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Abstract. Despite advancements in the performance of machine learning (ML) based hydrologic models, some institutions are
hesitant to pursue ML as a replacement for existing conceptual or process-based hydrologic models in many applications. In
several of these circumstances, traditional hydrologic models continue to be favored due to their familiarity, reliability,
interpretability, established performance benchmarks under varied settings, availability of detailed training modules and a
trained workforce, as well as close integration with data, processing, and decision-making pipelines. Recognizing these
advantages, this perspective argues for two pragmatic and institutionally compatible paths forward for integration of ML within
applied models: (1) reconciling ML as a complementary option in applied hydrologic modeling workflows; and (2) revamping
or upskilling hydrologic modeling workflows using ML. To support this perspective, we highlight key opportunities where
ML can be used as a tool to enhance results across various stages of the model implementation and operational workflow
including data pre-processing, parameter calibration, parameter transferability, data assimilation, solver enhancement,
accelerating scenario simulations and post-processing. Each of these two integration strategies can be implemented into current
applied model frameworks, thereby combining the strengths of both physical modeling and ML. These strategies can help
overcome current bottlenecks and address institutional needs of continuity and compatibility, while also offering the potential

to improve model performance with ML.

1 Introduction: Applied hydrologic modeling at the crossroads in the era of ML

Applied hydrological models represent numerous process-based, conceptual, or mathematical models used by government
agencies, utilities, consultancies, or other entities to support water resources management, regulation, forecasting, risk
assessment, and emergency responses. Hydrologic models are used to predict and map water stores and fluxes to facilitate
real-time decision-making, climate and land use/land cover change risk assessments, and other planning studies. These models
are used for a wide variety of decisions, such as in flood and drought predictions (Samaniego et al., 2019), ecosystem service

management and investment decisions (Guswa et al., 2014), hydroelectric management, water utility management, and
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infrastructure planning (Keller et al., 2023). Currently these models are predominantly conceptual or process-based (i.e., non-
ML) and include models such as HEC-HMS, HEC-RAS, SWAT, SAC-SMA, PRMS, WRF-Hydro, MIKE SHE, MIKE
HYDRO, MIKE 11, HBV, VIC, SUMMA, and many more. More details of some of these models and their example functional

applications are listed in Table 1.

Model Name Abbreviation Relevant Users Functions
Rain—runoff simulation (Sahu et al.,

2023; Gonzalez-Cao et al., 2019) flood

Hydrologic Engineering
Center- Hydrologic Modeling HEC-HMS
System

U.S. Army Corps forecasting (Sahu et al., 2023; Gonzalez-
of Engineers Cao et al., 2019; Laassilia et al., 2022),
reservoir modeling (Hu et al., 2006), soil

erosion and sediment routing

Flood impact assessment (Garcia et al.,
2020), 1D-2D flood modeling (Garcia

et al., 2020; Dasallas et al., 2019; Hicks

Hydro?ogic Enginf:ering HEC-RAS U.S. Army Corps | and Peacock, 2005), flood
Center- River Analysis System of Engineers ) )
routing(Hicks and Peacock, 2005),

sediment transport, water quality

modeling

Evaluate climate and land use changes
(Sahu et al., 2023; Janji¢ and Tadi¢,
2023; Zhao et al., 2024), sediment
transport (Gassman et al., 2014), non-
Soil & Water Assessment Tool SWAT USDA ] ) .
point source pollution control (Janji¢
and Tadi¢, 2023; Zhao et al., 2024;
Gassman et al., 2014), and runoff
modelling (Janji¢ and Tadi¢, 2023)
Runoff modelling (Buda et al., 2022;
Sacramento Soil Moisture NOAA River Wang et al., 2023), snowmelt

) SAC-SMA o o )
Accounting Forecast Centers | estimation (Agnihotri and Coulibaly,

2020)
Runoff modelling (Teng et al., 2017),

Precipitation Runoff Modeling PRMS USGS streamflow simulation (Teng et al.,

System 2017; Roland, 2023), land cover change
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impacts (Roland, 2023), groundwater
and surface—water interactions
(Markstrom et al., 2015), hydrologic
parameter estimation (Archfield et al.,

2015)

