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S1 Domain adaptation

Following the initial untuned model assessment, we perform the domain adaptation steps for the LRMs by defining functions
expressing the relative influence between two tracer types; for the pollution model, this is between biological and pollution/-
combustion influence, and for the dust model, this is between sea spray aerosol (SSA) and dust influence. These are calculated
for each tracer sampling period and are then appended as “soft labels” I to all particles observed with the MBS during that
time period. These soft label metrics are encoded into “hard labels” L(I), or best-guess flags used as the training labels for the
tuning step, using the rounding function:
1 if 1 >0.5,
L(I) = (1)
0 else.
The tuning block samples are then used to further train the LRM using these hard labels and a weight proportional to the
confidence in the hard label based on I,,,;. We estimate the confidence in the hard label using the Shannon information entropy

H for N number of components given by the equation:

N
H ==Y pilogopi, )

where p; is the probability of influence by individual components. Because Shannon information entropy is the inverse of
certainty in that label, we estimate the confidence in the hard label C' with 1 — H. For our binary classification problems where

the probability of influence by a given component is estimated with I, this yields the formula:

c)=1- (1 log, (1) — (1 — I) logy(1 —1)). 3)

This confidence metric is then used to derive tuning block trainign weights for each particle. We choose a maximum amount of
influence from the tuning block /3 to be 20% of that of the source training data (8 = 0.2). The individual tuning block sample
weights must sum to this proportion to ensure this level of influence (3 wiyne = 8). Since the number of particles in the tuning
and training blocks are different, the weights are scaled by the proportion of tuning data points by the relative size of tuning
block data points to lab training data points (%) The weights are finally scaled by the mean confidence in all particles C,
which is necessary for summing to (3. The tuning block weights for each particle appended with I are thus calculated as:
N, c(I

=4 ﬁ % : (4)

We calculate the pollution soft label using eBC and arabitol concentrations; because a number of biological tracers correlate

Wiune (I)

with biomass burning tracers (Figure S7), we choose arabitol for having the weakest correlation among them. We define the
pollution influence metric I, a type of soft label, as the proportion of normalized (by maximum value over the entire period)
eBC (eBC,,orm) to the sum of eBC,,,.,,, and normalized (also by maximum value) biological tracer arabitol concentrations

Cara,norm :

eBCnorm
Lot = . 5
P ! eBCnorm + Cara,norm ( )
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Figure S1. Domain adaptation parameters for the tuning of the pollution logistic regression model (LRM). The time series of the pollution
soft label I, is shown in (a); the distribution of confidence estimates C),,; according to I, calculated with equation (3), is shown in (b).
(c): Time series of the fraction of highly fluorescent particles (HFPs) flagged as pollution by the pollution LRM. (d): Fractions of HFPs
flagged as pollution plotted against ;.

Because arabitol measurements were taken weekly and eBC measurements are daily values, we use the collocated weekly
arabitol concentration for all daily eBC concentrations during that week. For the tuning block, we choose every fifth daily
sampling period in the time series and select all HFPs during those periods; the resulting tuning block includes 4,012 particles.
Figure S2 illustrates the evolution of I, throughout the measurement period, the distribution of Cl,,;, and the fractions of
HFPs identified as pollution using. These time periods cover a distribution of high and very low influences by pollution and a
range in between. The resulting metric has the expected behavior; the time series (Fig. S1a) shows strong influence by pollution
during the winter (1,,,; ~ 1) and low influence during the summer (/,,,; ~ 0). The tuned model reproduces the annual cycle of
Ip,01 (Fig. Slc) and responds roughly linearly to I, (Fig. S1d).

For the dust soft label, we use mineral dust mass approximated using silicon, aluminum, iron, manganese, titanium, nickel,
and chromium concentrations, derived with inductively coupled plasma mass spectroscopy, from Aas (2024). The total mineral

dust mass concentration [MD] was approximated with the assumption that all measured elements were present as oxides:

[MD] ~ [SIOQ] + [AlgOg} + [F6203] + [MDO] + [TIOQ] + [NIO} + [CI‘QOA. (6)
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In eq. (6), silicon concentrations were calculated using an assumed Si/Al ratio of 2.05, derived from Si and Al measurements

in aerosol filter samples collected at Zeppelin Observatory in 2020:
[Si] = 2.05 x [Al]. (7

Because silicon measurements by (Calzolai, 2025) were derived using a different technique, this was done in order to maintain
consistency with measurements for the other mineral constituents. For iron oxide, an equal partitioning between Fe,O3 and
FeO was assumed. For SSA tracers, the sum concentration of the three major constituents sodium, chloride, and magnesium,
comprising the vast majority of supermicron SSA mass fraction (Gamage et al., 2025), were chosen to approximate SSA mass
([SSAD:

[SSA] ~ [Na™] + [C17] + [Mg?*]. ®)
The dust soft label I4,; is then calculated as:

