Pharmallerga assessed pollen quality by microscopy and with acetic blue staining; pollen processing and size ranges
they reported are listed in Table S1. Pollen were collected by hand, with the exception of juniper, which was collected with
vacuum. All samples were processed dry (sifting and drying), with the exception of willow, which was defatted with acetone.
To investigate whether aerosolization method affected MBS-observed properties, we used both dry and wet nebulization.

Bacterial samples were mixed cultures of cyanobacteria from Baltic seawater. We selected three cultures with distinct natural
pigment profiles (phycobiliproteins and carotenoids) to capture diversity, but we did not identify individual species. These
pigments — phycobiliproteins (phycoerythrin, phycocyanin, and allophycocyanin) and other compounds (e.g. carotenoids) —
absorb in different spectra of light and differ from chlorophyll A absorption (Gantt and Cunningham Jr, 2001), allowing them
to be differentiated from algae.

Ground polyethylene (PE) was chosen as a representative microplastic. Because environmental microplastics undergo weath-
ering processes that may alter their optical and fluorescence properties, we measured freshly ground PE particles, with one
subsample exposed to UV light to simulate photolytic aging.

Natural dust samples from four sources, Dyngjusandur and Myrdalssandur in Iceland, Svalbard, and Sakurajima in Japan,
were included as potential high-latitude dust sources relevant to the Arctic. Dyngjusandur and Myrdalssandur samples contain
primarily volcanic silt and sand (Arnalds et al., 2016), whereas the Sakurajima sample is primarily volcanic ash. The Svalbard
sample, previously characterized for its ice nucleation activity in Tobo et al. (2019) (sample BR1607b), originates from glacial
outwash sediment. In addition, kaolinite clay was selected as a sample of mineral dust reference expected to contain minimal
organic matter.

For dry, solid materials, 5 ml of the sample was placed in a centrifuge tube mounted on a speaker (Fig. S4b) and vibrated at a
frequency selected using a function generator. The optimal frequency depended on the sample type and nebulization efficiency,
but stable, high particle concentrations were typically achieved at 15-30 Hz. A commercial nebulizer (Topas GmbH, Germany,
model ATM228) with a fixed nebulization pressure of 100 hPa (gauge) was used for wet and liquid samples, including pollen
solutions. For wet nebulization using the TOPAS nebulizer, the sample air stream was dried using a Nafion dryer, while the
sample air from the dry (speaker) nebulization was not actively dried (see Fig. S4). The sample air relative humidity was

monitored using an inline RH/temperature sensor (Hytelog USB, B+B sensors, Germany) immediately upstream of the MBS
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to ensure particles were measured dry. Each sample was nebulized and measured for at least 10 minutes. Background tests using
empty containers (shaken empty centrifuge tubes for dry samples, nebulized pure Milli-Q water for wet) showed negligible
background concentrations, far below those seen in the characterization experiments (O(10°) L''). Samples were measured in

sequence from those least to most likely to adhere to the instrument and plumbing to minimize carryover between experiments.
2.4 External data

To compare our characterization of specific aerosol types to previous work, we include laboratory data from Ruske et al.
(2017), Crawford et al. (2020), and Beck et al. (2024), as well as data from known pollution events in Karlsson et al. (2022).
The pollution events were observed during an Arctic Ocean research cruise, when the ship’s plume was sampled directly by
the inlet housing the MBS. Because the ship operated in very remote locations (>80° N) and particle concentrations during
the pollution events exceeded background concentrations of other fluorescent particles (e.g., PBAPs) by several orders of
magnitude, we consider these observations representative of fossil fuel combustion sources, despite being measured in ambient
air. The sea spray aerosol (SSA) measured by Beck et al. (2024) were generated with a plunging-jet sea spray simulation
chamber of the type described by Salter et al. (2014) and Salter et al. (2015). We include data from our characterization
experiments and these external sources in our ML training and classification algorithm (see Section 2.5). This extends the
classes of particles to include fungal spores (Crawford et al., 2020) and SSA (Beck et al., 2024), and increases diversity in
bacteria, pollen, and dust samples (Ruske et al., 2017; Crawford et al., 2020; Beck et al., 2024). Table 1 lists source type, used

nebulization methods, and citations for all data considered in our study, including our own characterization experiments.
2.5 Machine learning and classification algorithm

Information from the MBS can be used to train particle identification algorithms on laboratory characterization data; such
approaches using ML have previously been applied to measurements made with the MBS (Ruske et al., 2017) and other UV-
LIF spectrometers (Ruske et al., 2018). Here, we develop a new and improved classification algorithm for MBS data with three

objectives, in order of priority:
1. flag fluorescent particles that are likely interferents, so they can be excluded from PBAP concentration estimates;
2. classify fluorescent particles into broad bioaerosol subgroups, and;

3. classify non-fluorescent particles as dust- or SSA-like particles.

The methods used for each component model are described below, with their implications discussed in the results (Section
3.3). Supplementary Table S2 summarizes the MBS data input variables and their roles in the classification algorithm.

We treated tasks 1 and 2 as binary classification tasks and used logistic regression modeling (LRM; EI Morr et al. 2022)
for both. LRMs fit logistic functions to training data to estimate the probability that a new observation belongs to class O or
1, and can accomodate many input variables. This approach is well suited to task 1, flagging observations as interferents or
non-interferents, and to the dust vs. non-dust decision in task 3. The model output is a probability estimate between 0 and 1,

obtained by averaging logistic function outputs across input features. Positive identification can be determined by rounding this
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Class category Sample Source Nebulization
Cellulose Pure shredded cellulose This study Dry
Volcanic sand from Myrdalssandur, Iceland This study Dry
Volcanic sand from Dyngjusandur, Iceland This study Dry
b Volcanic ash from Sakurajima, Japan This study Dry
ust
Glacial outwash sediment from Svalbard, Norway This study Dry
Kaolinite clay dust This study Dry
Shredded PE This study Dry
Microplastics Shredded PE, aged with UV light This study Dry
Polystyrene latex (PSL) spheres Beck et al. (2024) Wet
Black alder (Alnus glutinosa) pollen This study Dry and wet
Ash (Fraxinus excelsior) This study Dry and wet
Birch (Betula pendula) This study Dry and wet
Hazel (Corylus avellana) This study Dry and wet
Juniper (Juniperus communis) This study Dry and wet
Pollen Scotch pine (Pinus sylvestris) This study Dry and wet
Willow (Salix caprea) This study Dry and wet
Aspen (Populus tremula) Ruske et al. (2017) Dry
Paper mulberry (Broussonetia papyrifera) Ruske et al. (2017) Dry
Poplar (Populus nigra) Ruske et al. (2017) Dry
Ryegrass (Lolium perenne) Ruske et al. (2017) Dry
Baltic seawater sample culture (60BSN) This study Wet
Baltic seawater sample culture (B10, B6) This study Wet
Bacteria Baltic seawater sample culture (B9, B6) This study Wet
Escherichia coli cultured in L-broth Ruske et al. (2017) Wet
Picocyanobacteria isolate in filtered seawater Beck et al. (2024) Wet
Alternaria alternaria spores Crawford et al. (2020) Dry
Fungal spores
Cladosporium herbarium spores Crawford et al. (2020) Dry
Filtered Arctic seawater Beck et al. (2024) Wet (sea spray tank)
Sea spray aerosol o
Atrtificial sea salt Beck et al. (2024) Wet (sea spray tank)
Combustion Ship smokestack plume Karlsson et al. (2022) Ambient

Table 1. Overview of the analyzed samples, their citations, and nebulization methods used in their source experiments.

