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7 Abstract: Tornado activity in the contiguous United States (CONUS) causes fatalities and
8  financial losses every spring, motivating attempts to skillfully predict springtime tornadoes. Such
9  predictions would facilitate decision-making and resource management for both public and
10  private stakeholders. Using ERAS reanalysis, we identify five April-May weather regimes
11 (WRs) from 1981-2023, some of which strongly modulate tornado activity. ECMWF seasonal
12 forecasts initialized on April-1%t are applied to predict WR frequency, including persistent and
13 non-persistent WRs (lasting >5 and <5 consecutive days, respectively). The WR information are
14  incorporated into a hybrid model to predict April-May CONUS tornado activity, including
15  tornado outbreaks (days with > 10 EF-1+ tornadoes). Prediction skill is evaluated using leave-
16 one-year-out cross-validation. Predicted and observed tornado outbreak frequencies are
17  significantly correlated (cc=0.4). Outbreak predictions are more skillful during the positive phase
18  of the Arctic Oscillation (AO) and Pacific North American pattern (PNA), with a proportion
19  correct of 0.75and 0.71, respectively. This implies that low-frequency climate modes can be
20  used to identify forecasts of opportunity. SSTs over the North Pacific and North Atlantic may
21 help explain the predictability of tornado activity but further work needs to be done to confirm
22 those results. Our study demonstrates the potential for skillful prediction of spring tornado
23 outbreaks using WR forecasts and should be prioritized in future work.
24 1. Introduction
25  Tornadoes in the contiguous United States (CONUS) result in significant losses of life and
26 property (Ashley 2007; Strader et al. 2024; NCEI 2024). From 1981-2023 there were 2833
27  tornado-related fatalities in the CONUS, accounting for ~13% of weather-related fatalities
28  (National Weather Service 2025). Of these tornado-related fatalities, roughly 80% are associated
29  with tornado outbreaks (TOs) (Schneider et al. 2004). Recent studies show a statistically
30 significant increasing trend of +2.5 TOs per decade since 1960, the majority of which occur in the
31  boreal spring (Graber et al. 2024; Brooks et al. 2014). Given these trends of tornado activity and
32 their societal impacts, skillful seasonal predictions of springtime tornado activity would improve
33  decision-making and resource management for both public and private stakeholders. Subseasonal-
34  to-seasonal (S2S) predictability of tornado activity has been previously investigated. Deterministic
35 and probabilistic GEFS forecasts demonstrated skill in predicting tornado activity out to day 9
36 (Gensini and Tippett 2019). The Extended-Range Tornado Activity Forecast (ERTAF) project
37  (Gensini et al. 2020) produced tercile-forecasts 2-3 weeks in advance during boreal spring and
38  found predictive skill at both lead times. ERTAF emphasized the role of large-scale circulation
39  patterns in conjunction with favorable severe thunderstorm environments, such as adequate
40  convective available potential energy (CAPE) and vertical wind shear (VWS). Baggett et al. (2018)
41 developed an empirical model using MJO phases and skillfully predicted weekly severe weather
42  forecasts out 2-5 weeks in March-June. Similarly, Lepore et al. (2017) applied extended logistic
43 regression based on the winter ENSO state to predict tornadoes in March-May, and found that the
44  tornado prediction skill is higher during La Nifia years compared to El Nifio years. This
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45  background motivates the work herein that seeks to further explore skillful season prediction of
46  tornado activity.

