

HESS Opinions: Applied hydrologic models in the era of machine learning—retain, revamp, reconcile, or replace?

Delanie Williams¹, Mukesh Kumar^{1*}, Katie van Werkhoven², Martyn Clark³, Christopher Wilson⁴, Paul Miller⁵

5

¹Department of Civil, Construction, and Environmental Engineering, University of Alabama, Tuscaloosa, 35487, U.S.A.

²Research Triangle Institute, Durham, NC, 27713, U.S.A.

³Department of Civil Engineering, University of Calgary, Calgary, T2N 1N4, Canada

⁴Department of Geography & the Environment, University of Alabama, Tuscaloosa, 35487, U.S.A.

10 ⁵NOAA Colorado Basin River Forecast Center, Salt Lake City, 84116, U.S.A.

Correspondence to: Mukesh Kumar (mkumar4@eng.ua.edu)

Abstract. Despite advancements in the performance of machine learning (ML) based hydrologic models, some institutions are hesitant to pursue ML as a replacement for existing conceptual or process-based hydrologic models in many applications. In several of these circumstances, traditional hydrologic models continue to be favored due to their familiarity, reliability, 15 interpretability, established performance benchmarks under varied settings, availability of detailed training modules and a trained workforce, as well as close integration with data, processing, and decision-making pipelines. Recognizing these advantages, this perspective argues for two pragmatic and institutionally compatible paths forward for integration of ML within applied models: (1) reconciling ML as a complementary option in applied hydrologic modeling workflows; and (2) revamping or upskilling hydrologic modeling workflows using ML. To support this perspective, we highlight key opportunities where 20 ML can be used as a tool to enhance results across various stages of the model implementation and operational workflow including data pre-processing, parameter calibration, parameter transferability, data assimilation, solver enhancement, accelerating scenario simulations and post-processing. Each of these two integration strategies can be implemented into current applied model frameworks, thereby combining the strengths of both physical modeling and ML. These strategies can help overcome current bottlenecks and address institutional needs of continuity and compatibility, while also offering the potential 25 to improve model performance with ML.

1 Introduction: Applied hydrologic modeling at the crossroads in the era of ML

Applied hydrological models represent numerous process-based, conceptual, or mathematical models used by government agencies, utilities, consultancies, or other entities to support water resources management, regulation, forecasting, risk assessment, and emergency responses. Hydrologic models are used to predict and map water stores and fluxes to facilitate 30 real-time decision-making, climate and land use/land cover change risk assessments, and other planning studies. These models are used for a wide variety of decisions, such as in flood and drought predictions (Samaniego et al., 2019), ecosystem service management and investment decisions (Guswa et al., 2014), hydroelectric management, water utility management, and

infrastructure planning (Keller et al., 2023). Currently these models are predominantly conceptual or process-based (i.e., non-ML) and include models such as HEC-HMS, HEC-RAS, SWAT, SAC-SMA, PRMS, WRF-Hydro, MIKE SHE, MIKE 35 HYDRO, MIKE 11, HBV, VIC, SUMMA, and many more. More details of some of these models and their example functional applications are listed in Table 1.

Model Name	Abbreviation	Relevant Users	Functions
Hydrologic Engineering Center- Hydrologic Modeling System	HEC-HMS	U.S. Army Corps of Engineers	Rain-runoff simulation (Sahu et al., 2023; González-Cao et al., 2019); flood forecasting (Sahu et al., 2023; González-Cao et al., 2019; Laassilia et al., 2022), reservoir modeling (Hu et al., 2006), soil erosion and sediment routing
Hydrologic Engineering Center- River Analysis System	HEC-RAS	U.S. Army Corps of Engineers	Flood impact assessment (Garcia et al., 2020), 1D-2D flood modeling (Garcia et al., 2020; Dasallas et al., 2019; Hicks and Peacock, 2005), flood routing(Hicks and Peacock, 2005); sediment transport, water quality modeling
Soil & Water Assessment Tool	SWAT	USDA	Evaluate climate and land use changes (Sahu et al., 2023; Janjić and Tadić, 2023; Zhao et al., 2024), sediment transport (Gassman et al., 2014), non-point source pollution control (Janjić and Tadić, 2023; Zhao et al., 2024; Gassman et al., 2014), and runoff modelling (Janjić and Tadić, 2023)
Sacramento Soil Moisture Accounting	SAC-SMA	NOAA River Forecast Centers	Runoff modelling (Buda et al., 2022; Wang et al., 2023), snowmelt estimation (Agnihotri and Coulibaly, 2020)
Precipitation Runoff Modeling System	PRMS	USGS	Runoff modelling (Teng et al., 2017), streamflow simulation (Teng et al., 2017; Roland, 2023), land cover change

			impacts (Roland, 2023), groundwater and surface–water interactions (Markstrom et al., 2015), hydrologic parameter estimation (Archfield et al., 2015)
MIKE-SHE	MIKE-SHE	Select municipal water treatment plants	Spatiotemporal water resource management (Sahu et al., 2023), Managing groundwater/pipe interfaces , land use changes (Sahu et al., 2023), streamflow simulation (Golmohammadi et al., 2014; Dai et al., 2010), climate change impacts on water resources (Papadimos et al., 2022), irrigation modeling (Papadimos et al., 2022; Singh et al., 1999), solute transport (Daneshmand et al., 2019), water table depth estimation (Dai et al., 2010)
MIKE-HYDRO	MIKE-HYDRO	Select reservoirs & dams	Dam and reservoir operations , water demand and supply (Agrawal et al., 2024), hydrodynamic river modelling (Jahandideh-Tehrani et al., 2020)
Hydrologiska Byrån Vattenavdelning	HBV	Norwegian & Finnish hydrological services, select hydropower facilities	Streamflow simulation (Seibert and Bergström, 2022; Ávila et al., 2022; Driessens et al., 2010), mountainous region catchment management (Seibert and Bergström, 2022), snow processes (Ávila et al., 2022; Osuch et al., 2019), climate change impacts on water resources (Driessens et al., 2010), water storage estimation (Osuch et al., 2019)

Table 1: A few applied hydrologic models and their functions

Applied hydrologic models have been developed and evaluated over decades and have a long history of use, interpretability, and regulatory acceptance. However, concerns exist about the inherent limitations of these models, such as their transferability (Nearing et al., 2020), computational requirements (Zhang et al., 2021; Clark et al., 2017), parameterization (Meert et al., 2018; Ghaith and Li, 2020; Pappenberger et al., 2005; Uhlenbrook et al., 1999), and process representation (Grimm and Chu, 2019; Uhlenbrook et al., 1999; Halwatura and Najim, 2013). Recent research advances in machine learning (ML) have demonstrated not only remarkable skill in simulating hydrologic variables (Ghimire et al., 2021; Malekzadeh et al., 2019; Kratzert et al., 2019), but have also highlighted their strong potential to alleviate the limitations of current applied hydrologic models, such as slow or computationally demanding calibration and poor transferability (Tsai et al., 2021; Song et al., 2022; Feigl et al., 2022). Given their advantages, ML models are increasingly finding applications in operations. For example, the USDA NRCS currently operates a process-based model, but is phasing it out for a ML ensemble water supply model in the western United States (US) (Fleming et al., 2021; Fleming and Goodbody, 2019). Google operates a global ML flood forecasting model with a 7-day lead time. Other entities have begun developing new models, such as the US Bureau of Reclamation and the private entity Upstream Tech piloting ML inflow forecasts (Bearup et al., 2024). Many other agencies and private companies are also exploring ways to incorporate ML research into hydrology workflows.