185 probability or by choosing a threshold, which can adjust identification confidence. Our LRMS were trained using least squares

error (L2) loss functions and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) solver (Nocedal, 2006).
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Dimensionality reduction is useful for quantifying and presenting differences between observations with a high number
of features (Jia et al., 2022), such as the many fluorescence and morphology metrics measured by the MBS. Incorporating
morphology metrics into particle classification can help prevent overly strong influence by fluorescence information, which
may not be enough to distinguish particle types. Dimensionality reduction can be used to rapidly map similarities with known
particles and as a pre-processing step for other ML methods, or as its own classification method (Crawford et al., 2020, 2023)
in certain cases. For task 2, we used uniform manifold approximation and projection (UMAP), a technique for approximating
a topological manifold on which data with any number of dimensions are located and quantifying their relative proximities
in a lower dimensional space. UMAP approximators are created by iteratively considering n neighbors in the dataset and
estimating proximities between members, projecting the graph in e.g. two-dimensional space, and ensuring that connections
between individual points in the original data are preserved (Healy and McInnes, 2024). Our UMAP approximators were made
using the UMAP-learn Python library; details about the package’s methods and underlying theory are described in McInnes
et al. (2020). For training, we used 100 neighbors, set a minimum separation between transformed points of 0.5, and provided
training class labels for clustering. The approximator’s outputs are the transformed data positions in two arbitrary dimensions,
here defined as UMAP; and UMAP,, similar to other non-metric multidimensional scaling methods (e.g. Clarke 1993).

After UMAP transformation, we used k-nearest neighbors (kNN) to classify data according to their positions in the trans-
formed space relative to the positions of particles of known types from source characterization data. In kNN, observations are
compared to the k closest neighbors in the training data and classified by votes defined as the number of neighbors belonging
to each class. The kNN outputs a class identification corresponding to the class with the most votes and the percentage of votes
among the k neighbors cast for each class. Because kNN classifiers generally struggle with high-dimensional data, the use of
UMAP both simplifies class labeling (compared to other multiclass methods such as random forest) and provides an additional

clustering step for more robust identification.
2.6 Algorithm validation and domain adaptation

To assess our classification algorithm, we applied it to MBS observations from Zeppelin Observatory, Svalbard made over
2020 during the Ny-Alesund Aerosol Cloud Experiment (NASCENT) campaign (Pasquier et al., 2022). This reproduces the
analysis of Freitas et al. (2023a), who applied and further validated the fluorescence-only DT-based approach that has since
proven succesful in other studies made with the MBS (Freitas et al., 2024; Zinke et al., 2024; Kojoj et al., 2024). Repeating this
published analysis with our new classification algorithm allows a direct assessment of its strengths and weaknesses. Additional
data for validation were obtained from 24 hour to weekly resolved filter sampling (Platt et al., 2022), except for equivalent
black carbon (eBC), which was obtained with the Multiangle Aerosol Absorption Photometer (MAAP) at minutely resolution
averaged to daily values (Freitas et al., 2023a). Sampling frequencies and references for the species (tracers) used for the
validation here and in Freitas et al. (2023a) are summarized in Table S3. Both classification algorithms were applied to MBS
data collocated with the tracer sampling windows. Particle class concentrations were calculated as the number of observed
particles assigned to each class divided by the MBS sample air volume during that period. Sample volume was determined

from the sampling duration and the and the constant sample flow rate of 0.33 L min'! reported in Freitas et al. (2023a).
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We use chemical tracers for dust (silicon, iron, potassium) (Lu et al., 2019; Bai et al., 2021; Hird et al., 2024), PBAP
(fructose, glucose, arabitol, and mannitol) (Bauer et al., 2008; Winiwarter et al., 2009), SSA (sodium, chloride, magnesium,
calcium) (Crawford et al., 2019; Karle et al., 2024), anthropogenic aerosol (eBC), and biomass burning (eBC, levoglucosan)
(Vincenti et al., 2022). Fructose and glucose are monosaccharides used as PBAP tracers (Jia and Fraser, 2011). Glucose is
ubiquitous across organisms, whereas fructose is a photosynthetic product rapidly metabolized by non-plant organisms and
is thus more characteristic of pollen and plant matter (Pacini et al., 2006; Medeiros et al., 2006; Jia et al., 2010; Rathnayake
et al., 2017; Mampage et al., 2022). Arabitol and mannitol are sugar alcohols that serve as energy reserves and, owing to their
abundance in fungi, are considered as tracers for fungal spores (Bauer et al., 2008), and have been used to verify UV-LIF-based
fungal spore detection (Gosselin et al., 2016). Levoglucosan forms from the pyrolysis of cellulose and is an established tracer
for biomass burning (BB) (Simoneit, 1999; Yttri et al., 2015; Xu et al., 2018; Yttri et al., 2024). eBC is emitted by both fossil
fuel and biomass combustion and is thus used to trace the influence of all combustion aerosols (Andreae and Gelencsér, 2006).

Having simultaneous knowledge about particle composition from detailed tracer data also affords the possibility of directly
implementing lessons from the validation assessment in tuning the classification algorithm, a process known as transfer learning
(Venkateswara and Panchanathan, 2020). Domain adaptation is a ML technique for transfer learning wherein a model trained
in one domain (here, in laboratory settings) is adapted for use in another (field observations), which helps overcome chal-
lenges introduced by differences between the domains (e.g. differences in particle properties between naturally and laboratory-
generated aerosol). We implemented domain adaptation in our classification algorithm based on the results of the validation by
using tracer concentrations to construct probability estimates of observing targeted particle types, which were used to further
train the model in a controlled manner. The details of the domain adaptation implementation are further explained alongside

our assessment of the initial classification algorithm in Section 3.4 and in the SI.