47  Low-frequency climate modes are important drivers of seasonal tornado activity and can serve as
48  sources of their predictability. For example, La Nifia (EI Nifio) winters tend to coincide with more
49  (fewer) tornadoes in the winter (Cook and Schaefer 2008), and winter ENSO indices have been
50 previously linked to springtime tornadoes (Allen et al. 2015; Lepore 2017). Lee et al. (2016)
51  implied that springtime ENSO phase may be used to improve TO predictability, specifically.
52 Across the CONUS, tornado activity during La Nifia years peaks in mid-April, whereas activity
53  during EI Nifio years peaks in late-May, when overall tornado frequency is greater than during La
54  Nifia (Allen et al. 2018). Furthermore, Tippett et al. (2022) found that a positive (negative) phase
55  of the Arctic Oscillation (AO) coinciding with La Nifia (El Nifio) may increase (decrease) late
56  winter and early spring tornado activity. The positive AO phase in winter and early spring on its
57  own has been found associated with enhanced tornado activity (Childs et al. 2018; Niloufar et al.
58  2021; Tippett et al. 2022), while Elsner et al. (2016) found that the positive phase of the North
59  Atlantic Oscillation (NAO) is linked to a decrease in springtime tornado activity in the Southeast.
60  Additionally, the negative phase of the Pacific North American Pattern (PNA) is connected to a
61  stronger Intra-Americas low-level jet and increased springtime tornado activity in the Midwest
62  and Southeast (Munoz and Enfield 2011). Furthermore, positive sea surface temperatures (SST)
63 anomalies in the Gulf of Mexico have been associated with increased tornado activity over the
64  Southeast during the spring (Molina et al. 2016), and Chu et al. (2019) demonstrated the link
65 between TOs and SST anomalies in April via a negative PNA pattern.

66  Though low-frequency climate modes provide an avenue for understanding the predictability of
67 tornado activity, they do not fully capture the day-to-day variability of atmospheric circulation
68  patterns that drive weather. This gap can be filled by weather regimes (WRs). WRs represent a
69  finite number of equilibrium, recurring states of the atmospheric circulation (Michelangeli et al.
70 1995; Charney and DeVore 1979; Hannachi et al. 2017). Miller et al. (2020) is among the first to
71 apply WRs to tornado prediction. They constructed a hybrid prediction model for weekly tornado
72 activity in May using WRs and achieved skillful prediction out to week 3. Tippett et al. (2024)
73 explored the modulation of tornado activity using year-long WRs (Grams et al. 2017; Lee et al.
74 2023) and found statistically significant relations between tornado reports and WRs during all
75  months except June-August, with results mainly driven by years with more Pacific Ridge WR
76  days. Graber et al. (2025) identified two WRs that strongly affect the warm-season tornado
77  activity, especially TOs, and developed an empirical model using WR frequency, persistence, and
78  TD probabilities. The empirical model skillfully captures the interannual variability of both TDs
79  and TOs using WR information derived from the ERA5 reanalysis and motivate its application to
80  seasonal prediction.

81  The remainder of this paper is organized as follows. Section 2 describes the data and methodology,
82 including the hybrid model. Section 3 presents the hybrid predictions and a discussion of the
83  sources of predictability that help connect the WRs, tornado activity, and climate modes together.
84  The paper will culminate with a summary and discussion in Section 4.

85 2. Methodology

86 2.1 Weather Regimes

87  Daily 500-hPa heights (500H) from the ERAS5 reanalysis (Hersbach et al. 2020) were used to
88 identify weather regimes (WRs) during April-May, the season of peak tornado activity (Graber et
89 al. 2024), from 1981-2023. The seasonal cycle, defined as the long-term mean 500H for each
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90 calendar day, was removed from daily 500H. We used the WRs derived by Graber et al. (2025)
91  using the K-means clustering method for 1960-2022 April-July as the reference WR patterns, and
92  WRs were assigned by finding the reference WR pattern with the smallest Euclidean distance from
93 the daily 500H anomalies. We took this approach because K-means clustering yields slightly
94 different WR patterns in different time periods, and employing WRs during a longer time period
95  as the reference patterns improves the robustness of the results.

96  Seasonal forecasts of daily 500H anomalies from the European Centre for Medium-Range Weather

97  Forecasts (ECMWF) were used to predict April-May WR frequency from 1981-2023 (Vitart et

98 al. 2017; Copernicus Climate Change Service 2018). The 25-ensemble forecasts are initialized

99 once per month and are available on a 1° x 1° grid. The forecasts initialized on April 15t were
100 selected to mitigate the effect of the spring-predictability barrier (Duan and Wei 2012). WRs were
101  assigned for each ensemble forecast by projecting the forecast 500H anomalies to the reference
102 WR patterns, and the resultant long-term mean WR frequencies are similar to those derived from
103  ERADb. Persistent and nonpersistent WRs are defined as WRs lasting for >5 consecutive days and
104  for <5 consecutive days, respectively.