Select municipal

Spatiotemporal water resource
management (Sahu et al., 2023),
Managing groundwater/pipe interfaces ,
land use changes (Sahu et al., 2023),
streamflow simulation (Golmohammadi

etal., 2014; Dai et al., 2010), climate

MIKE-SHE MIKE-SHE water treatment )
change impacts on water resources
plants . o
(Papadimos et al., 2022), irrigation
modeling (Papadimos et al., 2022;
Singh et al., 1999), solute transport
(Daneshmand et al., 2019), water table
depth estimation (Dai et al., 2010)
Dam and reservoir operations , water
Select reservoirs | demand and supply (Agrawal et al.,
MIKE-HYDRO MIKE-HYDRO o .
& dams 2024), hydrodynamic river modelling
(Jahandideh-Tehrani et al., 2020)
Streamflow simulation (Seibert and
) Bergstrom, 2022; Avila et al., 2022;
Norwegian & ) )
Driessen et al., 2010), mountainous
Finnish ) )
] ) region catchment management (Seibert
Hydrologiska Byrans hydrological
) HBV ) and Bergstrom, 2022), snow processes
Vattenavdelning services, select L
(Avila et al., 2022; Osuch et al., 2019),
hydropower ] ]
o climate change impacts on water
facilities

resources (Driessen et al., 2010), water

storage estimation (Osuch et al., 2019)

Table 1: A few applied hydrologic models and their functions
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Applied hydrologic models have been developed and evaluated over decades and have a long history of use, interpretability,
and regulatory acceptance. However, concerns exist about the inherent limitations of these models, such as their transferability
(Nearing et al., 2020), computational requirements (Zhang et al., 2021; Clark et al., 2017), parameterization (Meert et al., 2018;
Ghaith and Li, 2020; Pappenberger et al., 2005; Uhlenbrook et al., 1999), and process representation (Grimm and Chu, 2019;
Uhlenbrook et al., 1999; Halwatura and Najim, 2013). Recent research advances in machine learning (ML) have demonstrated
not only remarkable skill in simulating hydrologic variables (Ghimire et al., 2021; Malekzadeh et al., 2019; Kratzert et al.,
2019), but have also highlighted their strong potential to alleviate the limitations of current applied hydrologic models, such
as slow or computationally demanding calibration and poor transferability (Tsai et al., 2021; Song et al., 2022; Feigl et al.,
2022). Given their advantages, ML models are increasingly finding applications in operations. For example, the USDA NRCS
currently operates a process-based model, but is phasing it out for a ML ensemble water supply model in the western United
States (US) (Fleming et al., 2021; Fleming and Goodbody, 2019). Google operates a global ML flood forecasting model with
a 7-day lead time . Other entities have begun developing new models, such as the US Bureau of Reclamation and the private
entity Upstream Tech piloting ML inflow forecasts (Bearup et al., 2024). Many other agencies and private companies are also
exploring ways to incorporate ML research into hydrology workflows.

For those in the applied hydrologic modeling and operations community who have not integrated or replaced their traditional
model with ML, a critical decision lies ahead: how and to what extent should ML-based data-driven models be integrated with
applied models? Should ML completely replace applied models, be used selectively to revamp specific modeling workflow
steps (e.g., parameter estimation), be reconciled as a complementary option, or retain the status quo models and procedures
and risk falling behind?

The goal of this perspective is to highlight the key challenges that currently hinder the integration of ML within some current
applied models, despite their researched promise of improved predictive accuracy. We advocate for an integrative path forward,
where ML is used as a tool to augment legacy models instead of replacing. We detail (in Section 2) multiple reasons for the
continued persistence of applied models. Next, we discuss different ways to enhance applied models, by using ML within
specific process steps or alongside current model workflows (Sections 3.1 and 3.2). Then we highlight an example framework
for evaluating applied model needs and for planning and implementing ML within the model workflows (Section 4). Finally,
we discuss the implications of such model update strategies and conclude that reconciling or revamping operational workflows

offers a path forward to more resilient applied hydrology (Section 5).

2 Challenges with complete replacement by ML: The rough road ahead

Despite recent research demonstrating the efficacy of ML for single hydrologic variable estimation (Ghimire et al., 2021;
Malekzadeh et al., 2019; Kratzert et al., 2019) and a few instances of ML models being used in operations (Fleming et al.,
2021; Fleming and Goodbody, 2019; Bearup et al., 2024), applied models continue to be used by several government agencies

and private corporations. This persistence may reflect hesitance to trust ML’s efficacy in applied settings, or, alternatively,
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concerns for the delay and challenges inherent in moving larger institutions to new directions. It could also reflect the lack of
sufficiently mature domain-specific research, where gaps in ML research towards watershed analyses, planning and
vulnerability studies, infrastructure design, or future climate change may discourage industry adoption. An unexplored avenue
explaining the lack of adoption include a myriad of institutional factors, such as regulations, familiarity (Melsen, 2022; Addor
and Melsen, 2018; Nearing et al., 2020), and interpretability (Xu and Liang, 2021) which reinforce the reliance on well-
accepted hydrologic models.

