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Abstract. Soil-moisture memory (SMM) regulates the evolution of drought, hydrological predictability, and land–atmosphere 

coupling, yet many conventional diagnostic metrics simplify this complex phenomenon into a sole memory timescale. In this 

paper, we introduce a unified observation-driven framework — a scale-aware Linear Integro-Differential Equation (LIDE) for 

root-zone soil moisture — which quantifies the accumulation of memory at different timescales, e.g., fast memory (τF) and 

slow memory with very-short-term (τVSS), short-term (τSS), mid-term (τMS), and long-term (τLS) components as well as an 10 

additional memory saturation timescale (τSat). A helper function, namely Logit–Piecewise Memory Segmentation (LPMS) 

method, is also developed which automates the timescales detection. When applied to lysimeter-based in-situ daily-based 

observations from three different hydro-climatic regimes in Germany lasting for 2013 to 2018, LIDE reveals a τF timescale 

from ∼3–32 days and τSS, τMS, and τLS timescales from ∼13-39, ∼115–127, and ∼218–541 days, respectively, and a theoretical 

τSat timescale from ∼9-15 years, while the τVSS remained undetectable. On top of the multi-timescales’ quantification, LIDE 15 

also provides additional quantitative information about memory strength, as assessed by actual memory capacity (𝒦Sat), which 

is not available through conventional diagnostic metrics; with 𝒦𝑆𝑎𝑡  being relatively constant over the examined sites (1.12–

1.24 days-1). The integrated kernel also allows to retrieve the oscillatory saturation dynamics associated with soil-moisture 

reemergence from observations for the first time. Applying LIDE to hourly, daily, and monthly data reveals its scale-aware 

nature, whereas when applied to hourly data, it provides additional timescales (e.g., sub-daily τF and τVSS timescales), while 20 

when applied to coarser data, it smooths them out. Collectively, obtained results place LIDE as a state-of-the-art and state-of-

the-practice approach in quantifying SMM characteristics that are physically interpretable and scalable and can greatly advance 

drought sciences, ecohydrology and land-surface modeling.  

1. Introduction 

Soil moisture memory (SMM) — the soil’s ability to retain information about past trajectories — a frequently analyzed 25 

component of soil memory (Rahmati, Or, et al., 2023) — is an important characteristic of soil moisture dynamics that 

influences its interaction with key land surface processes, such as geochemical, hydrological, and biome-related processes. 

SMM is a combined response to 1) forcing anomalies such as variability in rainfall, evapotranspiration, heatwaves, and 

droughts, 2) alterations in soil system initiated by land use changes and soil management, and 3) anthropogenic or natural 

changes in soil system properties such as soil structure, soil pore size distribution, or conductivity (Rahmati et al., 2024). The 30 
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SMM is traditionally characterized by using classical time series analysis under the assumption of so-called component model 

for soil moisture evolution, either by e-folding method (Delworth and Manabe, 1988; Hasselmann, 1976; Koster and Suarez, 

2001) — capturing only one e-folding timescale — or the hybrid stochastic-deterministic model (McColl et al., 2019) — 

decomposing the single value in e-folding method into two different timescales, namely short- and long-term SMM timescales. 

Although several other metrics is also introduced to quantify SMM timescale (see the full list of methods in Rahmati et al., 35 

2024), the main concept remains the same as that of the above methods in that it captures only one SMM timescale, or at most 

two with the state-of-the-art hybrid stochastic-deterministic modelling method (McColl et al., 2019). However, characterizing 

SMM as single or even double characteristic timescales is inadequate to reflect the complexities of soil moisture dynamics in 

natural systems. Soil moisture is the average of processes running at quite different modes such as rapid atmospheric forcing, 

root-zone processes and preferential flow and slower sub-surface storage and recharge, which can potentially lead to memory 40 

accumulation at different timescales. Therefore, by restricting memory representation to a single or two parameters, the system 

is oversimplified and potential information on its temporal behavior under different hydroclimatic conditions may be lost.  

As an alternative, we hypothesize that exploring the dynamics of soil moisture through application of the projection formalism 

of the Mori–Zwanzig theory (Falkena et al., 2019; Mori, 1965; Zwanzig, 1973) could enable us to distinguish between fast 

and slow processes involved in soil moisture evolution and detect its possible memory components acting at different 45 

timescales. This is based on the fact that, through applying the model reduction approach of the Mori–Zwanzig formalism, a 

fully resolved deterministic dynamical system (e.g., the spatiotemporal evolution of soil moisture over a layered or discretized 

soil profile) can be transformed into a stochastic dynamical system for the system's observable(s) of interest (e.g., root-zone 

soil moisture, θroot, only). This stochastic dynamical system will still capture the full dynamics of the system and is not an 

approximation (Falkena et al., 2019). In this way, the hidden dynamics of 'irrelevant' or ‘unobserved’ degrees of freedom (e.g., 50 

soil moisture evolution in surface layer or deeper layers) are incorporated into memory kernels and occasionally into fast-

fluctuating residual forces, also known as noise term. Due to the stochastic nature of the reduced system, its parameters (namely 

the memory kernel and the noise term) can be obtained numerically, provided that the variable of interest (e.g., θroot in our 

case) is observed sufficiently regarding the observation period and observation intervals. The determined memory kernel, then, 

enables us to explore memory accumulation at different timescales, which can lead to the quantification of SMM multi-55 

timescales. In this paper, under this postulation, we therefore apply the Mori–Zwanzig model reduction approach to a stratified 

soil profile comprising three layers (see Fig. 1): 1) a shallow surface layer with a depth of less than 5 cm, 2) the root zone, 

which comprises the active soil layer on which plant life relies, and 3) the deep vadose zone, the deeper layer below the root 

zone that acts as a link between the root zone and groundwater. The main objective of this paper is therefore to apply the Mori–

Zwanzig formalism to develop a Linear Integro-Differential Equation (LIDE) for θroot only, which would allow us to quantify 60 

SMM at different timescales without worrying about the evolution of soil moisture in the surface and deeper layers while their 

effects are still present and accounted.  

The development of LIDE will enable us to quantify the accumulation of memory at different timescales, e.g., fast memory 

(τF) and slow memory with very-short-term (τVSS), short-term (τSS), mid-term (τMS), and long-term (τLS) components as well as 
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memory saturation timescale (τSat), which is detailed in upcoming section. Such multiscale SMM identification is important 65 

because different memory modes control fundamentally distinct processes and feedback. Fast memory (days to weeks) plays, 

for example, a critical role for runoff generation and flood risk assessments. Short-term slow memory (days to months) is 

probably crucial for land–atmosphere coupling and flash-drought evolution (e.g., soil-moisture anomalies lead to extreme 

drought warning; Liang and Yuan, 2021). Mid-term slow-memory (months to seasons) drives vegetation resilience, soil–plant 

water use, and ecosystem carryover (Groh et al., 2020). Long-term memory (seasons to years or decades) is nested in the deep 70 

soil and groundwater stores affecting persistence of hydrological drought character (Farmani et al., 2025). Therefore, 

identifying and capturing these distinct timescales increases the realism of climate models, as well as the skill of drought 

forecasts and our understanding of resilience in coupled ecohydrological systems. 

In the following sections, we will first present the theoretical background to the development of LIDE as well as automation 

of its memory kernel analysis through LPMS method. We will then use LIDE to capture SMM characteristics in Germany 75 

under three different hydrological conditions, based on state-of-the-art weighable lysimeter data. The SMM characteristics 

provided by LIDE will then be compared with the classical metrics introduced in the literature. Finally, we will examine the 

usability and consistency of the LIDE framework when applied to data with different measurement time intervals. Finally, the 

strengths and weaknesses of the LIDE framework are presented, along with possible future research directions. 

 80 

Figure 1: Soil profile with three layers, including the surface layer and root and vadose zones, coupled by flow densities (q). 
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2. Introduction 

2.1. LIDE Development 

The time evolution of soil moisture, 𝜃, for a three-layer soil profile (shown in Fig. 1) can be described by applying a system 

of coupled ordinary differential equations (ODEs) of layer-average moisture contents in the surface soil (θsurf), root zone (θroot), 85 

and deeper vadose zone (θdeep):  

𝑑𝜽(𝑡)

𝑑𝑡
= 𝑹(𝜽(𝑡))           with            𝜽(𝑡 = 0) = 𝜽𝟎 (1) 

where t is time [T], 𝑹(𝜽(𝑡)) = (𝑅surf(𝜽(𝑡)), 𝑅root(𝜽(𝑡)), 𝑅deep(𝜽(𝑡))) ∈  ℝ𝑛=3 [T-1] is a vectorized nonlinear functions of 

𝜽 [L3L-3] with 𝜽 = (𝜃surf, 𝜃root, 𝜃deep) ∈ ℝ𝑛=3 and initial conditions of 𝜽0 = (𝜃0, surf, 𝜃0, root, 𝜃0, deep) ∈ ℝ𝑛=3. Classically, one can 

obtain the nonlinear functions of Rsurf(𝜽), Rroot(𝜽), and Rdeep(𝜽) by integrating the Richards-Richardson equation (RRE) 

(Richards, 1931; Richardson, 1922) for different depths corresponding to the upper and lower boundaries of each layer in 90 

three-layered profile (Fig. 1). The RRE governing equation for vertical movement of water in soils reads as below:  

𝑑𝜃(𝑡)

𝑑𝑡
= −

𝑑𝑞(𝑡)

𝑑𝑧
− 𝑆(𝑡) (2) 

with z [L] being the vertical coordinate, positive downward, q(t) the vertical water flow density [LT-1] and S(t) [T-1] the 

source/sink term (i.e., root water uptake).  

The layer-wised integration of RRE can lead to a soil-centered mechanistic modeling approach with one ODE for each layer: 

three ODEs in total. The ODEs obtained should be solved simultaneously (i.e. in a coupled manner) to describe the temporal 95 

evolution of θ for the entire profile, even though, in most cases, only one variable is of interest (e.g., θroot). Alternatively, we 

propose applying the formal model reduction approach introduced by Mori (1965) and Zwanzig (1973). Such application 

would transform the fully resolved deterministic dynamical system defined in Eq. (1) into a stochastic dynamical system for 

θroot only. To do this, we simplify the nonlinear system of coupled ODEs defined in Eq. (1) as linear systems of coupled ODEs, 

as below: 100 

𝑑𝜃surf(𝑡)

𝑑𝑡
= 𝜆s𝜃surf(𝑡) + 𝛽r→s𝜃root(𝑡) + 𝜀s(𝑡) (3) 

𝑑𝜃root(𝑡)

𝑑𝑡
= 𝜆r𝜃root(𝑡) + 𝛽s→r𝜃surf(𝑡) + 𝛽d→r𝜃deep(𝑡) + 𝜀r(𝑡) (4) 

𝑑𝜃deep(𝑡)

𝑑𝑡
= 𝜆𝑑𝜃deep(𝑡) + 𝛽𝑟→𝑑𝜃root(𝑡) + 𝜀𝑑(𝑡) (5) 

where λ denotes the intrinsic decay timescale in each layer (noted by the subscripts s for the surface layer, r for the root zone, 

and d for the deep vadose layer), β denotes the coupling effects, indicated by the direction of the arrows, and ε denotes the 

noise terms that account for the unresolved dynamics that emerge from the linearity assumption as well as possible forcings 

not considered through λ and β — e.g., precipitation in the case of surface layer. To solve the above coupled system directly 

for relevant observable variable θroot only while considering the effect of irrelevant variables θsurf and θdeep, we can solve Eq. 105 

(3) and (5) for the irrelevant variables (θsurf and θdeep) assuming known knowledge on θroot and the noise terms (Gouasmi et al., 

2017): 
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𝜃surf(𝑡) = 𝜃0,surf 𝑒
𝜆𝑠(𝑡−𝑡0) + 𝛽𝑟→𝑠 ∫ 𝑒𝜆𝑠(𝑡−𝜏)𝜃root(𝜏)𝑑𝜏