105 2.2 Tornado observations

106  Tornado reports during April-May 1981-2023 were obtained from the NOAA Storm Prediction
107  Center Severe Weather Database. Reports are georeferenced with time, date, and EF/F rating.
108  Tornado days (TDs) are defined as days with >1 tornadoes ranked EF/F-1 or greater, and tornado
109  outbreaks (TOs) are defined as any day with >10 tornadoes ranked EF/F-1 or greater (Graber et al.
110 2024, 2025). EF/F-0 reports were excluded due to reporting uncertainties (Brooks et al. 2014;
111 Trapp 2013). Known biases remain in this database, which a focus on TDs rather than raw tornado
112 reports attempts to alleviate (Brooks et al. 2014; Trapp 2014; Graber et al. 2024).

113 2.3 Hybrid model

114  Following Graber et al. (2025), an empirical model was used to evaluate the seasonal prediction
115  of tornado activity:

5 5 (1)
TI(t) = Z F(i,0), x Py + Z (i Op X Pinp
=1 i=1

116  where P; denotes the TD probability for each WR, which is defined as the number of TDs with
117 WR-i divided by the number of total WR-i days. The predictand tornado index for year t, TI(t), is
118  computed by the seasonal count of WR-i days in year t, f(i,t), multiplied by Pi. TD probabilities
119  and counts were calculated for persistent and nonpersistent WRs separately, denoted by subscripts
120  p and np, respectively. The same procedure was applied to TOs (Graber et al. 2025).

121  To evaluate tornado prediction skill, a leave-one-year-out cross-validation method was employed.
122 Specifically, 1981 was first held for testing, and Pinp and Pip were determined using the WR
123 information derived from the ERAS reanalysis and tornado reports during 1982-2023. The
124  seasonal WR counts from the ECMWF ensemble forecasts for 1981 were used in Eq. 1 to predict
125 the Tl value in 1981. This process was repeated for each year, yielding a predicted time series of
126 TI. The TI time series for all ensemble members were averaged to form the ensemble mean TI,
127  which was standardized using z-score normalization.
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128  The prediction skill was quantified using the Pearson correlation between predicted and observed
129  TI time series. Additionally, a three-tier categorical verification was used by classifying both
130  observed and predicted TI values into lower, middle, and upper terciles. A correct prediction was
131 recorded when the observed and predicted T1 values fell within the same tercile for a given year.
132 The proportion correct (PC) is defined as the number of correct predictions divided by the number
133 of total predictions.

134  To assess the potential impacts of climate modes on tornado predictability, PC was calculated
135  separately for positive, negative, and neutral phases of various low-frequency climate modes (see
136  more information on climate modes in section 2.4). Significance (p < 0.05) between PC of each
137  phase and random chance (33% for three-tier verification) was determined using a Monte Carlo
138 test with 10,000 resamples.

139 2.4 Sources of Predictability

140  The impacts of some low-frequency climate modes on tornado activity and WR counts were
141  investigated to provide a physical basis for TD and TO predictability. Indices of ENSO (via
142 ENSO03.4), PNA, NAO, and AO were downloaded from the NOAA Climate Prediction Center
143 (2024a,b). Positive and negative phases of a climate mode are defined as the years when the
144  standardized springtime (April-May) index exceeded + 0.9. 0.9 was used instead of 1.0 to slightly
145  increase the sample size.

146 TD and TO probability anomalies were calculated for each climate mode phase as:

P, =27 X 100% 2
147  where the climatological mean TD probability (Pc) is defined as the total number of TDs divided
148 by the total number of days; P is TD probability for the given phase of the climate mode; and P,
149  is the percentage anomaly.

