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S1 Domain adaptation

Following the initial untuned model assessment, we perform the domain adaptation steps for the LRMs by defining functions60

expressing the relative influence between two tracer types; for the pollution model, this is between biological and pollution/-

combustion influence, and for the dust model, this is between sea spray aerosol (SSA) and dust influence. These are calculated

for each tracer sampling period and are then appended as “soft labels” I to all particles observed with the MBS during that

time period. These soft label metrics are encoded into “hard labels” L(I), or best-guess flags used as the training labels for the

tuning step, using the rounding function:65

L(I) =

1 if I ≥ 0.5,

0 else.
(1)

The tuning block samples are then used to further train the LRM using these hard labels and a weight proportional to the

confidence in the hard label based on Ipol. We estimate the confidence in the hard label using the Shannon information entropy

H for N number of components given by the equation:

H =−
N∑
i

pilog2pi, (2)70

where pi is the probability of influence by individual components. Because Shannon information entropy is the inverse of

certainty in that label, we estimate the confidence in the hard label C with 1−H . For our binary classification problems where

the probability of influence by a given component is estimated with I , this yields the formula:

C(I) = 1−
(
I log2(I)− (1− I) log2(1− I)

)
. (3)

This confidence metric is then used to derive tuning block trainign weights for each particle. We choose a maximum amount of75

influence from the tuning block β to be 20% of that of the source training data (β = 0.2). The individual tuning block sample

weights must sum to this proportion to ensure this level of influence (
∑

wtune = β). Since the number of particles in the tuning

and training blocks are different, the weights are scaled by the proportion of tuning data points by the relative size of tuning

block data points to lab training data points (Ntune

Nlab
). The weights are finally scaled by the mean confidence in all particles C̄,

which is necessary for summing to β. The tuning block weights for each particle appended with I are thus calculated as:80

wtune(I) = β
Ntune

Nlab

C(I)

C̄
. (4)

We calculate the pollution soft label using eBC and arabitol concentrations; because a number of biological tracers correlate

with biomass burning tracers (Figure S7), we choose arabitol for having the weakest correlation among them. We define the

pollution influence metric Ipol, a type of soft label, as the proportion of normalized (by maximum value over the entire period)

eBC (eBCnorm) to the sum of eBCnorm and normalized (also by maximum value) biological tracer arabitol concentrations85

Cara,norm:

Ipol =
eBCnorm

eBCnorm +Cara,norm
. (5)
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Figure S1. Domain adaptation parameters for the tuning of the pollution logistic regression model (LRM). The time series of the pollution

soft label Ipol is shown in (a); the distribution of confidence estimates Cpol according to Ipol, calculated with equation (3), is shown in (b).

(c): Time series of the fraction of highly fluorescent particles (HFPs) flagged as pollution by the pollution LRM. (d): Fractions of HFPs

flagged as pollution plotted against Ipol.

Because arabitol measurements were taken weekly and eBC measurements are daily values, we use the collocated weekly

arabitol concentration for all daily eBC concentrations during that week. For the tuning block, we choose every fifth daily

sampling period in the time series and select all HFPs during those periods; the resulting tuning block includes 4,012 particles.90

Figure S2 illustrates the evolution of Ipol throughout the measurement period, the distribution of Cpol, and the fractions of

HFPs identified as pollution using. These time periods cover a distribution of high and very low influences by pollution and a

range in between. The resulting metric has the expected behavior; the time series (Fig. S1a) shows strong influence by pollution

during the winter (Ipol ∼ 1) and low influence during the summer (Ipol ∼ 0). The tuned model reproduces the annual cycle of

Ipol (Fig. S1c) and responds roughly linearly to Ipol (Fig. S1d).95

For the dust soft label, we use mineral dust mass approximated using silicon, aluminum, iron, manganese, titanium, nickel,

and chromium concentrations, derived with inductively coupled plasma mass spectroscopy, from Aas (2024). The total mineral

dust mass concentration [MD] was approximated with the assumption that all measured elements were present as oxides:

[MD]≈ [SiO2] + [Al2O3] + [Fe2O3] + [MnO]+ [TiO2] + [NiO]+ [Cr2O4]. (6)
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In eq. (6), silicon concentrations were calculated using an assumed Si/Al ratio of 2.05, derived from Si and Al measurements100

in aerosol filter samples collected at Zeppelin Observatory in 2020:

[Si] = 2.05× [Al]. (7)

Because silicon measurements by (Calzolai, 2025) were derived using a different technique, this was done in order to maintain

consistency with measurements for the other mineral constituents. For iron oxide, an equal partitioning between Fe2O3 and

FeO was assumed. For SSA tracers, the sum concentration of the three major constituents sodium, chloride, and magnesium,105

comprising the vast majority of supermicron SSA mass fraction (Gamage et al., 2025), were chosen to approximate SSA mass

([SSA]):

[SSA]≈ [Na+] + [Cl−] + [Mg2+]. (8)

