

1 **Holocene methane pockmarks in the Baltic Sea, Part I: Archaeal community composition**
2 **based on tetraether lipids and 16S rRNA analysis**

3

4

5 Izabela De Mey-Śnieżyńska^{1*}, Mirosław Słowakiewicz¹, Francien Peterse², Aleksandra
6 Brodecka-Goluch⁴, Andrzej Borkowski³, Katarzyna Łukawska-Matuszewska⁴

7

8 ¹University of Warsaw, Faculty of Geology, 02-089 Warsaw, Poland

9 ²Utrecht University, Department of Earth Sciences, 3584 CS Utrecht, The Netherlands

10 ³AGH University of Krakow, Faculty of Geology, Geophysics and Environmental Protection, 30-059
11 Kraków, Poland

12 ⁴University of Gdańsk, Faculty of Oceanography and Geography, 81-379 Gdynia, Poland

13

14 *Corresponding author: i.sniezynska@uw.edu.pl

15

16

17 **Highlights**

18 Pockmark sediments harbour substantially higher archaeal diversity and abundance compared
19 with non-pockmark reference sediments.

20 Pockmarks appear to function as tightly coupled metabolic systems, in which various archaeal
21 groups potentially cooperate in methanogenesis and ammonia oxidation, whereas non-
22 pockmark sites contain less integrated, loosely coupled sub-communities.

23 The MET4 pockmark in the Gdańsk Deep hosts the most diverse and abundant methanogen
24 community, coinciding with the highest concentrations of isoprenoid glycerol dialkyl glycerol
25 tetraether lipids (iGDGTs).

26 Crenarchaeol is the dominant iGDGT in both methane-pockmark and non-pockmark reference
27 sediment cores, likely derived from abundant *Ca. Nitrosopumilus*.

28 **Abstract**

29 Methane-rich pockmarks and shallow gas systems are prominent geomorphological features in
30 the Baltic Sea that act as hotspots of microbial activity. Methane pockmarks in the Gdańsk
31 Basin differ in seepage intensity, the efficiency of internal methane biofilters, and the influence
32 of freshwater infiltration. The objective of this research was to examine the effects of methane
33 seepage and submarine groundwater discharge (SGD) on the composition of archaeal
34 communities and the archaeal tetraether lipids (GDGTs) produced by these communities across
35 the examined gas systems. Additionally, the research assessed how these environmental factors
36 affect the use and interpretation of GDGT-based proxies in such environments. The study
37 investigates whether GDGT patterns in these gas systems primarily reflect methane-driven
38 processes (anaerobic oxidation of methane and methanogenesis) or ammonia oxidation, which
39 is a key process in the Baltic Sea. It also evaluates how reliably GDGT indices can be applied
40 in this dynamic environment characterised by strong upward gas flow. The results show
41 elevated GDGT concentrations in pockmark sediments compared with reference non-pockmark
42 sediments; however, GDGT concentrations are variable and depend on whether the flow is
43 active or inactive, reflecting episodic submarine groundwater discharge that coincides with

methane release. Overall, GDGT concentrations are much higher at sites with minimal or no SGD. Nevertheless, consistently low Methane Index values ($MI < 0.09$), together with low GDGT-0/crenarchaeol (< 1) and GDGT-2/cren (< 0.04) ratios, indicate that the iGDGT patterns lack the typical enrichment associated with methane-rich and anaerobic oxidation of methane (AOM) settings, suggesting no strong AOM imprint on the GDGT pool. OH-GDGT% values are consistent with those of Baltic Sea surface sediments. GDGT-based proxies in this system, therefore, primarily reflect ammonia-oxidiser activity rather than methane flux. These findings highlight the complex interplay between SGD and methane fluxes in shaping archaeal communities, GDGT composition, and their sedimentary record. GDGT-based indices must be applied with caution in dynamic shallow gas systems.

Keywords: methane, pockmarks, iGDGTs, ammonia-oxidising archaea, crenarchaeol, Holocene, Gdańsk Deep, Baltic Sea

1 Introduction

Pockmarks are concave geological structures ranging from 1 to over 100 m in width and from less than 1 to 100 m in depth, formed worldwide by fluid discharge from the lithosphere to the hydrosphere (King and MacLean, 1970; Hovland and Judd, 1988). As indicators of hydraulic activity, they are categorised as active or inactive depending on whether fluid emanation is continuous or dormant/intermittent (Hovland and Judd, 1988; Hovland et al., 2002). Their seabed depressions facilitate detection by geophysical and hydroacoustic surveys, making them practical proxies for investigating seepage phenomena (Hovland and Judd, 1988). Formation of pockmarks requires pressure build-up in fine-grained, low-permeability sediments, with methane being the most commonly emitted component owing to its high mobility (Hovland and Judd, 1988). Fluid types vary globally and include biogenic, thermogenic, or hydrothermal gas, groundwater, or combined gas-and-water seepage (Hovland and Judd, 1988). Pockmarks predominantly form along salt-dome margins (Schmuck and Paull, 1993; Taylor et al., 2000) and in dislocation zones, faults, and bedrock fractures (Shaw et al., 1997), although they also occur in regions of low seismicity, such as Sweden (Hovland et al., 2002) and the southern Baltic Sea (Idczak et al., 2020). Glacial and post-glacial processes can influence their formation by generating overpressure, as observed in the North Sea (Callow et al., 2021) and the Baltic Sea (Whiticar and Werner, 1981; Whiticar, 2002; Kreuzburg et al., 2023).

Baltic Sea pockmarks have been documented in Eckernförde Bay and the Mecklenburg Bight (Werner, 1978; Wever et al., 1998; Jensen et al., 2002; Schlüter et al., 2004; Hoffmann et al., 2020; Díaz-Mendoza et al., 2023), the Stockholm Archipelago (Jakobsson et al., 2020), offshore Finland (Virtasalo et al., 2019), and the Gdańsk Basin (Pimenov et al., 2010; Majewski and Klusek, 2011; Brodecka et al., 2013; Jaśniewicz et al., 2019; Idczak et al., 2020; Brodecka-Goluch et al., 2022), which is the focus of this study.

In several Baltic settings, pockmarks are linked to submarine groundwater discharge (SGD), i.e., freshwater groundwater and/or recirculated seawater flow across the seabed driven by hydraulic and density-related pressure gradients (Burnett et al., 2003, 2006; Moore, 2010; Taniguchi et al., 2019) – including those in Eckernförde Bay (Bussmann and Suess, 1998; Schlüter et al., 2004), Hanko Bay (Virtasalo et al., 2019; Purkamo et al., 2022), and the central Gulf of Gdańsk (Szymczyska et al., 2016; Idczak et al., 2020).

89 Submarine groundwater discharge affects methane pockmarks by driving cyclical activity
90 (from initiation through expansion to stabilisation) and turbulent mixing that disturbs water-
91 column stratification, resuspends sediments, and can, in effect, modify porewater chemistry
92 (Zhang et al., 2025). Pockmark depressions trap biological, marine, and terrestrial material and
93 objects (e.g., boulders, plastic bags), acting as sediment traps (Rise et al., 2014; Idczak et al.,
94 2020). Under such conditions, freshening of porewater and near-bottom water can induce
95 shallow methanogenesis and trigger episodic gas release (Moore, 2010; Idczak et al., 2020).
96 SGD influences NH_4^+ , CH_4 , dissolved inorganic carbon (DIC), and H_2S concentrations
97 (Schlüter et al., 2004; Liu et al., 2017; Idczak et al., 2020; O'Reilly et al., 2021; Brodecka-
98 Goluch et al., 2022; Zhang et al., 2025) and alters porewater chemistry through decreased
99 salinity and chloride depletion (Schlüter et al., 2004), controlled by shifting advective and
100 diffusive/dispersive flow dynamics (Purkamo et al., 2022). Advection flushes sediments,
101 pushes reaction zones towards the surface, and decreases methane accumulation by restricting
102 organic-matter build-up and shifting microbial communities (Purkamo et al., 2022). Freshwater
103 infiltration reduces sulphate availability and weakens sulphate-driven anaerobic oxidation of
104 methane (S-AOM), which is critical in low-salinity basins such as the Baltic Sea (Idczak et al.,
105 2020; Brodecka-Goluch et al., 2022).

