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Abstract: Tornado activity in the contiguous United States (CONUS) causes fatalities and 7 

financial losses every spring, motivating attempts to skillfully predict springtime tornadoes. Such 8 

predictions would facilitate decision-making and resource management for both public and 9 
private stakeholders. Using ERA5 reanalysis, we identify five April-May weather regimes 10 

(WRs) from 1981-2023, some of which strongly modulate tornado activity. ECMWF seasonal 11 
forecasts initialized on April-1st are applied to predict WR frequency, including persistent and 12 

non-persistent WRs (lasting ≥5 and <5 consecutive days, respectively). The WR information are 13 

incorporated into a hybrid model to predict April-May CONUS tornado activity, including 14 
tornado outbreaks (days with > 10 EF-1+ tornadoes). Prediction skill is evaluated using leave-15 

one-year-out cross-validation. Predicted and observed tornado outbreak frequencies are 16 
significantly correlated (cc=0.4). Outbreak predictions are more skillful during the positive phase 17 

of the Arctic Oscillation (AO) and Pacific North American pattern (PNA), with a proportion 18 

correct of 0.75 and 0.71, respectively. This implies that low-frequency climate modes can be 19 
used to identify forecasts of opportunity. SSTs over the North Pacific and North Atlantic may 20 

help explain the predictability of tornado activity but further work needs to be done to confirm 21 
those results. Our study demonstrates the potential for skillful prediction of spring tornado 22 

outbreaks using WR forecasts and should be prioritized in future work. 23 

1. Introduction 24 
Tornadoes in the contiguous United States (CONUS) result in significant losses of life and 25 

property (Ashley 2007; Strader et al. 2024; NCEI 2024). From 1981-2023 there were 2833 26 
tornado-related fatalities in the CONUS, accounting for ~13% of weather-related fatalities 27 

(National Weather Service 2025). Of these tornado-related fatalities, roughly 80% are associated 28 

with tornado outbreaks (TOs) (Schneider et al. 2004). Recent studies show a statistically 29 
significant increasing trend of +2.5 TOs per decade since 1960, the majority of which occur in the 30 

boreal spring (Graber et al. 2024; Brooks et al. 2014). Given these trends of tornado activity and 31 
their societal impacts, skillful seasonal predictions of springtime tornado activity would improve 32 

decision-making and resource management for both public and private stakeholders. Subseasonal-33 

to-seasonal (S2S) predictability of tornado activity has been previously investigated. Deterministic 34 
and probabilistic GEFS forecasts demonstrated skill in predicting tornado activity out to day 9 35 

(Gensini and Tippett 2019). The Extended-Range Tornado Activity Forecast (ERTAF) project 36 
(Gensini et al. 2020) produced tercile-forecasts 2-3 weeks in advance during boreal spring and 37 

found predictive skill at both lead times. ERTAF emphasized the role of large-scale circulation 38 

patterns in conjunction with favorable severe thunderstorm environments, such as adequate 39 
convective available potential energy (CAPE) and vertical wind shear (VWS). Baggett et al. (2018) 40 

developed an empirical model using MJO phases and skillfully predicted weekly severe weather 41 
forecasts out 2-5 weeks in March-June. Similarly, Lepore et al. (2017) applied extended logistic 42 

regression based on the winter ENSO state to predict tornadoes in March-May, and found that the 43 

tornado prediction skill is higher during La Niña years compared to El Niño years. This 44 
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background motivates the work herein that seeks to further explore skillful season prediction of 45 

tornado activity. 46 

Low-frequency climate modes are important drivers of seasonal tornado activity and can serve as 47 
sources of their predictability. For example, La Niña (El Niño) winters tend to coincide with more 48 

(fewer) tornadoes in the winter (Cook and Schaefer 2008), and winter ENSO indices have been 49 

previously linked to springtime tornadoes (Allen et al. 2015; Lepore 2017). Lee et al. (2016) 50 
implied that springtime ENSO phase may be used to improve TO predictability, specifically. 51 

Across the CONUS, tornado activity during La Niña years peaks in mid-April, whereas activity 52 
during El Niño years peaks in late-May, when overall tornado frequency is greater than during La 53 

Niña (Allen et al. 2018). Furthermore, Tippett et al. (2022) found that a positive (negative) phase 54 

of the Arctic Oscillation (AO) coinciding with La Niña (El Niño) may increase (decrease) late 55 
winter and early spring tornado activity. The positive AO phase in winter and early spring on its 56 

own has been found associated with enhanced tornado activity (Childs et al. 2018; Niloufar et al. 57 
2021; Tippett et al. 2022), while Elsner et al. (2016) found that the positive phase of the North 58 