𝑡

𝑡0

+ ∫ 𝑒𝜆𝑠(𝑡−𝜏)𝜀𝑠(𝑡)𝑑𝜏
𝑡

𝑡0

 (6) 

𝜃deep(𝑡) = 𝜃0,deep 𝑒𝜆𝑑(𝑡−𝑡0) + 𝛽𝑟→𝑑 ∫ 𝑒𝜆𝑑(𝑡−𝜏)𝜃root(𝜏)𝑑𝜏
𝑡

𝑡0

+ ∫ 𝑒𝜆𝑑(𝑡−𝜏)𝜀𝑑(𝑡)𝑑𝜏
𝑡

𝑡0

 (7) 

By replacing Eq. (6) and (7) in Eq. (4) and further rearranging it, the LIDE framework for the relevant variable, θroot, can be 

obtained as below: 

𝜕𝜃𝑟𝑜𝑜𝑡(𝑡)

𝜕𝑡
=  λ𝜃root(𝑡) + ∫ 𝐾(𝜏)𝜃root(𝑡 − 𝜏)𝑑𝜏

𝑡

𝑡0

+ 𝐹(𝑡) (8) 

where 𝑡0 is the initial time where the θroot is observed (usually being set to zero), 𝜏 is an integral variable defining the lag values 110 

[T], λ is the frequency coefficient [T-1], K is the memory kernel [T-2] which provides feedback of surface layer and deep vadose 

zone on θroot over time, F(t) is the noise term [T-1] (Falkena et al., 2019; Gottwald et al., 2016). The memory kernel 𝐾(𝜏) and 

noise term F(t) of LIDE framework are defined as below: 

𝐾(𝜏) = 𝛽𝑠→𝑟𝛽𝑟→𝑠𝑒𝜆𝑠(𝑡−𝜏) + 𝛽𝑑→𝑟𝛽𝑟→𝑑𝑒𝜆𝑑(𝑡−𝜏)  (9) 

𝐹(𝑡) = ∅(𝑡) + 𝜔(𝑡) + 𝜀𝑟(𝑡)  (10) 

where ∅(t) is the evolution of initial conditions of surface and deep vadose layers, and 𝜔(t) is convolutions of forcings — e.g., 

precipitation through εs(t), see Eq. (6), and groundwater contribution through εd(t), see Eq. (7) — defined as below (the 115 

remaining parameters are defined as before): 

∅(𝑡) = 𝛽𝑠→𝑟𝜃0,surf 𝑒
𝜆𝑠(𝑡−𝑡0) + 𝛽𝑑→𝑟𝜃0,deep 𝑒𝜆𝑑(𝑡−𝑡0)  (11) 

𝜔(𝑡) = ∫ 𝛽𝑠→𝑟𝑒𝜆𝑠(𝑡−𝜏)𝜀𝑠(𝑡)𝑑𝜏
𝑡

𝑡0

+ ∫ 𝛽𝑑→𝑟𝑒𝜆𝑑(𝑡−𝜏)𝜀𝑑(𝑡)𝑑𝜏
𝑡

𝑡0

  (12) 

Applying the above reduction procedure, we have now reduced the nonlinear ODE systems in Eq. (1) to a single expression 

for the relevant variable, θroot, in Eq. (8), which depends on its intrinsic decay of θroot, coupling effects of surface and deeper 

layers through memory kernel, as well as stochastic noise term. This reduced system defined by the Mori-Zwanzig equation, 

hereafter called LIDE, is equivalent to the full system and exhibits the same behavior (Falkena et al., 2019) and is not an 120 

approximation (Gottwald et al., 2016). It is in the form of a generalized Langevin equation (Gottwald et al., 2016) as the right-

hand side comprises three different terms, each of which relates to the Markov term, the memory term, and the noise term, 

respectively (Falkena et al., 2019; Gottwald et al., 2016). In simple notation, we can rewrite the LIDE as below: 

𝜕𝜃𝑟𝑜𝑜𝑡(𝑡)

𝜕𝑡
=  λ𝜃root(𝑡) + {𝐾 ∗ 𝜃root}(𝑡) + 𝐹(𝑡) (13) 

where "∗" represents a convolution between the memory kernel and θroot. Departing from current state-of-the-art Markovian-

based reduced-order models of θroot (e.g., Delworth and Manabe, 1988; Koster and Suarez, 2001; McColl et al., 2019; 125 

Seneviratne et al., 2010), our LIDE framework incorporates an essential memory term, derived from a memory kernel 𝐾(𝜏), 

that accounts for the trajectories of θroot by bringing in the feedback from surface and deeper layers. This innovation allows the 
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model to realistically capture the non-linear, time-dependent responses of θroot to extreme events, although it is formalized in 

linear form. 

2.2. Numerical Solution of LIDE 130 

One can solve the proposed LIDE model and determine it parameters — namely λ, 𝐾(𝜏), and F(t) — numerically according 

to Schmitt and Schulz (2006) given that the measured θroot data is available. Briefly, to solve the LIDE model introduced in 

Eq. (8), one needs to rewrite it in the form of autocorrelation function as below (Schmitt and Schulz, 2006): 

𝜕𝜌(𝑡)

𝜕𝑡
=  λ𝜌(𝑡) + ∫ 𝐾(𝜏)

𝑡

𝑡0

𝜌(𝑡)𝑑𝜏 (14) 

Doing this, the noise term vanishes due to averaging as the standard property of the Mori-Zwanzig equation derived from the 

projection. The derivation in Eq. (14) assumes stationarity and existence of the ensemble average. Therefore, instead of solving 135 

the LIDE for θroot, we solved it for ∆𝜃root =  𝜃root(𝑡) − 𝜃root(𝑡 − 1). To determine the parameters of the Eq. (14), Schmitt and 

Schulz (2006) suggested a corresponding time-ordered discrete version of the Eq. (14) as below:   

𝜌[𝑡] − 𝜌[𝑡 − 1] = − ∑ 𝐾[𝑡 − 𝑖 − 1]𝜌[𝑖]
𝑡−1

𝑖=0
 (15) 

The above equation can easily be solved for 𝐾[𝑡] having 𝜌[𝑡] known from θroot time series. Like Eq. (15), one can also write 

the time-ordered discrete form of the Eq. (8) as below (Schmitt and Schulz, 2006): 

𝜃root[𝑡] − 𝜃root[𝑡 − 1] = − ∑ 𝐾[𝑡 − 𝑖 − 1]𝜃root[𝑖] + 𝐹[𝑡 − 1]
𝑡−1

𝑖=0
 (16) 

Therefore, we can calculate F[t] from known θroot time series as well as 𝐾[𝑡] determined as above. It should be noted that with 140 

Eq. (15), the parameter λ is incorporated into 𝐾[0] which can be separated as below: 

λ = 𝐾[0] − 𝐾[0] (17) 

where 𝐾[𝑡] is defined as below: 

𝐾[𝑡] =
1

〈𝜃root
2 〉(0)

〈𝐹[𝑡0]|𝐹[𝑡 − 𝑡0]〉𝑡0
 (18) 

where 〈𝜃root
2 〉(0) is the variance of the θroot time series and 〈𝐹[𝑡0]|𝐹[𝑡 − 𝑡0]〉𝑡0

 represents the conditional expectation for LIDE-

reconstructed noise term, at time t0, given its value a lag t. However, in practice, we cannot directly compute this from a single 

finite time series. Following standard practice, therefore, the conditional expectation is approximated by a time-averaged 145 

estimate which relies on second-order statistics, assuming weak stationarity and ergodicity of the noise process. Therefore, in 

practice, we use following approximation to calculate 𝐾[𝑡]: 

𝐾[𝑡] =
1

〈𝜃root
2 〉(0)

{

𝛾𝑓(0),                      𝑡 = 1    

1

𝑡 − 1
∑ 𝛾𝑓(ℓ)

𝑡−1

ℓ=1
, 𝑡 ≥ 2    

 (19) 

where 𝛾𝑓(ℓ) is autocovariance of noise term at lag ℓ. In ideal cases, the 𝐾[𝑡] and 𝐾[𝑡] are equal except for their first elements. 
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2.3. LIDE-driven Multiscale Memory Regimes Identification 

The λ and 𝐾(𝜏) parameters of LIDE contain memory information of the system and one can explore them to identify the multi-150 

timescale nature of SMM. In this regard, λ and 𝐾(𝜏) are complementary in encoding the system’s memory but they play 

distinct roles. The λ is the instantaneous (local-in-time) linear feedback term, which is also known as decay timescale in the 

context of classical reduced-order models used to characterize SMM timescale (e.g., Delworth and Manabe, 1988). It 

determines how quickly the state responds instantly to its previous state — providing a tool to capture system’s fast memory 

timescale (𝜏F), to be computed as below: 155 

𝜏F =
1

|λ|
 (20) 

Unlike λ, the 𝐾(𝜏) kernel captures the slow accumulation of memory across several lag steps. It weighs past values of θroot and 

thus encodes how the older states still have a role to play in θroot evolution. It can therefore be used to quantify the multiscale 

nature of slow memory of soil moisture. The shape and integral properties of 𝐾(𝜏) determine the extent and timescales of 

distributed memory (short-term, mid-term, long-term, etc.). In practice, one can plot cumulative memory-kernel for lags larger 

than 1 and explore the existing of slow-memory at different timescales in the system (Schmitt and Schulz, 2006). We 160 

differentiate between the various slow-memory timescales by isolating the memory accumulation behavior into several linear 

segments, each with a different memory accumulation rate (see, for example, Fig. 4 and 6). The memory accumulation at 

different segments is possibly controlled by different drivers, which are hypothesized in Table 1, and is addressed to some 

extent in Results and Discussion section but require detailed examination in future. When segmentation is done, the final lag 

value at each stage then provides the corresponding timescale. The number of identifiable segments depends on the resolution 165 

and length of the soil moisture data used, as well as the hydro-climatological conditions. With sufficiently longer time series, 

larger numbers are usually associated with high-resolution data (e.g., 5 segments for sub-daily sampling), while smaller 

numbers are associated with low-resolution data (e.g., 4 for daily sampling and 3 for monthly sampling). However, depending 

on the hydro-climatological or soil conditions, earlier memory accumulation stages might be unidentifiable even with high-

resolution data, since the system undergoes a rapid transition from fast to slow memory accumulation. Conversely, if data is 170 

not monitored for long enough, the later stages of memory accumulation might be missed. A maximum of five linear segments 

can be identified, namely segments 1 to 5, which can also be referred to as stage I to stage V memory accumulation. These 

stages correspond to memory accumulations occurring at very short to long lags, respectively. Accordingly, five different 

slow-memory timescales, corresponding to each of these stages, are detectable. These will be referred to as the very-short-

term slow-memory timescale (τVSS, corresponding to stage-I memory accumulation and only detectable at sub-daily sampling 175 

if hydro-climatological condition allows), the short-term slow-memory timescale (τSS, corresponding to stage-II memory 

accumulation and only detectable at daily or lower sampling upon favorable hydro-climatological condition), the mid-term 

slow-memory timescale (τMS, corresponding to stage-III memory accumulation), the long-term slow-memory timescale (τLS, 

corresponding to stage-IV memory accumulation), and the memory saturation timescale (τSAT, corresponding to stage-V 

memory accumulation). The latter stages (stage-III to stage-V) can be identified at all temporal resolutions in case the soil 180 
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moisture time series used for this analysis is monitored over a sufficiently long period. This allows the system to accumulate 

memory at the longer lag steps. 

Table 1- Possible physical mechanisms associated with LIDE-derived soil moisture memory timescales. 