For those in the applied hydrologic modeling and operations community who have not integrated or replaced their traditional model with ML, a critical decision lies ahead: how and to what extent should ML-based data-driven models be integrated with applied models? Should ML completely replace applied models, be used selectively to revamp specific modeling workflow steps (e.g., parameter estimation), be reconciled as a complementary option, or retain the status quo models and procedures and risk falling behind?

The goal of this perspective is to highlight the key challenges that currently hinder the integration of ML within some current applied models, despite their researched promise of improved predictive accuracy. We advocate for an integrative path forward, where ML is used as a tool to augment legacy models instead of replacing. We detail (in Section 2) multiple reasons for the continued persistence of applied models. Next, we discuss different ways to enhance applied models, by using ML within specific process steps or alongside current model workflows (Sections 3.1 and 3.2). Then we highlight an example framework for evaluating applied model needs and for planning and implementing ML within the model workflows (Section 4). Finally, we discuss the implications of such model update strategies and conclude that reconciling or revamping operational workflows offers a path forward to more resilient applied hydrology (Section 5).

2 Challenges with complete replacement by ML: The rough road ahead

Despite recent research demonstrating the efficacy of ML for single hydrologic variable estimation (Ghimire et al., 2021; Malekzadeh et al., 2019; Kratzert et al., 2019) and a few instances of ML models being used in operations (Fleming et al., 2021; Fleming and Goodbody, 2019; Bearup et al., 2024), applied models continue to be used by several government agencies and private corporations. This persistence may reflect hesitance to trust ML's efficacy in applied settings, or, alternatively,

concerns for the delay and challenges inherent in moving larger institutions to new directions. It could also reflect the lack of sufficiently mature domain-specific research, where gaps in ML research towards watershed analyses, planning and 75 vulnerability studies, infrastructure design, or future climate change may discourage industry adoption. An unexplored avenue explaining the lack of adoption include a myriad of institutional factors, such as regulations, familiarity (Melsen, 2022; Addor and Melsen, 2018; Nearing et al., 2020), and interpretability (Xu and Liang, 2021) which reinforce the reliance on well-accepted hydrologic models.

In several applications, the use of particular models is codified by an agency. For example, US Federal Emergency 80 Management Agency's (FEMA) National Flood Insurance Program (NFIP) requires hydrologic analyses to use models that "meet minimum requirements of 44 CFR 65.6." This regulation is under Title 44: Emergency Management and Assistance, Part 65, and deals with identifying and mapping Special Hazard Areas. It lays out the required technical specifications and documentation that must be met when requesting a Letter of Map Revision (LOMR) or submitting revised flood hazard data. FEMA even publishes a list of "accepted hydrologic models," which includes HEC-HMS and TR-20, for floodplain mapping 85 and insurance studies. Similarly, the US Army Corps of Engineers (USACE) and state environmental agencies have detailed guidance for models used in planning studies, environmental impact analyses, and water-quality permits. These rules deter the use of a new model without re-certification. Even if ML methods could outperform legacy models, they are expected to face lengthy validation trials.

Workforce familiarity with process-based models over ML models is another important factor. Addor and Melsen (2018) 90 explained the prevalence of process-based models throughout academia as a result of prior experience and exposure, which cyclically reinforces the use of these models; mentors teach early career scientists with what they are familiar. Familiarity with a modeling system allows newer users to learn from experienced users and institutional resources on how to parameterize, use, interpret, and troubleshoot these models, thus falling back on a wealth of institutional knowledge. For some agencies, the training of entry-level or junior staff is partially dependent on senior employees, such as in the USACE which expects senior 95 mentors to, "support and mentor the junior modeler" (2023). This is a deterrence to immediate and large-scale replacement of applied models by ML, as senior staff with extensive experience in ML may not exist. Outside of user knowledge, there are institutional resources, such as the backlog of notes, references, and project documentation the USACE has on various HEC software (HEC-HMS, HEC-RAS, HED-PRM, HEC-RFA, and HEC-FIA), detailing the applicability, limitations, and usage of HEC models. If ML models replaced existing modeling and decision-system workflows, workforce retraining would be 100 necessary, though such efforts would lack the plethora of available learning and troubleshooting resources that are available for well-established applied models (Keller et al., 2023). Accumulating the necessary resources for either onboarding new staff or training existing staff (and then retaining them) would require a substantial investment to proceed with an AI framework. The lack of resources and workforce familiarity with ML models impedes the wholesale replacement of applied models.

Finally, the replacement of applied hydrological models with ML is expected to face challenges associated with interpretability 105 and predictability. Many current models are conceptual or process-based, allowing for a realistic connection with hydrologic processes. Agencies expect modelers to understand the model's internal structure and assumptions while completing

computation quality checks (2023; 2024). ML models are often described as black box models. While advances have been made with interpretable machine learning (Xu et al., 2024; Jiang et al., 2022; Zhang et al., 2023), it is harder to extract meaningful insights regarding the reasons for extreme or unexpected responses, especially at the process level, from ML 110 models (Xu and Liang, 2021). Trained modelers are required to interpret model results and justify their decisions (2023). Interpreting outputs could be challenging due to the lack of familiarity with the ML processes and the complex hidden layers involved with many ML hydrologic models.

To summarize, replacing applied hydrologic models with ML poses several institutional challenges. These include codified 115 regulations related to tools to be used, workforce familiarity and trust with existing tools, and strong institutional trust due to the interpretability of established hydrologic models. In lieu of replacing applied hydrologic models with ML, an alternative is to use ML to augment current applied models.

3 Augmenting applied models using ML: The road less taken

Given the many reasons to continue favoring well-established applied models, it is not a surprise that many public agencies 120 and private organizations are approaching ML adoption cautiously and incrementally. Beyond sticking with existing models or jumping to wholesale replacement, two promising alternatives are parallel ML workflows and strategically implemented ML 125 modules. Parallel ML workflows aim to adjust or recreate applied model outputs, while ML modules allow for selective integration within the existing model to improve computational cost, output accuracy, or decrease uncertainty. Both hybrid approaches offer a way to enhance model outputs while preserving usability, interpretability, and institutional trust. Compared to a full-scale replacement, these two strategies require phased effort and less disruption, while potentially expanding the capabilities and adaptability of applied hydrologic models.

3.1 The use of ML alongside applied model workflows

ML can be reconciled or incorporated within current applied model workflows as a complementary option. This approach 130 could serve as a transitional step towards complete applied model replacement but may also remain independently viable based on its merits. The goals of the complementary option may include: (a) providing stakeholders and operational modelers with the flexibility to choose, combine, or present all models' outputs, based on known model limits and expert discretion; (b) saving computational expense through the use of surrogate models.

