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Abstract. Using a Lagrangian framework, we show that the 2022 European drought was driven by a sharp
reduction in precipitation contributions from Atlantic and Mediterranean moisture sources, despite enhanced
atmospheric moisture uptake. Persistent anticyclonic circulation suppressed convection and diverted moisture
away from Europe. Lagrangian temperature-source decomposition reveals strong adiabatic warming as the
dominant heat driver. Together, weakened oceanic moisture supply and subsidence-driven warming sustained and

intensified the drought.

1 Main

Europe experienced an exceptional drought in 2022, resulting in widespread agricultural losses (Baruth, B. et al.,
2022; Toreti et al., 2022; Faranda et al., 2023), reductions in hydropower and wind energy, increased solar
potential (Toreti et al., 2022; Copernicus, 2022a), disruptions to river transport and ecosystems, severe water
shortages, forest fires, and substantial anomalies in carbon emissions (Toreti et al., 2022; Faranda et al., 2023;

Copernicus, 2022b; Gharun et al., 2024).

Previous analyses have investigated the event’s drivers and its links to anthropogenic climate change, showing
that it produced the largest terrestrial water storage deficit since 2002 across Central-Southern Europe, with

human-induced warming amplifying drought intensity by more than 30% (Bevacqua et al., 2024). The drought
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was primarily driven by a persistent anticyclonic anomaly, which, together with other large-scale atmospheric
circulation features —a blocking over western Europe and a displaced jet stream— extreme heat, and elevated
atmospheric evaporative demand, exacerbated its severity (Faranda et al., 2023; Garrido-Pérez et al., 2024).
Easterly and southerly dry winds associated with the strengthened anticyclone further reinforced these conditions
(Herrera-Lormendez et al., 2023). However, although this drought is extraordinary in the context of the current
climate, soil droughts on a similar scale are projected to occur twice as often in west-central Europe in a +2 °C

warming (Schumacher et al., 2024).

While previous studies have elucidated the large-scale circulation and climate change influence, the specific role
of anomalous moisture and temperature sources in shaping the drought’s evolution remains unclear. Here, we
addressed this gap by quantifying the anomalous sources of atmospheric moisture uptake and temperature during
the 2022 European drought, providing new insights into the coupled thermodynamic and dynamic processes

governing the origin and development of extreme droughts in Europe.

The 2022 drought affected extensive areas across both the Atlantic and Mediterranean climatic regions of Europe
(Fig. S1, fourth column). To analyse the event, we defined the drought-affected area using the 6-month
Standardized Precipitation Evapotranspiration Index (SPEI6) for June-August 2022 ("Supplementary Methods").
This area was then divided into two subregions based on their dominant oceanic moisture sources (Fig. 1a) as
indicated in Gimeno-Sotelo et al. (2024): the North-Atlantic-influenced region, covering northern and western
Europe (hereafter NW_Europe), and the Mediterranean-influenced region, encompassing southern and eastern

Europe (SE_Europe).

Monthly anomalies for key meteorological variables related to drought occurrence (Fig. 1b-h) illustrate the
temporal evolution across both European subregions. Persistent deficits in precipitation (Fig. 1b) and soil
moisture (Fig. 1e) emerge across both regions, particularly during May-August —the peak period, as shown
SPEI6 (Fig. 1c)— consistent with water storage deficits reported for central-southern Europe (Bevacqua et al.,
2024), while atmospheric evaporative demand increases (Fig. 1d), especially over NW_Europe. Suppression of
vertical motion and persistence of high-pressure systems sustained the drought conditions. Vertical velocity
anomalies at 500 hPa (Fig. 1f) indicate reduced upward motions except for September (the drought-breaking
month) and November 2022. Persistent anticyclonic conditions and blocking activity (Faranda et al., 2023;

Garrido-Pérez et al., 2024) are further evidenced by positive geopotential height anomalies at 850 hPa (Fig. 1g).
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This stable circulation favoured strong and widespread surface warming across both regions (Fig. 1h), more
pronounced over NW_Europe during summer (~2.2 K), reflecting thermal persistence. These results highlight
spatio-temporal differences between the subregions, driven by coupled land—atmosphere processes, evidenced by
coherent anomalies in precipitation, soil moisture, evapotranspiration, temperature, and atmospheric stability

(Figs. S1-S3).

At a large scale, and complementary to land—atmosphere interactions, the moisture flux patterns (measured as
vertically integrated water vapour transport (IVT) anomalies, Fig. S4) also reveal circulation patterns modulating
the event. While the subtropical Atlantic exhibited positive IVT anomalies, western Europe experienced moisture
deficits before drought peak. The reduced inflow from the Mediterranean Sea limited replenishment of
atmospheric moisture and intensified the drought (with partial recovery from September), acting as a drought-

intensifying factor (Gimeno-Sotelo et al., 2024).