Atlantic Oscillation (NAO) is linked to a decrease in springtime tornado activity in the Southeast. 59 

Additionally, the negative phase of the Pacific North American Pattern (PNA) is connected to a 60 
stronger Intra-Americas low-level jet and increased springtime tornado activity in the Midwest 61 

and Southeast (Munoz and Enfield 2011). Furthermore, positive sea surface temperatures (SST) 62 
anomalies in the Gulf of Mexico have been associated with increased tornado activity over the 63 

Southeast during the spring (Molina et al. 2016), and Chu et al. (2019) demonstrated the link 64 

between TOs and SST anomalies in April via a negative PNA pattern.  65 

Though low-frequency climate modes provide an avenue for understanding the predictability of 66 

tornado activity, they do not fully capture the day-to-day variability of atmospheric circulation 67 
patterns that drive weather. This gap can be filled by weather regimes (WRs). WRs represent a 68 

finite number of equilibrium, recurring states of the atmospheric circulation (Michelangeli et al. 69 

1995; Charney and DeVore 1979; Hannachi et al. 2017). Miller et al. (2020) is among the first to 70 
apply WRs to tornado prediction. They constructed a hybrid prediction model for weekly tornado 71 

activity in May using WRs and achieved skillful prediction out to week 3. Tippett et al. (2024) 72 
explored the modulation of tornado activity using year-long WRs (Grams et al. 2017; Lee et al. 73 

2023) and found statistically significant relations between tornado reports and WRs during all 74 

months except June-August, with results mainly driven by years with more Pacific Ridge WR 75 
days. Graber et al. (2025) identified two WRs that strongly affect the warm-season tornado 76 

activity, especially TOs, and developed an empirical model using WR frequency, persistence, and 77 
TD probabilities. The empirical model skillfully captures the interannual variability of both TDs 78 

and TOs using WR information derived from the ERA5 reanalysis and motivate its application to 79 

seasonal prediction. 80 

The remainder of this paper is organized as follows. Section 2 describes the data and methodology, 81 

including the hybrid model. Section 3 presents the hybrid predictions and a discussion of the 82 
sources of predictability that help connect the WRs, tornado activity, and climate modes together. 83 

The paper will culminate with a summary and discussion in Section 4.  84 

2. Methodology 85 
2.1 Weather Regimes 86 

Daily 500-hPa heights (500H) from the ERA5 reanalysis (Hersbach et al. 2020) were used to 87 
identify weather regimes (WRs) during April-May, the season of peak tornado activity (Graber et 88 

al. 2024), from 1981-2023. The seasonal cycle, defined as the long-term mean 500H for each 89 
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calendar day, was removed from daily 500H. We used the WRs derived by Graber et al. (2025) 90 
using the K-means clustering method for 1960-2022 April-July as the reference WR patterns, and 91 

WRs were assigned by finding the reference WR pattern with the smallest Euclidean distance from 92 
the daily 500H anomalies. We took this approach because K-means clustering yields slightly 93 

different WR patterns in different time periods, and employing WRs during a longer time period 94 

as the reference patterns improves the robustness of the results.  95 

Seasonal forecasts of daily 500H anomalies from the European Centre for Medium-Range Weather 96 

Forecasts (ECMWF) were used to predict April−May WR frequency from 1981-2023 (Vitart et 97 
al. 2017; Copernicus Climate Change Service 2018). The 25-ensemble forecasts are initialized 98 

once per month and are available on a 1o  1o grid. The forecasts initialized on April 1st were 99 

selected to mitigate the effect of the spring-predictability barrier (Duan and Wei 2012). WRs were 100 

assigned for each ensemble forecast by projecting the forecast 500H anomalies to the reference 101 

WR patterns, and the resultant long-term mean WR frequencies are similar to those derived from 102 
ERA5. Persistent and nonpersistent WRs are defined as WRs lasting for ≥5 consecutive days and 103 

for <5 consecutive days, respectively.  104 

2.2 Tornado observations 105 

Tornado reports during April-May 1981-2023 were obtained from the NOAA Storm Prediction 106 