In several applications, the use of particular models is codified by an agency. For example, US Federal Emergency
Management Agency’s (FEMA) National Flood Insurance Program (NFIP) requires hydrologic analyses to use models that
“meet minimum requirements of 44 CFR 65.6.” This regulation is under Title 44: Emergency Management and Assistance,
Part 65, and deals with identifying and mapping Special Hazard Areas. It lays out the required technical specifications and
documentation that must be met when requesting a Letter of Map Revision (LOMR) or submitting revised flood hazard data.
FEMA even publishes a list of “accepted hydrologic models,” which includes HEC-HMS and TR-20, for floodplain mapping
and insurance studies. Similarly, the US Army Corps of Engineers (USACE) and state environmental agencies have detailed
guidance for models used in planning studies , environmental impact analyses , and water-quality permits . These rules deter
the use of a new model without re-certification. Even if ML methods could outperform legacy models, they are expected to
face lengthy validation trials.

Workforce familiarity with process-based models over ML models is another important factor. Addor and Melsen (2018)
explained the prevalence of process-based models throughout academia as a result of prior experience and exposure, which
cyclically reinforces the use of these models; mentors teach early career scientists with what they are familiar. Familiarity with
a modeling system allows newer users to learn from experienced users and institutional resources on how to parameterize, use,
interpret, and troubleshoot these models, thus falling back on a wealth of institutional knowledge. For some agencies, the
training of entry-level or junior staff is partially dependent on senior employees, such as in the USACE which expects senior
mentors to, “support and mentor the junior modeler” (2023). This is a deterrence to immediate and large-scale replacement of
applied models by ML, as senior staff with extensive experience in ML may not exist. Outside of user knowledge, there are
institutional resources, such as the backlog of notes, references, and project documentation the USACE has on various HEC
software (HEC-HMS, HEC-RAS, HED-PRM, HEC-RFA, and HEC-FIA), detailing the applicability, limitations, and usage
of HEC models. If ML models replaced existing modeling and decision-system workflows, workforce retraining would be
necessary, though such efforts would lack the plethora of available learning and troubleshooting resources that are available
for well-established applied models (Keller et al., 2023). Accumulating the necessary resources for either onboarding new staff
or training existing staff (and then retaining them) would require a substantial investment to proceed with an Al framework.
The lack of resources and workforce familiarity with ML models impedes the wholesale replacement of applied models.
Finally, the replacement of applied hydrological models with ML is expected to face challenges associated with interpretability
and predictability. Many current models are conceptual or process-based, allowing for a realistic connection with hydrologic

processes. Agencies expect modelers to understand the model’s internal structure and assumptions while completing
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computation quality checks (2023; 2024). ML models are often described as black box models. While advances have been
made with interpretable machine learning (Xu et al., 2024; Jiang et al., 2022; Zhang et al., 2023), it is harder to extract
meaningful insights regarding the reasons for extreme or unexpected responses, especially at the process level, from ML
models (Xu and Liang, 2021). Trained modelers are required to interpret model results and justify their decisions (2023).
Interpreting outputs could be challenging due to the lack of familiarity with the ML processes and the complex hidden layers
involved with many ML hydrologic models.

To summarize, replacing applied hydrologic models with ML poses several institutional challenges. These include codified
regulations related to tools to be used, workforce familiarity and trust with existing tools, and strong institutional trust due to
the interpretability of established hydrologic models. In lieu of replacing applied hydrologic models with ML, an alternative

is to use ML to augment current applied models.

3 Augmenting applied models using ML: The road less taken

Given the many reasons to continue favoring well-established applied models, it is not a surprise that many public agencies
and private organizations are approaching ML adoption cautiously and incrementally. Beyond sticking with existing models
or jumping to wholesale replacement, two promising alternatives are parallel ML workflows and strategically implemented
ML modules. Parallel ML workflows aim to adjust or recreate applied model outputs, while ML modules allow for selective
integration within the existing model to improve computational cost, output accuracy, or decrease uncertainty. Both hybrid
approaches offer a way to enhance model outputs while preserving usability, interpretability, and institutional trust. Compared
to a full-scale replacement, these two strategies require phased effort and less disruption, while potentially expanding the

capabilities and adaptability of applied hydrologic models.