Memory 

timescale 

Typical 

duration 
Primary physical mechanisms Interpretation§  

Fast (τF) 

&  

vary-Short-

term slow-

memory (τVSS) 

Hours –

days  

• Bare-soil evaporation 

• Rapid canopy interception & evaporation 

• Shallow infiltration & redistribution 

• Topsoil hydraulic equilibration 

• Rapid transpiration sensitivity± 

• Daily weather persistenceϯ 

Controls initial decay of 

anomalies; Reflects fast 

surface–atmosphere 

coupling and shallow water 

turnover 

and Short-

term slow-

memory 

(τSS) 

Days –

months 

• Root-zone water storage buffering 

• Mid-depth soil drainage 

• Early-season vegetation phenology 

• Short-term shallow groundwater influence 

• Seasonal PET changes 

Represents root-zone 

mediated seasonal memory; 

System stores anomalies 

beyond synoptic timescales 

Mid-term 

slow-memory 

(τMS) 

Months - 

seasons 

• Seasonal recharge and depletion 

• Sub-root-zone infiltration pulses 

• Seasonal vegetation water-use memory 

• Soil thermal and PET seasonality 

• Intraseasonal moisture anomalies carryover 

Governs season-to-season 

memory transfer; Enables 

reemergence-like behavior 

and sustained anomaly 

persistence 

Long-term 

slow-memory 

(τLS) 

Season - 

years 

• Deep vadose-zone storage and leakage 

• Groundwater–soil moisture feedback 

• Vegetation structural legacyҁ  

• Rare deep recharge events 

• Drought-induced ecosystem carryover 

Describes interannual 

memory; Responsible for 

multi-year drought 

persistence and hydrologic 

legacy effects 

Saturation 

memory 

(τSat) 

Years -

decades 

• Deep drainageӡ 

• Long-term groundwater fluctuations 

• Soil structural evolutionԸ 

• Vegetation community shiftsՔ 

• Decadal climate modes (NAO, PDO) modulating 

moisture supply 

Determines the outer 

envelope of SMM; The time 

it takes for cumulative 

memory to asymptotically 

saturate 

§ Interpretation: what this memory timescale means for the soil–plant–atmosphere system 

± Stomatal response 185 

ϯ Synoptic variability 

ҁ Root-depth shifts and biomass changes 

ӡ Fractured bedrock, deep sediments 

Ը Freeze–thaw and shrink–swell 

Ք Grass ↔ shrub transitions 190 
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2.4. Automated Logit–Piecewise Memory Segmentation (LPMS) Method 

To extract multiscale slow-memory characteristics from 𝐾(𝜏) kernel, we developed an automated Logit–Piecewise Memory 

Segmentation (LPMS) method. This method decomposes the cumulative memory kernel into physically interpretable 

segments/stages, as defined above (see Fig. 4 and 6). It involves fitting a parametric logit model, followed by piecewise linear 

segmentation in logarithmic lag space to detect distinct phases of memory accumulation and saturation. When soil moisture 195 

time series are sampled at frequencies of daily or longer (e.g. weekly or monthly), a single logit function, with or without one 

linear segment at very short lags, adequately explains the cumulative kernel. We refer to this behavior as unimodal memory 

accumulation. However, for soil moisture time series sampled more frequently (e.g. sub-daily—hourly), two logit functions 

are needed to fit the early- and late-time memory accumulation behaviors (see Fig. 6). We refer to this behavior as bimodal 

memory accumulation. In both cases, whether the memory accumulation behavior is unimodal or bimodal, LPMS uses the 200 

smoothed reference cumulative kernel curve obtained from logit fit to detect the linear segments. To do this, the LPMS method 

comprises several steps, which are described below: 

Step 1: Preprocessing and Transformation 

Given that 𝐾(𝜏) is the discrete memory kernel provided by LIDE and evaluated at integer lags, τ = 1, ..., N, where N is the 

length of the soil moisture time series, we first calculate the cumulative kernel 𝒦 as follows: 205 

𝒦(𝜏) = ∑ 𝐾(𝑖) − 𝐾(1)

𝜏

𝑖=1

 (21) 

The 𝒦(𝜏) [T-1] defined as above represents the accumulated memory contribution up to lag τ. To linearize the asymptotic 

saturation behavior and stabilize the regression of long-lag dynamics, it is also necessary to transform the lag axis to 

logarithmic space: 

𝓉 = ln(𝜏) (22) 

where 𝓉 is dimensionless lag. We will, then, perform all subsequent fitting and segmentation in (𝓉, 𝒦) space.  

Step 2: Fitting the Primary Logit Function (PLF) 210 

The first step in the automated multiscale memory identification process involves fitting a four-parameter logit function to (𝓉, 

𝒦), which enables us to capture the global sigmoidal shape of cumulative memory accumulation 𝒦̂: 

𝒦̂(𝜏) = 𝛼 +
𝛽

1 + 𝑒𝑥𝑝 (−
𝓉 − 𝜇

𝑆
)

 (23) 

where 𝛼 is the lower asymptote [T-1], 𝛽 the amplitude [T-1], and S and 𝜇 (both dimensionless) control slope and inflection 

location. The PLF fit is naturally dominated by the long lag part of the data, providing a smooth curve that can be used as a 

reference for identification of the transitions in memory accumulation regimes. When smoothed curve 𝒦̂(𝜏) is obtained, the 215 

method then moves on to identify linear segments. However, as the identification of some segments (e.g., segments 4 and 5) 
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is a prerequisite for the identification of others, the process will start with segments 4 and 5 identification rather than following 

them in order.   

Step 3: Identification of the Active Memory Accumulation Regime (Segment 4, Stage-IV) 

The active memory accumulation phase (Stage-IV) is designed around the inflection point of the PLF. To identify the best-fit 220 

line of the Stage-IV, the vertical midpoint of the PLF — with coordinate of (𝓉𝑀𝑃 , 𝒦̂𝑀𝑃) — is determined, where: 

𝒦̂𝑀𝑃 = 𝛼 +
𝛽

2
 (24) 

Accordingly, the corresponding lag 𝓉𝑀𝑃 is determined by minimizing |𝒦(𝓉) −  𝒦̂𝑀𝑃|. The local linear approximation is, then, 

formed using two neighboring points on 𝒦̂(𝜏)  around 𝓉𝑀𝑃  (e.g.,  𝑦 = [𝒦̂(𝓉𝑀𝑃 − 1), 𝒦̂(𝓉𝑀𝑃), 𝒦̂(𝓉𝑀𝑃 + 1)]  and 𝑥 =

[𝓉𝑀𝑃 − 1, 𝓉𝑀𝑃 , 𝓉𝑀𝑃 + 1]), leading to a best-fit line defining the segment 4 and its accumulation rate, 𝑚4: 

𝒦̂4(𝓉) = 𝑚4𝓉 + 𝑏4 (25) 

The obtained best-fit line is valid for 𝓉𝐿𝐵 < 𝓉 < 𝓉𝑈𝐵 , where 𝓉𝐿𝐵 defines the breakpoint lag value between rising tail of PLF 225 

and its lower plateau — with coordinate of (𝓉𝐿𝐵 , 𝒦̂𝐿𝐵) — and 𝓉𝑈𝐵 defines the breakpoint lag value between rising tail of PLF 

and its upper plateau — with coordinate of (𝓉𝑈𝐵 , 𝒦̂𝑈𝐵 ). The upper breakpoint (𝓉𝑈𝐵 , 𝒦̂𝑈𝐵 ) can be determined from the 

intersection of the upper PLF asymptote 𝒦̂ = 𝛼 + 𝛽 and the best-fit line of segment 4, and the lower breakpoint (𝓉𝐿𝐵 , 𝒦̂𝐿𝐵) 

from the intersection of the lower PLF asymptote 𝒦̂ = 𝛼 and the best-fit line of segment 4. The obtained 𝓉𝑈𝐵 value defines 

the onset of the saturation plateau (segment 5 or stage-V memory accumulation), which will be identified in next step, and 𝓉𝐿𝐵 230 

provides an upper limit for early-time segmentation and will be used to both detect the mid-term slow-memory accumulation 

regimes and, if needed, to condition the fit of a Secondary Logit Function (SLF) when high resolution data (e.g., sub-daily) is 

available. 

Step 4: Identification of the Saturation Plateau (Segment 5, Stage-V) 

To obtain best-fit line of segment 5 and its accumulation rate, 𝑚5, a linear regression is performed over (𝓉, 𝒦̂) for all datapoints 235 

beyond the onset of the saturation plateau with 𝓉 > 𝓉𝑈𝐵, leading to: 

𝒦̂5(𝓉) = 𝑚5𝓉 + 𝑏5,             where             𝓉 > 𝓉𝑈𝐵  
(26) 

Step 5: Early-Time Memory Regimes Identification (Segments 1-3) 

Depending on the number of segments prescribed (n_segments = 3, 4, or 5), we resolve the early-time behavior as follows 

whereas only one of the options given will be followed: 

a) Three-segment configuration (Segment 3 only) 240 

With n_segments set to 3, only segments 3 to 5 are detectable. Having already detected segments 4 and 5 in previous steps, 

this step only requires the identification of segment 3, with segments 1 and 2 remaining undetectable under this configuration. 

https://doi.org/10.5194/egusphere-2026-549
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



11 

 

In this case, the memory accumulation through all lags smaller than 𝓉𝐿𝐵  is approximated by a single slow-memory 

accumulation line (namely, segment 3, stage-III), with a linear regression model constraint with fixed intercept value of 𝒦(1): 

𝒦̂3(𝓉) = 𝑚3𝓉 + 𝒦(1),         where          𝓉 < 𝓉𝐿𝐵  (27) 

where 𝑚3 defines the memory accumulation rate for the third segment.  245 

b) Four-segment configuration (segments 2 and 3)  

With n_segments set to 4, only segment 1 remains undetectable. Therefore, the memory accumulation through lags smaller 

than 𝓉𝐿𝐵  requires to be approximated by two slow-memory accumulation lines (namely, segments 2 and 3; memory 

accumulation stage-II and stage-III). For this aim, to determine the transition from stage-II to stage-III, a sequential linear 

approximation method is applied to identify a critical lag 𝓉crit by scanning forward from the origin until a goodness-of-fit 250 

threshold (e.g., a correlation coefficient, R2, value of 0.8) is violated. Then, the best-fit line of segment 2 is obtained by a linear 

regression over (𝓉, 𝒦) for all datapoints conditioned by 𝓉 < 𝓉crit: 

𝒦̂2(𝓉) = 𝑚2𝓉 + 𝑏2,             where             𝓉 < 𝓉crit (28) 

where 𝑚2 defines the memory accumulation rate for second segment.  