Center Severe Weather Database. Reports are georeferenced with time, date, and EF/F rating. 107 
Tornado days (TDs) are defined as days with ≥1 tornadoes ranked EF/F-1 or greater, and tornado 108 

outbreaks (TOs) are defined as any day with >10 tornadoes ranked EF/F-1 or greater (Graber et al. 109 
2024, 2025). EF/F-0 reports were excluded due to reporting uncertainties (Brooks et al. 2014; 110 

Trapp 2013). Known biases remain in this database, which a focus on TDs rather than raw tornado 111 

reports attempts to alleviate (Brooks et al. 2014; Trapp 2014; Graber et al. 2024).  112 

2.3 Hybrid model 113 

Following Graber et al. (2025), an empirical model was used to evaluate the seasonal prediction 114 

of tornado activity: 115 

𝑻𝑰(𝒕) = ∑ 𝒇(𝒊, 𝒕)𝒑 × 𝑷𝒊,𝒑

𝟓

𝒊=𝟏

+ ∑ 𝒇(𝒊, 𝒕)𝒏𝒑

𝟓

𝒊=𝟏

× 𝑷𝒊,𝒏𝒑 

                       (1)                                                                                     

where Pi denotes the TD probability for each WR, which is defined as the number of TDs with 116 
WR-i divided by the number of total WR-i days. The predictand tornado index for year t, TI(t), is 117 

computed by the seasonal count of WR-i days in year t, f(i,t), multiplied by Pi. TD probabilities 118 

and counts were calculated for persistent and nonpersistent WRs separately, denoted by subscripts 119 

p and np, respectively. The same procedure was applied to TOs (Graber et al. 2025). 120 

To evaluate tornado prediction skill, a leave-one-year-out cross-validation method was employed. 121 
Specifically, 1981 was first held for testing, and Pi,np and Pi,p were determined using the WR 122 

information derived from the ERA5 reanalysis and tornado reports during 1982-2023. The 123 

seasonal WR counts from the ECMWF ensemble forecasts for 1981 were used in Eq. 1 to predict 124 
the TI value in 1981. This process was repeated for each year, yielding a predicted time series of 125 

TI. The TI time series for all ensemble members were averaged to form the ensemble mean TI, 126 

which was standardized using z-score normalization.  127 
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The prediction skill was quantified using the Pearson correlation between predicted and observed 128 
TI time series. Additionally, a three-tier categorical verification was used by classifying both 129 

observed and predicted TI values into lower, middle, and upper terciles. A correct prediction was 130 
recorded when the observed and predicted TI values fell within the same tercile for a given year. 131 

The proportion correct (PC) is defined as the number of correct predictions divided by the number 132 

of total predictions.  133 

To assess the potential impacts of climate modes on tornado predictability, PC was calculated 134 

separately for positive, negative, and neutral phases of various low-frequency climate modes (see 135 
more information on climate modes in section 2.4). Significance (p ≤ 0.05) between PC of each 136 

phase and random chance (33% for three-tier verification) was determined using a Monte Carlo 137 

test with 10,000 resamples. 138 

2.4 Sources of Predictability 139 

The impacts of some low-frequency climate modes on tornado activity and WR counts were 140 
investigated to provide a physical basis for TD and TO predictability. Indices of ENSO (via 141 

ENSO3.4), PNA, NAO, and AO were downloaded from the NOAA Climate Prediction Center 142 

(2024a,b). Positive and negative phases of a climate mode are defined as the years when the 143 

standardized springtime (April-May) index exceeded  ± 0.9. 0.9 was used instead of 1.0 to slightly 144 

increase the sample size.  145 

TD and TO probability anomalies were calculated for each climate mode phase as: 146 

           𝑷𝒂 =
𝑷𝒓−𝑷𝒄

𝑷𝒄
× 𝟏𝟎𝟎% (2) 

where the climatological mean TD probability (Pc) is defined as the total number of TDs divided 147 

by the total number of days; Pr is TD probability for the given phase of the climate mode; and Pa 148 

is the percentage anomaly.  149 

 150 

3. Results 151 

       3.1 Model Prediction  152 

For completeness, the five WRs (Fig. 1a-e) are briefly described here. WR-A features anomalous 153 
highs over both the eastern and western U.S. coasts. WR-B is characterized by a prevailing 154 

anomalous low centered over central North America and an anomalous high over the Southeast 155 
CONUS. WR-C exhibits a three-cell wave pattern with anomalous lows over both coasts. WR-D 156 

and WR-E display west-east dipole patterns that nearly mirror each other. The WR spatial 157 

structures closely resemble WRs in Miller et al. (2020), Zhang et al. (2024), and Lee et al. (2023). 158 
Specifically, WR-A and WR-E resemble the Pacific Ridge and Alaskan Ridge regimes in Lee et 159 

al. (2023), respectively, but noticeable differences exist due to differences in data processing 160 
procedures and the time periods analyzed. The impacts of the WRs on tornado activity in the 161 