3.1 The use of ML alongside applied model workflows

ML can be reconciled or incorporated within current applied model workflows as a complementary option. This approach
could serve as a transitional step towards complete applied model replacement but may also remain independently viable based
on its merits. The goals of the complementary option may include: (a) providing stakeholders and operational modelers with
the flexibility to choose, combine, or present all models’ outputs, based on known model limits and expert discretion; (b)
saving computational expense through the use of surrogate models.

When the goal is to combine models’ outputs, these two strategies may be employed: weighted ensembling of individual model
outputs and creating probabilistic outputs via ensemble dressing. Weighted ensembles of ML and process-based model outputs
may improve output accuracy, while providing physical insight into the mechanisms within the ML (Du and Pechlivanidis,
2025; Gichamo et al., 2024). ML can also be used to transform deterministic outputs into statistical distributions (i.e. ensemble
dressing), improving risk based decision-making without modifying core models (Papacharalampous et al., 2019).

Transforming deterministic data into probabilistic outputs can provide additional insights for practitioners and operators
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(Papacharalampous and Tyralis, 2022). While the reconciliation approach may increase the computational cost, it provides
rightsholders with the flexibility to choose, combine, or present all models’ outputs, based on known model limits and expert
discretion. This approach could serve as a transitional step towards complete applied model replacement but would also be
viable independently due to the improved applied hydrologic model outputs It should be noted, however, that ensemble-based
approaches typically incur additional computational cost.

Implementing ML-based surrogate or emulator models can reduce model simulation and calibration times. For example, when
compared to hydrodynamic models, surrogate models have a faster run-time (Dai et al., 2025). While the training time for
emulators must be considered, prior study suggests only a small amount of runs outweighs the initial time investment (Dai et
al., 2025). An improvement in model run speed would be a benefit for emergency situations requiring quick outputs. While
emulator error must be considered, the benefit of emulators for rapid predictions cannot be understated. Surrogate modeling
approaches have shown promise for small and large scale water depth prediction (Zahura et al., 2020; Yan et al., 2023; Fathi
et al., 2025), rapid flood zone mapping (Zahura et al., 2020), and parameter or calibration optimization (Garzon et al., 2022;

Xingpo et al., 2021).

3.2 ML within applied modeling workflows

ML can be integrated within applied hydrologic model workflows, revamping their core steps, oftentimes reducing errors.
Sources of error within legacy models include those due to structural limitations in representation of processes and their
numerical solution, input data uncertainties, and parameter uncertainties (Mcmillan et al., 2018; Renard et al., 2010; Gupta
and Govindaraju, 2023). By improving data pre-processing streams, calibration and parameter selection, data assimilation
mathematical techniques, and post-processing techniques using ML, many of the aforementioned uncertainties can be reduced.
Below, we present a few examples highlighting ML methods that can be used within the applied model workflows to improve
their efficacy.

ML can be used to address a myriad of quality issues inherent in forcings data, either due to equipment malfunctions at
automatic weather stations, extreme weather events, or coarse sampling occurrences. Previous studies have addressed data
quality concerns, like missing and erroneous data, by implementing ML based data filling (Chivers et al., 2020; Boujoudar et
al., 2024; Park et al., 2023), anomaly detection (Vries et al., 2016), or bias reduction (Zhang and Ye, 2021). ML can also be
used for a more effective and computationally efficient parameter calibration. Notably, most prevailing automatic calibration
approaches have the challenge of computational cost (Herrera et al., 2021). Recent studies have shown that ML techniques
relying on mapping catchment surface attributes to parameters can yield accurate initial parameter sets (Sun et al., 2022; Jin et
al., 2024; Tsai et al., 2021). ML models can also be used to estimate transfer functions (TFs) as a substitute for providing
parameters in ungauged regions (Feigl et al., 2022; Song et al., 2022). Additionally, ML can serve as a proxy for current data
assimilation (DA) methods. One specific advantage ML may provide over traditional filtering methods is its ability to manage
non-Gaussian problems, which is a leading concern for methods based on Kalman Filtering (Zhang et al., 2024; Jeung et al.,

2023). ML has demonstrated proficiency in outperforming Kalman techniques (Zhang et al., 2024; Boucher et al., 2020).