150
151 3. Results
152 3.1 Model Prediction

153  For completeness, the five WRs (Fig. 1la-e) are briefly described here. WR-A features anomalous
154  highs over both the eastern and western U.S. coasts. WR-B is characterized by a prevailing
155  anomalous low centered over central North America and an anomalous high over the Southeast
156  CONUS. WR-C exhibits a three-cell wave pattern with anomalous lows over both coasts. WR-D
157 and WR-E display west-east dipole patterns that nearly mirror each other. The WR spatial
158  structures closely resemble WRs in Miller et al. (2020), Zhang et al. (2024), and Lee et al. (2023).
159  Specifically, WR-A and WR-E resemble the Pacific Ridge and Alaskan Ridge regimes in Lee et
160 al. (2023), respectively, but noticeable differences exist due to differences in data processing
161  procedures and the time periods analyzed. The impacts of the WRs on tornado activity in the
162  CONUS during April-May 1981-2023 (Fig. 1f and 1h) are similar to those during April-July 1960-
163 2022 from Graber et al. (2025; their Fig. 4). WR-A is the least favorable WR for springtime tornado
164  activity, and WR-B is the most favorable. Tornado activity in WR-C and WR-E are slightly
165  unfavorable, and in WR-D is slightly favorable. The estimated TDs and TOs based on the empirical
166  model (Eqg. 1) and the ERA5 during April-May 1981-2023 are significantly correlated with the
167  observed time series (Figs. 1g and 1i).
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168
169 Figure 1: 500H anomaly patterns of WRs A-E with long-term frequency indicated in panel title (a-e). ERAS5 tornado
170  day (f) and tornado outbreak (h) CONUS probability anomalies for persistent (> 5 days) and nonpersistent (< 5 days)
171  WRs. Time series of standardized tornado days (g) and tornado outbreak days (i) from the observation (blue) and
172 estimation of the empirical model modeling (red). Spearman rank correlation and p-value are indicated in panels g
173 and i.
174  Before assessing the hybrid predictions of tornado activity, we first evaluate the prediction skill of
175  WRs by the ECMWF springtime forecasts. The ECMWF ensemble mean prediction of springtime
176  WR counts are significantly correlated with the ERA5 springtime WR counts (Fig. 2a-e). This
177  indicates the seasonal predictability of WRs and provides the basis for tornado prediction using
178  the hybrid framework (i.e., Eq. 1).
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180 Figure 2: Z-score normalized ERA5 (blue) and ECMWF ensemble mean (red) springtime frequency of each WR with
181  Spearman rank correlation and p-value indicated in each panel (a-e).
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182  We assess the hybrid predictions of TDs and TOs using leave-one-year-out cross-validation
183  method (Fig. 3a-b). The hybrid prediction of TOs has a significant Pearson correlation of 0.38 with
184  the observed TO time series, while TD prediction shows no skill, with a Pearson correlation close
185  to zero. The skill contrast between the TO and TD predictions is probably because TOs usually
186  occur under strong and persistent synoptic-scale patterns (Mercer et al. 2012; Cwik et al. 2022;
187  Jiang et al. 2025; Graber et al. 2025), while some transient, weak WR days, which are not well
188  captured by the ECMWEF springtime forecasts, may have strong impacts on TDs. In addition, it is
189  worth noting that the percentage anomalies of TOs associated with various WRs are generally
190  stronger than those of TDs (Fig. 1).
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193  Figure 3: Standardized TDs (a) and TOs (b) time series from observation (red) and the hybrid prediction
194  (blue). Thin gray lines represent the individual ensemble prediction (grey) time series. Pearson correlations
195  (cc) and p-values (p) are shown at the upper left corner of each panel.

196  The tercile-based TO prediction indicates that the hybrid model correctly predicts 53.5% of years.
197  Additionally, the PC is strongly modulated by some climate modes (Fig. 4). In particular, the
198  hybrid model performs significantly better during the positive phases of the AO (75% of correct
199  prediction), NAO (71.4%), PNA (71.4%), and ENSO (70.0%). PC also improves in the negative
200 phases of NAO (62.5%), AO (55.6%), and ENSO (55.6%), but the increases in PC are not
201 significant (p > 0.05). In contrast, the PC in a neutral phase is below 53.5%. Although the PC of
202  the tercile-based TD prediction is close to random chance (34.9%), the hybrid model performs
203 better in +PNA years (57.1%, p=0.23) (figure not shown). This suggests that climate modes may
204  be used to identify forecasts of opportunity for springtime tornado prediction.

205  Additional cross-validation tests by leaving two-, three-, four-, and six-year out yield similar
206  results (Fig. S1). TO predictions maintain skillful across all tests, while TD predictions remain
207  unskillful.
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209  Figure 4: Proportion of correct TO predictions for negative (blue), neutral (grey), and positive (red) phases
210  of AO (a) and NAO (b), PNA (c), and ENSO (d). Numbers above the bars represent p-values using a Monte
211 Carlo test with 10,000 resamples, and bold values represent significant (p < 0.05) differences from random
212 chance. The dashed, horizontal line represents the overall PC (i.e., 53.5%).