CONUS during April-May 1981-2023 (Fig. 1f and 1h) are similar to those during April-July 1960-162 

2022 from Graber et al. (2025; their Fig. 4). WR-A is the least favorable WR for springtime tornado 163 
activity, and WR-B is the most favorable. Tornado activity in WR-C and WR-E are slightly 164 

unfavorable, and in WR-D is slightly favorable. The estimated TDs and TOs based on the empirical 165 
model (Eq. 1) and the ERA5 during April-May 1981-2023 are significantly correlated with the 166 

observed time series (Figs. 1g and 1i).  167 
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 168 

Figure 1: 500H anomaly patterns of WRs A-E with long-term frequency indicated in panel title (a-e). ERA5 tornado 169 
day (f) and tornado outbreak (h) CONUS probability anomalies for persistent (≥ 5 days) and nonpersistent (< 5 days) 170 
WRs. Time series of standardized tornado days (g) and tornado outbreak days (i) from the observation (blue) and 171 
estimation of the empirical model modeling (red).  Spearman rank correlation and p-value are indicated in panels g 172 
and i. 173 

Before assessing the hybrid predictions of tornado activity, we first evaluate the prediction skill of 174 

WRs by the ECMWF springtime forecasts. The ECMWF ensemble mean prediction of springtime 175 
WR counts are significantly correlated with the ERA5 springtime WR counts (Fig. 2a-e). This 176 

indicates the seasonal predictability of WRs and provides the basis for tornado prediction using 177 

the hybrid framework (i.e., Eq. 1).  178 

 179 

Figure 2: Z-score normalized ERA5 (blue) and ECMWF ensemble mean (red) springtime frequency of each WR with 180 
Spearman rank correlation and p-value indicated in each panel (a-e). 181 
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We assess the hybrid predictions of TDs and TOs using leave-one-year-out cross-validation 182 
method (Fig. 3a-b). The hybrid prediction of TOs has a significant Pearson correlation of 0.38 with 183 

the observed TO time series, while TD prediction shows no skill, with a Pearson correlation close 184 
to zero. The skill contrast between the TO and TD predictions is probably because TOs usually 185 

occur under strong and persistent synoptic-scale patterns (Mercer et al. 2012; Cwik et al. 2022; 186 

Jiang et al. 2025; Graber et al. 2025), while some transient, weak WR days, which are not well 187 
captured by the ECMWF springtime forecasts, may have strong impacts on TDs. In addition, it is 188 

worth noting that the percentage anomalies of TOs associated with various WRs are generally 189 

stronger than those of TDs (Fig. 1).  190 

 191 

 192 

Figure 3: Standardized TDs (a) and TOs (b) time series from observation (red) and the hybrid prediction 193 
(blue). Thin gray lines represent the individual ensemble prediction (grey) time series. Pearson correlations 194 
(cc) and p-values (p) are shown at the upper left corner of each panel.  195 

The tercile-based TO prediction indicates that the hybrid model correctly predicts 53.5% of years. 196 

Additionally, the PC is strongly modulated by some climate modes (Fig. 4). In particular, the 197 
hybrid model performs significantly better during the positive phases of the AO (75% of correct 198 

prediction), NAO (71.4%), PNA (71.4%), and ENSO (70.0%). PC also improves in the negative 199 

phases of NAO (62.5%), AO (55.6%), and ENSO (55.6%), but the increases in PC are not 200 
significant (p > 0.05). In contrast, the PC in a neutral phase is below 53.5%. Although the PC of 201 

the tercile-based TD prediction is close to random chance (34.9%), the hybrid model performs 202 
better in +PNA years (57.1%, p=0.23) (figure not shown). This suggests that climate modes may 203 

be used to identify forecasts of opportunity for springtime tornado prediction.  204 

Additional cross-validation tests by leaving two-, three-, four-, and six-year out yield similar 205 
results (Fig. S1). TO predictions maintain skillful across all tests, while TD predictions remain 206 

unskillful. 207 

https://doi.org/10.5194/egusphere-2026-536
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