When the goal is to combine models' outputs, these two strategies may be employed: weighted ensembling of individual model 135 outputs and creating probabilistic outputs via ensemble dressing. Weighted ensembles of ML and process-based model outputs may improve output accuracy, while providing physical insight into the mechanisms within the ML (Du and Pechlivanidis, 2025; Gichamo et al., 2024). ML can also be used to transform deterministic outputs into statistical distributions (i.e. ensemble dressing), improving risk based decision-making without modifying core models (Papacharalampous et al., 2019). Transforming deterministic data into probabilistic outputs can provide additional insights for practitioners and operators

(Papacharalampous and Tyralis, 2022). While the reconciliation approach may increase the computational cost, it provides rightsholders with the flexibility to choose, combine, or present all models' outputs, based on known model limits and expert discretion. This approach could serve as a transitional step towards complete applied model replacement but would also be viable independently due to the improved applied hydrologic model outputs. It should be noted, however, that ensemble-based approaches typically incur additional computational cost.

140 Implementing ML-based surrogate or emulator models can reduce model simulation and calibration times. For example, when compared to hydrodynamic models, surrogate models have a faster run-time (Dai et al., 2025). While the training time for 145 emulators must be considered, prior study suggests only a small amount of runs outweighs the initial time investment (Dai et al., 2025). An improvement in model run speed would be a benefit for emergency situations requiring quick outputs. While emulator error must be considered, the benefit of emulators for rapid predictions cannot be understated. Surrogate modeling approaches have shown promise for small and large scale water depth prediction (Zahura et al., 2020; Yan et al., 2023; Fathi et al., 2025), rapid flood zone mapping (Zahura et al., 2020), and parameter or calibration optimization (Garzón et al., 2022; 150 Xingpo et al., 2021).

3.2 ML within applied modeling workflows

ML can be integrated within applied hydrologic model workflows, revamping their core steps, oftentimes reducing errors. Sources of error within legacy models include those due to structural limitations in representation of processes and their 155 numerical solution, input data uncertainties, and parameter uncertainties (McMillan et al., 2018; Renard et al., 2010; Gupta and Govindaraju, 2023). By improving data pre-processing streams, calibration and parameter selection, data assimilation mathematical techniques, and post-processing techniques using ML, many of the aforementioned uncertainties can be reduced. Below, we present a few examples highlighting ML methods that can be used within the applied model workflows to improve their efficacy.

ML can be used to address a myriad of quality issues inherent in forcings data, either due to equipment malfunctions at 160 automatic weather stations, extreme weather events, or coarse sampling occurrences. Previous studies have addressed data quality concerns, like missing and erroneous data, by implementing ML based data filling (Chivers et al., 2020; Boujoudar et al., 2024; Park et al., 2023), anomaly detection (Vries et al., 2016), or bias reduction (Zhang and Ye, 2021). ML can also be used for a more effective and computationally efficient parameter calibration. Notably, most prevailing automatic calibration 165 approaches have the challenge of computational cost (Herrera et al., 2021). Recent studies have shown that ML techniques relying on mapping catchment surface attributes to parameters can yield accurate initial parameter sets (Sun et al., 2022; Jin et al., 2024; Tsai et al., 2021). ML models can also be used to estimate transfer functions (TFs) as a substitute for providing parameters in ungauged regions (Feigl et al., 2022; Song et al., 2022). Additionally, ML can serve as a proxy for current data assimilation (DA) methods. One specific advantage ML may provide over traditional filtering methods is its ability to manage non-Gaussian problems, which is a leading concern for methods based on Kalman Filtering (Zhang et al., 2024; Jeung et al., 170 2023). ML has demonstrated proficiency in outperforming Kalman techniques (Zhang et al., 2024; Boucher et al., 2020).

An essential part of some applied models is the computation of ordinary differential (ODEs) or partial differential equations (PDEs) (Kochkov et al., 2021; Kumar et al., 2009; Spiteri et al., 2024; Bisht and Riley, 2019). These are computationally intensive, in particular at fine resolutions or long-time scales (Wang et al., 2018; Kumar and Duffy, 2015). ML can help accelerate the calculation of these complex equations, either by improving numerical solving simulations or innovating 175 traditional mathematical methods. Research shows ML being used to simulate Navier Stokes simulations with faster results (Obiols-Sales et al., 2020; Kochkov et al., 2021). Other studies have focused on expanding mathematical techniques, such as coarse grid estimation for a splitting algorithm (Efendiev et al., 2022) or approximating basis functions for the Generalized Multiscale Finite Element Method (Rudikov et al., 2025).

Beyond reducing uncertainties in the model workflow, ML post-processing techniques can be implemented on applied model 180 outputs to develop further hydrologic insights. Methods include ML-based algorithms for bias reduction, model evaluation, downscaling of outputs, and hydrologic response understanding and support. ML bias correction post-processing modules can be implemented to adjust outputs, such as to ensure proper calibration (Liu et al., 2022) or incorporate unaccounted catchment attributes like water infrastructure (Neisary et al., 2025) into models. To understand the performance of a hydrologic model, an evaluation strategy utilizing ML may be used to identify if the model has reached its optimal state (Rozos et al., 2021). 185 Applied models often run at relatively coarse resolutions (e.g., 1–4 km or larger), whereas users may want fine-scale information (e.g., localized flood depths, field-level streamflow). Computational intensity and fine scale data availability limits the ability of applied models to be run for finer resolutions. ML can downscale applied model outputs to finer resolutions with high accuracy (Schneider et al., 2022; Folberth et al., 2019), paving the way for fine scale data availability.

ML can also assist in understanding hydrologic responses and making decisions. Clustering ML algorithms have demonstrated 190 the ability to connect catchment behavior to landscape characteristics, identifying hydrologic signatures which outperformed expert selections (Addor et al., 2018; Botterill and Mcmillan, 2023). ML techniques may also aid in decision making. For example, deep learning algorithms have been used to support real-time water mapping by utilizing remote sensor images (Sun et al., 2021) or emulating hydrodynamic models (Yan et al., 2023; Fathi et al., 2025). These maps can be used to issue flood warnings or guide emergency managers. Emergency communication frameworks can be supported with large language models 195 (LLM). ML in decision support can assist in the comprehension of flood warnings; for lay-people, trained flood risk large language models (LLM) can answer flood-related questions and therefore reduce an individual's flood risk (Zhu et al., 2024). A similar LLM for applied hydrologic decision making could turn raw model output into actionable "features." Overall, these examples highlight the different ways ML can be integrated into applied modeling workflows to reduce prediction errors and more effectively communicate results to experts, emergency managers, and lay-people.

200 4 A roadmap for revamp or reconciliation

How to go about integrating ML within or alongside applied model workflows remains an unexamined topic. Here we detail a multi-step roadmap for such an integration. It is to be noted that relevance and implementation of individual steps in the

roadmap may vary by application, the type of legacy model being used, current limitations in the system, the modification done with ML, and the complexity of the chosen adjustment. Within each step, we highlight key considerations for integration
205 and discuss them with some illustrative examples.

Figure 1: A framework for implementing ML into an applied hydrologic model

4.1 Step 1: Assessment of limitations in current applied model workflows

Applied models often have well-known limitations, recognized by organizations based on their past use. Additional insights
210 can be gained from (meta-analysis of past) academic research. Limitations could be divided into specific sub-components which can be addressed individually. As an example, an agency may recognize their calibration process limiting SAC-SMA potential. The broad limitation can be further divided into sub-components, such as into the need to improve predictive accuracy and the need to transfer parameters to ungauged regions.