7
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An essential part of some applied models is the computation of ordinary differential (ODEs) or partial differential equations
(PDEs) (Kochkov et al., 2021; Kumar et al., 2009; Spiteri et al., 2024; Bisht and Riley, 2019). These are computationally
intensive, in particular at fine resolutions or long-time scales (Wang et al., 2018; Kumar and Duffy, 2015). ML can help
accelerate the calculation of these complex equations, either by improving numerical solving simulations or innovating
traditional mathematical methods. Research shows ML being used to simulate Navier Stokes simulations with faster results
(Obiols-Sales et al., 2020; Kochkov et al., 2021). Other studies have focused on expanding mathematical techniques, such as
coarse grid estimation for a splitting algorithm (Efendiev et al., 2022) or approximating basis functions for the Generalized
Multiscale Finite Element Method (Rudikov et al., 2025).

Beyond reducing uncertainties in the model workflow, ML post-processing techniques can be implemented on applied model
outputs to develop further hydrologic insights. Methods include ML-based algorithms for bias reduction, model evaluation,
downscaling of outputs, and hydrologic response understanding and support. ML bias correction post-processing modules can
be implemented to adjust outputs, such as to ensure proper calibration (Liu et al., 2022) or incorporate unaccounted catchment
attributes like water infrastructure (Neisary et al., 2025) into models. To understand the performance of a hydrologic model,
an evaluation strategy utilizing ML may be used to identify if the model has reached its optimal state (Rozos et al., 2021).
Applied models often run at relatively coarse resolutions (e.g., 1-4 km or larger), whereas users may want fine-scale
information (e.g., localized flood depths, field-level streamflow). Computational intensity and fine scale data availability limits
the ability of applied models to be run for finer resolutions. ML can downscale applied model outputs to finer resolutions with
high accuracy (Schneider et al., 2022; Folberth et al., 2019), paving the way for fine scale data availability.

ML can also assist in understanding hydrologic responses and making decisions. Clustering ML algorithms have demonstrated
the ability to connect catchment behavior to landscape characteristics, identifying hydrologic signatures which outperformed
expert selections (Addor et al., 2018; Botterill and Mcmillan, 2023). ML techniques may also aid in decision making. For
example, deep learning algorithms have been used to support real-time water mapping by utilizing remote sensor images (Sun
et al., 2021) or emulating hydrodynamic models (Yan et al., 2023; Fathi et al., 2025). These maps can be used to issue flood
warnings or guide emergency managers. Emergency communication frameworks can be supported with large language models
(LLM). ML in decision support can assist in the comprehension of flood warnings; for lay-people, trained flood risk large
language models (LLM) can answer flood-related questions and therefore reduce an individual’s flood risk (Zhu et al., 2024).
A similar LLM for applied hydrologic decision making could turn raw model output into actionable “features.” Overall, these
examples highlight the different ways ML can be integrated into applied modeling workflows to reduce prediction errors and

more effectively communicate results to experts, emergency managers, and lay-people.

4 A roadmap for revamp or reconciliation

How to go about integrating ML within or alongside applied model workflows remains an unexamined topic. Here we detail

a multi-step roadmap for such an integration. It is to be noted that relevance and implementation of individual steps in the
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roadmap may vary by application, the type of legacy model being used, current limitations in the system, the modification
done with ML, and the complexity of the chosen adjustment. Within each step, we highlight key considerations for integration

and discuss them with some illustrative examples.

Implement

1. Establish Model 4. Create Prototype
Limitations

7. Implement Gradually

5. Validate & Assess 8. Monitor
2. Set Integration

Objectives 6. Train Operators

3. Select ML Technique

Figure 1: A framework for implementing ML into an applied hydrologic model

4.1 Step 1: Assessment of limitations in current applied model workflows

Applied models often have well-known limitations, recognized by organizations based on their past use. Additional insights
can be gained from (meta-analysis of past) academic research. Limitations could be divided into specific sub-components
which can be addressed individually. As an example, an agency may recognize their calibration process limiting SAC-SMA
potential. The broad limitation can be further divided into sub-components, such as into the need to improve predictive

accuracy and the need to transfer parameters to ungauged regions.