7 
 

 208 

Figure 4: Proportion of correct TO predictions for negative (blue), neutral (grey), and positive (red) phases 209 
of AO (a) and NAO (b), PNA (c), and ENSO (d). Numbers above the bars represent p-values using a Monte 210 
Carlo test with 10,000 resamples, and bold values represent significant (p ≤ 0.05) differences from random 211 
chance. The dashed, horizontal line represents the overall PC (i.e., 53.5%). 212 

        3.2 Low-frequency climate modes as sources of Predictability 213 

To investigate predictability sources for tornado activity, the relationship between tornado activity 214 
and low-frequency climate modes is examined using springtime TD and TO probability anomalies 215 

associated with the AO, NAO, PNA, and ENSO phases (Figs. 5a-h). In addition to CONUS, we 216 

examined different regions, Midwest (MW), Southern Great Plains (SGP), Southeast (SE), and 217 
Southern Great Plains (SGP). The region definitions follow Moore (2018), with exception of the 218 

SGP, which herein contains New Mexico because it has storm events similar to those in the Texas 219 

Panhandle. 220 

Significantly enhanced TO probability in the CONUS and Midwest is associated with the -AO 221 

phase. TO probability is also enhanced in the SE, NGP and SGP, but the anomalies are not 222 
statistically significant. In contrast, the probability anomalies of TDs during +AO and -AO phases 223 

are much weaker and all insignificant, consistent with Tippett et al. (2022) showing a weaker 224 
tornado-AO relationship in April than in February. +AO years are characterized by an anomalous 225 

high over the southeastern CONUS and negative anomalies over the north-central CONUS (Fig. 226 
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S2a), implying enhanced westerly flow aloft and promoting moisture and warm-air advection from 227 
the Gulf of Mexico. These circulation anomalies lead to positive MUCAPE and TD probability 228 

anomalies over the Southeast and SGP (Fig. S2a). In contrast, -AO years feature negative 500H 229 
anomalies over the central CONUS, accompanied by anomalously positive VWS. Although 230 

anomalously low MUCAPE during -AO years tends to suppresses TD probability, the enhanced 231 

VWS supports anomalously positive TO probability anomalies (Sherburn et al. 2016).  232 

The TD and TO probability anomalies during the NAO phases are generally consistent in sign with 233 

those during AO phases, but quantitative differences exist. TD probability is reduced significantly 234 
over CONUS, SGP, and NGP, and TO probability is reduced significantly over NGP during the 235 

+NAO phase. +NAO years feature an anomalous 500H high over the west-central CONUS, which 236 

hinders moisture and heat transport from the Gulf of Mexico. These circulation changes result in 237 
anomalously low MUCAPE and TD probabilities over the SGP and NGP (Fig. S2e). Additionally, 238 

anomalously low VWS over the SGP further limits tornado potential during +NAO years. 239 
However, +NAO years feature an anomalous 500H high over the western Atlantic, which enhances 240 

southerly flow and moisture transport into the Southeast (Zhao et al. 2025), supporting positive 241 

MUCAPE anomalies (Fig. S2e) and corresponding positive TO probability anomalies in that 242 

region (Fig. 5). 243 

The positive PNA phase (+PNA) is unfavorable for tornado activity across the CONUS, MW, 244 
SGP, and SW, particularly for TOs (Fig. 5f). +PNA years feature an anomalous 500H high over 245 

the western CONUS and an anomalous 500H low over the eastern CONUS (Fig. S2c), implying 246 

reduced moisture transport from the Gulf of Mexico and anomalously low VWS. These circulation 247 
anomalies hinder tornado activity across the MW, SGP, and SW. Springtime PNA has become 248 

more negative over time (Fig. S3), possibly explaining the increasing trend in TOs (Graber et al. 249 

2024), though further work with other seasons needs to be done to confirm this.  250 

TO probability is enhanced in La Nina years in various regions, although the enhancement is 251 

significant only in SE. Additionally, TD probability over SGP and TO probability over NGP are 252 
enhanced in El Nino years. The La Nina-tornado-activity link is largely consistent with previous 253 

work (e.g., Cook and Schaefer 2008; Cook et al. 2017; Tippett et al. 2022; Allen et al. 2015; Moore 254 
2019), but it is worth noting that the ENSO state in the spring time is examined here, while some 255 

previous studies focus on the winter ENSO state. 256 

Overall, the link between climate modes and tornado activity suggests that low-frequency climate 257 
modes provide a source of predictability for springtime tornado prediction. Additionally, low-258 

frequency climate modes modulate TO probabilities more strongly than TD probabilities, 259 
consistent with the stronger TO anomalies associated with WRs (Fig. 1h) and the higher predictive 260 

skill of TOs (Fig. 3).  261 
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 262 