4.2 Step 2: Set ML integration objectives

215 After identifying the applied model limitations, integration objectives can be set. These may include selecting specific objectives and identifying resource needs and time constraints associated with each limitation. Extending the SAC-SMA calibration example, the agency may want to address both calibration accuracy and parameter transferability or focus on only one of these objectives based on operational priorities.

4.3 Step 3: Select an appropriate ML technique

220 Once limitations and desired integration objectives have been defined, ML techniques that best address the existing limitation(s) or integration objectives (Section 3) can be identified. For example, to address the desired SAC-SMA calibration objectives, the agency may select a modular ML technique based on suitability (Tang et al., 2025; Mudunuru et al., 2022).

4.4 Step 4: Develop prototypes

225 Depending on the selected ML technique, prototype development strategies should be defined. Important constraints to consider include the level of user-interaction, whether the tool will be implemented at a single or across multiple sites, whether it will run simultaneously across locations, and whether multiple realizations are required. Additional considerations include benchmark thresholds in terms of accuracy and computational constraints, and data storage requirements. In the case of the SAC-SMA model, benchmark target accuracy thresholds may be defined using prior model runs or values reported in the literature (Addor et al., 2017). These criteria will adjust the variance of data used to train the decided ML technique, dataset 230 size, deployment over single or multiple processors, the use of cloud computing, and the interface design.

4.5 Step 5: Conduct validation

235 To ensure that the prototype behaves as expected, it is important to compare the original applied model to different iterations of the modified model on validation and test datasets. Only after establishing that the ML modules add value to the original process can the prototypes be ready for deployment. Extending on the illustrative narrative of an agency using SAC-SMA, adapting SAC-SMA should compare the efficacy of the developed ML calibration to the current baseline model. The parameter transferability improvement may require additional metrics such as a score quantifying its ability to generalize to nearby catchments.

4.6 Step 6: Train staff and stakeholders

240 If possible, an expert on ML should be brought in to educate staff on the process which occurs behind the scenes. ML models are difficult to interpret, which may promote distrust. Training may educate users on the mechanics of the specific model, and the benefits, improvements, and potential challenges which will come with its utilization. At the same time, emphasis can be placed on the current applied model remaining in place. In the case of SAC-SMA, staff and stakeholders should be shown the validation results and have the process thoroughly explained. Emphasis should be placed on how the ML modules replicate or modulate the processes of the model schema they understand.

245 **4.7 Step 7: Implement incrementally**

Slow implementation of ML tools will support the development of trust with operators and staff in the model's capabilities. It will also allow for the gradual development of intuition for operators. In the beginning, the original and the modified

frameworks could run in parallel (regardless of the revamp or reconciliation decision). Over time, this will create trust with the modules as stakeholders and staff see consistent out-performance or other advantages. When sufficient trust has been
250 gained and performance demonstrated, the original model may be discontinued as needed.

4.8 Step 8: Monitor and update

Continually monitor staff capabilities and comfortability, as well as model performance. If a discrepancy or new limitation appears, the analysis cycle should restart to allow for continued optimization within the organization.

5 Conclusions

255 Machine learning models have been gaining prominence for making hydrologic variable predictions. Yet, the complete replacement of legacy models remains slow, and may not occur, due to the necessity of maintaining current institutional trust, established decision-making frameworks, and interpretability. This perspective argues that in many instances, instead of pursuing wholesale replacement, the strengths of both ML and applied physical models can be realized through the deliberate integration of ML alongside or within existing applied models. When used alongside applied models, ML can generate
260 complementary predictions, support ensemble-based analyses, and enable rapid scenario exploration. When embedded within or alongside existing models, ML can enhance individual workflow components, including data pre-processing to fill time-series gaps and manage uncertainty in inputs, parameter calibration, increasing spatial and temporal transferability, data assimilation for state variable validity, solver enhancement for increased processing speed, and post-processing to reduce bias, evaluate models, downscale outputs, and understand hydrologic responses.

265 The perspective hopes to orient the hydrologic modeling community to focus not only on the continual development of increasingly sophisticated ML-based hydrologic models, but also towards the practical integration of ML within operational systems through modular revamping or complementary reconciliation. These integrative approaches are expected to balance the maintenance of institutional trust, decision-making frameworks, and interpretability while reducing model uncertainty, model computational resources, and improving model applicability. Overall, using the integration approaches presented here,
270 modelers can harness the strengths of both paradigms, i.e., ML and applied process-based models, to improve decisions related to water quality, water access, urban growth and development, emergency planning, and disaster mitigation.

Author contributions

Initial conceptualization was carried out by DW and MK. DW conducted further investigation, project administration, and original draft writing. MK provided funding and supervision. All authors contributed to manuscript review and editing
275 following the initial draft.

Competing interests

Disclaimer

Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include 280 appropriate place names, the final responsibility lies with the authors. Views expressed in the text are those of the authors and do not necessarily reflect the views of the publisher or the authors' respective organizations.

Acknowledgements

We thank Dr. Andrew Wood for providing valuable feedback to an initial version of this manuscript.

Financial support

285 This work is partially supported by NOAA-CIROH NA22NWS4320003.

Review statement

The review statement will be added by Copernicus Publications listing the handling editor as well as all contributing referees according to their status anonymous or identified.

References

290 HEC-RAS: <https://www.hec.usace.army.mil/software/hec-ras/>, last access: July 21.

NPDES Permit Development Tools: <https://www.oregon.gov/deq/wq/wqpermits/pages/npdes-individual-permit-template.aspx>, last

Mike HYDRO Basin: <https://www.dhigroup.com/technologies/mikepoweredbydhi/mike-hydro-basin>, last access: July 22.

Flood Forecasting: <https://sites.research.google/gr/floodforecasting/hydrology-model/>, last

295 Model Certification: <https://planning.erdc.dren.mil/toolbox/mobile/current.cfm?Side=No&ThisPage=ModelCert&Title=Model+Certification>, last

Environmental Impact Assessment Criteria.

Case Study: Estimating Sediment Yield in the Upper North Bosque River Watershed (UNBRW).

The cost-efficient steps to reduce inflow and infiltration at Söråker wastewater treatment plant:
300 <https://www.dhigroup.com/projects/the-cost-efficient-steps-to-reduce-inflow-and-infiltration-at-soeraaker-wastewater-treatment-plant>, last access: July 21.

Water Quality Modeling: <https://epd.georgia.gov/watershed-protection-branch/water-quality-modeling#toc-models>, last access: September 11.

MS4 Modeling Guidance: https://dnr.wisconsin.gov/topic/Stormwater/standards/ms4_modeling.html, last
305 CBRFC Soil Moisture Modeling.

Model Coordination for Civil Works Planning Studies, 2023.

Water Resource Policies and Authorities: CIVIL WORKS REVIEW POLICY, 2024.

Addor, N. and Melsen, L. A.: Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models, Water Resources Research, 55, 378-390, <https://doi.org/10.1029/2018WR022958>, 2018.

310 Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293-5313, <https://doi.org/10.5194/hess-21-5293-2017>, 2017.

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A Ranking of Hydrological Signatures Based on Their Predictability in Space, Water Resources Research, 54, 8792-8812, <https://doi.org/10.1029/2018WR022606>, 2018.