3 Results
3.1 Laboratory characterization of fluorescent particles

Emission spectra and size distributions for dry and wet pollen samples are shown in Fig. 1. The particles we detected are
far smaller than the whole pollen grain sizes reported by the supplier (Table S1); our results therefore represent sub-pollen
particles (SPPs) produced by the rupture or fragmentation of whole pollen grains. Moisture (Suphioglu et al., 1992; Stone
et al., 2021; Matthews et al., 2023) and impaction (Visez et al., 2015) are known to induce rupture and SPP emission in
laboratory experiments and in ambient air, providing a secondary source of PBAPs with a greater transport range and residence
time than whole pollen. SPPs may therefore impact key atmospheric processes (Wozniak et al., 2018; Hughes et al., 2020;
Prank et al., 2025). Although their ambient detection remains difficult, observational evidence of strong variability in SPP
emission and concentrations under humid conditions has been found using UV-LIF (Hughes et al., 2020; Zhang et al., 2025).
While our data should aid SPP identification in field observations, it is important to note that intact pollen grains lie outside
the MBS’s detection size range and cannot be measured with this instrument. Additionally, rupture and/or fragmentation may

have been promoted during transport and storage.
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Most dry pollen samples peak in the C channel (~414 nm), with ash, juniper, and pine having slightly broader spectra. Wet
nebulization consistently broadens spectra occurs of all pollen tested and shifts maxima to channel D (~461 nm). Dry pollen
fluourescence is dominated by fluorophores on the grain exterior, composed mainly of sporopollenin (Zimmermann, 2010),
whereas SPPs can include interior fluorophores, such as phenols, carotenoids, azulene, and anthocyanin, all with different
emission characteristics (Fennelly et al., 2018). Wet nebulization produced more numerous, smaller particles than dry nebu-
lization, indicating a different SPP emission mode, likely including soluble material re-formed as residue after drying. Such
particles would tend to show more droplet-like scattering signatures (Section 3.3). Thus, the aerosolization method clearly
affects both fluorescence and morphology, with implications for ambient detection. The especially strong wet-dry contrast in
willow pollen fluorescence (Fig. 1g and 1n) may be due to acetone de-fatting (Table S1), as removing surface lipids likely
increase water uptake and solubility, promoting rupture and altering fluorescence.

Figures 2a-c show that fluorescence spectra recorded for bacteria are dominated by a B channel peak, consistent with Péhlker
et al. (2012) and Huffman et al. (2020), and the decision tree criterion of Freitas et al. (2022). This feature is unique among
our samples and provides a robust marker for fPBAP identification. In contrast, PE, both fresh and UV-aged, and cellulose
(Fig. 2d-f) constitute potential interferents. PE spectra closely resemble those of dry pollen with C channel maxima, and
cellulose shows similar pollen-like fluorescence. While atmospheric coarse-mode microplastic concentrations are unlikely to
be high enough to strongly bias PBAP detection, these results show that synthetics can mimic the fluorescence properties of
fPBAPs. Cellulose-fPBAP similarity (Fig. 2f and 2I), however, is relevant for the atmosphere because cellulose-containing
plant debris may be abundant (Hiranuma et al., 2015, 2019). Being PBAPs themselves, they may be less of a complicating
factor in UV-LIF detection, although this depends on classification precision requirements. Our pure cellulose spectra agree
with published measurements of cellulose (Kulpinski et al., 2012) and the C channel peak may contribute to pollen signals
because the pollen intine is cellulose-rich and can be exposed during fragmentation (Hess, 1993; Fang et al., 2008). Among
all fluorescent samples measured here (Figs. 1 and 2), fluorescence intensity increases with size, as expected from the larger
amount of emitting material, implying that fluorescence contrast among smaller particles are inherently muted compared to

larger particles.
3.2 Fluorescence and morphology characteristics across all sources

Here we present the results of all source characterization experiments and MBS observations used in this study (Table 1),
processed as described in Section 2.2. Figure 3 summarizes fluorescence emission spectra for all fluorescent materials, and
Fig. 4 presents class contributions and select morphology parameters. Pollen spectra from our experiments (Fig. 3b-o0) and those
of Ruske et al. (2017) (Fig. 3p-s) show broader spectra and higher intensities than bacteria (Fig. 3t-x). Despite many highly
fluorescent particles (Fig. 3a), only a small fraction (O(1072-1071)%) from our pollen samples is classified as fPBAP by the
Freitas et al. (2022) DT. This indicates that a substantial share of pollen-derived particles would be missed by fluorescence-
only schemes, but the variable peak channels (Fig. 1 and 3b-s) make it difficult to define a robust single-channel classification

criterion.
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Bacteria samples from Ruske et al. (2017) and Beck et al. (2024) exhibit the same B channel peak and similar intensities
as our bacteria samples, reinforcing the robustness of the DT-based fPBAP criterion of Freitas et al. (2022). Fungal spores
fluoresce more strongly than bacteria and often peak in both channels B and C, meaning some fungal spores will be missed
by the DT method. We find that polystyrene latex spheres (PSLs) (Fig. 3cc) closely resemble bacterial B channel peaks,
and all highly fluorescent PSLs meet the DT definition of fPBAP (Fig. 4a), demonstrating that synthetic particles can mimic
bioaerosols in UV-LIF measurements. We also find that the diesel combustion particles from Karlsson et al. (2022) exhibit
broad, intense fluorescence (Fig. 3dd) and that about 10% of them meet the DT-based fPBAP criterion (Fig. 4a), consistent
with complications noted in Freitas et al. (2023a, 2024). Because combustion particles from fossil fuel and BB are abundant in
the atmosphere, their fluorescence similarity to bioaerosols is a primary concern for PBAP quantification. Using instruments
with multiple excitation wavelengths, such as the WIBS (Markey et al., 2024), can add discriminating power; despite higher
spectral resolution in fluorescence emission detection, the MBS is limited in this regard, motivating a combined fluorescence-
morphology classification approach.

Beyond fluorescence, the MBS provides extensive optical scattering-based morphology information (Fig. 4b-f), which of-
fers additional leverage against synthetic and combustion interferents. For clarity, we show morphology parameter distribu-
tions for <3 pm and >3 pum particles. Importantly, interpretation must account for different emission mechanisms for various
bioaerosols. Bacteria and many fungal spores fall within the MBS’s size range and may be detected intact, whereas pollen rup-
ture and plant debris emission generate irregular fragments with highly variable shapes. Fungal spores can also fragment under
prolonged exposure to high humidity (China et al., 2016; Subba et al., 2021). Accordingly, pollen, and to some extent fungal
spores, tend to have more irregular morphologies, whereas bacteria and intact spores exhibit more regular scattering signatures
(Fig. 4c-f). Combustion particles, aside from their high peak counts, also exhibit scattering signatures indicative of irregular
morphologies. This may help to distinguish them from bacteria and fungal spores but not necessarily from pollen-derived par-
ticles. Consistent with the discussion in Section 3.1, wet nebulized pollen show more spherical morphologies, indicating that
many particles are dried residues of dissolved constituents rather than physical fragments.