106

107 In methane-bearing sediments, sulphate and methane diffuse in opposite directions and meet at
108 the sulphate-methane transition zone (SMTZ), where microbial communities carry out
109 anaerobic oxidation of methane (AOM) (Zehnder and Brock, 1980; Boetius et al., 2000). This
110 process is mediated by sulphate-reducing bacteria (SRB) and anaerobic methanotrophic archaea
111 (ANME) (Knittel and Boetius, 2009), which consume methane before it reaches the sediment-
112 water interface, thereby limiting transfer to the overlying water column and mitigating
113 atmospheric emissions (Reeburgh, 2007). In the Baltic Sea, a permanent halocline at depths of
114 60-80 m creates a redoxcline that separates oxygenated upper waters from oxygen-depleted
115 lower layers and structures multiple biogeochemical cycles (Kuliński et al., 2022), including an
116 oxic-suboxic zone of nitrogen cycling in which ammonia-oxidising archaea (AOA) play a
117 crucial role (Berg et al., 2015b; Jäntti et al., 2018). Biomarkers of archaea involved in both
118 methane-related processes (ANME, methanogens) and nitrification (AOA) can be preserved in
119 sediments as diagnostic membrane-lipids – namely isoprenoidal glycerol dialkyl glycerol
120 tetraethers (iGDGTs) – which may be transported and buried in sediments, potentially biasing
121 GDGT-based proxies (Schouten et al., 2013).

122

123 iGDGTs are membrane lipids uniquely synthesised by archaea, in which cyclisation and
124 hydroxylation regulate membrane properties in response to environmental conditions (De Rosa
125 et al., 1977; Huguet et al., 2006; Liu et al., 2017; Schouten et al., 2002, 2013; Sinninghe Damsté
126 et al., 2022). In marine sediments, GDGT-0 and crenarchaeol are dominant (Schouten et al.,
127 2000, 2002). Crenarchaeol is produced by Thaumarchaeota (Sinninghe Damsté et al., 2022) –
128 in current nomenclature, Nitrososphaerota (Rinke et al., 2021) – which are the dominant
129 ammonia oxidisers and iGDGT producers in the Baltic Sea (Labrenz et al., 2010; Berg et al.,
130 2015a, b; Wittenborn et al., 2023). Methanogens primarily produce GDGT-0, whereas
131 methanotrophs, especially ANME-1, produce GDGT-1 to -3 (Koga et al., 1993; Pancost et al.,
132 2001; Weijers et al., 2006; Rossel et al., 2008; Blaga et al., 2009; Zhang et al., 2011; Inglis et
133 al., 2015; Słowakiewicz et al., 2016; Petrick et al., 2019). Hydroxylated-GDGTs (OH-GDGTs)
134 contain additional hydroxyl groups and varying numbers of cyclopentane rings and are
135 produced primarily by Thaumarchaeota (Sinninghe Damsté et al., 2002; Liu et al., 2012; Kaiser
136 and Arz, 2016; Elling et al., 2017; Bale et al., 2019; Sinninghe Damsté et al., 2022), although
137 methylotrophic methanogens or ANME may contribute during the formation of methane-seep
138 carbonates (Liu et al., 2012; Guan et al., 2024). OH-GDGT synthesis reflects cold adaptation,

139 making these compounds useful temperature proxies (Liu et al., 2012). These are also sensitive
140 to salinity, as lower salinity promotes the formation of additional cyclopentane rings (Sinninghe
141 Damsté et al., 2022). OH-GDGT-0 dominates at higher latitudes (Huguet et al., 2013; Varma
142 et al., 2024) and recent Baltic Sea sediments (Sinninghe Damsté et al., 2022), where culture
143 studies confirmed an AOA source (Blainey et al., 2011; Berg et al., 2015a).

144
145 South-eastern Baltic Sea sediments release approximately $\sim 280 \times 10^6$ mmol of methane per day
146 (Ulyanova et al., 2012). While methane seeps globally enhance microbial dynamics and
147 biodiversity (Ruff et al., 2015; Carrier et al., 2020), the Baltic Sea is strongly stratified, and its
148 persistent redox gradients favour intense pelagic nitrification and a widespread AOA
149 community whose biomass and lipids can be exported to the seafloor. Accordingly, ammonia
150 oxidation is prominent in the Baltic Sea, with *Candidatus Nitrosopumilus* being widespread
151 and well adapted to suboxic conditions along redox gradients (Labrenz et al., 2010; Berg et al.,
152 2015b; Wittenborn et al., 2023). However, the relative contributions of methane-driven benthic
153 sources and pelagic AOA export to sedimentary iGDGT distributions in Baltic pockmarks
154 remain poorly constrained. In this study, it is hypothesised that pockmark sediments, as hotspots
155 of AOM and methanogenesis, display iGDGT distributions reflecting a greater contribution
156 from methane-cycling archaea (methanogens and anaerobic methanotrophs), whereas non-
157 pockmark sediments exhibit mixed signatures with a stronger pelagic AOA influence. Because
158 GDGTs are taxon-linked, iGDGT patterns can serve as proxies for archaeal community
159 composition (AOA versus methanogens/ANME), providing insights into community structure.
160 This hypothesis is tested by comparing iGDGT distributions and total organic carbon (TOC)
161 content in sediment cores from pockmark and non-pockmark areas, complemented by archaeal
162 16S rRNA gene metabarcoding, to evaluate whether lipid sources correspond to shifts in
163 archaeal community composition.

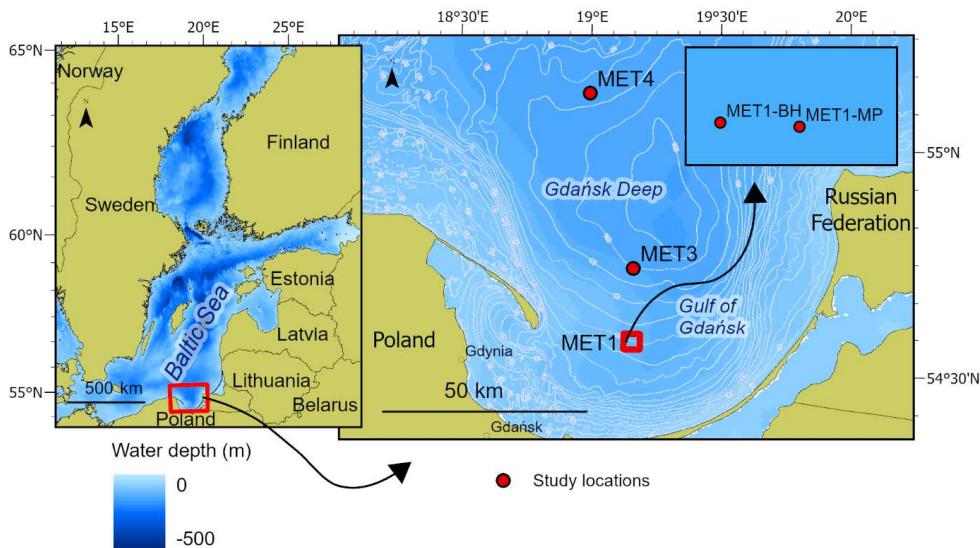
164
165 **2 Materials and methods**

166
167 **2.1 Study area**

168
169 Pockmarks in the Gdańsk Deep and the central Gulf of Gdańsk (Fig. 1) occur at water depths
170 of 1–100 m and are characterised by active gas seepage from Holocene silts and clays (Idczak
171 et al., 2020). Although the gas is predominantly biogenic (Brodecka-Goluch et al., 2022), the
172 presence of helium (up to 0.39%) (Idczak et al., 2020) and noble gases (Ne, Ar, Kr, Xe)
173 (Brodecka-Goluch et al., 2022) in samples from station MET1 suggests that these pockmarks
174 vent Middle Cambrian reservoirs, with gas migrating through sedimentary layers along faults
175 (Jaworowski et al., 2010; Idczak et al., 2020; Brodecka-Goluch et al., 2022), possibly with
176 additional crustal and mantle contributions (Kotarba, 2010; Pokorski, 2010; Kotarba and
177 Lewan, 2013; Kotarba and Nagao, 2015).

178
179 The study area spans the Gdańsk Basin and includes stations MET3 and MET4 in the northern
180 Gdańsk Deep, and MET1-MP and MET1-BH in the Gulf of Gdańsk (Fig. 1). The southern
181 stations (MET1 area) receive high inputs of terrestrial organic matter from the Vistula River,
182 trap plant material in pockmarks, and experience moderate anthropogenic contamination,
183 resulting in elevated TOC (Idczak et al., 2020; Łukawska-Matuszewska et al., 2022; Szymczak-
184 Żyła and Lubecki, 2022). The northern stations (MET3, MET4) receive less terrestrial input
185 and are dominated by marine organic matter (Brodecka-Goluch et al., 2022). Sedimentation
186 rates are lower in MET3 and MET4 ($\sim 0.17\text{--}0.20 \text{ cm yr}^{-1}$) than at MET1 ($\sim 0.15\text{--}0.22 \text{ cm yr}^{-1}$)
187 (Szczepańska and Uścinowicz, 1994; Brodecka-Goluch et al., 2022). The MET1 pockmarks are
188 characterised by methane bubbling and submarine groundwater discharge (Idczak et al., 2020;

189 Brodecka-Goluch et al., 2022). Methanogenesis pathways vary between sites: acetoclastic at
190 MET1-BH, hydrogenotrophic at MET3, and mixed at MET1-MP (Idczak et al., 2020;
191 Brodecka-Goluch et al., 2022). MET4 represents a stable, non-ebullitive and least-studied
192 system (Brodecka et al., 2013).