213 3.2 Low-frequency climate modes as sources of Predictability

214  Toinvestigate predictability sources for tornado activity, the relationship between tornado activity
215  and low-frequency climate modes is examined using springtime TD and TO probability anomalies
216  associated with the AO, NAO, PNA, and ENSO phases (Figs. 5a-h). In addition to CONUS, we
217  examined different regions, Midwest (MW), Southern Great Plains (SGP), Southeast (SE), and
218  Southern Great Plains (SGP). The region definitions follow Moore (2018), with exception of the
219  SGP, which herein contains New Mexico because it has storm events similar to those in the Texas
220  Panhandle.

221 Significantly enhanced TO probability in the CONUS and Midwest is associated with the -AO
222 phase. TO probability is also enhanced in the SE, NGP and SGP, but the anomalies are not
223 statistically significant. In contrast, the probability anomalies of TDs during +AO and -AQ phases
224  are much weaker and all insignificant, consistent with Tippett et al. (2022) showing a weaker
225  tornado-AQ relationship in April than in February. +AQ years are characterized by an anomalous
226  high over the southeastern CONUS and negative anomalies over the north-central CONUS (Fig.
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227  S2a), implying enhanced westerly flow aloft and promoting moisture and warm-air advection from
228  the Gulf of Mexico. These circulation anomalies lead to positive MUCAPE and TD probability
229  anomalies over the Southeast and SGP (Fig. S2a). In contrast, -AO years feature negative 500H
230 anomalies over the central CONUS, accompanied by anomalously positive VWS. Although
231 anomalously low MUCAPE during -AO years tends to suppresses TD probability, the enhanced
232 VWS supports anomalously positive TO probability anomalies (Sherburn et al. 2016).

233 The TDand TO probability anomalies during the NAO phases are generally consistent in sign with
234  those during AO phases, but quantitative differences exist. TD probability is reduced significantly
235  over CONUS, SGP, and NGP, and TO probability is reduced significantly over NGP during the
236 +NAO phase. +NAO years feature an anomalous 500H high over the west-central CONUS, which
237  hinders moisture and heat transport from the Gulf of Mexico. These circulation changes result in
238 anomalously low MUCAPE and TD probabilities over the SGP and NGP (Fig. S2e). Additionally,
239  anomalously low VWS over the SGP further limits tornado potential during +NAO years.
240  However, +NAO years feature an anomalous 500H high over the western Atlantic, which enhances
241  southerly flow and moisture transport into the Southeast (Zhao et al. 2025), supporting positive
242  MUCAPE anomalies (Fig. S2e) and corresponding positive TO probability anomalies in that
243 region (Fig. 5).

244  The positive PNA phase (+PNA) is unfavorable for tornado activity across the CONUS, MW,
245  SGP, and SW, particularly for TOs (Fig. 5f). +PNA years feature an anomalous 500H high over
246  the western CONUS and an anomalous 500H low over the eastern CONUS (Fig. S2c), implying
247  reduced moisture transport from the Gulf of Mexico and anomalously low VWS. These circulation
248  anomalies hinder tornado activity across the MW, SGP, and SW. Springtime PNA has become
249  more negative over time (Fig. S3), possibly explaining the increasing trend in TOs (Graber et al.
250  2024), though further work with other seasons needs to be done to confirm this.

251 TO probability is enhanced in La Nina years in various regions, although the enhancement is
252 significant only in SE. Additionally, TD probability over SGP and TO probability over NGP are
253 enhanced in EI Nino years. The La Nina-tornado-activity link is largely consistent with previous
254  work (e.g., Cook and Schaefer 2008; Cook etal. 2017; Tippett et al. 2022; Allen et al. 2015; Moore
255 2019), but it is worth noting that the ENSO state in the spring time is examined here, while some
256  previous studies focus on the winter ENSO state.