Figure 4c-f and Fig. S5 compare dust, nascent SSA (Beck et al., 2024), and PSLs (Beck et al., 2024) (a spherical, opaque
reference particle). Dust and SSA particles differ clearly in mean signal (Fig. 4d), peak count (Fig. 4f), variance (Fig. S5e), and
peak width (Fig. S5i), even at smaller sizes. L-R asymmetry is broader and more extreme for dust, although overlap remains
(Fig. 4c). Surface roughness is reflected in signal mean, PTMR, and peak count (Fig. 4d-f, respectively), as well as in variance,
kurtosis, and peak width (Fig. S5e, g, and i, respectively). Rough surfaces smear diffraction patterns, raising scattering signal
mean and variance, reducing the number of distinct peaks, and increasing peak width and PTMR. Our dust samples show
lower peak counts and higher signal mean and variance, PTMR, and peak widths than SSA and PSLs, indicating rougher,
more irregular surfaces. Dust also shows higher and broader skewness distributions (Fig. S5f), consistent with irregular shapes.
Strong smearing by diffraction on rough surfaces can increase mirror symmetry, which may explain the relatively high mirror
values seen in dust (Fig. S5c).

In summary, dust exhibits high surface roughness and shape irregularity, whereas SSA shows sharper diffraction features

and lower asymmetry. These features are consistent among all dust samples measured here, with small differences in size dis-
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tributions (Fig. 4b). Dust sample fluorescence varies (Fig. 4a), with the fuller’s earth sample (Ruske et al., 2017) standing out,
possibly indicating the presence of fluorophores such as humic substances (Pohlker et al., 2012). Some of the consistency in
measured dust features may derive from the generation method, which can bias certain particle sizes and alter their properties
(Gill et al., 2006). SSA morphology is known to vary with size (Kaluarachchi et al., 2022), source conditions such as pro-
ductivity and organic content (Lee et al., 2020), wind speed at emission Madawala et al. (2024), and atmospheric processing
(Kaluarachchi et al., 2022). However, the SSA samples considered here are freshly generated, representing nascent particles;

how aging affects MBS scattering and fluorescence signatures thus remains an open question.
3.3 Particle classification by machine learning

Using the source characterization data presented in Section 3.2, we build classification models as a basis for an algorithm
for (1) distinguishing fPBAPs from interferents among fluorescent particles, (2) attributing them to broad fPBAP classes, and
(3) distinguishing between non-fluorescent dust- and SSA-like coarse-mode particles. For (1), we consider only combustion
particles as interferents due to limited synthetic polymer sample diversity in our training data and because they are likely far
more abundant than microplastic particles in the atmosphere. This simplifies the task to binary classification (pollution or not).
For (2), we divide fPBAPs into three classes: pollen, bacteria, and fungal spores; cellulose is not represented because real plant
debris was not included in the source characterization data. Binary classification was also used for (3) to estimate dust- or
SSA-likeness among non-fluorescent particles. These components were implemented in the classification algorithm presented
in Fig. 5 (given in written form in Table S4), which also presents the DT method of Freitas et al. (2022) for comparison.

In our algorithm, particles are first filtered according to fluorescence; highly fluorescent > 9o particles are passed to the
pollution and fPBAP identification branch, while the remaining particles > 2.5 um are passed to the dust/SSA branch. Particles
in the fluorescent branch are first assigned a pollution-likelihood (p,.;) by the pollution model, and are then fed to the UMAP
approximator. UMAP outputs are passed to the kNN classifier, which provides class likelihoods for four target classes (pollu-
tion, pollen, bacteria, and fungal spores). A fluorescent particle’s p,,,; must not surpass a confidence threshold («,;) for it to
be classified as a fPBAP. Thus, the algorithm uses a two-step identification process for fPBAPs where a fluorescent particle
must be both not flagged as an interferent by the pollution model and positively identified as one of the fPBAP classes by the
multiclass model. The multiclass model’s outputs also allows a further confidence threshold for fPBAP identification to be cho-
sen based on the kNN’s probability estimates. Particles > 2.5 um in the non-fluorescent branch are assigned a dust-likelihood
(pdust) by the dust model. This may be used for identification based on a confidence threshold (cgq,s¢) Or as a metric itself
(“dust-likeness”). In our assessment, we used the most likely class (the rounded probability for LRMs and the class of highest
probability for the kNN) for identification.

As inputs for the pollution LRM and UMAP approximator, we used 34 features, including: normalized fluorescence spectra,
fluorescence ratio, total fluorescence, size, L-R asymmetries (top-to-bottom and inverse), and scattering parameters for L and
R arrays (nine each). The UMAP approximator was fitted only on highly fluorescent combustion, pollen, bacteria, and fungal
spore particle data, and excluded cellulose and microplastics; the limited diversity represented in our data for these latter two

classes would likely affect the generalizability of a ML-based approach. However, UMAP transformations were calculated
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for microplastics and cellulose to quantify their similarities with the other classes. After transformation, fluorescent particles
can be classified according to their proximity in UMAP phase space to clusters seen in the training data. We trained a kKNN
classifier on UMAP-projected source characterization data, which uses a brute force global search of training data positions in
UMAP space to select the 100 closest neighbors (k = 100) according to Euclidean distance. The probability that the unknown
particle belongs to each class is the fraction of neighbors belonging to them, weighted inversely by distance.

Table 2 presents confusion matrices for each ML model included in the algorithm. The pollution LRM performs well on
testing data, identifying combustion particles with 92% precision. Figure 6a shows UMAP projections for fluorescent par-
ticles using only pollen, bacteria, fungal spores, and combustion particles for training, illustrating clear separation between
combustion particles and all fPBAP classes; the clearer the separation between clusters, the more certainty can be obtained
in discriminating between them. The positions of particles in classes unknown to the UMAP (microplastics and cellulose)
are distributed among the three fPBAP classes, indicating similarities shared with each of them. Few microplastic particles
appear near the combustion particle cluster, and cellulose particles are mostly positioned near the pollen cluster. These rela-
tions between particle clusters in UMAP space reflect their similarities discussed in Section 3.2, indicating that the UMAP
approximator effectively separates clusters of broad fluorescent particle classes and captures similarities between them.