Figure 5: TD (left column) and TO (right column) probability anomalies by region and climate mode: AO 263 
(a-b), NAO (c-d), PNA (e-f), and ENSO (g-h). Asterisks represent significant anomalies (p ≤ 0.05) based 264 
on a Monte Carlo test with 10,000 resamples of each regions’ data. 265 

The connection between climate modes and WRs is examined next to investigate whether climate 266 

modes modulate tornado activity via WRs. Figure 6 shows the frequency of WRs in different 267 

phases of low-frequency climate modes, which is defined as the number of WR days during a 268 
given phase of the climate mode divided by the total number of days in that phase. The frequency 269 

of WR-A is only ~15% during the -AO phase, while the frequency of WR-B is ~33% (Fig. 6). 270 
The increased occurrence of WR-B and decreased occurrence of WR-A in -AO years compared to 271 

the long-term mean (Fig. 1) are consistent with the positive TO probability anomalies in the 272 

CONUS and Midwest during the -AO years (Fig. 5).  273 

During +NAO years, WR-A occurs on approximately 35% of days, making it the dominant WR 274 

during this phase. This predominance of WR-A is consistent with the reduced TD probability in 275 
the CONUS, NGP, and SGP, and reduced TO probability in the NGP during NAO+ years (Fig. 6). 276 

Composite 500H anomalies for +NAO years resemble WR-A, while composite 500H anomalies 277 

for +AO show a mix of WR-A and WR-B (Fig. S2).  278 
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During +PNA years, WR-B occurs on ~15% of days, whereas WR-E occurs on ~25% of days, 279 
making it the most frequent WR during this phase (Fig. 6). The reduced occurrence of WR-B and 280 

increased occurrence of WR-E are consistent with reduced TD and TO activity over CONUS, 281 
MW, and SGP during +PNA (Fig. 5). Composite 500H anomalies during +PNA years resembles 282 

WR-E, with an anomalous high over the western CONUS and an anomalous low over the eastern 283 

CONUS (Fig. S2c).  284 

Neither positive nor negative phase of ENSO is associated with significant changes in WR-A or 285 

WR-B frequency. Instead, the frequency of WR-C is reduced significantly in both phases of 286 
ENSO, and WR-E occurs more frequently in the positive phase of ENSO, which is consistent with 287 

the reduced tornado activity during El Nino years reported in previous studies (Cook et al. 2017). 288 

To summarize, WRs associated with increased springtime tornado activity tend to occur more 289 

frequently during the climate mode phases that favor increased tornado activity, while WRs 290 

associated with suppressed tornado activity preferentially occur during climate mode phases that 291 

are unfavorable for tornado activity. These consistent relationships provide additional confidence 292 

in the robustness of the WR-based prediction framework and help to understand tornado 293 

predictability.  294 

 295 

Figure 6: WR frequencies in different phases of AO (a), NAO (b), PNA (c), and ENSO (d). An asterisks indicates 296 
that the frequency is significantly different (p ≤ 0.05) from that during the corresponding neutral phase via a student 297 
t-test. 298 

3.3 Possible role of SST 299 

In addition to low-frequency climate modes, slowly-evolving SST may also serve as an important 300 
source of predictability. The connection between SSTs, large-scale circulations, and tornado 301 

activity is examined in Fig. 7. Extended Range SST (ERSST) (Huang et al. 2017) of 2o x 2o 302 

resolution is used here, and we focus on the month of April because SST signals in April are more 303 
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pronounced than in May based on a previous study (Chu et al. 2019) and our own analysis. In 304 
addition, the analysis is done for 1960-2023 to increase the sample size. For each WR, active and 305 

inactive years are identified as the years when the springtime count of the WR exceeds ± 1 306 

standard deviation from the mean, and composite anomalies of SST and 500H are constructed for 307 

these active and inactive years of the WR.  308 

+WR-A years are characterized by an anomalous 500H high over the north-central CONUS, as 309 

part of a well-defined wavetrain pattern extending from the North Pacific to southern Greenland, 310 
in addition to an anomalous low over the Southeast and Gulf of Mexico. Although there are 311 

coherent cold and warm SST anomalies associated with the anomalous low and high over the 312 