257  Overall, the link between climate modes and tornado activity suggests that low-frequency climate
258  modes provide a source of predictability for springtime tornado prediction. Additionally, low-
259  frequency climate modes modulate TO probabilities more strongly than TD probabilities,
260  consistent with the stronger TO anomalies associated with WRs (Fig. 1h) and the higher predictive
261 skill of TOs (Fig. 3).
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262
263 Figure 5: TD (left column) and TO (right column) probability anomalies by region and climate mode: AO
264  (a-b), NAO (c-d), PNA (e-f), and ENSO (g-h). Asterisks represent significant anomalies (p < 0.05) based
265  on a Monte Carlo test with 10,000 resamples of each regions’ data.

266 The connection between climate modes and WRs is examined next to investigate whether climate
267  modes modulate tornado activity via WRs. Figure 6 shows the frequency of WRs in different
268  phases of low-frequency climate modes, which is defined as the number of WR days during a
269  given phase of the climate mode divided by the total number of days in that phase. The frequency
270  of WR-Ais only ~15% during the -AO phase, while the frequency of WR-B is ~33% (Fig. 6).
271 Theincreased occurrence of WR-B and decreased occurrence of WR-A in -AO years compared to
272 the long-term mean (Fig. 1) are consistent with the positive TO probability anomalies in the
273 CONUS and Midwest during the -AO years (Fig. 5).

274 During +NAO years, WR-A occurs on approximately 35% of days, making it the dominant WR
275  during this phase. This predominance of WR-A is consistent with the reduced TD probability in
276 the CONUS, NGP, and SGP, and reduced TO probability in the NGP during NAO+ years (Fig. 6).
277 Composite 500H anomalies for +NAO years resemble WR-A, while composite 500H anomalies
278  for +AO show a mix of WR-A and WR-B (Fig. S2).
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During +PNA years, WR-B occurs on ~15% of days, whereas WR-E occurs on ~25% of days,
making it the most frequent WR during this phase (Fig. 6). The reduced occurrence of WR-B and
increased occurrence of WR-E are consistent with reduced TD and TO activity over CONUS,
MW, and SGP during +PNA (Fig. 5). Composite 500H anomalies during +PNA years resembles
WR-E, with an anomalous high over the western CONUS and an anomalous low over the eastern
CONUS (Fig. S2c¢).

Neither positive nor negative phase of ENSO is associated with significant changes in WR-A or
WR-B frequency. Instead, the frequency of WR-C is reduced significantly in both phases of
ENSO, and WR-E occurs more frequently in the positive phase of ENSO, which is consistent with
the reduced tornado activity during EI Nino years reported in previous studies (Cook et al. 2017).

To summarize, WRs associated with increased springtime tornado activity tend to occur more
frequently during the climate mode phases that favor increased tornado activity, while WRs
associated with suppressed tornado activity preferentially occur during climate mode phases that
are unfavorable for tornado activity. These consistent relationships provide additional confidence
in the robustness of the WR-based prediction framework and help to understand tornado
predictability.
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Figure 6: WR frequencies in different phases of AO (a), NAO (b), PNA (c), and ENSO (d). An asterisks indicates
that the frequency is significantly different (p <0.05) from that during the corresponding neutral phase via a student
t-test.

3.3 Possible role of SST

In addition to low-frequency climate modes, slowly-evolving SST may also serve as an important
source of predictability. The connection between SSTs, large-scale circulations, and tornado
activity is examined in Fig. 7. Extended Range SST (ERSST) (Huang et al. 2017) of 2° x 2°
resolution is used here, and we focus on the month of April because SST signals in April are more
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304 pronounced than in May based on a previous study (Chu et al. 2019) and our own analysis. In
305  addition, the analysis is done for 1960-2023 to increase the sample size. For each WR, active and
306 inactive years are identified as the years when the springtime count of the WR exceeds + 1
307 standard deviation from the mean, and composite anomalies of SST and 500H are constructed for
308 these active and inactive years of the WR.