Similarly, fitting a second linear regression over (𝓉, 𝒦̂) for all datapoints with 𝓉 > 𝓉crit and 𝓉 < 𝓉𝐿𝐵 will lead to best-fit line 

for segment 3. However, here we fix the intercept to 𝒦̂ = 𝛼 to enforce consistency with the global shape of the cumulative 255 

memory kernel: 

𝒦̂3(𝓉) = 𝑚3𝓉 + 𝛼,             where             𝓉crit < 𝓉 < 𝓉𝐿𝐵  (29) 

 where 𝑚3 defines the memory accumulation rate for the third segment.  

c) Five-segment configuration (segments 1 to 3) 

To resolve the very-short-term (stage-I memory accumulation) and short-term (stage-II) regimes (only possible with high 

resolution data), we fitted an additional logit function (namely, SLF) to the early lag subset of the cumulative memory kernel: 260 

(𝓉, 𝒦), for all data points with 𝓉 < 𝓉𝐿𝐵. For this range, the SLF therefore replaces the PLF. Under this configuration, the best-

fit line of segment 2 is obtained from a local linearization around the midpoint of the SLF, using the same procedure as in step 

3. This leads to the following regression, where 𝑚2 is the memory accumulation rate for the second segment: 

𝒦̂2(𝓉) = 𝑚2𝓉 + 𝑏2 (30) 

The best-fit line of segment 1 is identified by the same sequential linear approximation method applied in previous stage, 

leading to: 265 

𝒦̂1(𝓉) = 𝑚1𝓉 + 𝑏1,         where          𝓉 < 𝓉crit (31) 

where 𝑚1 defines the memory accumulation rate for the first segment. Finally, the best-fit line of segment 3 is derived from a 

linear fit to datapoint falling between 90 % upper quantile of SLF values and 𝓉𝐿𝐵, leading to: 

𝒦̂3(𝓉) = 𝑚3𝓉 + 𝛼 (32) 
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where 𝑚3 defines the memory accumulation rate for the third segment. The ideal number of n_segments should be determined 

by first running the analysis at optional value, plotting the results and then performing a secondary analysis with the optimum 

visible segments chosen. 270 

Step 6: Saturation Plateau Spread and Reemergence Features 

Seasonal periodic oscillations in the saturation plateau are detected via peak–valley analysis using ‘find_peaks’ algorithm with 

a physically motivated high distance (365 days for daily data, 12 for monthly, etc.). Linear fits to the upper and lower envelopes 

return reemergence amplitude and spread; while intersect of envelopes provides a reemergence-related (empirical) timescale 

for saturation (Kumar et al., 2019).  275 

Step 7: Quantification of Characteristic Timescales 

Finally, by completing the segmentation process, the following memory timescales are extracted:  

• Fast memory timescale (τF) based on inversion of λ.  

• Very-short-term (τVSS), short-term (τSS), mid-term (τMS), and long-term (τLS) slow memory timescales being determined 

by intersecting successive linear segments. For example, the intersection of segment 1 and segment 2 determines τVSS, 280 

and so on.  

• Saturation timescale (τSat): the lag at which upper and lower envelopes of saturation plateau meet. 

• Quantile-based timescales: lags at which 𝒦̂(𝓉) reaches 10%, 50%, and 90% of its saturation level, defined as τ10, τ50, 

and τ90.  

All lag-domain timescales are converted to physical units with the given temporal resolution (either days, hours, or months). 285 

When high-resolution data (e.g. hourly) is available, the τF usually operates at sub-daily scales (e.g. hours to several hours), 

the τVSS at sub-daily to daily scales (e.g. several hours to several days), the τSS at daily to monthly scales, the τMS at monthly to 

seasonal scales, the τLS at seasonal to yearly scales and the τSat at yearly to decadal scales. Such clear differentiation between 

scales supports the idea that different combinations of drivers control each SMM timescale, a topic that will be elaborated on 

in the Results and Discussion section (see Table 1). However, it is worth noting that when the data examined is too coarse 290 

(e.g., daily or monthly) to identify earlier timescales (e.g. τVSS or τSS), then the timescale captured by τF will be an integration 

of those unidentified timescales. Consequently, larger fast memory timescales (e.g. up to several days for daily data and up to 

several months for monthly data) may be observed at larger temporal resolutions.  

3. Materials and Methods 

3.1. Study Sites and Data 295 

The data utilized in this paper to demonstrate the application of the developed LIDE framework in examining the dynamics of 

θroot as well as analyzing its memory effects were collected using a set of weighable, high-precision grassland lysimeters — 

with a cross-sectional area of 1 squared-meter and a depth of 1.5 meters — installed at experimental field sites, including six 
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lysimeters at the energy-limited site in Rollesbroich (50°37´12”N, 6°18´15”E) and three lysimeters at the water-limited site in 

Selhausen (50°52´7´´N, 6°26´58´´E) (Bogena et al., 2018; Pütz et al., 2016; Rahmati et al., 2020). Both experimental sites are 300 

part of the TERENO-SOILCan lysimeter networks in Germany located in Eifel/Lower Rhine Valley Observatory of TERENO 

in Germany (Bogena et al., 2018; Pütz et al., 2016). We used the six-year (2013-2018, i.e. 2191 days) preprocessed time series 

data provided by Rahmati et al. (2020), and interested parties may refer to that paper for more information on data collection, 

preprocessing, and cleaning steps. Briefly, all lysimeters are equipped with time-domain reflectometry (TDR) probes (CS610 

and TDR100, Campbell Scientific, North Logan, UT, USA) to measure soil water content at three different depths (10, 30, and 305 

50 cm) at 30-minute intervals. 

In addition to data from above lysimeters sets, we also used data from cosmic-ray neutron sensors (CRNSs) in Schöneseiffen 

station (50°30'53.6"N 6°22'32.1"E), as part of COSMOS-Europe dataset (Bogena et al., 2022), which meteorologically is 

acting in between energy-limited site of Rollesbroich and water-limited site of Selhausen, and therefore, we call it as 

intermediate site in the context of this analysis. The station is equipped with three sets of sensors, each set acting as one 310 

replicate and therefore, in this analysis we used an average of those three replicates as representative soil moisture data of the 

station. Furthermore, each replicate consists of three different sensors installed at three different depths of 5, 20, and 50 cm. 

3.2. Soil profile configuration 

To apply the LIDE framework and its helper model of LPMS, root-zone soil moisture, θroot, data was required. In this regard, 

we used high-quality soil moisture data collected from our lysimeters in Rollesbroich and Selhausen, and from the CRNS 315 

station in Schöneseiffen, as mentioned above. Since a detailed root zone characterization was not available, we simply averaged 

the aforementioned depth-wise observations to obtain the θroot data required for this analysis. We are aware that such an average 

value might not represent the θroot perfectly, but it still provides a good proxy for that. It is worth noting that the maximum 

rooting depth reported for the analyzed sites is 127–135 cm (Boden, 2005).  

3.3. LIDE and LPMS Application 320 

To obtain the parameters of the LIDE framework — i.e. λ, K(τ) and F(t), we used the numerical solution introduced in 

subsection 2.2, together with six years' (2013–2018) θroot data, as described in the previous subsection. Having obtained the 

memory-related components — i.e. λ and K(τ), we applied, then, the LPMS method (see subsection 2.4) to detect several 

SMM timescales, as discussed previously.   

The θroot data had a daily temporal resolution for the energy-limited Rollesbroich site and the water-limited Selhausen site. 325 

Therefore, we applied the numerical solution to both the daily and monthly resampled data from Rollesbroich and Selhausen. 

However, the θroot data at the intermediate Schöneseiffen site is provided at a half-hourly resolution, so we first resampled the 

data into hourly, daily and monthly resolutions, and then applied the LIDE framework to each series separately. This enabled 

us to evaluate the applicability of the LIDE model to the θroot data at different temporal resolutions (i.e. hourly, daily and 

monthly).  330 
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Regarding the LPSM method, one requirement is to determine the optimal number of linear segments observable on the 

cumulative memory kernel curve. Our first run of the LPSM method revealed that five, four and three linear segments were 

identifiable when hourly, daily and monthly data were analyzed for Schöneseiffen, which acts as an intermediate site for 

hydrometeorological conditions. Similarly, four and three linear segments were identifiable when the LPSM method was 

applied to the LIDE-driven memory kernel from the energy-limited Rollesbroich site. However, at the water-limited Selhausen 335 

site, three linear segments were identifiable for both daily and monthly resolutions, which is a good example of how the 

hydrometeorological conditions can affect the memory kernel segmentation, which is elaborated on in the Results and 

Discussion section. 

3.4. Additional Logit-based Memory Characteristics Obtained from LPMS method 

Although, the logit function fitted in LMPS method is mainly used to smooth the cumulative memory kernel simplifying linear 340 

segmentation procedure, at the meantime it also provides parameters that can be used for memory characteristics 

quantification: with α as baseline cumulative memory [T-1], 𝛼 + 𝛽 as total memory capacity [T-1], μ as characteristic memory 

lag [-], and S as active memory spread [-]. Therefore, we used these parameters to explore the global memory embedded in 

data. In this regard, we calculated the total capacity 𝒦̂𝐶 = 𝛼 + 𝛽 and half-capacity timescale τ50 = eμ using obtained logit 

parameters. On the other hand, physically, the α parameter of logistic function corresponds to the residual fast memory or any 345 

offset in cumulative memory before distributed memory processes start accumulating. In theory, since fast memory — 

𝐾(𝜏 = 1) — is excluded, one might expect an α-value of zero. Therefore, we use any deviation of α parameter from zero as a 

residual fast memory quantifier, rF. Parameter β determines the total amplitude of memory accumulation being equal to the 

difference between the lower and upper asymptotes of the logistic curve. The sum of α and β can be used to determine the 

saturated cumulative memory kernel, i.e. the total integrated influence of past soil moisture states (𝒦̂𝐶 = 𝛼 + 𝛽). Hereafter, 350 

this is referred to as memory capacity, 𝒦̂𝐶. In general, larger β values indicate greater total system memory capacity, meaning 

the soil–plant–atmosphere system retains a stronger influence from past moisture anomalies, so it is logical to use it to quantify 

SMM capacity (as an indicator of memory strength) on top of the SMM timescales. Comparing 𝒦̂𝐶 across different hydro-

climate sites can provide a quantitative measure of relative memory capacity between climates or soil types. The characteristic 

memory lag, μ, is the lag at which the rate of memory accumulation is maximal, which corresponds to the midpoint of the S-355 

shaped curve (e.g., inflection point of the logistic function). Therefore, we interpret it as the dominant or central timescale of 

slow-memory processes, which, in a sense, play the role of the ‘half-life' of memory build-up, when α is zero. In general, the 

smaller μ, the faster the system reaches memory saturation (it saturates quickly); a larger μ leads to a slower increase and 

longer persistence. In the same sense, S controls the slope or spread of the logistic curve around the inflection point. From 

physical perspective, a smaller S means sharp transition from fast-memory to slow-memory saturation (i.e., highly organized, 360 

narrow-band memory response) and short active period of memory while a larger S means gradual transition which can lead 

to diffuse and multi-timescale persistence. From hydrological perspective, S quantifies how distributed the slow memory is. 
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Smaller S values can indicate to well-buffered systems (fast turnover), while larger S values indicate long retention and 

heterogeneous storage pathways in the system. 

Additionally, the memory capacity, 𝒦̂𝑐, either can be determined by summing up α and β parameters of logit function — which 365 

we call it as estimated memory capacity— or by determining the coordinates of actual memory saturation point by intersecting 

the upper and lower envelopes of saturation phases oscillations, which we call it as actual memory capacity, noted by 𝒦𝐶 . 

Then, we also use the difference between estimated and actual memory capacity to quantify residual slow-memory of the 

system, rS, as below: 

𝑟𝑆 =
𝒦𝐶 − 𝒦̂𝐶

𝒦𝐶

× 100 
(33) 

4. Results and Discussion 370 

4.1. Soil moisture dynamics at examined sites 

Inspecting the observed θroot signals at energy- and water-limited sites (Fig. 2) reveals a considerable and almost identical 

decreasing trend (with a slope of 0.9 ± 0.1 percent per year; Fig. 2-b) from 2013 to 2018. This indicates a widespread drying 

signal across both regimes, with the intermediate site showing no clear trend (excluding from Fig. 2). One plausible proximate 

driver of the concurrent drying at both sites seems to be an increase in evaporative demand, and/or reductions in effective 375 

precipitation over the observation period, which is also reported at European scale for the recent decades (Bevacqua et al., 

2024; Gao et al., 2014; Rahmati, Graf, et al., 2023).  