North Pacific, respectively, the SST anomalies are not significant. Significant SST anomalies exist 313 
over the North Atlantic associated with anomalous 500H high. In contrast, the -WR-A years 314 

feature an anomalous low over the central CONUS, nearly opposite to the +WR years. However, 315 
the anomalous circulation patterns over the North Pacific and North Atlantic are not a simple 316 

mirror image to those during +WR-A years. The anomalous 500H field is characterized by an 317 

elongated anomalous low over the midlatitude North Pacific and North Atlantic, reminiscent of 318 
the -AO pattern. Significant SST anomalies are found over the North Pacific and North Atlantic, 319 

resembling the Atlantic tripole SST pattern, which helps to maintain the NAO pattern via positive 320 
air-sea interaction (Czaja and Frankignoul 2002). Consistent with this circulation, WR-A is 321 

suppressed during -NAO and -AO years (Fig. 6).  322 

WR-B is most favorable for tornado activity over the CONUS. Though positive SST anomalies 323 

exist over the central Pacific in +WR-B years, consistent with that shown in Chu et al. (2019) for 324 

April tornadoes, the anomalies are not significant. The 500H pattern over the North Atlantic is 325 
reminiscent of a -AO pattern, consistent with increased WR-B occurrence during -AO (Fig. 6). 326 

Significant, negative SST anomalies exist over the North Pacific in -WR-B years. The associated 327 
North Pacific negative SSTs and the 500H high over Canada are reminiscent of a +PNA pattern, 328 

consistent with reduced WR-B occurrence during +PNA (Fig. 6). Though insignificant, the warm 329 

SST anomalies in the northern Pacific during +WR-B have been previously linked to enhanced 330 
CONUS tornado activity (Zhao et al. 2025) through a weakening and eastward shift of the Aleutian 331 

Low (Chu et al. 2019), which promotes enhanced southerly flow of moisture and heat from the 332 

Gulf of Mexico.  333 

+WR-C years feature anomalously cold SSTs in the midlatitude North Pacific and North Atlantic 334 

as well as in the Gulf of Mexico. The cold SST anomalies over the Gulf of Mexico may limit 335 
moisture availability (Molina et al. 2016), partially offsetting the otherwise favorable southerly 336 

500H anomalies over the central US. This compensating thermodynamical and dynamical effects 337 
help explain the near-climatological tornado activity during WR-C (Fig. 1f, h). In contrast, -WR-338 

C years are associated with prevailing warm SST anomalies in the North Pacific. Significant SST 339 

anomalies, however, are confined to the subtropical North Atlantic and portions of the subtropical 340 

eastern Pacific.  341 

+WR-D and +WR-E years feature anomalously warm and cold SSTs in the Gulf of Mexico, 342 
respectively, though these anomalies are not statistically significant. Over the subtropical western 343 

and central North Pacific, respectively, +WR-D years exhibit significant warm SST anomalies, 344 

while +WR-E years show significant cold SST anomalies. Given that WR-D and WR-E are linked 345 
to enhanced and reduced TD probability, respectively (Fig. 1), this suggests that SST anomalies in 346 

the subtropical Pacific may be a source of predictability for tornado activity over the CONUS. 347 
However, the robustness of this relationship requires further examination given the patchy pattern 348 
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of the significant SST signals, and the underlying mechanisms also need to be investigated. In 349 
addition, significant cold SST anomalies exist over the North Atlantic for +WR-E years, 350 

suggesting cold SSTs in this region may be associated with reduced TD probabilities over the 351 

CONUS.  352 

 Overall, Fig. 7 suggests that SST anomalies over the North Pacific and North Atlantic may help 353 

explain the predictability of some WRs and thus the predictability of tornado activity within the 354 
hybrid framework. However, WR-B and WR-D, which favor tornado activity over the CONUS 355 

(Fig. 1), are not associated with many coherent, statistically significant SST anomalies. Further 356 
investigation using longer observational records and focusing on different seasons is needed to 357 

better understand the predictability—or lack thereof—of tornado activity. 358 

 359 

Figure 7: April SST anomalies for active and inactive WR years, and hatching indicates significant SST anomalies 360 
(p ≤ 0.05) using a one-sample, two-sided t-test. 500H anomalies are shown in black contours. 361 
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 362 