193
194 In the Gdańsk Basin, SGD is divided into shallow/coastal and deep/offshore components. The
195 shallow/coastal component occurs in nearshore areas and is fed by Quaternary-Cretaceous
196 coastal aquifers (e.g., Piekarek-Jankowska, 1996; Szymczycha et al., 2016, 2018), whereas the
197 deep/offshore component comprises artesian-type freshwater seepage with episodic discharge
198 at deep-water pockmarks such as MET1 (Szymczycha et al., 2018; Idczak et al., 2020). Deep
199 SGD originates from extensive Upper Cretaceous aquifers beneath the Gulf of Gdańsk
200 (Uścinowicz, 2011). Seepage intensity varies with hydrostatic pressure, water-column
201 processes, and fault activity (Brodecka-Goluch et al., 2022). After commercial extraction
202 ceased in 2000, natural hydrodynamic conditions returned (Uścinowicz, 2011), although the
203 extent and periodicity of deep discharge remain unquantified. SGD in the MET1 area reduces
204 sulphate and chloride concentrations with depth, compressing the SMTZ to a few cm below the
205 seafloor (Idczak et al., 2020; Brodecka-Goluch et al., 2022; Łukawska-Matuszewska and
206 Dwornik, 2025). A high carbonate alkalinity flux at MET1-MP indicates substantial DIC
207 generation during anaerobic diagenesis, potentially associated with Fe(III)-AOM (Łukawska-
208 Matuszewska and Dwornik, 2025).

209
210 **2.2 Sampling at MET stations**

211
212 The research stations were divided into pockmarks (sediments containing large amounts of gas
213 and possible SGD) and non-pockmarks (reference sites with gas in the sediments but without
214 emissions to the water column or SGD). Pockmark stations were further classified, based on
215 hydroacoustic and geophysical studies (Idczak et al., 2020; Brodecka-Goluch et al., 2022), as
216 active (gas emission, freshwater seepage, or both: P/MET1-BH, P/MET1-MP, P/MET4) or
217 inactive (gas present in the sediments without clear emission or freshwater seepage: P/MET3).

218
219 Eight sediment cores (95 cm long) were obtained from the central parts of methane-seeping
220 structures in the central Gdańsk Basin (south-eastern Baltic Sea) using a gravity corer from
221 three areas and four study locations (MET1: MET1-MP, MET1-BH; MET3; MET4; Fig. 1,
222 supplementary material Table S1) during a cruise aboard RV *Oceanograf* (University of
223 Gdańsk) in October 2019. Four additional cores were collected from outside the pockmarks
224 (~100 m away) as reference samples. Samples were categorised by origin: a 'P' prefix
225 (P/METX; X = 1-MP, 1-BH, 3, 4) for pockmark sediments and 'S' prefix (S/METX) for
226 surrounding sediments, namely reference non-pockmarks.

227
228 Onboard, the 95 cm cores for biomarker analysis were sectioned into a top 0-5 cm interval and
229 subsequent 10 cm intervals (hereafter referred to as horizons) for the remainder of the cores,
230 yielding 72 samples for geochemical analysis (some bottom samples are missing). Samples for
231 microbial analysis were subsampled at a slightly coarser resolution than 10 cm from the top,
232 mid-depth, and bottom intervals using a sterile spatula.

233

234 Fig. 1. Map of the study area in the south-eastern Baltic Sea, Gdańsk Basin. Study locations are indicated
235 by red dots. Reference stations (labelled as surroundings and tagged with an "S" prefix) were positioned
236 approximately 100 m away from each of the four pockmark stations on the seafloor, which contain
237 shallow gas within marine sediments but lack seabed features such as pockmarks. Map source:
238 Eurostat/GISCO, 2024, scale 1:1M, EPSG:4326 (CNTR_RG_01M_2024_4326; © EuroGeographics);
239 HELCOM (BSBD, 500 m); PGI-NRI/CBDG, Bathymetric map of the South Baltic Sea, 1:200,000
240 (OGC WMS 1.3.0).

241

242 2.3 TOC analysis

243

244 The organic matter content was assessed following dehydration (105 °C for 24 h) and dry
245 combustion (550 °C for 6 h) using gravimetric loss-on-ignition (LOI). TOC was estimated from
246 LOI using the empirically derived relationship for Bay of Gdańsk sediments reported by
247 Łukawska-Matuszewska et al. (2014): $TOC(\text{wt}\%) = 0.6042 + 0.3184 \times LOI(\%)$. Because LOI-
248 based conversions are sensitive to ignition conditions and sediment composition, and therefore
249 provide a screening-level estimate of TOC rather than an exact measurement, the LOI-derived
250 TOC values were evaluated against directly measured TOC for two representative cores using
251 paired comparisons (1:1 plots and Bland-Altman agreement analysis). Given the limited
252 number of paired measurements, LOI-derived TOC is used qualitatively (at the trend-level) to
253 provide geochemical context rather than for biomarker normalisation.

241

242 2.3 TOC analysis

243

244 The organic matter content was assessed following dehydration (105 °C for 24 h) and dry
245 combustion (550 °C for 6 h) using gravimetric loss-on-ignition (LOI). TOC was estimated from
246 LOI using the empirically derived relationship for Bay of Gdańsk sediments reported by
247 Łukawska-Matuszewska et al. (2014): $TOC(\text{wt}\%) = 0.6042 + 0.3184 \times LOI(\%)$. Because LOI-
248 based conversions are sensitive to ignition conditions and sediment composition, and therefore
249 provide a screening-level estimate of TOC rather than an exact measurement, the LOI-derived
250 TOC values were evaluated against directly measured TOC for two representative cores using
251 paired comparisons (1:1 plots and Bland-Altman agreement analysis). Given the limited
252 number of paired measurements, LOI-derived TOC is used qualitatively (at the trend-level) to
253 provide geochemical context rather than for biomarker normalisation.

254

2.4 Tetraether lipid extraction and analysis

255

256 All freeze-dried samples were ground using a mortar and pestle. Approximately 1 g of each
257 sample was extracted with dichloromethane:methanol (DCM:MeOH, 2:1, v/v) in an ultrasonic
258 water bath. Total lipid extracts (TLEs) were separated on a silica gel column using *n*-hexane
and methanol as eluents to obtain apolar and polar fractions, respectively.

259 The polar fraction containing core GDGTs was re-dissolved in hexane/isopropanol (99:1, v/v),
260 spiked with a known amount of an internal standard (a C₄₆ glycerol trialkyl glycerol tetraether;
261 Huguet et al., 2006), and passed through a 0.45 µm polytetrafluoroethylene syringe filter.
262 GDGTs were analysed using an ultra-high-performance liquid chromatograph (UHPLC;
263 Agilent 1260 Infinity) coupled to an Agilent 6130 single-quadrupole mass detector at Utrecht
264 University, following the method proposed by Hopmans et al. (2016). Quantification was based
265 on integrating the peak areas of the protonated ions ([M+H]⁺) in ChemStation software
266 (B.04.03) and comparing them with those of the internal standard. Selected ion monitoring
267 (SIM) was applied to detect and identify GDGTs. The target ions included *m/z* 1302, 1300,
268 1298, 1296 and 1292 for iGDGTs and OH-GDGTs. iGDGT data (raw peak areas, derived
269 fractional abundances/indices, and absolute concentrations) are reported in accordance with the
270 archiving and reporting recommendations of Bijl et al. (2025).

271 **2.5 DNA isolation, sequencing, and data analysis**

272 Genomic DNA from the sediment samples was isolated using the EURx kit for complex
273 matrices (Soil DNA Purification Kit, no. E3570, EURX Ltd., Poland). The protocol requires
274 mechanical homogenisation of the samples to release cells from the sediment matrix. The
275 isolated genomic DNA was subjected to metabarcoding analysis. Sequencing of the
276 hypervariable V3–V4 region of the 16S rRNA gene was commissioned to GENOMED S.A.
277 (Warsaw, Poland). Specific primer sequences (developed by Zymo Research, CA, USA) were
278 used to amplify the selected region and prepare libraries (341F: CCTACGGGDGGCWGCAG,
279 CCTAYGGGGYGCWGCAG; 806R: GACTACNVGGGTMTCTAATCC).