The dust soft label Idust is then calculated as:

Idust =
[MD]

[MD]+ [SSA]
. (9)110

The resulting dust soft label estimates the influence of dust mass at Zeppelin Observatory and varies considerably throughout

the year, including events with high dust influence (Figure S2a). Note that using the proportion of mass estimates necessarily

comes with the assumption that SSA and dust have approximately the same mass distributions across particle sizes, although

typical dust and SSA size distributions can significantly differ. Sample periods for the tuning block were taken as the extremes

in Idust (the 0-5th percentile and 95-100th percentile periods); due to high numbers of data points, random subsets were taken115

for an equal number of laboratory and field data points. Weights were calculated as in equation (4). Figure S2 shows the time

series of Idust and the corresponding Cdust curve, along with fractions of particles identified as dust computed with both tuned

and untuned models. The tuned model displays greater sensitivity, with the dust fraction increasing linearly with Idust. Dust

fractions are overall lower and more variable in the tuned model.
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Figure S2. Domain adaptation parameters for the tuning of the dust logistic regression model (LRM). The time series of the dust soft label

Idust is shown in (a); the distribution of confidence estimates Cdust according to Idust, calculated with equation (3), is shown in (b). (c):

Time series of the fraction of particles flagged as dust by the dust LRM. (d): Fractions of particles flagged as dust plotted against Idust.
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Figure S3. Fluorescence detection channels in the MBS; the detectable region is shaded in gray, band (acceptance interval) edges are shown

with dashed lines, and each channel’s central wavelengths are given on the top axis.
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Pollen type Collection and processing
Reported size range

(microscopy/acetic blue measurement)

Ash Dry/mechanical 18-30/21-31 µm

Alder Dry/mechanical 20-30/18-30 µm

Birch Dry/mechanical 20-30/17-28 µm

Hazel Dry/mechanical 20-30/22-32 µm

Juniper Dry/mechanical 20-35/15-33 µm

Pine Dry/mechanical 50-100/31-77 µm

Willow Acetone defatting/mechanical 18-25/17-29 µm

Table S1. Pollen samples, their processing, and size ranges reported by Pharmallerga CZ s.r.o., our pollen sample provider.
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Parameter Description [unit, if applicable]
Used as input in:

Pollution LRM UMAP Dust LRM

Size Optical diameter [µm] X X –

XE1_1_norm A channel fluorescence intensity (normalized) X X –

XE1_2_norm B channel fluorescence intensity (normalized) X X –

XE1_3_norm C channel fluorescence intensity (normalized) X X –

XE1_4_norm D channel fluorescence intensity (normalized) X X –

XE1_5_norm E channel fluorescence intensity (normalized) X X –

XE1_6_norm F channel fluorescence intensity (normalized) X X –

XE1_7_norm G channel fluorescence intensity (normalized) X X –

XE1_8_norm H channel fluorescence intensity (normalized) X X –

FL_ratio Ratio of the sums of the first two to last six fluorescence channels X X –

FL Summed fluorescence intensity of all channels [au] X X –

Sat Flag for saturation in any fluorescence channel (boolean) X X –

AsymLR% Left-right mirror asymmetry across corresponding pixels [%] X X X

AsymLRinv% Left-right mirror asymmetry, inverted [%] X X X

PeakMeanL, PeakMeanR Peak-to-mean-ratio, left and right arrays X X X

PeakWidthL, PeakWidthR Peak width at half height, left and right arrays X X X

PeakCountL, PeakCountR Number of peaks over threshold, left and right arrays X X X

KurtosisL, KurtosisR Kurtosis of signal treated as a distribution, left and right arrays X X X

VarianceL, VarianceR Variance of signal treated as a distribution, left and right arrays X X X

MeanL, MeanR Mean signal intensity, left and right arrays X X X

SumL, SumR Sum of signal intensities, left and right arrays X X X

SkewL, SkewR Skew of signal treated as a distribution, left and right arrays X X X

MirrorL%, MirrorR% Mirror symmetry across middle pixel, left and right arrays [%] X X X

Table S2. Output variables from the Multiparameter Bioaerosol Spectrometer (MBS). Normalized fluorescence channel intensities are di-

vided by the maximum intensity detected across the spectrum for each measurement. The right three columns denote (with an “X”) where the

variable is used as input between the pollution logistic regression model (LRM), uniform manifold approximation and projection (UMAP)

transformer, and dust LRM in our classification algorithm.
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Figure S4. The laboratory setup for the source experiments conducted in this study, with (a) the dry air line where particles were aerosolized

with a speaker in dry experiments, and (b) the particle nebulizer for wet experiments.
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Tracer Sampling frequency Inlet type Citation

Silicon Daily Whole air Calzolai (2025)

Iron Weekly PM10 Aas (2024)

Aluminum Weekly PM10 Aas (2024)

Manganese Weekly PM10 Aas (2024)