4. Summary  363 

A hybrid model for the seasonal prediction of CONUS springtime tornado activity is evaluated 364 

during 1981-2023. The model employs WR forecasts from the ECMWF ensemble springtime 365 
forecasts initialized on April-1st. Using the leave-one-year-out cross-validation, the WR-based 366 

model shows no predictive skill for TDs, but the predicted time series of TO days is significantly 367 

correlated with the observed time series. Predictive skill for TOs is modulated by low-frequency 368 
climate modes and is significantly enhanced during +AO, +NAO, +PNA, and El Niño years, with 369 

the proportion correct of 75%, 71.4%, 71.4%, and 70%, respectively. Given the difficulty of 370 
predicting TDs beyond subseasonal timescales (Gensini et al. 2020), springtime prediction efforts 371 

should prioritize TOs due to their higher predictive skill and societal impacts, and low-frequency 372 

climate modes can help to identify forecasts of opportunity. 373 

To investigate the predictability sources of springtime tornado activity, the composite TD and TO 374 

probability anomalies were examined during different phases of climate modes. Significantly 375 
enhanced TO probability anomalies were associated with -AO and La Niña years, while 376 

significantly reduced TO probability anomalies were associated +NAO and +PNA years. 377 

Corresponding circulation patterns during these years provide physical support, through CAPE 378 
and vertical shear anomalies. TO probability anomalies are generally stronger than TD anomalies 379 

associated with climate modes, which helps explain the higher predictive skill of TOs.  380 

Additionally, WR occurrence is modulated by some climate modes. WR-A is the dominant WR 381 

during +NAO years and WR-E is the dominant WR during +PNA years, consistent with reduced 382 

tornado activity during +NAO and +PNA years. Furthermore, WR-B is the dominant WR during 383 
-AO years and is the least frequent WR during +PNA years, consistent with enhanced (reduced) 384 

tornado activity during the -AO (+PNA) phase. WRs associated with increased springtime tornado 385 
activity tend to occur more frequently during the climate mode phases that favor increased tornado 386 

activity, while WRs associated with suppressed tornado activity preferentially occur during 387 

climate mode phases that are unfavorable for tornado activity. This physical consistency supports 388 

the use of WRs as a physically meaningful framework for predicting TOs.  389 

The role of SSTs in the predictability of WRs (with implication for the predictability of tornado 390 
activity) was examined, with the focus on April SST anomalies. -WR-A years feature a -NAO SST 391 

and 500H pattern over the North Atlantic, consistent with WR-A being suppressed during -NAO 392 

patterns. +WR-B years feature positive, though insignificant, SSTs over the central Pacific 393 
consistent with patterns shown in Chu et al. (2019) for April tornadoes. In addition, significantly 394 

negative SST anomalies exist over the northern Pacific during -WR-B years, consistent with 395 
suppressed WR-B and TO during +PNA years. Overall, SST anomalies can help explain WR 396 

predictability, but SST signals for some WRs are insignificant or patchy, making it challenging to 397 

identify specific SST-based predictors for WRs or tornado activity. Further investigation based on 398 
longer observational records would help better understand the role of SST in the predictability of 399 

WRs and tornado activity.  400 

This study demonstrates that skillful prediction of springtime TOs is indeed possible with current 401 

resources via the connection between tornado activity and WRs. Questions remain on whether 402 

SSTs are a reliable driver of springtime TOs as well as the temporal extent to which TOs can be 403 

predicted.   404 

 405 

https://doi.org/10.5194/egusphere-2026-536
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



14 
 

Code Availability 406 

Important python files for WR identification and modeling are included at the following link: 407 

https://github.com/Matt0604/Springtime-Prediction-Manuscript 408 

 409 

Data Availability 410 

The ERA5 data are available through the NCAR research data archive (RDA) (d633000) and the 411 

Copernicus Climate Data Store (CDS): 412 

https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al. 2023a) 413 

https://doi.org/10.24381/cds.adbb2d47(Hersbach et al. 2023b) 414 

The ECMWF data are available through the Copernicus Climate Data Store (CDS): 415 

https://doi.org/10.24381/cds.50ed0a73 (Copernicus Climate Change Service 2018) 416 

April SST data are available through the Extended-range sea surface temperatures data (Huang et 417 

al. 2017). 418 

The tornado report data used in this study are available through the NOAA Storm Prediction Center 419 

severe weather database: 420 

https://www.spc.noaa.gov/wcm/#data  421 
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