MD
Idust = [ [ ] (9)

[MD] + [SSA]’
The resulting dust soft label estimates the influence of dust mass at Zeppelin Observatory and varies considerably throughout
the year, including events with high dust influence (Figure S2a). Note that using the proportion of mass estimates necessarily
comes with the assumption that SSA and dust have approximately the same mass distributions across particle sizes, although
typical dust and SSA size distributions can significantly differ. Sample periods for the tuning block were taken as the extremes
in Igys¢ (the 0-5th percentile and 95-100th percentile periods); due to high numbers of data points, random subsets were taken
for an equal number of laboratory and field data points. Weights were calculated as in equation (4). Figure S2 shows the time
series of 4+ and the corresponding Cy, s+ curve, along with fractions of particles identified as dust computed with both tuned
and untuned models. The tuned model displays greater sensitivity, with the dust fraction increasing linearly with 1;,;. Dust

fractions are overall lower and more variable in the tuned model.
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Figure S2. Domain adaptation parameters for the tuning of the dust logistic regression model (LRM). The time series of the dust soft label
Iiyst is shown in (a); the distribution of confidence estimates Cly,,s: according to I4,s¢, calculated with equation (3), is shown in (b). (c):

Time series of the fraction of particles flagged as dust by the dust LRM. (d): Fractions of particles flagged as dust plotted against Igy,s¢.
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Figure S3. Fluorescence detection channels in the MBS; the detectable region is shaded in gray, band (acceptance interval) edges are shown

with dashed lines, and each channel’s central wavelengths are given on the top axis.



. . Reported size range
Pollen type Collection and processing
(microscopy/acetic blue measurement)

Ash Dry/mechanical 18-30/21-31 pum
Alder Dry/mechanical 20-30/18-30 pum
Birch Dry/mechanical 20-30/17-28 pm
Hazel Dry/mechanical 20-30/22-32 pm

Juniper Dry/mechanical 20-35/15-33 pm

Pine Dry/mechanical 50-100/31-77 pm

Willow Acetone defatting/mechanical 18-25/17-29 pm

Table S1. Pollen samples, their processing, and size ranges reported by Pharmallerga CZ s.r.o0., our pollen sample provider.



Used as input in:

Parameter Description [unit, if applicable]
Pollution LRM UMAP Dust LRM
Size Optical diameter [um] X X -
XE1_1_norm A channel fluorescence intensity (normalized) -
XE1_2_norm B channel fluorescence intensity (normalized) -
XE1_3_norm C channel fluorescence intensity (normalized) -
XE1_4_norm D channel fluorescence intensity (normalized) -
XE1_5 _norm E channel fluorescence intensity (normalized) —
XE1_6_norm F channel fluorescence intensity (normalized) -
XE1_7_norm G channel fluorescence intensity (normalized) -
XE1_8_norm H channel fluorescence intensity (normalized) -
FL_ratio Ratio of the sums of the first two to last six fluorescence channels -
FL Summed fluorescence intensity of all channels [au] -
Sat Flag for saturation in any fluorescence channel (boolean) -
AsymLR% Left-right mirror asymmetry across corresponding pixels [%]
AsymLRinv% Left-right mirror asymmetry, inverted [%]

PeakMeanL, PeakMeanR
PeakWidthL, PeakWidthR
PeakCountL, PeakCountR
KurtosisL, KurtosisR
VarianceL, VarianceR
MeanL, MeanR
SumL, SumR
SkewL, SkewR
MirrorL%, MirrorR %

Peak-to-mean-ratio, left and right arrays

Peak width at half height, left and right arrays

Number of peaks over threshold, left and right arrays

Kurtosis of signal treated as a distribution, left and right arrays
Variance of signal treated as a distribution, left and right arrays
Mean signal intensity, left and right arrays

Sum of signal intensities, left and right arrays

Skew of signal treated as a distribution, left and right arrays

Mirror symmetry across middle pixel, left and right arrays [%]

T R T o T o T B e e I S N T T I e A

T T T o T o T T T B e I T I

XX X X X X X X X X X

Table S2. Output variables from the Multiparameter Bioaerosol Spectrometer (MBS). Normalized fluorescence channel intensities are di-
vided by the maximum intensity detected across the spectrum for each measurement. The right three columns denote (with an “X”’) where the
variable is used as input between the pollution logistic regression model (LRM), uniform manifold approximation and projection (UMAP)

transformer, and dust LRM in our classification algorithm.
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Figure S4. The laboratory setup for the source experiments conducted in this study, with (a) the dry air line where particles were aerosolized

with a speaker in dry experiments, and (b) the particle nebulizer for wet experiments.
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Tracer Sampling frequency Inlet type  Citation