309 +WR-A years are characterized by an anomalous 500H high over the north-central CONUS, as
310  part of a well-defined wavetrain pattern extending from the North Pacific to southern Greenland,
311  in addition to an anomalous low over the Southeast and Gulf of Mexico. Although there are
312 coherent cold and warm SST anomalies associated with the anomalous low and high over the
313 North Pacific, respectively, the SST anomalies are not significant. Significant SST anomalies exist
314  over the North Atlantic associated with anomalous 500H high. In contrast, the -WR-A years
315  feature an anomalous low over the central CONUS, nearly opposite to the +WR years. However,
316 the anomalous circulation patterns over the North Pacific and North Atlantic are not a simple
317  mirror image to those during +WR-A years. The anomalous 500H field is characterized by an
318 elongated anomalous low over the midlatitude North Pacific and North Atlantic, reminiscent of
319  the -AO pattern. Significant SST anomalies are found over the North Pacific and North Atlantic,
320 resembling the Atlantic tripole SST pattern, which helps to maintain the NAO pattern via positive
321  air-sea interaction (Czaja and Frankignoul 2002). Consistent with this circulation, WR-A is
322 suppressed during -NAO and -AO years (Fig. 6).

323  WR-B is most favorable for tornado activity over the CONUS. Though positive SST anomalies
324  exist over the central Pacific in +WR-B years, consistent with that shown in Chu et al. (2019) for
325  April tornadoes, the anomalies are not significant. The 500H pattern over the North Atlantic is
326  reminiscent of a -AO pattern, consistent with increased WR-B occurrence during -AO (Fig. 6).
327  Significant, negative SST anomalies exist over the North Pacific in -WR-B years. The associated
328  North Pacific negative SSTs and the 500H high over Canada are reminiscent of a +PNA pattern,
329  consistent with reduced WR-B occurrence during +PNA (Fig. 6). Though insignificant, the warm
330  SST anomalies in the northern Pacific during +WR-B have been previously linked to enhanced
331  CONUS tornado activity (Zhao et al. 2025) through a weakening and eastward shift of the Aleutian
332 Low (Chu et al. 2019), which promotes enhanced southerly flow of moisture and heat from the
333  Gulf of Mexico.

334 +WR-C years feature anomalously cold SSTs in the midlatitude North Pacific and North Atlantic
335 as well as in the Gulf of Mexico. The cold SST anomalies over the Gulf of Mexico may limit
336  moisture availability (Molina et al. 2016), partially offsetting the otherwise favorable southerly
337  500H anomalies over the central US. This compensating thermodynamical and dynamical effects
338  help explain the near-climatological tornado activity during WR-C (Fig. 1f, h). In contrast, -WR-
339  Cyears are associated with prevailing warm SST anomalies in the North Pacific. Significant SST
340 anomalies, however, are confined to the subtropical North Atlantic and portions of the subtropical
341  eastern Pacific.

342 +WR-D and +WR-E years feature anomalously warm and cold SSTs in the Gulf of Mexico,
343  respectively, though these anomalies are not statistically significant. Over the subtropical western
344  and central North Pacific, respectively, +WR-D years exhibit significant warm SST anomalies,
345  while +WR-E years show significant cold SST anomalies. Given that WR-D and WR-E are linked
346  toenhanced and reduced TD probability, respectively (Fig. 1), this suggests that SST anomalies in
347  the subtropical Pacific may be a source of predictability for tornado activity over the CONUS.
348  However, the robustness of this relationship requires further examination given the patchy pattern
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349  of the significant SST signals, and the underlying mechanisms also need to be investigated. In
350 addition, significant cold SST anomalies exist over the North Atlantic for +WR-E years,
351  suggesting cold SSTs in this region may be associated with reduced TD probabilities over the
352  CONUS.

353  Overall, Fig. 7 suggests that SST anomalies over the North Pacific and North Atlantic may help
354  explain the predictability of some WRs and thus the predictability of tornado activity within the
355  hybrid framework. However, WR-B and WR-D, which favor tornado activity over the CONUS
356  (Fig. 1), are not associated with many coherent, statistically significant SST anomalies. Further
357  investigation using longer observational records and focusing on different seasons is needed to
358  better understand the predictability—or lack thereof—of tornado activity.