Figure 6b shows UMAP transformations of the testing data and illustrates that the approximator also produced the general
distributions and locations of class clusters seen in Fig. 6b with unknown particles. Lower certainty can be expected where
significant overlap exists between clusters, manifested in lower kNN prediction probabilities at midpoints between clusters.
Most fPBAP incorrectly classified as combustion particles were pollen and fungal spores, and combustion particles that were
wrongly classified as fPBAP are exclusively pollen; the UMAP-KNN classifier model misclassified combustion particles as
pollen ~11% of the time (Table 2). This reflects similarities between combustion and pollen particles discussed in Section 3.2
(e.g., their broad fluorescence curves). Among fPBAP classes, the UMAP-KNN classifier was weakest at identifying bacteria,
and significant confusion between certain fungal spores and bacteria were seen; ~16% of bacteria particles were misclassified
as fungal spores. This may be expected given their similarities in spectral maxima, and because the UMAP-KNN method
incorporates morphology information that also determines classification.

For the dust model, we trained a LRM on 22 morphology parameters (top-to-bottom and inverse L-R asymmetries and
the nine chord shape parameters for each side; see Table S2). We disregarded particle size in the dust LRM to reduce the
influence of biases introduced to the training data by laboratory aerosolization methods via their size distributions, and focused
the method of distinction on distributions of optical scattering properties. Following the discussion around Fig. 4, we trained
only on dust and SSA particles >2.5 um to ensure more distinct separation between their scattering signatures. Equal samples
of 6,000 particles each were randomly drawn from this size range. The LRM converged quickly (23 iterations) and testing
resulted in 99% precision for both classes (Table 2), indicating that the distributions of optical morphology parameters are
distinct enough to accurately distinguish them. Training the same LRM using all particles >0.8 um resulted in a slight decrease
in the model’s overall precision (95%). Despite this, we argue that training particles in a size range where the instrument better
resolves optical scattering signatures produces a more physically sound model and elected to use the LRM trained only on

>2.5 um particles in our classification algorithm.
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Actual Predicted

Pollution model

False True - -
False 0.987 (1890) 0.013 (25) - -
True 0.079 (25) 0.921 (293) - -

Fluorescent particle classifier

Combustion Pollen Bacteria Fungal spores
Combustion 0.887 (282) 0.113 (36) 0.0 (0) 0.0 (0)
Pollen 0.021 (17) 0.843 (685) 0.001 (1) 0.135 (110)
Bacteria 0.0 (0) 0.024 (3) 0.821 (101) 0.155 (19)

Fungal spores 0.010 (8) 0.114 (96) 0.001 (1) 0.876 (741)

Dust model
Dust SSA - -
Dust 0.992 (1190) 0.008 (10) - -
SSA 0.014 (17) 0.986 (1183) - -

Table 2. Confusion matrices for the pollution, bioaerosol classification, and dust model components of our classification algorithm. Pollution
and dust models are based on logistic regression, and the multiclass classification is based on uniform manifold approximation and projection
(UMAP) and k-nearest neighbors (kNN) models. The fraction of testing data predicted as each class is given in columns along with the

number of testing data points in parentheses; fractions therefore sum to one across rows. The recall for a given class is identified in bold.

3.4 Classifier domain adaptation and validation

Figure 7 presents the results of our classification algorithm applied to MBS observations made by Freitas et al. (2023a) at
Zeppelin Observatory during 2020, again using simple majority classification thresholds for pollution and dust (otpor, Cdust =
0.5). The algorithm, trained only on source characterization data, struggled to recognize the types of combustion particles
seen at Zeppelin Observatory, as evidenced by the high correlation between fPBAP concentrations and levoglucosan and
eBC (Fig. S7b). The fact that fPBAP concentrations correlated more strongly with levoglucosan than with eBC may suggest an
influence by specific combustion particle types, i.e., BB- rather than fossil fuel-derived. Biological tracer and DT-based (Freitas
et al., 2023a) fPBAP concentrations indicate a clear seasonal cycle of biological aerosol influence, which our algorithm initially
failed to capture (Fig. 7b). This resulted in likely overestimated fPBAP concentrations, especially evident between January-
April when eBC concentrations were high.

To address this, we apply domain adaptation to tune the pollution LRM to HFPs observed at Zeppelin Observatory using
tracer-based soft labels describing the degree of pollution vs. biological dominance. This is accomplished by choosing a number

of sample periods with sufficient tracer data and labeling HFPs observed during these periods as either pollution or not based
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on the soft label, and further training the LRM on these data (the tuning block) with lower weights than those of the initial
training data to limit its influence on model fit; details of this step are explained the SI. The pollution influence metric was
calculated using normalized eBC and arabitol concentrations, and the combined weighting of the tuning block on the LRM’s
fitting was set to 20% of the training data’s. Individual weights were calculated for tuning data based on this scaling and our
confidence in the soft labels, determined by the pollution influence metric.

The tuned fluorescent particle classifier reproduces the DT-based fPBAP concentration time series (Freitas et al., 2023a), with
few (~ 1073-10~1 L'!) fPBAP during winter and early spring, a peak in July, and a subsequent decrease during winter onset
(Fig. 7a-b). The high proportion of HFPs labeled as interferents between January and April (Fig. 7a), along with significant
correlations between the pollution class and lead eBC, and levoglucosan (Fig. 7e), shows that the classification algorithm
robustly reduces the influence of combustion particles. In August, when biological tracer concentrations were highest, our
algorithm detected fPBAP concentrations nearly two orders of magnitude higher than the DT method did. This is expected
because the DT-based fPBAP criterion is validated for one type of fPBAP, while our classification algorithm targets multiple
fPBAP types with diverse fluorescence properties. Using scanning electron microscopy, Tobo et al. (2024) determined that most
carbonaceous coarse-mode particles sampled at Zeppelin Observatory in July 2020 were likely PBAPs (such as microorganisms
and plant debris), while none were detected in March 2020. The low (high) proportion of HFPs classified as fPBAPs during
March (July) reflects a similar seasonal fPBAP cycle as that described in Freitas et al. (2023a). Both our algorithm’s and DT-
based fPBAP concentrations correlate significantly with BB tracers (Fig. 7e), in agreement with Freitas et al. (2023a). Although
levoglucosan is formed only through pyrolysis, incomplete biomass combustion can release monosaccharides (e.g., glucose,
fructose) when wood carbohydrates (e.g., cellulose) are broken down (Medeiros et al., 2006; Zangrando et al., 2016; Ren et al.,
2020; Vincenti et al., 2022). This has implications for the interpretation of fructose and glucose as PBAP tracers, as illustrated
by their correlations with levoglucosan (Fig. S8).