The role of changes in atmospheric moisture transport from source regions modulating droughts is recognized as
a key factor in understanding their behaviour and intensity (Gimeno et al., 2012; Liu et al., 2020). To quantify
this effect during the 2022 European drought, we applied a Lagrangian approach using the FLEXPART model
(Pisso et al., 2019) and ERAS5 reanalysis data (Hersbach et al., 2020). This framework (“Supplementary
Methods™) enabled us to track the moisture feeding the two European subregions (moisture uptake, MU) and to
quantify the anomalous contribution to precipitation (PC) from the two main moisture sources, NATL and MED

(Gimeno-Sotelo et al., 2024; Gimeno et al., 2012), and from both European subregions themselves (Fig. S5).

Marked temporal and spatial contrasts emerged between NW_Europe and SE_Europe in the evolution of MU and
PC anomalies (Fig. 1i-p). From January to April, moisture availability preceding the peak drought was slightly
enhanced, as both subregions exhibited positive MU anomalies mainly from local sources (Fig. 1i-l). In contrast,
notable deficits in precipitation contributions (PC) occurred from MED and NATL sources, particularly from the
latter, while PC values from the subregions themselves remained close to climatology (Figs. 1m-o0). On average,
anomalies during this period were markedly negative, ranging from —0.4 to —0.8 mm day™ for both dominant

oceanic sources (Fig. 2p).

From May to August (the drought peak), MU intensified from multiple sources, with a slight decrease from the
Mediterranean during some months. This coincides with predominantly negative PC anomalies, particularly from

NATL—although less pronounced than in preceding months (Fig. S3). During this period, mean moisture support

3
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anomalies from MED and NATL were about —0.2 mm day™ (Fig. 2p). These patterns are coherent with reduced
moisture flux and persistently stable atmospheric conditions associated with a sustained blocking pattern (Figs.

1f,g; Fig. S3) over the North Atlantic and Europe (Faranda et al., 2023; Garrido-Pérez et al., 2024).

During September to November, land-based sources became dominant for SE_Europe, while oceanic sources
prevailed for NW_Europe (Fig. 1i-1). Positive PC anomalies, mainly from the two European subregions and the
Mediterranean, indicate partial hydrological recovery, most evident in SE_Europe (Fig. 2p). In contrast, negative
PC anomalies from the NATL were marked but weaker than those before the drought peak. Overall, MU
increased, despite some declines south of 30°N (Fig. S6), reflecting the atmosphere’s greater capacity to retain
moisture under higher temperatures (Soden and Held, 2006; Allen and Ingram; 2002) (Fig. 1h). However, PC
behaviour associated with the MED and NATL oceanic sources and the two European subregions suggests that,
although moisture availability increased, atmospheric instability required for convection and precipitation was
largely absent until September, consistent with stable conditions driven by persistent high-pressure systems
(Faranda et al., 2023; Garrido-Pérez et al., 2024), which inhibited upward motion and convection and diverted
moisture fluxes away from the preferred sources (positive omega500 and Z850 anomalies, and reduced IVT; Fig.
1f,g; Fig. S4). In general, weakening oceanic contributions to precipitation were key to sustaining the 2022
drought, which began to disappear by the late-season reactivation of regional moisture inputs (Figs. S7, S8).
Specifically, in September, drought across southern Europe ended abruptly as intense rainfall was triggered by a
deep North Atlantic trough extending into central Europe and a strong subtropical high over North Africa (Figs.
1m,n; S3). This pattern advected warm, moist Mediterranean air toward southeastern Europe (Fig. S8), initiating
severe convection under unstable conditions (Figs. 1f,g; Z850 and omega500 negative anomalies). This shift

marked the end of the prolonged dry period.
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anomaly for each source for the period Before (January-April), the Peak of the drought (May-August) and After
(September-November). FLEXPART outputs forced ERA5 data has been used to determine MU and PCs. The
red rectangle indicates the month considered the drought-breaking month, September 2023. The period
considered for the calculation of the anomalies of the variables is 1994-2023, and the spatial patterns and
corresponding anomalies used to determine the monthly anomaly series are shown in Figs. S1-S3 and S6-S8.
Colour intensity indicates each region: higher intensity for SE_Europe and lower intensity for NW_Europe. The

framed area indicates the drought peak period (May—August 2022).

The 2022 European drought was additionally characterized by a considerable near-surface temperature excess
(Fig. 1h), accompanying several heatwaves ( Schumacher et al., 2024). This thermal anomaly, linked to persistent
stable atmospheric conditions (Faranda et al., 2023; Garrido-Pérez et al., 2024), was a key factor in exacerbating
drought severity (Bevacqua et al., 2024). Using the Lagrangian framework (Papritz and Réthlisberger, 2023)
(“Supplementary Methods”), temperature anomaly sources for the two drought-affected European regions were
decomposed into adiabatic, diabatic, and advective components (Fig. 2), allowing identification of physical

drivers arising from vertical motion, horizontal transport, and heat exchange.