280 PCR was performed using Q5 Hot Start High-Fidelity 2× Master Mix, with reaction conditions
281 following the manufacturer's recommendations. Sequencing was conducted on a MiSeq
282 sequencer using paired-end (PE) technology (2 × 300 nt) with Illumina's v3 kit. FASTQ files
283 were processed with *fastp* (v. 0.23.2) (Chen et al., 2018) to improve the quality of the raw
284 sequences by trimming adapters, filtering low-quality reads, and removing artefacts. The
285 sequences were further analysed using Kraken2 (Wood et al., 2019) according to the protocol
286 described by (Lu et al., 2022). The SILVA database (v. 138) was used for taxonomic assignment
287 (Quast et al., 2013). Bracken was then applied to the Kraken2 reports, set at the genus level
288 with a threshold of five (Lu et al., 2017). The resulting data were transformed before analysis.
289 To address zero values, the results were imputed using the R package *Compositions* (v. 1.4.0.1)
290 (Palarea-Albaladejo and Martín-Fernández, 2015). The centred log-ratio (clr) transformation
291 was then applied using the *Compositions* (v. 2.0-5) package for R (Aitchison, 1982; Quinn et
292 al., 2019; van den Boogaart et al., 2024).

293 **2.6 Statistical analysis and data visualisation**

294 Multidimensional analyses, correlograms, and hierarchical analyses were performed using R
295 (R Core Team, 2023). RStudio 2025.05.0+496 "Mariposa Orchid", with R version 4.3.3 (2024-
296 02-29) running on the x86_64-apple-darwin20 (64-bit) platform, was used for all analyses. A
297 heatmap with cluster analysis of the archaeal community (at the class taxonomic level) was
298 generated using the Heatmap function from the *ComplexHeatmap* package. To examine the
299 grouping of samples between pockmark and reference sites, Classical Multidimensional Scaling
300 (MDS; principal coordinates analysis) was carried out using dist (dist_matrix <- dist(data),
301 method = "euclidean") and cmdscale (mds <- cmdscale(dist_matrix)) from the *stats* package.
302 The MDS results were visualised using the *ggplot2* and *ggrepel* packages (Wickham, 2016).

303 Permutational Multivariate Analysis of Variance (PERMANOVA) was performed using
304 adonis2 (permutations = 999, method = "bray") from the *vegan* package. Principal Component
305 Analysis (PCA) was conducted using PCA from the *FactoMineR* package, and the results were
306 visualised with fviz_pca_var from the *factoextra* package. A correlation network illustrating
307 relationships between Archaea (at the family taxonomic level) and GDGTs was constructed
308 using cor from the *stats* package; graph_from_adjacency_matrix (mode = "undirected",
309 weighted = TRUE, diag = FALSE) from the *igraph* package; mutate_as_tbl from the *tidygraph*
310 package; and *ggraph* for visualisation. Community structure was identified using
311 group_louvain (multilevel optimisation of modularity via *igraph*::cluster_louvain()), which
312 implements the multi-level modularity optimisation algorithm described by Blondel et al.
313 (2008). Pairwise correlations among iGDGT concentrations were calculated in R using
314 stats::cor.test() (Pearson and Spearman). Concentrations were \log_{10} -transformed before
315 correlation analysis ($\log_{10}[x + 10^{-6}]$) to reduce right skew. Correlations were computed using
316 pairwise complete observations, with the number of paired samples (*n*) reported. To account
317 for multiple testing, *p*-values were adjusted using the Benjamini–Hochberg false discovery rate
318 (FDR) procedure.

319 **2.7 Calculation of indices**

320 The GDGT-0/crenarchaeol ratio was calculated to assess potential contributions from
321 methanogens (although GDGT-0 is not exclusive to them) and ammonia-oxidising archaea to
322 iGDGT production (Blaga et al., 2009). Values > 2 have been proposed to indicate a substantial
323 methanogenic input (Blaga et al., 2009; Schouten et al., 2013; Zell et al., 2014).

324 $\text{GDGT-0/cren} = [\text{GDGT-0}] / [\text{crenarchaeol}]$

325 The GDGT-2/crenarchaeol (GDGT-2/cren) index is used as an additional screening tool for a
326 potential AOM contribution (Weijers et al., 2011). An elevated GDGT-2/cren ratio suggests
327 increased synthesis of GDGT-2 within the SMTZ, likely originating from methanotrophic
328 Euryarchaeota (Pancost et al., 2001; Wakeham et al., 2003; Stadnitskaia et al., 2005).

329 $\text{GDGT-2/cren} = [\text{GDGT-2}] / [\text{crenarchaeol}]$

330 The Methane Index (MI) is based on GDGT-1 to GDGT-3 and crenarchaeol and reflects the
331 balance between methanotrophic Euryarchaeota and planktonic or benthic Nitrososphaeria
332 (Zhang et al., 2011). GDGTs associated with methanotrophs — mainly GDGT-1 to GDGT-3
333 (Pancost et al., 2001; Zhang et al., 2011) — are primarily produced by ANME-1 (Rossel et al.,
334 2008). The MI, defined by Zhang et al. (2011), was calculated as follows:

335 $\text{MI} = [\text{GDGT-1} + \text{GDGT-2} + \text{GDGT-3}] / [\text{GDGT-1} + \text{GDGT-2} + \text{GDGT-3} + \text{cren} + \text{cren}']$

336 The percentage of OH-GDGTs expresses the relative contribution of hydroxylated iGDGTs to
337 the total iGDGT pool and indicates an enhanced contribution from OH-GDGT-producing
338 archaea and/or adaptation to low temperature and salinity. The index was calculated according
339 to Huguet et al. (2013):

340 $\text{OH-GDGT\%} = \Sigma[\text{OH-GDGT-0} + \text{OH-GDGT-1} + \text{OH-GDGT-2}] / \{\Sigma[\text{OH-GDGT-0} + \text{OH-}\text{GDGT-1} + \text{OH-GDGT-2}] + \Sigma[\text{GDGT-0} + \text{GDGT-1} + \text{GDGT-2} + \text{GDGT-3} + \text{cren} + \text{cren}']\} \times$
341 100

343 The ring indices of hydroxylated tetraethers (RI-OH and RI-OH') quantify the degree of
344 cyclisation, that is, the number of cyclopentane rings in the molecules, which increases with
345 temperature and decreases with salinity (Sinninghe Damsté et al., 2022). The RI-OH' is more
346 sensitive in cold regions (Varma et al., 2024). The indices were calculated according to Lü et
347 al. (2015):

$$348 \text{RI-OH} = \{[\text{OH-GDGT-1}] + 2 \times [\text{OH-GDGT-2}]\} / \{[\text{OH-GDGT-1}] + [\text{OH-GDGT-2}]\}$$
$$349 \text{RI-OH}' = \{[\text{OH-GDGT-1}] + 2 \times [\text{OH-GDGT-2}]\} / \sum [\text{OH-GDGTs}]$$