Pollen contributes the largest class share to fPBAP by our algorithm throughout the year but more consistently in summer,
followed by fungal spores and bacteria (Fig. 7c). A portion of the fPBAP class may be combustion particles falsely identified as
pollen due to their similarities described in Sections 3.2 and 3.3. Another portion may be fungal spores misclassified as pollen,
as evidenced by their similar behaviors in correlations with fungal tracers. Bacteria makes up a small proportion (~0.1-1%) of
fPBAP identified by our classifier. Unfortunately, contributions by specific fPBAP classes are difficult to validate with tracer
data available at Zeppelin Observatory for this time. Although arabitol and mannitol are considered fungal tracers, they can be
found to lesser degrees in pollen and bacteria (Lau et al., 2006; Di Filippo et al., 2013). PBAP analyzed by Freitas et al. (2023a)
and Tobo et al. (2024) with electron microscopy could not be precisely distinguished, although visual comparison suggested
that they were likely fungal spores and bacteria. Tobo et al. (2024) also found irregular carbonaceous particles resembling
plant debris, a globally abundant PBAP (Sanchez-Ochoa et al., 2007; Winiwarter et al., 2009), or possibly pollen fragments.
Considering the similarities between pollen, fungal spores, and pure cellulose seen in Sections 3.2 and 3.3, plant debris not
flagged as combustion particles would likely be classified as pollen- or fungal spore-like by our classifier due to their broad
fluorescence spectra (as in Fig. 6a). Furthermore, plant debris can be emitted by BB (Holden et al., 2011), with the degree of

similarity to smoke particles depending on the degree of influence by combustion. This may be reflected in the correlations
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between fPBAP detected by our algorithm and BB tracers (Fig. 7e), and between cellulose and levoglucosan (Fig. S8). Earlier
identifications of PBAP classes in Ny—;\lesund in two summers found very low concentrations of intact pollen and found
local species to dominate over exotic pollen (Johansen and Hafsten, 1988), although sediment cores from Svalbard indicate
considerable variability in the remote transport of exotic pollen (Poliakova et al., 2024). These earlier assessments also found a
near constant presence of airborne fungal spores at considerable concentrations in Ny-Alesund (Johansen and Hafsten, 1988),
which is consistent with the prevalence of fungal spores identified by our classifier and the analyses of Freitas et al. (2023a)
and Tobo et al. (2024).

Figure 7d reveals that the untuned dust LRM is also insensitive to variability in SSA and dust tracers, indicated by the near-
constant, high fraction (~80%) of particles labeled as dust. This high of a dust fraction is unlikely, since total coarse-mode
particle concentrations measured by the MBS are strongly correlated with SSA tracers sodium, chloride, and magnesium, and
do not correlate with mineral dust tracers (Fig. 7e). The modest but significant correlation between calcium and potassium with
total coarse-mode particle concentrations may reflect that both marine and terrestrial sources can influence calcium aerosol
content (Salter et al., 2016; Su et al., 2023; Solomon et al., 1989), and that potassium may be emitted by mineral dust, marine,
and BB sources (Andreae, 1983). Inspecting non-fluorescent particles measured at Zeppelin Observatory during a sampling
period with minimal dust influence (the minimum in silicon concentrations over 2020) reveals that they resembled dust more
than SSA in laboratory characterization data (Fig. S6), suggesting that natural processes (e.g., aging of SSA) may have modified
particle morphology. Karlsson et al. (2020) found similar difficulties in correctly identifying out-of-sample lab-generated SSA
particles using conformal prediction. Laboratory-generated SSA properties vary markedly depending on generation method
(e.g. Salter et al. 2015 and Christiansen et al. 2019), introducing biases to inductive approaches based on laboratory data.

To address this weakness, we applied domain adaptation on the dust LRM, this time using mineral constituents silicon,
aluminum, iron, manganese, titanium, nickel, and chromium for mineral dust mass and the sum of major SSA ions (sodium,
chloride, magnesium, and potassium) for sea spray; details of our dust influence metric’s construction are further explained in
the SI. This step’s aim is to relax the dust LRM’s fit on the highly regular scattering signatures of nascent laboratory-generated
SSA described in Section 3.1 around Fig. 4. The tuning block’s influence was again weighted according to our confidence in
the field label based on a dust influence metric and on a scaling factor limiting the total influence of the tuning block on the
LRM'’s training to 20% of that of the laboratory training data. The model’s overall precision in identifying dust and SSA in
laboratory data in r epeated in-sample testing was not significantly affected by the tuning (Fig. S9). Tuning the dust model
significantly reduced the fraction of particles observed at Zeppelin Observatory classified as dust and increased dust fraction
variability (Fig. 7d). The tuned model’s resulting dust fraction was lowest when silicon concentrations were lowest between
March-April, and increased episodically to maxima of ~0.6 during summer when sodium concentrations were lowest. This
results in a significant positive correlation with silicon and anti-correlation with SSA tracers sodium, chloride, and magnesium.
These correlations are stronger than those from the untuned model’s output (Fig. S7b). These fractions are consistent with
those determined in this size range by Tobo et al. (2024) via electron microscopy (their Fig. 5a), who found that mineral dust
particles comprised about half of particles >2 um in March and July. A significant proportion of the remainder were mixed sea

salt-mineral particles (Tobo et al., 2024); what scattering signatures these mixed particles would exhibit is unknown.
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4 Discussion

UV-LIF spectroscopy is a powerful tool for detecting bioaerosols, resolving single-particle fluorescence spectra and morphol-
ogy at high frequency. We characterized common coarse-mode aerosol types in the laboratory, including pollen, bacteria,
dust, and potential interferents like microplastics, producing a reference dataset for the MBS. These characterizations clarify
what to expect when interpreting ambient measurements and differentiating PBAPs from interfering fluorescent materials. The
pollen types assessed showed broadly consistent features, but with strong differences depending on nebulization method. Wet-
nebulized pollen particles exhibited broader spectra and with peaks shifted towards the channel centered at 461 nm (wet) from
that centered at 414 nm (dry). This suggests that hydration, cloud processing, or surface wetting can substantially modify pollen
fluorescence, with implications for their identification in ambient observations. However, since the MBS can only detect SPPs
and not intact pollen grains, wet-processed pollen samples are useful for understanding SPPs, which are primarily generated in
humid conditions. This may be especially useful for detecting cloud-activated pollen fragments sampled via, e.g. counterflow
virtual impactor (CVI) inlets (Freitas et al., 2024). As a complicating factor, pollen rupture is stochastic causing high variability
in SPP morphologies, reflected in the wide range of scattering signatures we observed.