The distinguishing behavior of the summer minimum θroot values in examined regimes (Fig. 2-c) indicates different 

mechanisms of the limiting effect at each site. For the energy-limited site, the yearly minimum value is strongly decreased and 

revealed a negative trend; ≈-18 % lower in 2018 than in 2013. This suggests that the factors that normally limit 380 

evapotranspiration in wet years are gradually weakening, e.g., the increase in atmospheric demand makes the atmosphere able 

to draw more water from the root-zone when it is available. On the other hand, the water-limited site’s minimum shows a 

barely reduced variation. This can be explained by the idea of a hydrological “floor”: as the soils are situated near the minimal 

extractable water or the plant stomata close in strong water stress, there is little effect that a further increase in the atmospheric 

demand can exert to θroot. Such asymptotic behavior near the residual or plant-available water threshold is a common pattern 385 

for water-limited systems (Liu et al., 2024). Again, the intermediate site showed no clear trend for summer minimum θroot 

values as well.  

The observed drying signal has implications for SMM and soil moisture persistence, with two points worth highlighting as 

context: First, the reduction in mean θroot and the lowering of summer minimum at the energy-limited site will likely change 

the system’s memory timescales since memory depends on both storage magnitude and the partitioning of water fluxes. In 390 

particular, the reduction in shallower or drier stores can decrease the persistence of anomaly on a seasonal time scale, but 

deepened root-zone storage and vegetation buffering is known to increase multi-month memory (Rahmati et al., 2024). Thus, 

drying can lengthen or shorten characteristic memory depending on the process that is most changed. Second, the near-constant 
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floor in the water-limited site suggests that below a certain threshold, the system’s response to perturbations becomes non-

linear. Hence, this is limited by residual moisture and external stomatal or climatic feedback, and it directly impacts memory 395 

metrics based on anomaly decay rates and autocorrelation. These mechanistic hypotheses will drive the SMM assessment, 

being presented as follows. 

 
Figure 2 -Variation of root zone soil moisture (θroot) at energy-limited, water-limited, intermediate sites. a) Time series 

of daily θroot, b) yearly average of θroot, and c) minimum value recorded in summer times. 400 

4.2. Multiscale soil moisture memory characterization over daily data 

We solved the LIDE model numerically according to Schmitt and Schulz (2006) based on daily measured θroot values and 

thereby determined the λ, K(τ), and F(t) parameters (see Fig. 3), and consequently identified the multi-timescale nature of 

SMM through application of automated LPMS method. The variation of cumulative memory kernel 𝒦(𝜏) for the examined 

sites are presented in Fig. 4. A careful examination of 𝒦(𝜏)-curves reveals four distinct stages (Fig. 4): (i) a stage-II early 405 
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slow-memory accumulation at short to intermediate lags (days-months), (ii) a stage-III intermediate slow-memory 

accumulation at intermediate to long lags (months-seasons), (iii) a stage-IV active late slow-memory accumulation (seasons-

years), and finally (iv) a near-flat tail (stage-V) for long lags (years-decades). Through this, the LIDE-derived memory 

spectrum decomposes SMM in physically meaningful timescales that are dominated by specific hydrological and 

ecohydrological processes. As mentioned previously, the very-early slow-memory accumulation stage (namely, stage-I), 410 

which usually operates at hours to days scale is not identifiable by daily moisture data.  

 

Figure 3 – The variation of LIDE framework parameters over time or lag domains, obtained from daily root-zone soil moisture 

(θroot) signals at energy-limited (subscript 1), water-limited (subscript 2), and intermediate (subscript 3) sites. a) Autocorrelation 

function, 〈𝜽|𝜽〉, b) memory kernels 𝑲(𝝉) and 𝑲̂(𝝉), and c) noise term F(t)   415 
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Figure 4 – Cumulative memory kernel 𝓚(τ) for energy-limited (Rollesbroich; top panel), water-limited (Selhausen; middle panel), 

and intermediate (Schöneseiffen; lower panel) sites, demonstrating increasing cumulative distributed-soil-moisture memory with 

lag (τ > 1 days). According to memory accumulation, four distinct stages are recognized: Stage-II (early slow-memory accumulation), 

Stage-III (intermediate slow-memory accumulation), Stage-IV (active late slow-memory accumulation), and Stage-V (attainment of 420 

the memory saturation). Intersection points between each two consecutive stages indicate switching between stages, consequently 

corresponding timescale. The saturation spread is shown as a shaded envelope.  
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4.2.1. Fast memory of soil moisture 

For the daily resolved data used in our analysis, the fast memory timescale (𝜏𝐹 = 1 |λ|⁄ , describing how the system responds 

immediately to perturbations—usually in timescales of days–weeks/months) is the first identified memory timescale which we 425 

postulate it representing the effects of rapid near-surface–atmosphere exchange (see Table 1), including daily weather 

persistence (Koster et al., 2009), capillary redistribution (early-stage infiltration)(Morbidelli et al., 2011), shallow root water 

uptake adjustments (e.g., short-term vegetation water consumption)(Calabritto et al., 2024), and residual drainage (Aldrees 

and Nachabe, 2019) — the long tail of drainage occurring for some days after the occurrence of fast drainage at sub-daily 

timescale right after precipitation events — or evaporation from bare soil (Han and Zhou, 2013; Iden et al., 2021; Or et al., 430 

2013) and topsoil hydraulic equilibration (Lehmann and Or, 2024). Considering the e-folding convention of Delworth and 

Manabe (1988), obtained 𝜏𝐹 values of ∼7.6 days at the energy-limited site (see Table 2) imply that it only takes around one 

week for energy-limited site to reduce its initial perturbation to its e-folding — e.g., 𝜃root(𝜏𝐹) 𝜃root(𝑡0)⁄ = 𝑒𝜆𝜏𝐹 = 𝑒−1 ≈

0.37; meaning that ~63% of the initial perturbation is dissipated after around one week. While it takes around four weeks for 

the water-limited site (with τF values of ∼32.3 days) and around half week for intermediate site (with τF values of ∼3.1 days). 435 

The substantially shorter fast memory at intermediate (≈3.1 days) and energy-limited site (≈7.6 days) sites where water is 

available sufficiently suggests relatively rapid dampening of soil moisture anomalies in those sites due to efficient wet-dry 

short-term surface flux exchanges (Koster et al., 2012; McColl, Alemohammad, et al., 2017; Orth and Seneviratne, 2013). In 

such moist environments, the evaporative response to available energy becomes strong even with relatively small increases in 

wet-energy availability, which drives rapid decay of anomalies (Miralles et al., 2011; Teuling et al., 2009). Conversely, the 440 

weaker instantaneous damping (≈32 days) at the water-limited site corresponds to the poor ability of this system to quickly 

remove anomalies, given that low soil moisture blocks evaporative fluxes with no regard for energy availability. Therefore, 

perturbations are sustained for longer periods of time before being modulated by slower, distributed processes captured in the 

memory kernel. 

4.2.2. Slow-memory of soil moisture 445 

In addition to 𝜏𝐹, the LIDE framework decomposes the captured slow memory into three timescales (excluding the very-short-

term slow-memory timescale, τVSS, which cannot be identified using daily data and will be addressed later when dealing with 

hourly data). These timescales are: 

1) Short-term slow-memory timescale (τSS): captured by the stage-II early slow-memory accumulation at days to 

months timescales (occurring at lower rates of +0.115 ± 0.03 day-1; see Table 2) which likely reflects the near-surface 450 

processes (see Table 1) like stage-II evapotranspiration (Ghannam et al., 2016; Jacobs et al., 2020; McColl, 

Alemohammad, et al., 2017; McColl et al., 2019; McColl, Wang, et al., 2017; Seneviratne and Koster, 2012), gravity-

induced water redistribution (late-stage infiltration)(Farmani et al., 2025), and root water uptake adjustments (Amenu 

et al., 2005; Thomas et al., 2009) which are mainly moderated by the soil’s physical characteristics and vegetation 

activity (e.g., early-season vegetation phenology)(Cleverly et al., 2016; Rahmati et al., 2024). Probably, one can also 455 
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expect the short-term groundwater influences especially at sites where water table is shallow (Martínez-de la Torre 

and Miguez-Macho, 2019). In addition, seasonal potential evapotranspiration changes (Stahl and McColl, 2022) also 

can have some effects on memory accumulation at this stage.   

2) Mid-term slow-memory timescale (τMS): captured by Stage-III intermediate slow-memory accumulation, which 

occurs at slightly lower rates of +0.005 ± 0.002 day-1 at energy-limited and intermediate sites compared to slightly 460 

stronger but negative rate of −0.023 day-1 at water-limited site (see Table 2). We postulate that it picks up seasonal 

storage/recharge pulses and deeper transport processes (Stacke and Hagemann, 2016), whereby deeper groundwater 

can recharge the soil and sustain anomalies (Mu et al., 2021). 

3) Long-term slow-memory timescale (τLS): captured by Stage-IV late slow-memory accumulation, occurring with 

relatively higher rates of 1.16, 0.814, and 0.775 days-1 in energy-limited, water-limited, and intermediate sites, 465 

respectively (see Table 2). We hypothesize that it results from storage in the deep vadose-zone, groundwater feedback 

and ecohydrological legacies (Gómez et al., 2022; Kaisermann et al., 2017; Müller and Bahn, 2022; Van Loon et al., 

2024; Wang et al., 2024). 

The most important insight learned from slow-memory timescale identification, probably, is that no τSS was identifiable at the 

water-limited site (Selhausen), while a τSS ∼39 and ∼13 days were detected at the energy-limited and intermediate sites, 470 

respectively (see Table 2 and Fig. 4). This is physically consistent with the hydroclimatic setting, whereby high evaporative 

demand, rapid post-rainfall drying, and shallow root-zone depletion (Laio et al., 2001; McColl et al., 2019; McColl, Wang, et 

al., 2017; Rahmati, Graf, et al., 2023) prevent short-lag anomalies from persisting and forming a coherent accumulation 

segment. Consequently, the system moves directly from fast memory to intermediate slow-memory behavior whereas deeper 

storage processes control persistence. The suppression of memory for short lags in drier regions has also been extensively 475 

documented (Ghannam et al., 2016; McColl et al., 2019). Furthermore, water-limited ecosystems are generally characterized 

by “concave-up” autocorrelation properties, i.e., memory falls at short lags but reappears at deeper/larger storage timescales 

(Kumar et al., 2019).   

A positive Stage-II slow-memory accumulation slope would imply that both near-surface redistribution and rapid recharge 

contribute constructively to the total memory at the first finite few lags. Physically, such positive memory accumulation can 480 

occur when shallow recharge/near surface storage leads to a delayed re-supply that adds soil moisture change at later times –

– for example, the effect of a wet day becomes "observable" again after few days once rainfall induced lateral redistribution 

and capillary rise had an impact. Such quick buffering and rapid redistribution often are in effect under moist conditions (i.e., 

energy-limited systems) and may generate a net positive weight for the short-lag kernel.  

All examined sites are associated with a similar typical τMS values of 115–127 days (Table 2), suggesting a common seasonal 485 

period of sub-root and seasonal recharge activity. The rate of the mid-term accumulation is, however, different: positive at 

energy-limited (Rollesbroich; +0.007 days-1;) and intermediate (Schöneseiffen; +0.003 days-1) sites and negative at water-

limited site (−0.023 days-1). This translates physically to a mechanism through which seasonal recharge and slow redistribution 

at Rollesbroich and Schöneseiffen reinforce SMM incrementally in the 3–4-month window; while, at Selhausen intermediate-
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lag processes would tend to damp down later moisture anomalies, dθ/dt. Physically, such a dampening or delayed negative 490 

feedback could possibly result from: i) antecedent wetness leading to decreased subsequent infiltration (and surface runoff, 

and recharge)(Knapp et al., 2025; Song and Wang, 2019; Zhang et al., 2011) which is then reduces later recharge and related 

dθ/dt; ii) plant physiological responses (stomatal control) leading to the lagged increase of water extraction (and consequently 

reducing current state of soil moisture) following a wet pulse (Buckley, 2019; Guo and Ogle, 2019; Thayamkottu et al., 2025); 

or iii) rapid post-rain redistribution taking water away from the root-zone (Li et al., 2025; Orozco-López et al., 2018; Pales et 495 

al., 2018) giving an intermediate-lag apparent negative kernel. For example, in the water-limited site, individual wetting and 

drying paths (hysteresis) would not necessarily coincide (Abdoli et al., 2024) which could mean that preferential or rapid flow 

pathways could divert infiltration away from the root-zone immediately after rain (Kargas et al., 2021; Nimmo et al., 2025; 

Zhang et al., 2018), leading to an intermediate negative contribution at intermediate positive lags.  