Silicon Daily Whole air Calzolai (2025)
Iron Weekly PM10 Aas (2024)
Aluminum Weekly PM10 Aas (2024)
Manganese Weekly PM10 Aas (2024)
Titanium Weekly PM10 Aas (2024)
Nickel Weekly PM10 Aas (2024)
Chromium Weekly PM10 Aas (2024)
Calcium Daily Whole air Aas (2025)
Potassium Daily Whole air Aas (2025)
Organic carbon Weekly PM10 Yttri (2023b)
Fructose Weekly PM10 Yttri (2023a)
Glucose Weekly PM10 Yttri (2023a)
Arabitol Weekly PM10 Yttri (2023a)
Mannitol Weekly PM10 Yttri (2023a)
Sodium Daily Whole air Aas (2025)
Chloride Daily Whole air Aas (2025)
Magnesium Daily Whole air Aas (2025)
Levoglucosan Weekly PM10 Yttri (2023a)
Equivalent black carbon (eBC)  Minutely (resampled to daily) Whole air  Freitas et al. (2023b)
Lead Weekly PM10 Aas (2024)

Table S3. Tracers used in this study, their sampling frequencies, the sampling inlet types used (PM10 denotes particulate matter under 10

um), and their references.
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Figure S5. Optical morphology parameters, resolved by size, for all dust and sea spray aerosol (SSA) compared in this study, as well as
the polystyrene latex (PSL) spheres from Beck et al. (2024). (a): Size distributions for all particles measured in these experiments. (b-
j): Distributions for optical morphology parameters, binned by size; for PSLs, the larger size bin (lightly filled) is likely due to particle
aggregation and is thus not representative of spherical morphology. (c) Left-right (L-R) asymmetry is based on both optical arrays. For

single-array metrics (c-j), only the right array is used.
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Figure S6. Optical morphology parameters, resolved by size, for all dust and sea spray aerosol (SSA) compared in this study, and for a
particles observed on 2 March 2020, a day during the sampling period with least dust influence (selected by the wintertime minimum in dust
tracer iron concentration measurements, with each sample taken over three days). (a): Size distributions for all particles measured in these
experiments. (b-j): Distributions for optical morphology parameters, binned by size; for PSLs, the larger size bin (lightly filled) is likely due
to particle aggregation and is thus not representative of spherical morphology. (c) Left-right (L-R) asymmetry is based on both optical arrays.

For single-array metrics (c-j), only the right array is used.
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Classification scheme algorithm

Select all particles >0.8 um.

Fluorescent particle branch

Non-fluorescence particle branch

1. Select all highly fluorescent particles (HFP; > 9o fluorescence).

2. Feed the fluorescence and optical scattering variables to the pollu-
tion logistic regression model (LRM); particles with a probability of
being pollution greater than a chosen confidence threshold are classed
as interferents/pollution.

3. Reduce the dimensionality of the input variables (fluorescence and
morphology properties) to two dimensions using the uniform manifold
approximation and projection (UMAP) transformer.

4. Feed the two-dimensional UMAP coordinates as input to the k-
nearest neighbors (kNN) classifier trained on source characterization
data and attach a most likely class identification, along with its proba-
bility estimate, to each particle.

5. Filter the kNN-classified output by a desired confidence threshold.
Particles positively identified as one of the three bioaerosol classes
(pollen, bacteria, and fungal spores) according to the threshold are con-
sidered fluorescent primary biological aerosol particles (fPBAPs); all

others are considered interferents/pollution.

1. Select all non- or weakly fluorescent particles (< 9o fluorescence).
2. Select only particles that are of sufficient size for detecting optical

property signals (> 2.5 pm).

3. Feed the optical scattering properties as input to the dust LRM and

attach the dust-likeness probability to each particle.

4. Filter particles with a dust-likeness probability higher than a desired

confidence threshold as dust; all others are considered SSA.

Table S4. A written form of our particle classification algorithm illustrated in Fig. 5.

15
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Figure S7. Spearman correlation coefficients between particle concentration estimates for all coarse particles, highly fluorescent particles
(HFPs), fluorescent biological aerosol particles (fPBAP) according to the methods of Freitas et al. (2023a) and our classification algorithm
(this study), individual fPBAP classes from our classifier, and chemical tracers at Zeppelin Observatory during 2020, for both the tuned (a)
and untuned (b) classification algorithms. A comparison of the tuned and untuned main classification algorithm components are shown in
(c). Correlations that are not significant with p < 0.05 are made transparent. Tracers used in the domain adaptation steps are marked with an

asterisk. The panel on the bottom includes the sample size for each tracer.
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Figure S9. Probability density functions (PDFs) of logistic regression model (LRM) output for probability of being classified as dust for
laboratory-measured dust (shown is the Svalbard sample from Tobo et al. 2019, characterized in this study) and sea spray aerosol (SSA;
shown is the artificial sea salt sample from Beck et al. 2024), as well as non-fluorescent coarse particles observed at Zeppelin Observatory

during an example period with minimal dust influence (27-28 March 2020). Results are shown for both the untuned (a) and tuned (b) LRM.
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