Agnihotri, J. and Coulibaly, P.: Evaluation of Snowmelt Estimation Techniques for Enhanced Spring Peak Flow Prediction,
315 Water, 12, <https://doi.org/10.3390/w12051290>, 2020.

Agrawal, A., Kothari, M., Jaiswal, R. K., Gautam, V. K., Pande, C. B., Ahmed, K. O., Refadah, S. S., Khan, M. Y. A., Abdulqadir, T. J., and Durin, B.: Integrated Basin-Scale Modelling for Sustainable Water Management Using MIKE HYDRO Basin Model: A Case Study of Parvati Basin, India, Water, 16, <https://doi.org/10.3390/w16192739>, 2024.

Archfield, S. A., Clark, M., Arheimer, B., Hay, L. E., McMillan, H., Kiang, J. E., Seibert, J., Hakala, K., Bock, A., Wagener,
320 T., Farmer, W. H., Andréassian, V., Attinger, S., Viglione, A., Knight, R., Markstrom, S., and Over, T.: Accelerating advances in continental domain hydrologic modeling, Water Resources Research, 51, 10078-10091, <https://doi.org/10.1002/2015WR017498>, 2015.

Ávila, L., Silveira, R., Campos, A., Rogiski, N., Gonçalves, J., Scortegagna, A., Freita, C., Aver, C., and Fan, F.: Comparative Evaluation of five Hydrological Models in a Large-Scale and Tropical River Basin, Water, 14, <https://doi.org/10.3390/w14193013>, 2022.

Bearup, L., Read, L., Santos, N., Fenolio, J., Johnson, L., Behery, S., and Leon-Salazar, C.: Piloting Machine Learning Inflow Forecasts Across Reclamation, 2024.

Bisht, G. and Riley, W. J.: Development and Verification of a Numerical Library for Solving Global Terrestrial Multiphysics Problems, Journal of Advances in Modeling Earth Systems, 11, 1516-1542, <https://doi.org/10.1029/2018MS001560>, 2019.

330 Botterill, T. E. and McMillan, H. K.: Using Machine Learning to Identify Hydrologic Signatures With an Encoder-Decoder Framework, Water Resources Research, 59, <https://doi.org/10.1029/2022WR033091>, 2023.

Boucher, M.-A., Quilty, J., and Adamowski, J.: Data Assimilation for Streamflow Forecasting Using Extreme Learning Machines and Multilayer Perceptrons, *Water Resources Research*, 56, <https://doi.org/10.1029/2019WR026226>, 2020.

Boujoudar, M., El Ydrissi, M., Abraim, M., Bouarfa, I., El Alani, O., Ghennoui, H., and Bennouna, E. G.: Comparing machine learning algorithms for imputation of missing time series in meteorological data, *Neural Computing and Applications*, <https://doi.org/10.1007/s00521-024-10601-8>, 2024.

335 Buda, A. R., Reed, S. M., Folmar, G. J., Kennedy, C. D., Millar, D. J., Kleinman, P. J. A., Miller, D. A., and Drohan, P. J.: Applying the NWS's Distributed Hydrologic Model to Short-Range Forecasting of Quickflow in the Mahantango Creek Watershed, *Journal of Hydrometeorology*, 23, <https://doi.org/10.1175/JHM-D-210189.s1>, 2022.

340 Chivers, B. D., Wallbank, J., Cole, S. J., Sebek, O., Stanley, S., Fry, M., and Leontidis, G.: Imputation of missing sub-hourly precipitation data in a large sensor network: A machine learning approach, *Journal of Hydrology*, 588, <https://doi.org/10.1016/j.jhydrol.2020.125126>, 2020.

Clark, M. P., Bierkens, M. F. P., Samaniego, L., Woods, R. A., Uijlenhoet, R., Bennett, K. E., Pauwels, V. R. N., Cai, X., Wood, A. W., and Peters-Lidard, C. D.: The evolution of process-based hydrologic models: historical challenges and the 345 collective quest for physical realism, *Hydrol. Earth Syst. Sci.*, 21, 3427-3440, <https://doi.org/10.5194/hess-21-3427-2017>, 2017.

Dai, T., Maher, K., and Perzan, Z.: Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge, *Journal of Hydrology*, 652, <https://doi.org/10.1016/j.jhydrol.2024.132606>, 2025.

Dai, Z., Li, C., Trettin, C., Sun, G., Amatya, D., and Li, H.: Bi-criteria evaluation of the MIKE SHE model for a forested 350 watershed on the South Carolina coastal plain, *Hydrol. Earth Syst. Sci.*, 14, 1033-1046, <https://doi.org/10.5194/hess-14-1033-2010>, 2010.

Daneshmand, H., Alaghmand, S., Camporese, M., Talei, A., and Daly, E.: Water and salt balance modelling of intermittent catchments using a physically-based integrated model, *Journal of Hydrology*, 586, <https://doi.org/10.1016/j.jhydrol.2018.11.035>, 2019.

355 Dasallas, L., Kim, Y., and An, H.: Case Study of HEC-RAS 1D-2D Coupling Simulation: 2002 Baeksan Flood Event in Korea, *Water*, 11, <https://doi.org/10.3390/w11102048>, 2019.

Driessen, T. L. A., Hurkmans, R. T. W. L., Terink, W., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model, *Hydrol. Earth Syst. Sci.*, 14, 651-665, <https://doi.org/10.5194/hess-14-651-2010>, 2010.

360 Du, Y. and Pechlivanidis, I. G.: Hybrid approaches enhance hydrological model usability for local streamflow prediction, *communications earth & environment*, 6, <https://doi.org/10.1038/s43247-025-02324-y>, 2025.

Efendiev, Y., Leung, W. T., Lin, G., and Zhang, Z.: Efficient hybrid explicit-implicit learning for multiscale problems, *Journal of Computational Physics*, 467, <https://doi.org/10.1016/j.jcp.2022.111326>, 2022.

365 Fathi, M. M., Liu, Z., Fernandes, A. M., Hren, M. T., Terry, D. O., Nataraj, C., and Smith, V.: Spatiotemporal flood depth and velocity dynamics using a convolutional neural network within a sequential Deep-Learning Framework, *Environmental Modelling and Software*, 185, <https://doi.org/10.1016/j.envsoft.2024.106307>, 2025.

Feigl, M., Thober, S., Schwepppe, R., Herrnegger, M., Samaniego, L., and Schulz, K.: Automatic Regionalization of Model parameters for Hydrological Models, *Water Resources Research*, 58, <https://doi.org/10.1029/2022WR031966>, 2022.

370 Fleming, S. W. and Goodbody, A. G.: A Machine Learning Metasystem for Robust Probabilistic Nonlinear Regression-Based Forecasting of Seasonal Water Availability in the US West, *IEEE Access*, 7, 119943-119964, <https://doi.org/10.1109/ACCESS.2019.2936989>, 2019.

Fleming, S. W., Garen, D. C., Goodbody, A. G., McCarthy, C. S., and Landers, L. C.: Assessing the new Natural Resources Conservation Service water supply forecast model for the American West: A challenging test of explainable, automated, ensemble artificial intelligence, *Journal of Hydrology*, 602, <https://doi.org/10.1016/j.jhydrol.2021.126782>, 2021.