Examined sites also demonstrate distinct behavioral differences according to the active Stage-IV memory accumulation and 500 

its associated memory timescale, τLS. The energy-limited site (accumulating memory at a time lag of 125–291 days) and 

intermediate site (at a time lag of 115–218 days) gain memory in a narrow time window. In contrast, it is widespread 

(accumulating memory at a time lag of 127–541 days) in the water-limited system. This combination indicates that the energy-

limited and intermediate sites accumulate slow-memory quickly (within a seasonal band alone — perhaps through repeated 

seasonal recharge, efficient root-zone refilling, and tighter coupling between vegetation and soil storage), implying good 505 

seasonal persistence and therefore high sub-seasonal predictability. In contrast, the water-limited site integrates memory more 

slowly, but over a much longer temporal window, which is consistent with infrequent recharge events and deeper or decoupled 

storage and long hydraulic or vegetation lags that spread memory over longer time horizons to yield weaker per-day persistence 

at some ranges of lag but stronger tails from legacy effects. This contrasting behavior will have some implications from a 

hydro-climate perspective. For instance, the energy-limited regimes are likely to exhibit more pronounced sub-510 

seasonal/seasonal predictability due to relatively concentrated memory (relevant for predictions on seasonal timescales), while 

water-limited regimes may exhibit longer extended, but weaker, predictability as information is spread out over larger lags. 

This is consistent with findings showing that land-atmosphere coupling and recharge dynamics regulate predictability and 

seasonal skill (Seo et al., 2024). In contrast, the energy-limited sites can also respond (and hence recover) quickly (but would 

also lose memory more readily when conditions change), and the processes at a water-limited site might be able to maintain 515 

a hydrological memory of extremes for longer time periods, potentially extending such legacy effects of drought compromising 

both vulnerability and recovery of the system (Rahmati et al., 2024). 

4.3. Memory saturation, capacity, and reemergence 

Besides the trinary slow-memory timescales identified as above, additional LIDE-induced insights about the examined hydro-

climate regimes can be obtained: time to memory saturation, known as saturation timescale, 𝜏Sat , and memory strength 520 

captured by memory capacity, 𝒦𝐶 . Memory saturation represents the final stage of the memory accumulation (namely, stage-

V) that evolves slowly and eventually approaches a saturation plateau, the memory capacity of 𝒦𝐶 , where past states do not 
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play role any more in soil moisture evolution, which is mainly overlooked in classical SMM analysis. Physically this regime 

is associated with deep storage (Kollet and Maxwell, 2008), groundwater coupling (Irvine et al., 2024; Martínez-de la Torre 

and Miguez-Macho, 2019; Miguez‐Macho and Fan, 2012), vegetation structure transformation, inter-annual carry-over of soil 525 

moisture anomalies (Kumar et al., 2019), or slow hydrological recovery and decadal climate variation (Seneviratne et al., 2010) 

(Table 1).  

The energy-limited and intermediate sites have small residual saturation slopes of approximately 0.022 and 0.005 days-1 with 

a saturation window ranging beyond lag values of 291 and 218 days, respectively, whereas the water-limited site is associated 

with a larger residual slope of approximately 0.097 days-1 and a broader saturation window of beyond 541 days. The slightly 530 

positive finite lag momentum at the energy-limited and intermediate sites suggests that the system is essentially finite lag 

saturated, i.e. any additional memory gained at very long lags comes with only a small premium in terms of per-day memory 

and is accumulated slowly over multi-year time spans. Conversely, the much higher slope at the water-limited site suggests 

that long-lag memory accumulation is ongoing. Probably, deep storage buffering, infrequent yet significant recharge events, 

and gradual vegetation and soil adjustments generate noticeable legacies that accumulate over time. The residual slow-memory 535 

fraction calculation (see Table 2) reveals an rS values of ∼0.7%, ∼3.5%, and ∼1.5% at energy-limited, intermediate, and water-

limited sites, respectively. Assuming a residual memory fraction of less than 1% as practical importance threshold, the energy-

limited site is already saturated, the water-limited site is very close to saturation, whereas the intermediate site still is very far 

from saturation and due to lower rate of memory accumulation at saturation plateau, gaining a full saturation will be time-

consuming whereas theoretically the full memory saturation (quantified as 𝜏Sat) occurs after around nine years in energy- and 540 

water-limited sites while it will take around 15 years for intermediate site. Hydrologically, this means that knowledge of the 

previous state beyond τLS at the energy-limited and intermediate sites makes very limited improvement to seasonal forecasting, 

while the water-limited site retains some useful long-lead memory and is probably somewhat more susceptible to multiyear 

drought legacies.  

The asymptotic memory capacity (𝒦𝐶) obtained (see Table 2) is similar between sites (1.18 ± 0.05 days-1) with slightly being 545 

slower in intermediate site (with 𝒦𝐶  = 1.12 days-1), indicating a similar total storage potential but different partitioning among 

timescales. As a result, in energy-limited conditions, there is rapid accumulation of memory and strong short-term 

predictability while water-limited conditions spread memory over wider lags, providing weaker short-term persistence but 

stronger long-term legacy. In the intermediate site, possibly where both water and energy are sufficiently available, the memory 

accumulation is much faster in earlier stages but then slows down in later stages. These findings are consistent with recent 550 

studies that have identified regime-dependent multi-timescale SMM and the regulation of it by hydro-climatic mechanisms, 

such as recharge frequency, evapotranspiration coupling and deep-storage buffering (Cinkus et al., 2023; Rahmati et al., 2024).  

 

Table 2- Memory-related characteristics extracted from LIDE method for examined sites 
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Variables 
Energy-limited site 

 [Rollesbroich] 

Water-limited site  

[Selhuasen] 

Intermediate site  

[Schöneseiffen] 

Memory accumulation rates    

Frequency coefficient lambda [days-1] -0.132 -0.031 -0.323 

Early slow-memory accumulation slope [days-1] 0.090 - 0.139 

Intermediate slow-memory accumulation slope [days-1] 0.007 -0.023 0.003 

Late slow-memory accumulation slope [days-1] 1.158 0.814 0.775 

Memory Saturation line slope [days-1] 0.022 0.097 0.005 

Memory timescales    

Fast-memory timescale τF [days] 7.6 32.4 3.1 

Short-term slow-memory timescale τSS [days] 13 - 39 

Intermediate-term slow-memory timescale τMS [days] 125 127 115 

Long-term slow-memory timescale τLS [days] 291 541 218 

Memory saturation timescale 𝜏𝑆𝑎𝑡 [days] 3270 3230 5651 

Memory strength    

Actual memory capacity (𝒦𝐶) [days-1] 1.232 1.210 1.116 

Estimated memory capacity (𝒦̂𝐶) [days-1] 1.242 1.192 1.079 

Residual saturation [%], 𝑟𝑠 = (|𝒦𝐶 − 𝒦̂𝐶|) 𝒦𝐶⁄ × 100 ~ 0.7 ~ 1.5 ~ 3.5 

Soil Moisture reemergence    

Mean saturation spread [days-1] 15.99 9.67 16.46 

Minimum saturation spread [days-1] 5.91 4.25 9.23 

Maximum saturation spread [days-1] 35.20 17.83 31.55 

 555 

The memory saturation stage also provides another additional information (in addition to 𝜏Sat  and 𝒦𝐶 ) characterized by 

saturation plateau spread (see light-blue shaded area in Fig. 4) which is larger at initial times of saturation and then decreases 

by time, holding a sine cycle with slightly oscillating pattern. The mean value and its range (maximum spread at initial steps 

and minimum spread at final steps of memory saturation) can be served as appropriate metric to quantify very-long slow-

memory timescale occurring at years to decades timescales, mainly known as soil moisture reemergence (Kumar et al., 2019), 560 

a process in which subsurface moisture anomalies existing from previous seasons sporadically recouple with the surface, 

causing secondary persistence peaks in autocorrelation. We calculated the normalized “saturation spread” as a quantifier of 

the amplitude of residual long-lag fluctuations, with a fitted upper–lower envelope technique. The spread is larger for the 

energy-limited site, reflecting stronger seasonal reactivation of stored anomalies by recharge–discharge and vegetation 

feedback, while the plateau has a more subdued maximum at the water-limited site, consistent with weaker hydraulic coupling 565 

and atmospheric dominance. Such behavior falls in between those sites when considering it for the intermediate site, closer to 

the energy-limited site than the water-limited site. 
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4.4. LIDE framework over sub-daily data 

As previously also mentioned, the conceptualization provided in previous section is subject to the resolution of the data used 

for timescales characterization (e.g. daily, as discussed so far). The effects of sampling frequency on SMM characterization is 570 

also already well documented in literature (e.g., see the extensive review of this topic in Rahmati et al., 2024). In this section, 

therefore, we show how far the conceptualization provided before is also valid when LIDE framework is applied for data with 

higher (e.g., hourly) resolutions. This is important because using soil moisture data with different resolutions can involve or 

overlook different soil processes (e.g. sub-daily contribution of drainage which is usually overlooked at daily or monthly data) 

that could affect the memory at different components identified. 575 

To test whether the LIDE framework can resolve sub-daily, short-term memory components, we applied LIDE to hourly soil 

moisture data from our Schöneseiffen site (see Fig. 5). This yielded a frequency coefficient λ value of -0.173 hours-1, leading 

to a fast memory τF of 5.8 hours (see Table 3). Interestingly, this value is very close to that obtained by applying the hybrid 

stochastic–deterministic framework (McColl et al., 2019) — a classical method used in the literature — on the same data, but 

resampled at daily resolution (𝜏𝑆
𝐻|daily ≈ 7.5 hours; see Table 4). Similarly, the long-term memory captured by applying the 580 

hybrid stochastic–deterministic framework to daily data (𝜏𝐿
𝐻|daily ≈ 32 days; see Table 4) is also very close to the short-term 

memory captured by applying the LIDE framework to hourly data (𝜏𝑆|hourly ≈ 24 days; see Table 3) and daily data (𝜏𝑆|daily ≈

39 days; see Table 3). These results remarkably suggest that when high-frequency data is available, the LIDE can capture the 

same rapid hydrological adjustments mechanistically as the hybrid model does empirically. In other words, as mentioned 

above, for the LIDE framework to be able to capture memory timescales at sub-daily scale, it requires high frequency hourly 585 

data, but the advantage is that it deterministically determines the shortest memory (fast memory) by λ and puts the memory at 

larger scales into distributed memory kernel, which can be decomposed by LPMS method. In other words, the hybrid 

stochastic–deterministic model can express sub-daily processes even based on daily data, yet this capability arises from the 

empirical nature with which parameterized stochastic terms effectively interpolate between unmodelled temporal scales. In 

contrast, the LIDE framework resolves the same short-term memory deterministically, via inclusion of an explicit relaxation 590 

term λ not associated with empirical interpolation. Additionally, the convolutional kernel in the LIDE framework inherently 

splits the long-scale dynamics into distributed memory domain and avoids timescale mixture, which is not possible with the 

hybrid stochastic–deterministic framework, which is elaborated more later.   