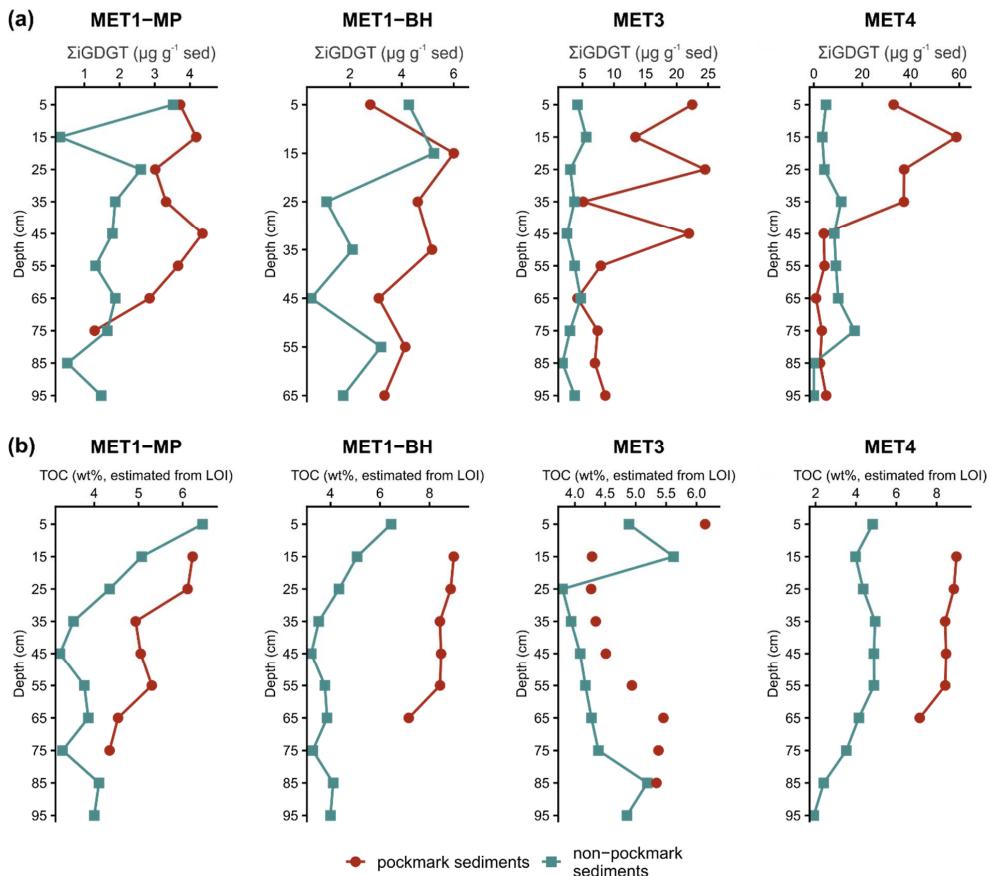
350 **3 Results**

351 **3.1 LOI-derived TOC**

353 TOC estimated from LOI showed a moderately positive correlation with directly measured
354 TOC (Supplementary material Fig. S1) (MET1-MP: Pearson $r = 0.684$, $n = 7$, $p = 0.090$; MET3:
355 $r = 0.411$, $n = 10$, $p = 0.239$), although the small sample size limits statistical power (both $p >$
356 0.05 at $\alpha = 0.05$). Consequently, LOI-based TOC estimates are interpreted qualitatively (at the
357 trend level), and agreement is assessed mainly through Bland–Altman bias and limits of
358 agreement (supplementary material Fig. S2).

359 **3.2 iGDGTs in pockmark and non-pockmark marine surface sediments**

360 The abundance and distribution of iGDGTs (GDGT-0 to GDGT-3, crenarchaeol, and its isomer)
361 were analysed in pockmark sediments and surrounding non-pockmark reference sediments
362 (Fig. 2), and all targeted iGDGTs were detected in both settings. Summed iGDGT
363 concentrations (Σ iGDGTs) span 0.02 – $58.85 \mu\text{g g}^{-1}$ sediment across all samples, with values
364 generally higher in pockmarks (0.92 – $58.85 \mu\text{g g}^{-1}$ sediment; median $5.10 \mu\text{g g}^{-1}$; mean 10.58
365 $\mu\text{g g}^{-1}$) than in reference sediments (0.02 – $16.81 \mu\text{g g}^{-1}$ sediment; median $2.59 \mu\text{g g}^{-1}$; mean 3.73
366 $\mu\text{g g}^{-1}$), that is, approximately twice as high at the median and three times higher on average.


367 Spatially, Σ iGDGTs are highest at the Gdańsk Deep study locations (MET3–MET4) and lower
368 in the MET1 area, consistent with an overall increase from south to north, whereas the
369 dominance pattern of crenarchaeol and GDGT-0 remains similar across settings. With depth,
370 Σ iGDGTs often show shallow to mid-depth maxima (commonly 15–45 cm), followed by
371 downcore depletion; concentrations typically decline by a factor of ~ 2.6 to ~ 64 , and can appear
372 much larger (up to ~ 840 -fold) where values approach near-zero in the deepest reference
373 intervals (S/MET4). When normalised to TOC, iGDGT concentrations remain higher in
374 pockmark sediments than in non-pockmark sediments (Fig. 2), although this difference is less
375 pronounced than when expressed per gram of sediment. However, LOI-derived TOC captures
376 only the broad downcore trend (declining with depth) and shows core-dependent uncertainty;
377 therefore, it is used solely to provide geochemical context (Fig. 2, supplementary material Fig.
378 S1, S2).

379 Crenarchaeol is the dominant iGDGT in both pockmark sediments (fractional abundance, FA
380 $= 0.53 \pm 0.03$ SD) and non-pockmark sediments (0.55 ± 0.02 SD), followed by GDGT-0 (FA $=$
381 0.43 ± 0.03 SD in pockmarks and 0.41 ± 0.02 SD in non-pockmarks) (Fig. 3). Overall,
382 crenarchaeol and GDGT-0 together account for $\sim 96\%$ in both sediment types, with similar
383 proportions in the two settings. In this dataset, GDGT-0 covaries very tightly with crenarchaeol
384 (Pearson $r = 0.996$, $n = 72$, BH-FDR $q = 2.03 \times 10^{-75}$; $\rho = 0.983$, BH-FDR $q = 2.06$
385 $\times 10^{-52}$).

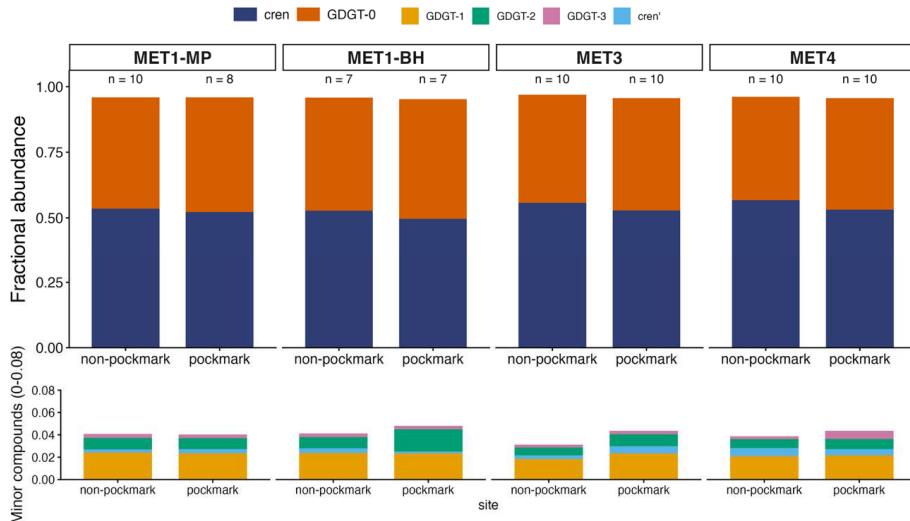
386 The remaining iGDGTs (GDGT-1 to GDGT-3) occur only in minor proportions and at much
387 lower concentrations. Spatially, the highest Σ iGDGT concentrations occur at sites in the Gdańsk
388 Deep (MET3, MET4), whereas the relative dominance of crenarchaeol and GDGT-0 remains
389 similar between pockmark and non-pockmark sediments across the study area. All
390 concentration profiles of individual iGDGTs (supplementary material Fig. S1) follow very
391 similar patterns (with outliers in MET1-BH/6 and MET4/3), except for minor changes in the
392 crenarchaeol isomer ('cren') at MET1-MP and MET1-BH, and even smaller differences at
393 MET3 and MET4. GDGT-1, GDGT-2, and GDGT-3 also covary strongly with crenarchaeol
394 (Pearson $r = 0.988, 0.954, 0.951$; Spearman $\rho = 0.961, 0.915, 0.937$; all BH-FDR $q < 0.05$; $n =$
395 72). Across all iGDGT pairs, correlations are consistently strong (Pearson $r = 0.847$ – 0.996 , all
396 BH-FDR $q \leq 6.43 \times 10^{-21}$; Spearman $\rho = 0.685$ – 0.986 , all BH-FDR $q \leq 3.16 \times 10^{-11}$; $n = 72$).
397 The GDGT-0/crenarchaeol ratio varies between 0.65 and 0.99 in pockmark sediments and
398 between 0.63 and 0.91 in non-pockmark sediments. Overall, these ratios show no consistent
399 depth trend across all cores; when changes occur, they are site-specific and modest compared
400 with the overlap between pockmark and non-pockmark sediments.

401 In all cores, GDGT-0/cren ratios are moderate and generally comparable across sediment types,
402 ranging from 0.65 to 0.99 in pockmarks and from 0.63 to 0.91 in non-pockmark sediments. The
403 GDGT-2/cren ratio is consistently low (0.01–0.04). In line with this, Methane Index (MI) values
404 show no clear distinction and remain low throughout the profiles. MI exhibits little variability
405 in pockmark sediments (0.04–0.09) and in non-pockmark sediments (0.03–0.07), indicating
406 similarly low values in both settings.