Fluorescence spectra of both PE and cellulose closely resemble those of pollen particles, posing potential challenges for
pollen particle identification. Bacteria cultured from Baltic seawater exhibited fluorescence spectra consistent with previous
measurements of marine bacteria and were clearly distinguishable from pollen, cellulose, and microplastics. Dust samples
contained a small fraction (~10%) of weakly fluorescent particles, indicating the presence of some organic matter, potentially
humic substances (Pohlker et al., 2012). This feature may be useful in investigating atmospheric interactions such as ice
nucleation, which humic substances have been posited to promote (Tobo et al., 2014; Chen et al., 2021; Pereira et al., 2022),
but its exploitation is complicated in practice by interference from, e.g., coating by PAHs. We also compared our results with
previously published MBS characterization studies of particles including bacteria, fungal spores, diesel engine combustion
particles, and SSA. Notably, combustion particles showed broad fluorescence spectra similar to those of pollen and fungal
spores with generally substantially stronger intensities, posing a major challenge in UV-LIF-based PBAP detection. Fungal
spore and bacterial spectra shared strong similarities, complicating fPBAP class-specific identification. Dust particles exhibited
distinct scattering properties, indicating higher asymmetry and irregular, rough surfaces than SSA.

We demonstrated the training of ML models on the combined body of MBS source experiment data using UMAP dimension-
ality reduction and k-nearest neighbors. In in-sample testing, the classifier displayed confusion between bacteria and fungal
spores, and between pollen and fungal spores. Problematically, the multiclass fluorescent particle classifier misidentified ~12%
of combustion particles as pollen. For more robust filtering, we trained a separate binary classifier using logistic regression for
flagging particles as pollution with the same training data, which performed better at distinguishing interferents from fluores-
cent PBAPs. Combining these two methods provides flexibility and builds redundancy into the classifier. The ease of tuning the
LRM allowed us to implement domain adaptation using field validation data, improving correlations between our algorithm’s
fPBAP estimates and PBAP tracer concentrations. The significant correlation between the wood pyrolysis tracer levoglucosan

and HFP concentrations indicates that particles originating from BB were likely misidentified as fPBAP by the untuned clas-
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sifier. These may differ from diesel engine-sourced combustion particles such as those included in our training data and could
have been modified by aging processes. However, wildfires have been found to directly promote PBAP emissions (Moore et al.,
2020; Kobziar et al., 2022; Ellington et al., 2024). Determining the degree to which biological tracer concentrations are influ-
enced by, e.g., plant debris and PBAPs emitted via BB is ultimately difficult. Our classification algorithm may be improved in
the future by including source characterization data from wood and biomass burning experiments.

Our classifier identified pollen and fungal spores as the most common classes of fPBAP observed at Zeppelin Observatory
in 2020. While previous work establishes fungal spores as common in Ny—;\lesund (Johansen and Hafsten, 1988; Freitas et al.,
2023a; Tobo et al., 2024), pollen concentrations were very low (0(10*3) L in summer) in past measurements (Johansen and
Hafsten, 1988). However, SPP concentrations are difficult to estimate due to high variability in their emissions (Suphioglu
et al., 1992; Subba et al., 2021) and difficulty in identifying them, making it challenging to verify their presence. Because
the fluorescence spectra of pure cellulose closely resembled those of pollen and fungal spores, it is likely that some fPBAP
identified by our classifier were misclassified plant debris. Since real plant debris was missing from the characterization data
presented here, representing a potentially important missing class, we suggest that future characterizations measuring, e.g., leaf
litter be conducted with the MBS to improve identification. Additional tracers could help verify class contributions to fPBAP
detected by our classification algorithm, but source overlap complicates tracer interpretation. More source-specific tracers, such
as sucrose for pollen (Mampage et al., 2022), dipicolinic acid for bacteria (Mampage et al., 2022), and ergosterol for fungal
spores (Lau et al., 2006), are necessary to thoroughly validate fPBAP class contributions. Future assessments for specific
fPBAP class validations when e.g., pollen trap counts, digital holography-based pollen identification, and aerobiome DNA
sequencing are conducted in parallel to MBS observations should be made to provide further validation.

Finally, we trained another LRM to distinguish between larger (>2.5 um) dust and SSA particles based only on optical
scattering signatures. The dust model likely misidentified a large portion of extant particles observed at Zeppelin Observatory
in this size range as dust despite high correlations between total coarse-mode particle concentrations and SSA tracers. Optical
morphology signatures of ambient non-fluorescent particles in a period with minimal dust influence were more similar to those
measured in dust rather than SSA characterization experiments (Figure S6). This suggests that nascent laboratory-generated
SSA may not fully resemble naturally aged SSA or that the generation method biases certain particle morphologies, which
are diverse in SSA (Salter et al., 2014; Christiansen et al., 2019). This may affect non-fluorescent particle identification in
humid and cloudy conditions, since wet-processed SSA particles would undergo drying after sampling, or introduce sensitivity
to humid measurement conditions in the instrument. Further study on how optical morphology properties measured with
the MBS are affected by different aerosol generation methods (e.g. different SSA simulation chamber configurations) and
aging processes could help improve particle identification and our interpretations of these optical morphology parameters.
While optical methods for detecting irregular and asymmetric particle morphologies are commonly employed to estimate
dust influence (Moosmiiller et al., 2009), the MBS resolves single-particle morphology via optical diffraction, providing new
opportunities for particle characterization and process study. Although the MBS’s optics have been employed to distinguish
between cloud droplets and ice crystals (Mahrt et al., 2019), our algorithm represents the first implication of these methods in

identifying the most common inorganic coarse-mode aerosol types with its detection capabilities.
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5 Conclusions

Although UV-LIF spectroscopy allows for rapid online detection, characterization, and quantification of fluorescent PBAPs,
interference from non-biological particle types must be considered. Here we present a new laboratory dataset characterizing
pollen, bacteria, microplastic, cellulose, and dust particles using a UV-LIF instrument, and compare it with previously pub-
lished experiments using the same instrument. We show that biological and non-biological particles can share fluorescence
features that bias fluorescence-only classification approaches, and demonstrate how optical scattering-derived morphology
information helps distinguish among fluorescent and non-fluorescent particle types. Using the combined fluorescence and mor-
phology characterization data, we developed a particle classification algorithm using supervised ML trained on known particle
types and applied it to one year of field observations from the Zeppelin Observatory, Svalbard. Compared to the previously
validated fluorescence-only approach of (Freitas et al., 2023a), our algorithm yields up to an order of magnitude higher fluores-
cent PBAP concentrations during summer while preserving comparable correlations with PBAP molecular tracers. The main
advantages of the ML-based classification algorithm for identifying fluorescent PBAPs are: i) explicit use of morphology for
particle identification, which fluorescence-only approaches ignore; ii) broader classes of PBAPs, such as pollen particles; and
iii) accounting for key interferents that can bias PBAP detection. Nevertheless, our results suggest that both our ML-based and
fluorescence-only methods for classifying fluorescent PBAPs remain sensitive to interference from combustion particles. Our
ML models were likely constrained by limited woodsmoke representation in the training datasets, which we partly mitigated
through transfer learning using field-observed fluorescent particles and independent indicators of biological and pollution in-
fluence. Future work should expand source characterization data to include a wider array of combustion particles. It is unlikely
that any classification scheme or instrument configuration will fully eliminate the influence of interferents, highlighting the
need for parallel observations of e.g. black/brown carbon, pollen grains, and source-specific tracers for validating fluorescent
PBAP quantifications. Despite site-specific variability in aerobiomes and fluorescence signatures, this framework provides a
general, flexible approach for estimating PBAP concentrations across environments. Re-analyzing earlier MBS datasets with
this algorithm can revise fluorescent PBAP estimates and test past conclusions using an independent identification strategy
for both PBAPs and interferents. In addition, we implemented a dust detection component in our classification algorithm by
exploiting optical morphology differences between dust and SSA, which can be used to help determine marine and terres-
trial aerosol source influence in ambient observations. This algorithm can be redefined and improved as additional source

experiment data characterizing other particle types and using more realistic emission pathways become available.