The comparison of cumulative memory kernels obtained from hourly and daily data at Schöneseiffen site (Fig. 6) indicates an 

underlying resolution dependence on the representation of SMM. Daily sampling sums up sub-daily hydrological processes 595 

(rapid infiltration, diurnal evaporation cycles and shallow root uptake) into a single effective fast-memory mode that can be 

seen as a linear accumulation segment at short lags, followed by a single logistic transition at long time lags. Hourly sampling, 

however, captures separate dynamical processes operative at sub-daily, daily and multi-day timescales. This produces a very 

small linear segment at the smallest lags (which reflects true instantaneous decay), followed by two distinct logistic transitions 

for (i) sub-daily to daily-scale accumulation induced by diurnal forcing and shallow storage processes, and (ii) daily-to-600 
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seasonal accumulation regulated by deeper soil moisture storage. Accordingly, the hourly LIDE kernel exposes the physical 

multilayered structure of SMM, while daily data places these fast modes into an effective one-stage representation. Therefore, 

by application of LIDE framework over hourly data, we were able to identify one additional timescale —namely very-short-

term slow-memory timescale τVSS — with a value of 14 hours for intermediate site which falls in between fast memory 

timescale (𝜏𝐹|hourly ≈ 5.8 hours; see Table 3) and short-term slow memory timescale (𝜏𝑆|hourly ≈ 24 days; see Table 3).  605 

Application of the LIDE framework to hourly and daily data further shows that an increase in temporal resolution mainly 

affects the fastest parts of SMM while the larger lag timescales remain unaffected. As expected, the hourly data lead to a 

significantly shorter τF value plus that an additional very-short slow-memory timescale (τVSS) is revealed. The latter was hidden 

at daily resolution because sub-daily infiltration-evaporation pulses and diurnal root-water-uptake dynamics were aliased in a 

single composite fast-relaxation parameter of daily data. In contrast, the slow-memory timescales (τSS, τMS, and τLS) and 610 

eventual saturation (τSat) only moderately differ between hourly and daily analysis; τSS becomes shorter (39 → 23.8 days), 

whereas there is little change in τMS (115 → 128 days) and almost no change in τLM (218 → 214 days), with the saturation 

timescale being pretty much independent of scale (≈15 years). This pattern shows that the long-memory processes—seasonal 

recharge and deep percolation as well as vadose zone storage integration — operate on timescales far longer than the sampling 

interval and LIDE method can capture this nicely. Hence while high-frequency data are needed to tease out the sub-daily and 615 

short-term slow-memory components, the multi-month and multi-year memory structure of the soil system appears to be 

insensitive to temporal aggregation suggesting that LIDE is capturing the dominant slow-memory architecture even at daily 

scale. However, such behavior is not guaranteed by hybrid model where two completely different long-term memory obtained 

from hybrid method when applying on daily data (with 𝜏𝐿
𝐻|daily ≈ 32 days; see Table 4) and hourly data (with 𝜏𝐿

𝐻|hourly ≈ 7.5 

days) confirms this argument. 620 

 

 

Figure 5 - The variation of LIDE framework parameters over time or lag domains, obtained from daily root-zone soil moisture (θroot) 

signals at Schöneseiffen site. a) Autocorrelation function, 〈𝛉|𝛉〉, b) memory kernels 𝐊(𝛕) and 𝐊̂(𝛕), c) noise term F(t) 

 625 

Table 3- Memory-related characteristics extracted from LIDE framework applied over hourly, daily, and monthly data in 

intermediate site (Schöneseiffen) 

Variables Hourly data Daily data Monthly data 
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Memory accumulation rates§ - - - 

Frequency coefficient lambda [T-1] -0.173 -0.323 -0.350 

Very-early slow-memory accumulation slope [T-1] -0.030 - - 

Early slow-memory accumulation slope [T-1] 0.225 0.139 - 

Intermediate slow-memory accumulation slope [T-1] 0.050 0.003 0.056 

Late slow-memory accumulation slope [T-1] 0.754 0.775 0.786 

Memory Saturation line slope [T-1] 0.005 0.005 0.042 

Memory timescales - - - 

Fast-memory timescale τF [T] 5.78 3.10 2.86 

Very short-term slow-memory timescale τVSS [hours] 14 - - 

Short-term slow-memory timescale τSS [days] 23.8 39 - 

Intermediate-term slow-memory timescale τMS [days] 128 115 92 

Long-term slow-memory timescale τLS [days] 214 218 336 

Memory saturation timescale 𝜏Sat [years] 15.1 15.5 6.8 

Memory strength - - - 

Actual memory capacity (𝒦𝐶) [days-1] 1.26 1.12 1.13 

Estimated memory capacity (𝒦̂𝐶) [days-1] 1.23 1.08 1.13 

Residual saturation [%], 𝑟𝑆 = (|𝒦𝐶 − 𝒦̂𝐶|) 𝒦𝐶⁄ × 100 2.59 3.35 0.41 

Soil Moisture reemergence - - - 

Mean saturation spread [T-1] 14.62 16.46 13.64 

Minimum saturation spread [T-1] 8.08 9.23 2.48 

Maximum saturation spread [T-1] 28.37 31.55 32.86 

§: In the case of hourly data, T is 'hours'; for daily data, it is 'days'; and for monthly data, it is 'months'. To make the comparisons easier, we 

have converted (wherever possible) hourly timescales to daily by dividing by 24 and monthly timescales by multiplying by 30.5, which is 

the average number of days in a month within a 365-day year. 630 
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Figure 6 – Cumulative memory kernel 𝓚(τ) for Schöneseiffen site obtained from application of LIDE framework over hourly, daily, 

and monthly data. 

 635 
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4.5. LIDE framework over monthly data 

When LIDE is used over monthly soil-moisture data, the shape (see Fig. 6) and interpretation (see Table 3) of the cumulative 

memory kernel change significantly. After resampling data at monthly frequency, all sub-seasonal variations are removed 

thereby eliminating the very-short-term and short-term slow-memory components (τVSS and τSS) that are detectable in 

hourly/daily data. In this way, the monthly kernel transits rapidly to intermediate and long-term memory regimes, yielding a 640 

shorter mid-term memory timescale (τMS = 92 days vs. 115 and 128 days observed in daily and hourly datasets; see Table 3) 

but lengthened long-term timescale (τLS = 336 days vs. 218 and 214 days observed in daily and hourly datasets; see Table 3). 

The time to saturation is also obviously compressed (τSat ~ 6.8 years) compared to that of more than 15 years observed in both 

daily and hourly data, indicative of quick convergence toward the asymptote due to temporal averaging. Moreover, the 

reemergence-like oscillatory patterns that we observe in the daily and hourly data are heavily damped at monthly timescale 645 

resulting in lower saturation spread statistics and negligible amount of residual saturation. In contrast, even with these structural 

adjustments, the total memory capacity is largely comparable across resolutions (with 𝒦𝐶  varying between 1.13 and 1.26; 

being slightly larger for hourly dataset; see Table 3) indicating that monthly sampling essentially redistributes memory between 

different timescales rather than changing the overall amount of memory stored in the soil system.  

4.6. Relevance of LIDE-derived memory timescales with classical metrics 650 

As already discussed earlier, the SMM in literature is classically characterized by the conventional time-lag autocorrelation of 

soil-moisture anomalies, with memory defined as the timescale at which the autocorrelation suppresses to its e-folding 

(Delworth and Manabe, 1988; Koster and Suarez, 2001; McColl, Wang, et al., 2017; Orth and Seneviratne, 2013). These 

procedures effectively assume an exponential decay in response (which corresponds to the integral or bulk memory of the 

system) which conceals the coexistence of several characteristic timescales due to different types of storage and flux processes 655 

is hidden (Cinkus et al., 2023; Miralles et al., 2019). More recently proposed hybrid stochastic–deterministic schemes (McColl 

et al., 2019) have helped alleviate this by introducing a “hybrid” or scale-separated representation of the land–atmosphere 

system comprising short-term SMM (𝜏𝑆
𝐻) and long-term SMM (𝜏𝐿

𝐻) timescales, but they are still empirical in nature. In contrast, 

the LIDE framework introduced here directly models memory from observed dynamics which decomposes it into an 

instantaneous relaxation process (fast term) and nonlocal slow-memory that accumulates over slower processes. Therefore, in 660 

this section, we compare SMM timescales inferred from LIDE to those of classical e-folding as well as hybrid stochastic–

deterministic ones (see Table 4) in order to (i) test the numerical consistency of opposing memory estimates, (ii) understand 

their ability to reflect persistence at sub-seasonal and inter-annual scales, and (iii) explore how hydro-climatic regime-

specificity affects apparent memory length across methods. 

Although partly discussed in previous section, results reveal that there are methodological and regime-dependent differences 665 

between obtained memory timescales (Table 4). The classical e-folding analyses provide integral memory timescales of 52 

days, 87 days, and 82 days for the energy-limited, water-limited, and intermediate sites, respectively — values typical of bulk 

persistence associated with exponential autocorrelation decay (Delworth and Manabe, 1988; Koster and Suarez, 2001; McColl, 
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Wang, et al., 2017; Orth and Seneviratne, 2013). The hybrid stochastic–deterministic model resolves this behavior into a sub-

daily short-term (with ~5 hours for both energy-limited and water limited sites and ∼8 hours for intermediate site) and long-670 

term memory (with 68, 84, and 32 days for energy-limited, water-limited, and intermediate sites, respectively) timescales. 

However, it is worth noting that the sub-daily signal results from empirical interpolation beyond the resolution of daily data 

and accordingly represent parameter extrapolation more than observed fast dynamics. Contrarily, the LIDE framework obtains 

deterministically both the instantaneous and distributed memory components out of the temporal evolution of time-series. The 

derived fast memory (τF = 7.6 days, 32.4 day, and 3.1 days; see Table 4) reflects resolvable short-term damping, whereas the 675 

subsequent slow-memory timescales (τSS, τMS, τLS) describe a continuum from sub-monthly (∼2 weeks) to multi-annual (~541 

days) persistence. The timescale of saturation (τSat) ranges from 9 to 15.5 years, demonstrating the persistent factor of long-lag 

impacts especially under water-limited conditions. Together, these results demonstrate that LIDE accounts for the exponential 

persistence detected by classical metrics and for the dual-mode structure of hybrid models within a unified physically based 

framework and provides an interpretable decomposition of SMM across temporal scales and hydro-climatic conditions. 680 

Notably, the shorter fast memory at the energy-limited site and longer at the water-limited site is consistent in all examined 

methods, showing their agreement in capturing the underlaying mechanisms (Table 4). The separation of “fast” and “slow” 

terms in LIDE framework is consistent with a multi-timescale framework for SMM, wherein λ sets the rate for decay of 

anomalies in the active layer, and the distributed memory kernel captures slower subsurface and feedback-driven persistence. 