Titanium Weekly PM10 Aas (2024)

Nickel Weekly PM10 Aas (2024)

Chromium Weekly PM10 Aas (2024)

Calcium Daily Whole air Aas (2025)

Potassium Daily Whole air Aas (2025)

Organic carbon Weekly PM10 Yttri (2023b)

Fructose Weekly PM10 Yttri (2023a)

Glucose Weekly PM10 Yttri (2023a)

Arabitol Weekly PM10 Yttri (2023a)

Mannitol Weekly PM10 Yttri (2023a)

Sodium Daily Whole air Aas (2025)

Chloride Daily Whole air Aas (2025)

Magnesium Daily Whole air Aas (2025)

Levoglucosan Weekly PM10 Yttri (2023a)

Equivalent black carbon (eBC) Minutely (resampled to daily) Whole air Freitas et al. (2023b)

Lead Weekly PM10 Aas (2024)

Table S3. Tracers used in this study, their sampling frequencies, the sampling inlet types used (PM10 denotes particulate matter under 10

µm), and their references.
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Figure S5. Optical morphology parameters, resolved by size, for all dust and sea spray aerosol (SSA) compared in this study, as well as

the polystyrene latex (PSL) spheres from Beck et al. (2024). (a): Size distributions for all particles measured in these experiments. (b-

j): Distributions for optical morphology parameters, binned by size; for PSLs, the larger size bin (lightly filled) is likely due to particle

aggregation and is thus not representative of spherical morphology. (c) Left-right (L-R) asymmetry is based on both optical arrays. For

single-array metrics (c-j), only the right array is used.
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Figure S6. Optical morphology parameters, resolved by size, for all dust and sea spray aerosol (SSA) compared in this study, and for a

particles observed on 2 March 2020, a day during the sampling period with least dust influence (selected by the wintertime minimum in dust

tracer iron concentration measurements, with each sample taken over three days). (a): Size distributions for all particles measured in these

experiments. (b-j): Distributions for optical morphology parameters, binned by size; for PSLs, the larger size bin (lightly filled) is likely due

to particle aggregation and is thus not representative of spherical morphology. (c) Left-right (L-R) asymmetry is based on both optical arrays.

For single-array metrics (c-j), only the right array is used.
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Classification scheme algorithm

Select all particles ≥0.8 µm.

Fluorescent particle branch Non-fluorescence particle branch

1. Select all highly fluorescent particles (HFP; ≥ 9σ fluorescence). 1. Select all non- or weakly fluorescent particles (< 9σ fluorescence).

2. Feed the fluorescence and optical scattering variables to the pollu-

tion logistic regression model (LRM); particles with a probability of

being pollution greater than a chosen confidence threshold are classed

as interferents/pollution.

2. Select only particles that are of sufficient size for detecting optical

property signals (≥ 2.5 µm).

3. Reduce the dimensionality of the input variables (fluorescence and

morphology properties) to two dimensions using the uniform manifold

approximation and projection (UMAP) transformer.

3. Feed the optical scattering properties as input to the dust LRM and

attach the dust-likeness probability to each particle.

4. Feed the two-dimensional UMAP coordinates as input to the k-

nearest neighbors (kNN) classifier trained on source characterization

data and attach a most likely class identification, along with its proba-

bility estimate, to each particle.

4. Filter particles with a dust-likeness probability higher than a desired

confidence threshold as dust; all others are considered SSA.

5. Filter the kNN-classified output by a desired confidence threshold.

Particles positively identified as one of the three bioaerosol classes

(pollen, bacteria, and fungal spores) according to the threshold are con-

sidered fluorescent primary biological aerosol particles (fPBAPs); all

others are considered interferents/pollution.
Table S4. A written form of our particle classification algorithm illustrated in Fig. 5.
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Figure S8. Spearman correlation matrix between particle concentration estimates and chemical tracers at Zeppelin Observatory. All coarse

includes highly fluorescent particles (HFPs) and fluorescent primary biological aerosol particles (fPBAPs). HFP and fPBAP (Freitas et al.,

2023a) are decision tree-based definitions according to fluorescence signals using the methods of Freitas et al. (2023a), and fPBAP (this

study) is based on the classification algorithm presented in this study. Circles denote where the Spearman correlation coefficient is significant

with p < 0.05. Empty boxes denote where collocated data are not present. Tracers used in the domain adaptation steps are marked with an

asterisk.
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Figure S9. Probability density functions (PDFs) of logistic regression model (LRM) output for probability of being classified as dust for

laboratory-measured dust (shown is the Svalbard sample from Tobo et al. 2019, characterized in this study) and sea spray aerosol (SSA;

shown is the artificial sea salt sample from Beck et al. 2024), as well as non-fluorescent coarse particles observed at Zeppelin Observatory

during an example period with minimal dust influence (27-28 March 2020). Results are shown for both the untuned (a) and tuned (b) LRM.
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