Composite SST Anomalies by WR Phases

(a) WR-A | Active Years (b) WR-A | Inactive Years
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WR-B | Inactive Years

60°W 0° 60°E
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359

360 Figure 7: April SST anomalies for active and inactive WR years, and hatching indicates significant SST anomalies
361 (p <0.05) using a one-sample, two-sided t-test. 500H anomalies are shown in black contours.
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362
363 4. Summary

364 A hybrid model for the seasonal prediction of CONUS springtime tornado activity is evaluated
365 during 1981-2023. The model employs WR forecasts from the ECMWEF ensemble springtime
366  forecasts initialized on April-1%t. Using the leave-one-year-out cross-validation, the WR-based
367  model shows no predictive skill for TDs, but the predicted time series of TO days is significantly
368  correlated with the observed time series. Predictive skill for TOs is modulated by low-frequency
369  climate modes and is significantly enhanced during +AO, +NAO, +PNA, and EI Nifio years, with
370  the proportion correct of 75%, 71.4%, 71.4%, and 70%, respectively. Given the difficulty of
371 predicting TDs beyond subseasonal timescales (Gensini et al. 2020), springtime prediction efforts
372 should prioritize TOs due to their higher predictive skill and societal impacts, and low-frequency
373 climate modes can help to identify forecasts of opportunity.

374  To investigate the predictability sources of springtime tornado activity, the composite TD and TO
375  probability anomalies were examined during different phases of climate modes. Significantly
376  enhanced TO probability anomalies were associated with -AO and La Nifia years, while
377  significantly reduced TO probability anomalies were associated +NAO and +PNA years.
378  Corresponding circulation patterns during these years provide physical support, through CAPE
379  and vertical shear anomalies. TO probability anomalies are generally stronger than TD anomalies
380  associated with climate modes, which helps explain the higher predictive skill of TOs.

381  Additionally, WR occurrence is modulated by some climate modes. WR-A is the dominant WR
382  during +NAO years and WR-E is the dominant WR during +PNA years, consistent with reduced
383  tornado activity during +NAO and +PNA years. Furthermore, WR-B is the dominant WR during
384  -AO years and is the least frequent WR during +PNA years, consistent with enhanced (reduced)
385  tornado activity during the -AO (+PNA) phase. WRs associated with increased springtime tornado
386  activity tend to occur more frequently during the climate mode phases that favor increased tornado
387  activity, while WRs associated with suppressed tornado activity preferentially occur during
388 climate mode phases that are unfavorable for tornado activity. This physical consistency supports
389  the use of WRs as a physically meaningful framework for predicting TOs.

390 The role of SSTs in the predictability of WRs (with implication for the predictability of tornado
391  activity) was examined, with the focus on April SST anomalies. -WR-A years feature a -NAO SST
392  and 500H pattern over the North Atlantic, consistent with WR-A being suppressed during -NAO
393  patterns. +WR-B years feature positive, though insignificant, SSTs over the central Pacific
394  consistent with patterns shown in Chu et al. (2019) for April tornadoes. In addition, significantly
395 negative SST anomalies exist over the northern Pacific during -WR-B years, consistent with
396  suppressed WR-B and TO during +PNA years. Overall, SST anomalies can help explain WR
397  predictability, but SST signals for some WRs are insignificant or patchy, making it challenging to
398 identify specific SST-based predictors for WRs or tornado activity. Further investigation based on
399 longer observational records would help better understand the role of SST in the predictability of
400  WRs and tornado activity.

401  This study demonstrates that skillful prediction of springtime TOs is indeed possible with current
402  resources via the connection between tornado activity and WRs. Questions remain on whether
403  SSTsare a reliable driver of springtime TOs as well as the temporal extent to which TOs can be
404  predicted.

405
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406  Code Availability

407  Important python files for WR identification and modeling are included at the following link:
408  https://github.com/Matt0604/Springtime-Prediction-Manuscript

409

410 Data Availability

411  The ERADS data are available through the NCAR research data archive (RDA) (d633000) and the
412 Copernicus Climate Data Store (CDS):

413 https://doi.org/10.24381/cds.bd0915¢6 (Hersbach et al. 2023a)
414  https://doi.org/10.24381/cds.adbb2d47(Hersbach et al. 2023b)
415  The ECMWEF data are available through the Copernicus Climate Data Store (CDS):
416  https://doi.org/10.24381/cds.50ed0a73 (Copernicus Climate Change Service 2018)

417  April SST data are available through the Extended-range sea surface temperatures data (Huang et
418  al. 2017).

419  The tornado report data used in this study are available through the NOAA Storm Prediction Center
420  severe weather database:

421  https://www.spc.noaa.gov/wem/#data
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