The two European subregions exhibit a dipolar pattern of total temperature anomaly sources, with positive
anomalies over North Africa, the Mediterranean region, the North Atlantic Ocean, and central-eastern Europe,
and negative anomalies north of 50° N. This pattern was strongest at the drought peak and expanded spatially
during January—February and May (Figs. S9, S10). Averages for the two European subregions reveal distinct
temporal and regional behaviours (Fig. 2). Over both subregions (Figs. 2a—b), the adiabatic term dominates year-
round, with pronounced positive values during the main drought period (May—August), indicating persistent
warming driven by subsidence and adiabatic compression. The advective term generally exhibits negative
anomalies during these same months, due to air flux from cooler higher latitudes, which partially offset the
adiabatic warming. The diabatic term also remains negative. Over the North Atlantic land and oceanic source
regions (Figs. 2c—f), anomalies are generally weaker than over the two European subregions, with modest
positive adiabatic and slightly negative diabatic and advective components, indicating minor remote contributions
to surface warming for the two European subregions. In contrast, over the Mediterranean Sea, strong positive
adiabatic anomalies occur (Figs. 2g-h), particularly during May—August and autumn, reflecting intense
subsidence. These periods correspond to the strongest total temperature anomalies, particularly in SE_Europe. A
percentage-based perspective (Figure S11) indicates that temperature anomalies for both European regions are

largely controlled by the continental regions themselves, explaining ~60-85% of the total signal, while the

6
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Mediterranean Sea accounts for only ~10-30%. For the adiabatic term, European subregions contribute ~40-
60%, with Mediterranean influence near ~10-20%. A similar pattern is seen in the advective term, especially over
NW_Europe, where the European subregions explain between 40-60% of the anomalies. The diabatic term is
comparatively stronger over the Mediterranean (~20-40%), although the continental effects from the European

subregions still dominate (~50-70%).

The dominant adiabatic term is the fingerprint of a persistent anticyclonic circulation pattern (Faranda et al.,
2023; Garrido-Pérez et al., 2024), which results in descending air (Figs. S9, S10), confirming the major role of
adiabatic processes in controlling European temperature anomalies driven by summer anticyclones and mid-
tropospheric subsidence (Réthlisberger and Papritz, 2023; Hamal and Pfahl, 2024). The negative advective term
over the two European subregions reflects anticyclonic circulation moving air from cooler northeastern Europe

into the warmer European subregions (Figs. S9, S10).

The global cooling observed over the two subregions, linked to the diabatic term, is the result of the
compensation of three processes with different net effects on the temperature: (i) The warming by enhanced
evaporation (which occurs mainly over the ocean) resulting in enhanced condensation in the air with latent heat
absorption during the liquid-to-vapour phase transition and the cooling for inhibited evaporative (Rothlisberger
and Papritz, 2023) over central European land areas, due to reduced soil moisture (Bevacqua et al., 2024) (Figs.
S12, S13), resulting in diminished condensation in the air (ii) the warming by upward transfer of sensible heat
from the surface to the atmosphere, (Fig. S14), and (iii) the cooling by the imbalance in surface net longwave
radiation, under predominantly clear-sky and stable atmospheric conditions, as indicated by positive anomalies in

outgoing longwave radiation (Fig. S14); being the cooling processes dominant over the warming ones.
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Fig. 2 Monthly series of temperature anomaly sources during the 2022 European drought |
Heat maps show monthly anomalies of total temperature, and of the adiabatic, diabatic and advective
components from January to November 2022. Left and right panels display anomalies for the SE_Europe and
NW_Europe subregions, respectively. Panels show the anomaly values averaged over (a, b) each of the two
European subregions, (c, d) the North Atlantic land sector, (e, f) the North Atlantic oceanic sector, and (g, h) the
Mediterranean Sea. The framed period highlights the peak drought months (May—August 2022). Anomalies are
computed relative to the 1994-2023 climatology. Data processed from FLEXPART outputs forced ERA5 data.

2 Summary and Conclusions
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Our results show that the driving force behind the 2022 European mega-drought was not a lack of atmospheric
moisture, but persistent atmospheric stability that prevented moisture from becoming rainfall. A long-lasting
anticyclonic pattern blocked convection, diverted humid Atlantic and Mediterranean inflows, and triggered
widespread adiabatic warming that locked the region into deep dryness. The drought was therefore sustained by
descending air, warming-driven drying of the soil, and muted oceanic contributions. Its abrupt termination
highlighted the system’s sensitivity: a shift toward unstable synoptic conditions was enough to reactivate regional
moisture sources and break the drought. These findings demonstrate that, in a warming climate, the severity of
future European droughts will depend not only on moisture availability but on the large-scale dynamics

controlling when and where rainfall can occur.
Data and code availability

ERAS reanalysis is available via Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form. FLEXPART
simulations can be generated following Vézquez et al. (2024). TROVA package is openly hosted on GitHub
(https://github.com/tramo-ephyslab/TROVA-master and the routines for decomposing temperature anomalies can be
retrieved from ETH Zurich Research Collection (https://www.research-collection.ethz.ch/handle/20.500.11850/571107).
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