4.2 Step 2: Set ML integration objectives

After identifying the applied model limitations, integration objectives can be set. These may include selecting specific
objectives and identifying resource needs and time constraints associated with each limitation. Extending the SAC-SMA
calibration example, the agency may want to address both calibration accuracy and parameter transferability or focus on only

one of these objectives based on operational priorities.
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4.3 Step 3: Select an appropriate ML technique

Once limitations and desired integration objectives have been defined, ML techniques that best address the existing
limitation(s) or integration objectives (Section 3) can be identified. For example, to address the desired SAC-SMA calibration

objectives, the agency may select a modular ML technique based on suitability (Tang et al., 2025; Mudunuru et al., 2022).

4.4 Step 4: Develop prototypes

Depending on the selected ML technique, prototype development strategies should be defined. Important constraints to
consider include the level of user-interaction, whether the tool will be implemented at a single or across multiple sites, whether
it will run simultaneously across locations, and whether multiple realizations are required. Additional considerations include
benchmark thresholds in terms of accuracy and computational constraints, and data storage requirements. In the case of the
SAC-SMA model, benchmark target accuracy thresholds may be defined using prior model runs or values reported in the
literature (Addor et al., 2017). These criteria will adjust the variance of data used to train the decided ML technique, dataset

size, deployment over single or multiple processors, the use of cloud computing, and the interface design.

4.5 Step 5: Conduct validation

To ensure that the prototype behaves as expected, it is important to compare the original applied model to different iterations
of the modified model on validation and test datasets. Only after establishing that the ML modules add value to the original
process can the prototypes be ready for deployment. Extending on the illustrative narrative of an agency using SAC-SMA,
adapting SAC-SMA should compare the efficacy of the developed ML calibration to the current baseline model. The parameter
transferability improvement may require additional metrics such as a score quantifying its ability to generalize to nearby

catchments.

4.6 Step 6: Train staff and stakeholders

If possible, an expert on ML should be brought in to educate staff on the process which occurs behind the scenes. ML models
are difficult to interpret, which may promote distrust. Training may educate users on the mechanics of the specific model, and
the benefits, improvements, and potential challenges which will come with its utilization. At the same time, emphasis can be
placed on the current applied model remaining in place. In the case of SAC-SMA, staff and stakeholders should be shown the
validation results and have the process thoroughly explained. Emphasis should be placed on how the ML modules replicate or

modulate the processes of the model schema they understand.

4.7 Step 7: Implement incrementally

Slow implementation of ML tools will support the development of trust with operators and staff in the model’s capabilities. It

will also allow for the gradual development of intuition for operators. In the beginning, the original and the modified
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frameworks could run in parallel (regardless of the revamp or reconciliation decision). Over time, this will create trust with
the modules as stakeholders and staff see consistent out-performance or other advantages. When sufficient trust has been

gained and performance demonstrated, the original model may be discontinued as needed.

4.8 Step 8: Monitor and update

Continually monitor staff capabilities and comfortability, as well as model performance. If a discrepancy or new limitation

appears, the analysis cycle should restart to allow for continued optimization within the organization.

5 Conclusions

Machine learning models have been gaining prominence for making hydrologic variable predictions. Yet, the complete
replacement of legacy models remains slow, and may not occur, due to the necessity of maintaining current institutional trust,
established decision-making frameworks, and interpretability. This perspective argues that in many instances, instead of
pursuing wholesale replacement, the strengths of both ML and applied physical models can be realized through the deliberate
integration of ML alongside or within existing applied models. When used alongside applied models, ML can generate
complementary predictions, support ensemble-based analyses, and enable rapid scenario exploration. When embedded within
or alongside existing models, ML can enhance individual workflow components, including data pre-processing to fill time-
series gaps and manage uncertainty in inputs, parameter calibration, increasing spatial and temporal transferability, data
assimilation for state variable validity, solver enhancement for increased processing speed, and post-processing to reduce bias,
evaluate models, downscale outputs, and understand hydrologic responses.

The perspective hopes to orient the hydrologic modeling community to focus not only on the continual development of
increasingly sophisticated ML-based hydrologic models, but also towards the practical integration of ML within operational
systems through modular revamping or complementary reconciliation. These integrative approaches are expected to balance
the maintenance of institutional trust, decision-making frameworks, and interpretability while reducing model uncertainty,
model computational resources, and improving model applicability. Overall, using the integration approaches presented here,
modelers can harness the strengths of both paradigms, i.e., ML and applied process-based models, to improve decisions related

to water quality, water access, urban growth and development, emergency planning, and disaster mitigation.
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