375 Folberth, C., Baklanov, A., Balkovič, J., Skalský, R., Khabarov, N., and Obersteiner: Spatio-temporal downscaling of gridded crop model yield estimates based on machine learning, *Agricultural and Forest Meteorology*, 264, 1-15, <https://doi.org/10.1016/j.agrformet.2018.09.021>, 2019.

Garcia, M., Juan, A., and Bedient, P.: Integrating Reservoir Operations and Flood Modeling with HEC-RAS 2D, *Water*, 12, <https://doi.org/10.3390/w12082259>, 2020.

380 Garzón, A., Kapelan, Z., Langeveld, J., and Taormina, R.: Machine Learning-Based Surrogate Modeling for Urban Water Networks: Review and Future Research Directions, *Water Resources Research*, 58, <https://doi.org/10.1029/2021WR031808>, 2022.

Gassman, P. W., Sadeghi, A. M., and Srinivasan, R.: Applications of the SWAT Model Special Section: Overview and Insights, *Journal of Environmental Quality*, 43, 1-8, <https://doi.org/10.2134/jeq2013.11.0466>, 2014.

385 Ghaith, M. and Li, Z.: Propagation of parameter uncertainty in SWAT: A probabilistic forecasting method based on polynomial chaos expansion and machine learning, *Journal of Hydrology*, 586, <https://doi.org/10.1016/j.jhydrol.2020.124854>, 2020.

Ghimire, S., Yaseen, Z. M., Farooque, A. A., Deo, R. C., Zhang, J., and Tao, X.: Streamflow prediction using an integrated methodology based on convolutional neural network and long short-term memory networks, *Scientific Reports*, 11, <https://doi.org/10.1038/s41598-021-96751-4>, 2021.

390 Gichamo, T., Nourani, V., Gökçekus, H., and Gelete, G.: Ensemble of artificial intelligence and physically based models for rainfall-runoff modeling in the upper Blue Nile Basin, *Hydrology Research*, 55, <https://doi.org/10.2166/nh.2024.189>, 2024.

Golmohammadi, G., Prasher, S., Madani, A., and Rudra, R.: Evaluating Three Hydrological Distributed Watershed Models: MIKE-SHE, APEX, SWAT, *Hydrology*, 1, 20-39, <https://doi.org/10.3390/hydrology1010020>, 2014.

González-Cao, J., García-Feal, O., Fernández-Nóvoa, D., Domínguez-Alonso, J. M., and Gómez-Gesteira, M.: Towards an automatic early warning system of flood hazards based on precipitation forecast: the case of the Miño River (NW Spain), *Nat. Hazards Earth Syst. Sci.*, 19, 2583-2595, <https://doi.org/10.5194/nhess-19-2583-2019>, 2019.

Grimm, K. and Chu, X.: Depression threshold control proxy to improve HEC-HMS modeling of depression-dominated watersheds, *Hydrological Sciences Journal*, 65, 200-211, <https://doi.org/10.1080/02626667.2019.1690148>, 2019.

Gupta, A. and Govindaraju, R. S.: Uncertainty quantification in watershed hydrology: Which method to use?, *Journal of Hydrology*, 616, <https://doi.org/10.1016/j.jhydrol.2022.128749>, 2023.

400 Guswa, A. J., Brauman, K. A., Brown, C., Hamel, P., Keeler, B. L., and Sayre, S. S.: Ecosystem services: Challenges and opportunities for hydrologic modeling to support decision making, *Water Resources Research*, 50, <https://doi.org/10.1002/2014WR015497>, 2014.

Halwatura, D. and Najim, M. M. M.: Application of the HEC-HMS model for runoff simulation in a tropical catchment, *Environmental Modelling and Software*, 46, 155-162, <http://dx.doi.org/10.1016/j.envsoft.2013.03.006>, 2013.

405 Herrera, P. A., Marazuela, M. A., and Hofmann, T.: Parameter estimation and uncertainty analysis in hydrological modeling, *WIREs Water*, 9, <https://doi.org/10.1002/wat2.1569>, 2021.

Hicks, F. E. and Peacock, T.: Suitability of HEC-RAS for Flood Forecasting, *Canadian Water Resources Journal*, 30, 159-174, <https://doi.org/10.4296/cwrj3002159>, 2005.

410 Hu, H. H., Kreymborg, L. R., Doeing, B. J., Baron, K. S., and Jutila, S. A.: Gridded Snowmelt and Rainfall-Funoff CWMS Hydrologic Modeling of the Red River of the North Basin, *Hydrologic Engineering*, 11, 91-100, [https://doi.org/10.1061/\(ASCE\)1084-0699\(2006\)11:2\(91\)](https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(91)), 2006.

Jahandideh-Tehrani, M., Helfer, F., Zhang, H., Jenkins, G., and Yu, Y.: Hydrodynamic modelling of a flood-prone tidal river using the 1D model MIKE HYDRO River: calibration and sensitivity analysis, *Environmental Monitoring and Assessment*, 415 192, <https://doi.org/10.1007/s10661-019-8049-0>, 2020.

Janjić, J. and Tadić, L.: Fields of Application of SWAT Hydrological Model- A Review, *Earth*, 4, 331-334, <https://doi.org/10.3390/earth4020018>, 2023.

Jeung, M., Jang, J., Yoon, K., and Baek, S.-S.: Data assimilation for urban stormwater and water quality simulations using deep reinforcement learning, *Journal of Hydrology*, 624, <https://doi.org/10.1016/j.jhydrol.2023.129973>, 2023.

420 Jiang, S., Zheng, Y., Wang, C., and Babovic, V.: Uncovering Flooding Mechanisms Across the Contiguous United States Through Interpretive Deep Learning on Representative Catchments, *Water Resources Research*, 58, <https://doi.org/10.1029/2021WR030185>, 2022.

Jin, H., Zhao, Y., Lu, P., Zhang, S., Chen, Y., Zheng, S., and Zhu, Z.: Using Machine Learning to Identity and Optimize Sensitive Parameters in Urban Flood Model Considering Subsurface Characteristics, *International Journal of Disaster Risk Science*, <https://doi.org/10.1007/s13753-024-00540-2>, 2024.

425 Keller, A. A., Garner, K., Rao, N., Knipping, E., and Thomas, J.: Hydrological models for climate-based assessments at the watershed scale: A critical review of existing hydrologic and water quality models, *Science of the Total Environment*, 867, <https://doi.org/10.1016/j.scitotenv.2022.161209>, 2023.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S.: Machine learning-accelerated computational fluid dynamics, *PNAS*, 118, <https://doi.org/10.1073/pnas.2101784118>, 2021.

Kratzert, F., Klotz, D., Shalev, G., Klambauer, G., Hochreiter, S., and Nearing, G.: Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets, *Hydrol. Earth Syst. Sci.*, 23, 5089-5110, <https://doi.org/10.5194/hess-23-5089-2019>, 2019.

Kumar, M. and Duffy, C.: Exploring the Role of Domain Partitioning on Efficiency of Parallel Distributed Hydrologic Simulations, *Journal of Hydrogeology & Hydrologic Engineering*, 4, <https://doi.org/10.4172/2325-9647.1000119>, 2015.