407
 408

409 Fig. 2. Downcore profiles of (top row; (a) summed isoprenoidal glycerol dibiphytanyl glycerol
 410 tetraethers (Σ iGDGTs; $\mu\text{g g}^{-1}$ dry sediment) and (bottom row; (b) total organic carbon (TOC; wt %,
 411 estimated from LOI) for sediment cores from four sites in the south-eastern Baltic Sea: MET1-MP and
 412 MET1-BH (Gulf of Gdańsk), and MET3 and MET4 (Gdańsk Deep). In (a), concentrations are plotted
 413 as a function of depth (cm), showing a general downcore decrease. Note that x-axis scales vary among
 414 panels. Σ iGDGTs exhibit elevated concentrations in pockmark sediments relative to adjacent reference
 415 sediments, with the most pronounced enrichments observed at the Gdańsk Deep sites (MET3, MET4),
 416 where elevated near-surface values are followed by a marked downcore decrease. In (b), TOC values
 417 were estimated from LOI using the Bay of Gdańsk LOI-TOC calibration (Łukawska-Matuszewska et
 418 al., 2014) and are presented for qualitative comparison of downcore trends (validation in supplementary
 419 material Fig. S1, S2). TOC concentrations are consistently elevated in pockmark sediments — most
 420 notably at MET4 — broadly paralleling the enhanced Σ iGDGT abundances.

421
 422 Table 1. Mean GDGT-based indices for pockmark (P) and reference (S) sediment cores at MET1 (MP,
 423 MET3, and MET4. Metrics include OH-GDGT%, hydroxylated GDGT ring indices (RI-OH, RI-
 424 OH'), Methane Index (MI), and diagnostic ratios (GDGT-0/cren, GDGT-2/cren). RI-OH exhibits
 425 minimal variation among sites and sediment types (\approx 1.1–1.2), indicating comparable OH-GDGT
 426 cyclization patterns. OH-GDGT% is moderately elevated at MET1 relative to MET3–MET4, with
 427 minimal within-site differences. MI values remain consistently low (0.05–0.07), indicating weak



428 methanotrophic influence on bulk GDGT distributions. GDGT-0/cren ratios are consistently elevated in
 429 pockmark cores relative to paired references, whereas GDGT-2/cren remains uniformly low (0.01–
 430 0.02), indicating that pockmark influence primarily affects GDGT-0 abundance rather than higher-
 431 cyclized GDGTs.

432

Sediment core	OH-GDGT%	RI-OH	RI-OH'	MI	GDGT-0/cren	GDGT-2/cren
P/MET1-MP	9.0	1.2	0.19	0.07	0.84	0.02
P/MET1-BH	9.3	1.2	0.19	0.07	0.92	0.02
P/MET3	7.9	1.2	0.21	0.07	0.76	0.02
P/MET4	7.8	1.1	0.19	0.05	0.74	0.01
S/MET1-MP	8.1	1.2	0.25	0.07	0.79	0.02
S/MET1-BH	8.1	1.2	0.23	0.07	0.80	0.02
S/MET3	7.0	1.2	0.19	0.05	0.73	0.01
S/MET4	7.2	1.2	0.21	0.07	0.69	0.02

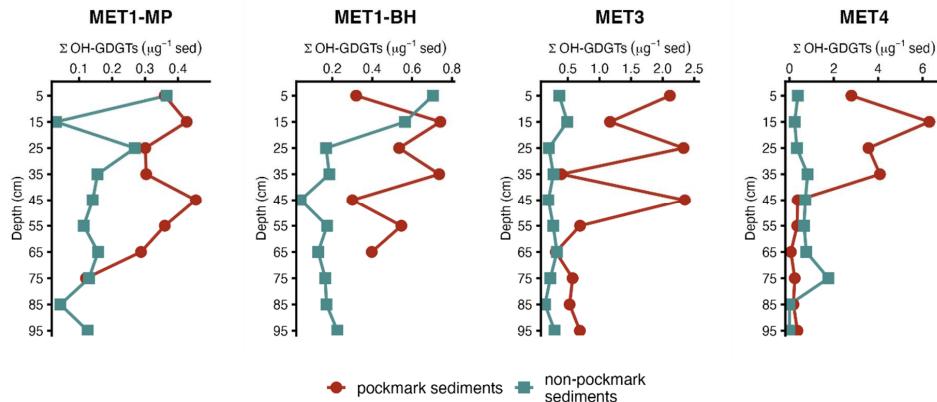
433

434

435 Fig. 3. Mean iGDGT fractional abundances in pockmark and non-pockmark sediments at four sites in
 436 the south-eastern Baltic Sea. Stacked bars represent mean fractional abundances of iGDGTs (GDGT-0–
 437 3, crenarchaeol, and cren'), averaged by site and sediment type; n indicates the number of horizons
 438 (samples). The upper panel shows the full scale (0–1), whereas the lower panel expands the y-axis (0–
 439 0.08) to resolve minor constituents. Crenarchaeol and GDGT-0 dominate across all sites, whereas
 440 GDGT-1–3 and cren' constitute minor fractions with greater variability. Compositional differences
 441 between pockmark and non-pockmark sediments are subtle and are primarily manifested in minor
 442 components (e.g. elevated GDGT-2 and/or cren' in certain pockmark settings).

443 3.3 OH-GDGTs in pockmark and non-pockmark sediments

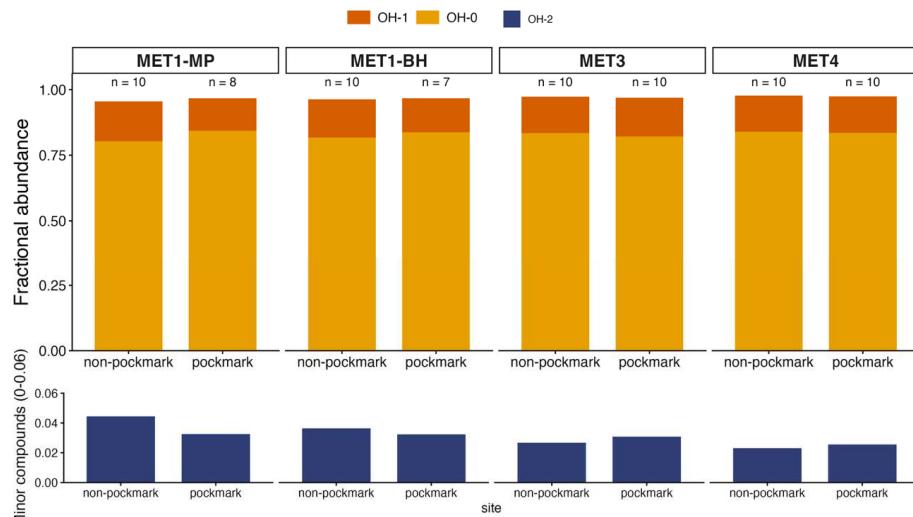
444 The abundance and distribution of hydroxylated GDGTs (OH-GDGT-0 to -2) in pockmark
 445 sediments and in surrounding non-pockmark reference sediments broadly reflect those of
 446 iGDGTs, with uniformly positive and very strong cross-correlations (Pearson $r = 0.840$ – 0.992


447 and Spearman $\rho = 0.602\text{--}0.975$) and the tightest coupling with GDGT-0 ($\Sigma\text{OH-GDGTs}$:
448 Pearson $r = 0.992$, $q = 4.44 \times 10^{-64}$; Spearman $\rho = 0.975$, $q = 2.51 \times 10^{-46}$) and crenarchaeol
449 (Pearson $r = 0.983$, $q = 3.74 \times 10^{-53}$; Spearman $\rho = 0.935$, $q = 5.15 \times 10^{-33}$). All targeted OH-
450 GDGTs were detected in both settings.

451 Summed OH-GDGT concentrations ($\Sigma\text{OH-GDGTs}$) span $0.00\text{--}6.30 \mu\text{g g}^{-1}$ sediment across all
452 samples (Fig. 4), with values generally higher in pockmarks ($0.06\text{--}6.30 \mu\text{g g}^{-1}$ sediment; median
453 $0.43 \mu\text{g g}^{-1}$ sediment; mean $1.02 \mu\text{g g}^{-1}$ sediment) than in non-pockmark sediments ($0.00\text{--}1.75$
454 $\mu\text{g g}^{-1}$ sediment; median $0.21 \mu\text{g g}^{-1}$ sediment; mean $0.31 \mu\text{g g}^{-1}$ sediment). $\Sigma\text{OH-GDGTs}$ are
455 on average approximately three times higher and about two times higher at the median in
456 pockmarks relative to non-pockmarks. Spatially, the highest $\Sigma\text{OH-GDGTs}$ occur at MET4,
457 intermediate values at MET3, and the lowest in the MET1 area, mirroring the northward
458 increase observed for ΣGDGTs . With depth, $\Sigma\text{OH-GDGTs}$ commonly show shallow to mid-
459 depth maxima (typically 15–45 cm), followed by downcore depletion that varies among cores,
460 with concentrations typically decreasing by a factor of ~ 2.8 in MET1–MET3 but reaching ~ 102
461 in MET4 (e.g. from 6.30 to $0.06 \mu\text{g g}^{-1}$ sediment in P/MET4) and approaching zero in the
462 deepest non-pockmark reference horizons of S/MET4.