Table 4- Memory timescales of daily soil moisture among various analytical approaches and hydrological conditions.  685 

Timescales Symbol 
Energy-limited site 

(Rollesbroich) 

Water-limited site 

(Selhausen) 

Intermediate site 

(Schöneseiffen) 

Classical e-folding method  

Memory timescale τ 52 days 87 days 82 days 

Hybrid stochastic-deterministic model  

Short-term memory  𝜏𝑆
𝐻

 4.95 hours 5.11 hours 7.54 hours 

Long-term memory  𝜏𝐿
𝐻

 68 days 84 days 32 days 

LIDE method  

Fast memory  τF 7.6 days 32.4 days 3.1 days 

Short-term slow-memory  τSS 13.4 days - 39.2 days 

Intermediate slow-memory  τMS 125 days 127 days 115 days 

Long-term slow-memory  τLS 291 days 541 days 218 days 

Saturation  𝜏𝑆𝑎𝑡 ∼9 years ∼9 years ∼15.5 years 

𝒦10 slow-memory 𝜏10 90 days 164 days 2 days 

𝒦50 slow-memory 𝜏50 168 days 309 days 48 days 

𝒦90 slow-memory 𝜏90 ∼1.5 years ∼1.8 years ∼2.1 years 
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4.7. Additional quantile-based slow-memory timescales 

In addition to the stage-oriented slow-memory timescales (identified as above), we also quantified (see Table 5) timescales at 

10, 50, and 90 percent quantiles (𝒦10, 𝒦50, and 𝒦90) of slow-memory accumulations — known as τ10, τ50, and τ90 — which 

present contrasting hydrologic fingerprints among the three sites. The τ10 values indicate that slow-memory accumulation is 690 

initiated earliest at the intermediate site (2 days), later at energy-limited site (90 days) and much later still at water-limited site 

(164 days). This behavior indicates that the intermediate site probably contains very responsive, shallow storage pathways 

(where neither water nor energy supplies are limiting factors), while for dryer sites the pathways are longer, and it requires 

longer time before deep-storage processes begin to contribute to memory. The differences among examined sites are clearer 

when comparing the τ50, (halfway point of the total slow-memory accumulation): the intermediate site accumulates 50 % of 695 

its total memory within 48 days only, while it takes around half-year (168 days) for the energy-limited site and around one-

year (309 days) for the water-limited site. This indicates that the dominant slow-memory operating timescale is site-dependent 

whereas it is shortest in the intermediate regime, moderate in the humid energy-limited site, and longest in the dry water-

limited site. Finally, the τ90 values highlight these regime contrasts further where the energy-limited site accumulates 90% of 

its memory capacity in 1.3 years, while it takes around 1.8 years for the water-limited site and around 2 years for the 700 

intermediate site as a reflection of its highly distributed deep storage and long-tailed persistence. In general, our finding 

indicates that: (i) energy-limited site accumulates memory more evenly over time scales; (ii) water-limited site accumulates 

slow yet deep memories; and (iii) intermediate systems feature a swift initial build-up followed by an extended tail towards 

longer times, but probably this is site-specific subject to hydro-climate structure of the site and needs to be explored in other 

regions to gain an overall insight. 705 

Table 5- Additional quantile-based slow-memory timescales extracted from LIDE method for examined sites. 

Variables 
Energy-limited site  

[Rollesbroich] 

Water-limited site 

[Selhuasen] 

Intermediate site  

[Schöneseiffen] 

10% quantile (𝒦10) slow-memory timescale τ10 [days] 90 164 2 

50% quantile (𝒦50) slow-memory timescale τ50 [days] 168 309 48 

90% quantile (𝒦90) slow-memory timescale τ90 [days] 489 672 759 

 

4.8. Logistic representation and parameterization of the cumulative memory kernel 

Finally, one might also describe the cumulative memory kernel for lags > 1 through the logistic function (see Methods) fitted 

over cumulative memory kernel. Calculated logistic coefficients (Table 6) exhibit systematic differences between examined 710 

regimes, confirming the already discussed differences in previous section. The energy-limited site has lower μ (= 191 days) 

and S (= 0.225 [-]) but somewhat higher 𝒦̂C (≈ 1.24 days-1), which suggests that memory accumulation at energy-limited site 

is more rapid yet more focused—the system reaches saturation rapidly within growing-season-constrained times and has 

relatively homogeneous hydrologic flow paths. In contrast, the water-limited site is characterized by larger μ (= 277 days) and 

S (= 0.409 [-]) values and a smaller 𝒦̂C (≈ 1.19 days-1), reflecting slower, more diffusive accumulation over a heterogeneous 715 
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soil–vegetation system. The intermediate site, in line with what discussed in previous section, shows even faster memory 

accumulation (faster than energy-limited site) with smaller μ (= 158 days), smaller S (= 0.16 [-]), and smaller 𝒦̂C (≈ 1.08 days-

1). These differences further emphasize that the logistic description adequately accounts for regime-dependent SMM 

organization: relatively contracted and strongly seasonally modulated in energy-limiting conditions, versus diffusive and 

multiannual in water-limited conditions.  720 

Table 6- Logistic functions parameters obtained for examined sites. 

Variables 
Energy-limited site  

[Rollesbroich] 

Water-limited site  

[Selhuasen] 

Intermediate site 

[Schöneseiffen] 

Baseline cumulative memory - α [1/days] 0.194 -0.152 0.560 

Total memory capacity - β [1/days] 1.048 1.343 0.519 

Estimated memory capacity - 𝒦̂C = 𝛼 +  𝛽 1.242 1.192 1.079 

Characteristic memory lag - μ [days] 191 277 158 

Active memory spread - S [-] 0.225 0.409 0.160 

Logit function fitting accuracy [R] 0.975 0.992 0.888 

 

5. Conclusions 

This study developed a comprehensive and mechanistically interpretable framework, and scale-aware Linear Integro-

Differential Equation (LIDE) for root-zone soil moisture which can quantitatively evaluate full-spectrum soil moisture memory 725 

(SMM) behavior in fast, slow, and very long-term timescales. By estimating a continuous distributed memory kernel from 

observations, LIDE is free of the prevalent shortcomings faced by classical memory diagnostics based on e-folding decay 

(Delworth and Manabe, 1988; Koster and Suarez, 2001; McColl, Wang, et al., 2017; Orth and Seneviratne, 2013) or hybrid 

stochastic-deterministic model (McColl et al., 2019) that inevitably compress the system’s intricate temporal dynamics into 

one or at most two characteristic timescales. By applying automated Logit–Piecewise Memory Segmentation (LPMS) method 730 

to decompose the slow-memory component of LIDE framework, our analysis shows that LIDE not only recovers the traditional 

short- and long-term memory components but also reveals multiple different slow-memory regimes representing distinct 

hydrological processes and storage responses. This includes very-short-term (at sub-daily scale, in case of hourly data), short-

term (on the order of weeks), mid-term (months to seasons), long-term (seasonal to years), and saturation (multi-year) memory 

regimes, allowing a unique multiscale decomposition of ecohydrological memory heretofore unattainable using classical 735 

methodologies. Such a multiscale identification is important because different memory modes control fundamentally distinct 

processes and feedback, important for land–atmosphere coupling and flash-drought evolution, e.g., soil-moisture anomalies 

lead to extreme drought warning (Liang and Yuan, 2021), vegetation resilience, soil–plant water use, and ecosystem carryover 

(Groh et al., 2020), among the others. 

Across the three contrasting hydro-climatic regimes (water-limited, energy-limited, and intermediate sites), LIDE found that 740 

fast-memory differed by an order of magnitude (3–32 days), while short- and mid-term slow-memory were quite similar (τSS 
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≈ 13–39 days; τMS ≈ 115–128 days), long-term memory timescale and time scale to saturation diverged drastically (τLS ≈ 218–

541 days and 𝜏𝑆𝑎𝑡  ≈ 9-15 years). Another methodological advance is that LIDE provides information about memory 

strength/capacity as well and not only on timescale(s). Traditional methods measure the persistence of anomalies, but do not 

describe how powerfully previous states control future water availability. The LIDE kernel allows direct estimation of total 745 

memory capacity (𝒦C): with 𝒦C differing slightly from 1.12 −1.24 days-1. This dual characterization—memory timescale and 

strength—provides a more comprehensive measurement of soil–plant–atmosphere interactions that is important for drought 

propagation, ecosystem resilience or coupled land-atmosphere feedback (Canarini et al., 2021; Rahmati et al., 2024; 

Schumacher et al., 2022; Seneviratne et al., 2010). For example, these results demonstrate that examined sites with contrasting 

hydro-climate regimes differ primarily in the distribution of memory across timescales, rather than their overall ability to retain 750 

past moisture anomalies. 

The LIDE framework also quantitatively diagnoses, for the first time in field data, soil-moisture reemergence (Kumar et al., 

2019) as part of SMM modes—a phenomenon previously documented very rarely and is overlooked mainly. Fluctuations of 

the saturation plateau in cumulative kernel are indicative of seasonally developing anomalies in storage; most pronounced in 

systems that are energy-limited (possibly with a strong recharge during wintertime and activation of deep storage). Through 755 

the identification of upper and lower envelopes to these oscillations, LIDE provides an objective assessment of reemergence, 

amplitude, spread and duration—quantities that previously could not be obtained in situ. 

We evaluated the scale-awareness of LIDE by applying it over data at different temporal resolutions (hourly, daily, monthly). 

Such a comparison revealed that LIDE is structurally robust to the frequency of data in medium- and long-lag processes but 

detects short-term patterns more detailed when higher-frequency data is available. This shows that LIDE indeed represents 760 

hydrologically meaningful behavior rather than artefacts of the sampling resolution.  

In general, the LIDE framework along with its helper function of LPMS described in this paper is a state-of-the-art and state-

of-practice technique to diagnose the SMM. With its high physical interpretability and comprehensive multiscale 

characterization, including fast memory, multiple slow-memory compartments, memory strength/capacity, saturation 

behavior, and reemergence, LIDE offers a much richer (and more mechanistic) view of land-surface memory compared to 765 

classical approaches. This capability positions LIDE as a cornerstone for ongoing research on hydrologic predictability, 

drought evolution, land-atmosphere coupling and ecohydrological risk, and paves the way to standardized memory diagnostics 

in Earth-system modeling and environmental monitoring. 

The main advantages of LIDE, beyond the clear advancements in SMM multi-timescales quantification skill, is that it bundles 

the drivers of θroot dynamics into a parsimonious number of terms that effectively capture the reversible and irreversible 770 

changes in θroot while requiring less detailed information about soil heterogeneity, vegetation dynamics, and root architecture 

as well as atmospheric forcings. Such a reduction enables us to make our proposed framework to be scale-aware, which can 

be applied at different scales.  

Besides the advancements presented above, future work on further development of the LIDE framework can have several 

exciting directions. First, through extensive observational networks and satellite products, LIDE could be applied to developing 775 
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a spatially varying map of multi-scale SMM, which would facilitate an investigation into how memory regimes vary with 

climate, soil and vegetation. Second, parameterization of the cumulative kernel in terms of a logistic function offers an efficient 

parametric description of distributed memory and hence the possibility to develop pedotransfer-type models that associate the 

parameters of logistic function with soil properties, vegetation traits and climate characteristic; a route toward operationalizing 

diagnostics of memory in land surface or drought-forecasting models. Third, the incorporation of LIDE in land-surface models 780 

and data assimilation systems can potentially enhance hydrologic predictability by explicitly assigning a diagnostic and 

corrective role to memory error terms inherent to model structure. Lastly, the capacity of LIDE to interpret oscillatory 

saturation behavior provides a new route for investigating soil-moisture reemergence and its connection with seasonal charge, 

freeze-thaw processes and ecosystem recovery. Collectively, such indications suggest that LIDE may develop into an ongoing 

integral diagnostic and predictive source for hydrology, drought science, and land-atmosphere studies. 785 

Finally, while LIDE offers a detailed and physically interpretable description of multiscale SMM, there are also limitations 

that need to be acknowledged. First, the approach depends on relatively long and continuous time series—its ability to 

distinguish between memory regimes is influenced by temporal resolution and the coverage in time of the data set. Ideally, the 

data retention period should be longer than the memory saturation phase onset (i.e. more than a year). Second, LIDE assumes 

a linear convolutional structure for the (potentially) nonlinear process and heavily nonlinear processes such as preferential 790 

flow, hysteresis in infiltration dynamics or state-dependent vegetation responses may be partially aliased into the estimated 

kernel by using this assumption. Third, kernel estimation may be data-sensitive, especially for noise and lags at shorter 

timescales, and thus needs to be regularized carefully along with the uncertainty quantification. Fourth, the convolution of 

forcings are intentionally added into noise term to make the numerical solution developed by Schmitt and Schulz (2006) 

applicable also here. One can keep those forcings separated by advancing such numerical solution. The physical interpretation 795 

of negative kernel lobes or multimodal signatures must also be treated with caution, as these also may be due to both real 

hydrological mechanisms and artifacts of aggregation or covariance structure. These limitations do not diminish LIDE 

diagnostic value but rather indicate the direction in which methodological improvement and supplementary analyses will 

enhance its utility. 
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