Kumar, M., Duffy, C. J., and Salvage, K. M.: A Second-Order Accurate, Finite Volumt-Based, Integrated Hydrologic Modeling (FIHM) Framework for Simulation of Surface and Subsurface Flow, *Vadose Zone Journal*, 8, 873-890, <https://doi.org/10.2136/vzj2009.0014>, 2009.

Laassilia, O., Saghiry, S., Ouazar, D., Bouziane, A., and Hasnaoui, M. D.: Flood forecasting with a dam watershed event-based hydrological model in a semi-arid context: case study in Morocco, *Water Practice & Technology*, 17, 817-834, <https://doi.org/10.2166/wpt.2022.025>, 2022.

Liu, S., Wang, J., Wang, H., and Wu, Y.: Post-processing of hydrological model simulations using the convolution neural network and support vector regression, *Hydrology Research*, 53, 605-621, <https://doi.org/10.2166/nh.2022.004>, 2022.

Malekzadeh, M., Kardar, S., and Shabanlou, S.: Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models, *Groundwater for Sustainable Development*, 9, <https://doi.org/10.1016/j.gsd.2019.100279>, 2019.

Markstrom, S. L., Regan, R. S., Hay, L. E., Viger, R. J., Webb, R. M. T., Payn, R. A., and LaFontaine, J. H.: PRMS-IV, the Precipitation -Runoff Modeling System, Version 4, <http://dx.doi.org/10.3133/tm6B7>., 2015.

McMillan, H. K., Westerberg, I. K., and Krueger, T.: Hydrological data uncertainty and its implications, *WIREs Water*, 5, <https://doi.org/10.1002/wat2.1319>, 2018.

Meert, P., Pereira, F., and Willems, P.: Surrogate modeling-based calibration of hydrodynamic river model parameters, *Journal of Hydro-environment Research*, 19, 56-67, <https://doi.org/10.1016/j.jher.2018.02.003>, 2018.

Melsen, L. A.: It Takes a Village to Run a Model—The Social Practices of Hydrological Modeling, *Water Resources Research*, 58, <https://doi.org/10.1029/2021WR030600>, 2022.

Mudunuru, M. K., Son, K., Jiang, P., Hammon, G., and Chen, X.: Scalable deep learning for watershed model calibration, *Frontiers in Earth Science*, 10, <https://doi.org/10.3389/feart.2022.1026479>, 2022.

Nearing, G. S., Kratzert, F., Sampson, A. K., Pelissier, C. S., Klotz, D., Frame, J. M., Prieto, C., and Gupta, H. V.: What Role Does Hydrological Science Play in the Age of Machine Learning, *Water Resources Research*, <https://doi.org/10.1029/2020WR028091>, 2020.

Neisary, S. N., Johnson, R. C., Alam, M. S., and Burian, S. J.: A post-processing machine learning framework for bias-correcting National Water Model outputs by accounting for dominant streamflow drivers, *Environmental Modelling and Software*, 190, <https://doi.org/10.1016/j.envsoft.2025.106459>, 2025.

Obiols-Sales, O., Vishnu, A., Malaya, N., and Chandramowliswaran, A.: CFDNet: a deep learning-based accelerator for fluid simulations, Proceedings of the 34th ACM International Conference on Supercomputing, Barcelona, Spain, 465 <https://doi.org/10.1145/3392717.3392772>, 2020.

Osuch, M., Wawrzyniak, T., and Nawrot, A.: Diagnosis of the hydrology of a small Arctic permafrost catchment using HBV conceptual rainfall-runoff model, *Hydrology Research*, 50, <https://doi.org/10.2166/nh.2019.031>, 2019.

Papacharalampous, G. and Tyralis, H.: A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting, *Frontiers in Water*, 4, <https://doi.org/10.3389/frwa.2022.961954>, 470 2022.

Papacharalampous, G., Tyralis, H., Langousis, A., Jayawardena, A. W., Sivakumar, B., Mamassis, N., Montanari, A., and Koutsoyiannis, D.: Probabilistic Hydrological Post-Processing at Scale: Why and How to Apply Machine-Learning Quantile Regression Algorithms, *Water*, 11, <https://doi.org/10.3390/w11102126>, 2019.

Papadimos, D., Demertzis, K., and Papamichail, D.: Assessing Lake Response to Extreme Climate Change Using Coupled 475 MIKE SHE/MIKE 11 Model: Case Study of Lake Zazari in Greece, *Water*, 14, <https://doi.org/10.3390/w14060921>, 2022.

Pappenberger, F., Beven, K., Horritt, M., and Blazkova, S.: Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations, *Journal of Hydrology*, 302, 46-69, <https://doi.org/10.1016/j.jhydrol.2004.06.036>, 2005.

Park, J., Müller, J., Arora, B., Faybishenko, B., Pastorello, G., Varadharajan, C., Sahu, R., and Agarwal, D.: Long-term 480 missing value imputation for time series data using deep neural networks, *Neural Computing and Applications*, 35, 9071-9091, <https://doi.org/10.1007/s00521-022-08165-6>, 2023.

Renard, B., Kavetski, D., Kuczera, G., Thyre, M., and Franks, S. W.: Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, *Water Resources Research*, 46, <https://doi.org/10.1029/2009WR008328>, 2010.

Roland, V. L., II: Application of the Precipitation-Runoff Modeling System (PRMS) to Simulate the Streamflows and Water 485 Balance of the Red River Bains, 1980-2016, U.S. Department of the Interior U.S. Geological Survey, <https://doi.org/10.3133/sir20225105>, 2023.

Rozos, E., Dimitriadis, P., and Bellos, V.: Machine Learning in Assessing the Performance of Hydrological Models, *Hydrology*, 9, <https://doi.org/10.3390/hydrology9010005>, 2021.

Rudikov, A., Fanaskov, V., Stepanov, S., Shan, B., Muravleva, E., Efendiev, Y., and Oseledets, I.: Locally Subspace-Informed 490 Neural Operators for Efficient Multiscale PDE Solving, *arXiv preprint*, 2025.

Sahu, M. K., Shwetha, H. R., and Dwarakish, G. S.: State-of-the-art hydrological models and application of the HEC-HMS model: a review, *Modeling Earth Systems and Environment*, 9, 3029-3051, <https://doi.org/10.1007/s40808-023-01704-7>, 2023.

Samaniego, L., Thober, S., Wanders, N., Pan, M., Rakovec, O., Sheffield, J., Wood, E. F., Prudhomme, C., Rees, G., Houghton-Carr, H., Fry, M., Smith, K., Watts, G., Hisdal, H., Estrela, T., Buontempo, C., Marx, A., and Kumar, R.: Hydrological 495

Forecasts and Projections for Improved Decision-Making in the Water Sector in Europe, Bulletin of the American Meteorological Society, 100, 2451-2471, <https://doi.org/10.1175/BAMS-D-17-0274.1>, 2019.

500 Schneider, R., Koch, J., Troldborg, L., Henriksen, H. J., and Stisen, S.: Machine-learning-based downscaling of modelled climate change impacts on groundwater table depth, Hydrol. Earth Syst. Sci., 26, 5859-5877, <https://doi.org/10.5194/hess-26-5859-2022>, 2022.