Code and data availability. The code used to reproduce these results and the classifier algorithm can be found at https://github.com/SU-air,
and the data produced in this study is hosted at the Bolin Centre for Climate Research’s database at ://bolin.su.se/data/jonsson-2025-wffj1j-1
(Jonsson et al., 2026). The data for Freitas et al. (2023a) can be found at the Bolin Centre Database at https://bolin.su.se/data/zeppelin-freitas-
2023-bioaerosols-1 (Freitas et al., 2023b). Zeppelin Observatory tracer data (Yttri, 2023; Aas, 2024, 2025; Calzolai, 2025) used in this study
were accessed from EBAS (https://ebas.nilu.no), hosted by NILU. Specifically, the use included data affiliated with the frameworks: ACTRIS,
GAW-WDCA, GAW-WDCRG, CAMP, AMAP, NILU, and EMEP.
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Figure 1. Pollen fluorescence properties and size distributions measured in our characterization experiments. Size distributions (left axis,
black step trace) and fluorescence emission spectra (right axis, color map) for highly fluorescent particles (HFPs) with > 9o fluorescence
signal, binned by size, in (a-g) dry and (h-n) wet pollen characterization experiments. Box plots (red axes) depict the range of total fluo-
rescence in each size bin. Fluorescence intensities are given as a fraction of detector maxima at saturation. (o-u): The median fluorescence
emission spectra of HFPs in dry (solid) and wet (dashed) pollen experiments at all sizes; shaded areas represent 10-90% quantile ranges.

Upper axes show fluorescence detection channel names corresponding to their central detection wavelengths in the lower axes.
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Figure 2. Bacteria, microplastic, and cellulose fluorescence properties and size distributions measured in our characterization experiments.
(a-f) show size distributions (left axis, black step trace) and fluorescence emission spectra (right axis, color map) for highly fluorescent
particles (HFPs) with > 9o fluorescence signal, binned by size, for bacteria (a-c), fresh and UV-aged polyethylene (PE) (d-e, respectively),
and cellulose (f). Box plots (red axes) depict the range of total fluorescence in each size bin. Fluorescence intensities are given as a fraction of
detector maxima at saturation. (o-u) show the median fluorescence emission spectra of HFPs at all sizes for these experiments; shaded areas
represent 10-90% quantiles. Upper axes show fluorescence detection channel names corresponding to their central detection wavelengths in

the lower axes.
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Figure 3. Fluorescence emission spectra (normalized by the maximum fluorescence signal measured for each particle) for particles with
> 9o fluorescence signal for all source experiments. Shaded regions indicate 10-90% quantile ranges. Box plots indicate the distribution of
total fluorescence (normalized by the maximum possible signal) among particles. Source experiments conducted in this study are marked

with an asterisk. Experiments with a sample size of <100 are marked with an X in the subplot.
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Figure 4. Comparison of particle property distributions for all source data. (a): Contributions to total particles measured in the samples by

highly fluorescent particles (HFPs) and fluorescent primary biological aerosol particles (fPBAPs) as identified by the decision tree method of

Freitas et al. (2022). For the ship plume, only HFPs are displayed. (b-f): Size (b) and morphology parameters (c-f) of particles in the samples.

In (c-f), dark (light) boxes indicate < (>) 3 um particles. The right array is shown for single-array morphology parameters (d-f).
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Figure 5. A schematic illustrating the particle classification schemes of this study (top branch) and of Freitas et al. (2022) (bottom branch).

Dashed lines represent filtering and decision-based steps. In the pollution and dust logistic regression models (LRMs), p is the output

probabilities for being flagged as pollution or dust, respectively, and « represents a chosen confidence level. The bioaerosol classifier using

uniform manifold approximation and projection (UMAP) and k-nearest neighbors (kNN) classify according to the most likely class. Among

highly fluorescent particles (HFPs) and fluorescent biological aerosol particle (fPBAP) classes in the decision tree-based method of Freitas

et al. (2022) (lower branch), the class label is denoted as S and consists of combinations of letters A through H corresponding to the

fluorescence channels where significant (> 90) fluorescence is detected. According to the fPBAP definition, all fPBAP class labels contain

B. Specific information about the exact variables used as input for each method is found in the text.
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Note that the UMAP approximator and k-nearest neighbors (kNN) models are trained only with combustion, pollen, bacteria, and fungal

spore data and not with microplastics and cellulose classes. In (a), the color coding for markers is according to the known particle class.

In (b), the marker color is according to the kNN-predicted class, and the alpha of the marker denotes the confidence of the prediction;

misclassifications are circled, with the circle’s color denoting the correct class.
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Figure 7. Algorithm performance using field observations made at Zeppelin Observatory, Svalbard during 2020. (a) Left axis: time series
of highly fluorescent particle (HFP) and fluorescent primary biological aerosol particle (fPBAP) concentrations according to our classifier
(this study) and using the decision tree (DT)-based method of Freitas et al. (2023a). Right axis: concentrations of biological tracers fructose,
arabitol, and mannitol, and combustion tracer equivalent black carbon (eBC). (b) Contributions to all HFP by fPBAP using our classifier
(both tuned and untuned) and the DT method. (c) Contributions by individual fPBAP classes (pollen, bacteria, and fungal spores) to fPBAP
concentrations. (d) Time series for sodium and silicon concentrations (left axis) and the fraction of particles >2.5 um identified as dust
(both tuned and untuned) (right axis). (e) Spearman correlation coefficients between concentrations for all coarse particles, HFPs, fPBAP
(determined using both our algorithm and the DT method), individual fPBAP classes identified by our algorithm, and chemical tracers.
Correlations not significant with p < 0.05 are made transparent. Tracers used in the domain adaptation steps are marked with an asterisk.

The bottom panel displays sample sizes for each tracer.
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