463 Across all cores, OH-GDGTs are dominated by OH-GDGT-0 in both pockmark and non-
464 pockmark sediments ($FA = 0.83 \pm 0.02$ SD and 0.82 ± 0.03 SD, respectively), whereas OH-
465 GDGT-1 and OH-GDGT-2 are consistently minor components (Fig. 5). The OH-GDGT
466 distributions are broadly similar between the two sediment types (supplementary material Fig.
467 S4) Most variability is expressed in downcore concentration profiles, which typically decline
468 by a factor of ~ 1.2 to ~ 7.8 , with most cores showing a decrease by a factor of ~ 3 (P/MET1-BH
469 ends higher at the bottom, whereas S/MET4 peaks mid-core and declines to zero at the base).
470 Across all OH-GDGT pairs (OH-0, OH-1, OH-2), correlations are consistently very strong
471 (Pearson $r = 0.975\text{--}0.992$, all BH-FDR $q \leq 1.60 \times 10^{-49}$, $n = 75$; Spearman $\rho = 0.922\text{--}0.974$, all
472 BH-FDR $q \leq 7.18 \times 10^{-32}$, $n = 75$).

473 OH-GDGT% and RI-OH show only minor differences between sediment types (Table 1). OH-
474 GDGT% values in pockmarks are only slightly higher (6.4–9.9; mean 8.4 ± 1.1 SD) than in
475 non-pockmark sediments (6.2–9.4; mean 7.6 ± 0.9 SD). RI-OH is nearly identical between
476 settings (1.18 ± 0.04 SD in pockmarks; 1.19 ± 0.04 SD in non-pockmarks), whereas RI-OH' is
477 modestly higher in non-pockmark sediments (0.22 ± 0.05 SD) than in pockmarks (0.20 ± 0.02
478 SD). Overall, variability is more pronounced between cores than between pockmark and non-
479 pockmark sediments. Thus, variability in OH-GDGTs is mainly expressed in absolute
480 concentrations, with methane-rich pockmarks, particularly P/MET4, showing the highest
481 enrichment. The composition of OH-GDGTs and associated indices exhibits broadly similar
482 characteristics in both pockmark and non-pockmark sediments.


483

484

485

486 Fig. 4. Downcore profiles of summed hydroxylated glycerol dibiphytanyl glycerol tetraethers (ΣOH-
 487 GDGTs; $\mu\text{g g}^{-1}$ dry sediment) for sediment cores from four sites in the south-eastern Baltic Sea: MET1-
 488 MP and MET1-BH (Gulf of Gdańsk) and MET3 and MET4 (Gdańsk Deep). Concentrations are plotted
 489 as a function of depth (downcore increase; cm). ΣOH-GDGT concentrations follow the pattern of
 490 iGDGTs, with strong positive cross-correlations and the highest coupling with GDGT-0 and
 491 crenarchaeol (see Section 3.2). In the Gulf of Gdańsk (MET1-MP, MET1-BH), ΣOH-GDGTs display
 492 lower overall abundances than iGDGTs yet remain elevated in pockmark intervals relative to reference
 493 sediments.

494

495

496 Fig. 5. Mean OH-GDGT fractional abundances in pockmark versus non-pockmark sediments at four
 497 sites in the south-eastern Baltic Sea. Stacked bars represent mean fractional abundances of OH-0, OH-
 498 1 and OH-2, averaged by site and sediment type; n denotes the number of horizons (samples). The upper
 499 panel presents the full scale (0–1), whereas the lower panel expands the y-axis (0–0.06) to resolve OH-
 500 2. OH-0 dominates across all sites, with OH-1 contributing a smaller yet consistent fraction and OH-2
 501 occurring at low abundance. Compositional differences between pockmark and non-pockmark
 502 sediments are modest, primarily manifested in OH-2, which exhibits slight variability among sites.

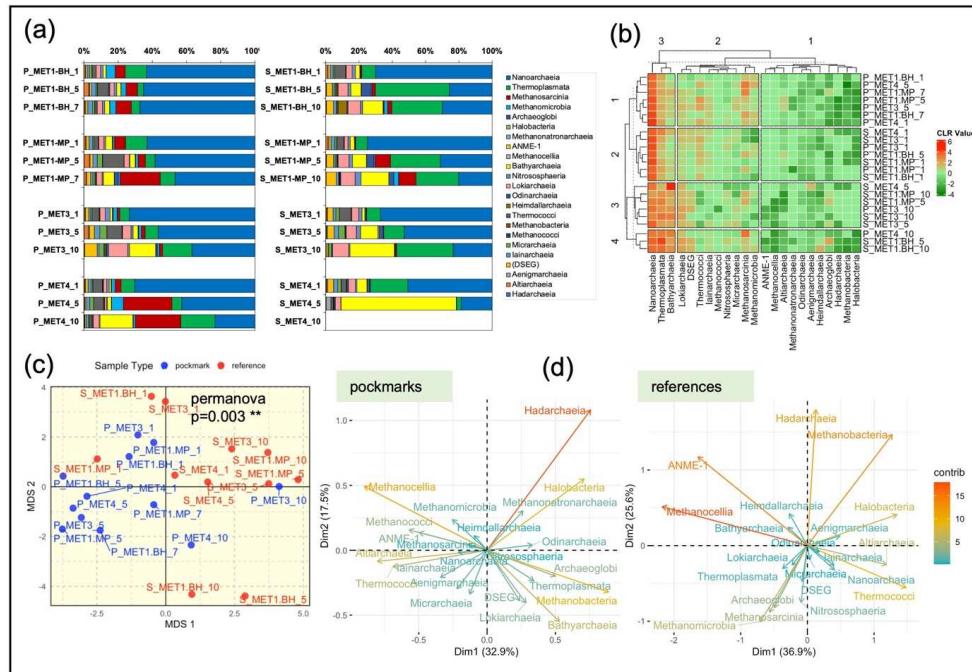
503

504 **3.4 Abundance and composition of archaea**

505 Pockmark and reference sediments in the Baltic Sea display markedly different archaeal
506 community structures (Fig. 6a). Nearly all samples are dominated by Nanoarchaeia and
507 Thermoplasmata, with additional contributions from Methanoscincinia (P/MET1-MP, P/MET4)
508 and Bathyarchaeia (S/MET3, S/MET4). Archaeal abundances are consistently higher in
509 pockmarks, particularly at MET3 and MET4, where populations peak at shallow to mid-depths
510 (5–45 cm). Reference sediments (non-pockmarks), in contrast, show lower overall archaeal
511 abundance but greater taxonomic diversity, with elevated proportions of Thermoplasmata,
512 Bathyarchaeia, Lokiarchaeia and Nitrosphaeria (Fig. 6). Methanogenic archaea
513 (Methanoscincinia, Methanobacteria, Methanomicrobia) and AOM-related taxa (ANME-2b) are
514 more common in pockmarks (supplementary material, Fig. S6–S8), while Nanoarchaeia,
515 although dominant in both settings – particularly the genus *AR15* – are proportionally enriched
516 in pockmarks (Fig. 6a).

517 Methanogen community composition varies with depth, with *Methanoscincina* and
518 *Methanosaeta* typically dominating, especially in non-pockmark reference sediments
519 (Supplementary Material Fig. S7). *Candidatus Nitrosopumilus* (Nitrosphaeria) is notably
520 enriched in reference sediments, where this ammonia-oxidising archaeon (AOA) can account
521 for up to 70% of the community (Supplementary Material Fig. S6). Conversely, methane-
522 cycling archaea – particularly Methanoscincinia – dominate pockmarks, constituting up to ~30%
523 of the total archaeal population (P/MET4), especially at greater depths (Fig. 6a). This pattern is
524 most pronounced in MET4, where ANME-2b reaches ~40% and dominates the lower sediment
525 profile (supplementary material Fig. S6b), while methanotrophic taxa are largely absent from
526 reference cores (supplementary material Fig. S8).

527 Thermoplasmata, Bathyarchaeia and Lokiarchaeia show contrasting distributions between
528 sediment types. Thermoplasmata reaches up to 11% in pockmarks but is more prevalent in
529 reference cores, reaching ~30% in MET1-BH (Fig. 6a). Bathyarchaeia is particularly abundant
530 in reference sediments, peaking at 70% at 45 cm depth in MET4, compared with <7% in
531 pockmarks (Fig. 6a). Lokiarchaeia follows a similar pattern, constituting ~6% in references
532 versus ~3% in pockmarks (Fig. 6a).