Seibert, J. and Bergström, S.: A retrospective on hydrological catchment modelling based on half a century with the HBV model, Hydrol. Earth Syst. Sci., 26, 1371-1388, <https://doi.org/10.5194/hess-26-1371-2022>, 2022.

505 Singh, R., Subramanian, K., and Refsgaard, J. C.: Hydrological modelling of a small watershed using MIKE SHE for irrigation planning, Agricultural Water Management, 41, 149-166, [https://doi.org/10.1016/S0378-3774\(99\)00022-0](https://doi.org/10.1016/S0378-3774(99)00022-0), 1999.

Song, Z., Xia, J., Wang, G., She, D., Hu, C., and Hong, S.: Regionalization of hydrological model parameters using gradient boosting machine, Hydrol. Earth Syst. Sci., 26, 505-524, <https://doi.org/10.5194/hess-26-505-2022>, 2022.

510 Spiteri, R. J., Van Beusekom, A. E., Klenk, K., Zolfaghari, R., Trim, S. J., Knoben, W. J. M., Ireson, A. M., and Clark, M. P.: Accurate and Efficient Numerical Simulation of Land Models Using SUMMA With SUNDIALS, Journal of Advances in Modeling Earth Systems, 16, <https://doi.org/10.1029/2024MS004256>, 2024.

Sun, H., Dai, X., Shou, W., Wang, J., and Ruan, X.: An Efficient Decision Support System for Flood Inundation Management Using Intermittent Remote-Sensing Data, remote sensing, 13, <https://doi.org/10.3390/rs13142818>, 2021.

515 Sun, Y., Liu, C., Du, X., Yang, F., Yao, Y., Soomro, S.-e.-h., and Hu, C.: Urban storm flood simulation using improved SWMM based on K-means clustering of parameter samples, Journal of Flood Risk Management, 15, <https://doi.org/10.1111/jfr3.12826>, 2022.

Tang, G., Wood, A. W., and Swenson, S.: On Using AI-Based Large-Sampmle Emulators for Land/Hydrology Model Calibration and Regionalization, Water Resouces Research, 61, <https://doi.org/10.1029/2024WR039525>, 2025.

Teng, F., Huang, W., Cai, Y., Zheng, C., and Zou, S.: Application of Hydrological Model PRMS to Simulate Daily Rainfall Runoff in Zamask-Yingluoxia Subbasin of the Heihe River Basin, Water, 9, <https://doi.org/10.3390/w9100769>, 2017.

520 Tsai, W.-P., Feng, D., Pan, M., Beck, H., Lawson, K., Yang, Y., Liu, J., and Shen, C.: From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling, Nature Communications, 12, <https://doi.org/10.1038/s41467-021-26107-z>, 2021.

Uhlenbrook, S., Seibert, J., Leibundgut, C., and Rodhe, A.: Prediction uncertainty of conceptual rainfall-runoff models caused by problems to identify model parameters and structure, Hydrological Sciences Journal, 44, 449-798, <https://doi.org/10.1080/02626669909492273>, 1999.

Vries, D., van den Akker, B., Vonk, E., de Jong, W., and van Summeren, J.: Application of machine learning techniques to predict anomalies in water supply networks, Water Science & Technology: Water Supply, 16, 1528-1535, <https://doi.org/10.2166/ws.2016.062>, 2016.

530 Wang, B., Sun, H., Guo, S., Huang, J., Wang, Z., Bai, X., Gong, X., and Jin, X.: Strategy for Deriving Sacramento Model Parameters Using Soil Properties to Improve Its Runoff Simulation performances, *Agronomy*, 13, <https://doi.org/10.3390/agronomy13061473>, 2023.

Wang, D., Liu, Y., and Kumar, M.: Using nested discretization for a detailed yet computationally efficient simulation of local hydrology in a distributed hydrologic model, *Scientific Reports*, 8, <https://doi.org/10.1038/s41598-018-24122-7>, 2018.

535 Xingpo, L., Muzi, L., Yaozhi, C., Jue, T., and Jinyan, G.: A comprehensive framework for HSFP hydrological parameter sensitivity optimization and uncertainty evaluation based on SVM surrogate model- A case study in Qinglong River watershed, China, *Environmental Modelling and Software*, 143, <https://doi.org/10.1016/j.envsoft.2021.105126>, 2021.

Xu, T. and Liang, F.: Machine learning for hydrologic sciences: An introductory overview, *WIREs Water*, 8, <https://doi.org/10.1002/wat2.1533>, 2021.

540 Xu, Y., Lin, K., Hu, C., Chen, X., Zhang, J., Xiao, M., and Xu, C.-Y.: Uncovering the Dynamic Drivers of Floods Through Interpretable Deep Learning, *Earth's Future*, 12, <https://doi.org/10.1029/2024EF004751>, 2024.

Yan, X., Mohammadian, A., Ao, r., Liu, J., and Yang, N.: Two-dimensional convolutional neural network outperforms other machine learning architectures for water depth surrogate modeling, *Journal of Hydrology*, 616, <https://doi.org/10.1016/j.jhydrol.2022.128812>, 2023.

545 Zahura, F. T., Goodall, J. L., Sadler, J. M., Shen, Y., Morsy, M. M., and Behl, M.: Training Machine Learning Surrogate Models From a High-Fidelity Physics-Based Model: Application for Real-Time Street-Scale Flood Predictiton in an Urban Coastal Community, *Water Resources Research*, 56, <https://doi.org/10.1029/2019WR027038>, 2020.

Zhang, B., Salem, F. K. A., Hayes, M. J., Smith, K. H., Tadesse, T., and Wardlow, B. D.: Explainable machine learning for the prediction and assessment of complex drought impacts, *Science of the Total Environment*, 898, <https://doi.org/10.1016/j.scitotenv.2023.165509>, 2023.

550 Zhang, D., Lin, B., Wu, J., and Lin, Q.: GP-SWAT (v1.0): A two-layer graph-based parallel simulation framework for the SWAT model, *Geoscientific Model Development Discussions*, 1-19, <https://doi.org/10.5194/gmd-14-5915-2021>, 2021.

Zhang, J., Cao, C., Nan, T., Ju, L., Zhou, H., and Zeng, L.: A Novel Deep Learning Approach for Data Assimilation of Complex Hydrological Systems, *Water Resources Research*, 60, <https://doi.org/10.1029/2023WR035389>, 2024.

Zhang, Y. and Ye, A.: Machine Learning for Precipitation Forecasts Postprocessing: Multimodel Comparison and 555 Experimental Investigation, *Journal of Hydrometeorology*, 22, 3065-3085, <https://doi.org/10.1175/JHM-D-21-0096.1>, 2021.

Zhao, J., Zhang, N., Liu, Z., Zhang, Q., and Shang, C.: SWAT model applications: From hydrological processes to ecosystem services, *Science of the Total Environment*, 931, <https://doi.org/10.1016/j.scitotenv.2024.172605>, 2024.

Zhu, J., Dang, P., Cao, Y., Lai, J., Guo, Y., Wang, P., and Li, W.: A flood knowledge-constrained large langauge model interactable with GIS: enhancing public perception of floods, *International Journal of Geographical Information Science*, 38, 560 603-625, <https://doi.org/10.1080/13658816.2024.2306167>, 2024.