533 Other archaeal groups – including Thermococci, the Deep Sea Euryarchaeotic Group (DSEG),
534 Methanomicrobia and Iainarchaeia – show greater variability, contributing up to 5% across both
535 sediment types (Fig. 6a). Some taxa are habitat-specific: Methanobacteria and
536 Methanomicrobia occur mostly in pockmarks, whereas ANME-1 and Heimdallarchaeia
537 are found chiefly in reference cores, although all are present at low abundances (Fig. 6a, b).

538 Depth-dependent patterns further distinguish the two sediment types. In pockmarks, archaeal
539 abundances typically peak at mid-depths (40–45 cm), with the highest value (~30,000 reads) in
540 the upper horizon of P/MET4 (supplementary material Fig. S9). Reference sediments show
541 lower overall abundances (maximum ~18,000 reads), with flatter depth profiles and increasing
542 proportions of Bathyarchaeia and Thermoplasmata with depth.

543 Hierarchical clustering of relative abundances reveals four distinct groups (Fig. 6b): Cluster 1
544 comprises pockmark samples; Cluster 2 combines reference and pockmark samples; Cluster 3
545 consists mainly of reference samples; and Cluster 4 includes two reference samples surrounding
546 MET1-BH plus the P/MET4-10 sample (outliers).

547

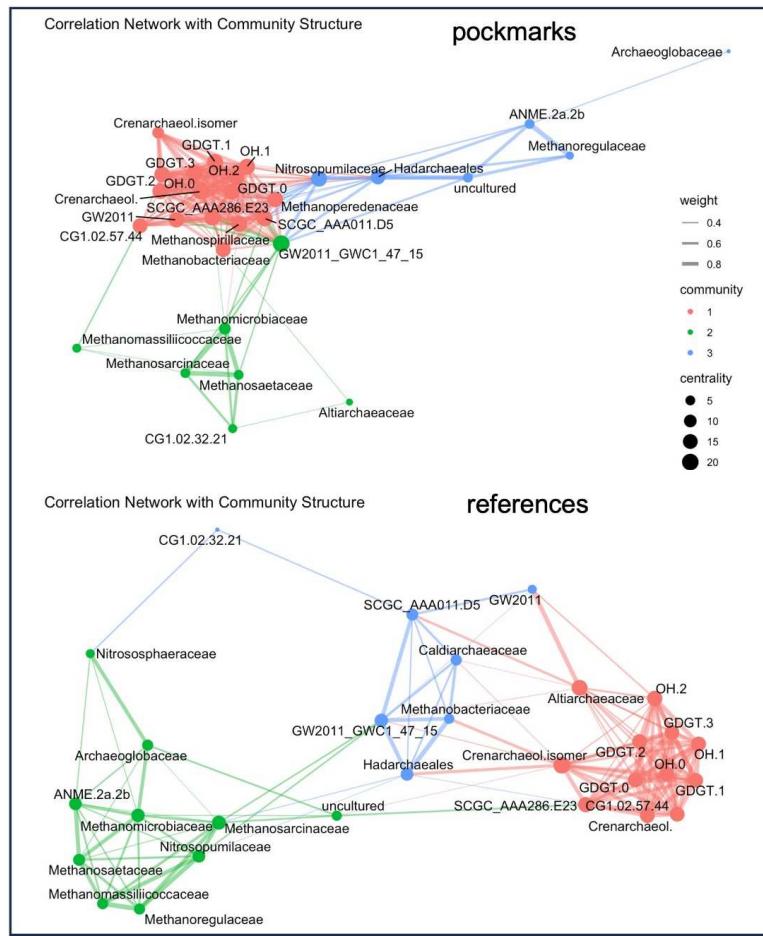
548

549 Fig. 6. Archaeal community composition and multivariate structure in pockmark versus reference
 550 sediments from four sites. (a) Relative abundance profiles (stacked bars) of archaeal taxonomic groups,
 551 shown separately for pockmark (P) and reference (S) sediments. (b) Heatmap of CLR-transformed
 552 community data showing covariation among taxa and samples; dendograms show hierarchical
 553 clustering. Colour intensity reflects centred log-ratio (CLR)-transformed relative abundances, where red
 554 represents higher relative enrichment and green indicates lower enrichment. (c) NMDS
 555 ordination showing separation between pockmark (blue) and reference (red) samples (PERMANOVA,
 556 $p = 0.003$). (d) Ordination biplots for pockmarks and references, showing taxa contributing most to
 557 within-group variability. Nanoarchaeia dominate across all sites. Pockmark horizons show elevated
 558 Methanosarcina (MET1-MP, MET4), whereas reference horizons show stronger Thermoplasmata
 559 and/or Bathyarchaeia contributions. Hierarchical clustering reveals partial intermixing of pockmark and
 560 reference samples, indicating that community structure reflects both habitat type and site-specific
 561 variability. NMDS shows significant separation (PERMANOVA, $p = 0.003$), with reference samples
 562 more dispersed and pockmark samples more tightly grouped. Taxa driving within-group variability
 563 differ between habitats: Hadarchaeia and Halobacteria dominate the pockmark ordination, whereas
 564 Methanobacteria, ANME and Hadarchaeia drive the reference ordination.

565

566 The differences between pockmark and reference samples appear to be statistically significant.
 567 Multivariate analysis based on MDS demonstrates the clustering of samples into two distinct
 568 categories: pockmarks versus reference sediments (Fig. 6c). The PERMANOVA test confirmed
 569 the statistical significance of these differences at $p = 0.003$. However, some variation is evident
 570 — pockmark samples are more tightly clustered, whereas reference samples appear slightly
 571 more dispersed. Based on these analyses, it can be inferred that methane-bearing sediments
 572 (pockmarks) differ significantly in their archaeal composition from the surrounding, non-
 573 pockmark sediments, here defined as reference samples. PCA further identified the groups

574 contributing most to the differentiation of samples (Fig. 6d). In the case of pockmarks, the
575 groups with the greatest influence on sample variability are Hadarchaeia > Methanobacteria >
576 Methanocellia > Halobacteria. In reference samples, the key contributors are Methanocellia >
577 ANME-1 > Methanobacteria > Hadarchaeia. While the same groups largely explain the
578 variability in both cases, the proportions of their contributions differ, resulting in distinct
579 community compositions, as confirmed by previous analyses.


580 **3.5 Correlation network**

581 To link GDGT patterns to probable biological sources, we combined iGDGT and OH-GDGT
582 abundances with archaeal 16S rRNA (family-level) relative abundances using correlation
583 network analysis. This approach identified co-varrying lipid – taxon modules that may indicate
584 common sources, ecological niches, or interconnected processes rather than direct biosynthesis
585 alone.

586 In pockmark sediments, the correlation network resolves three main co-varying archaeal
587 communities (Fig. 7). The first community (red) comprises the full suite of measured GDGTs
588 and is most strongly connected to several Nanoarchaeia lineages (GW2011,
589 SCGC_AAA286_E23, CG1.02.57.44, SCGC_AAA011.D5), with additional links to
590 *Methanoperedenaceae*. The second community is dominated by ammonia-oxidising
591 *Nitrosopumilaceae* and clusters with Hadarchaeales. Within this module, *Nitrosopumilaceae*
592 show the strongest positive links to GDGT-0 and the remaining iGDGTs along with OH-
593 GDGTs. The same module contains ANME-2a/2b, *Methanoregulaceae*, and uncultured
594 lineages that are strongly interconnected with one another but show comparatively weaker links
595 to GDGTs. *Archaeoglobaceae* forms a peripheral node and does not meet the edge-retention
596 criteria with any GDGTs in pockmarks. The third community groups methanogenic lineages,
597 including *Methanospirillaceae*, *Methanobacteriaceae*, *Methanosarcinaceae*,
598 *Methanosaetaceae*, *Methanomicrobiaceae*, *Methanomassiliicoccaceae* and CG1.02.32.21
599 (associated with the order *Micrarchaeales*). These are less directly connected to GDGTs but
600 strongly interlinked with one another. This cluster also contains another Nanoarchaeia
601 representative (GW2011_GWC1_47_15).

602 In reference sediments, GDGT associations are distributed more broadly across archaeal
603 groups, and the network exhibits higher modularity, with clearer separation among modules. A
604 lipid cluster (crenarchaeol, cren', GDGT-0-3, and OH-GDGTs) correlates with both ammonia
605 oxidisers (*Nitrosopumilaceae*, *Nitrososphaeraceae*) and multiple methanogenic families
606 (*Methanosaetaceae*, *Methanosarcinaceae*, *Methanoregulaceae*, *Methanomicrobiaceae*,
607 *Methanomassiliicoccaceae*). Compared with pockmarks, methanogens show fewer direct links
608 to the GDGT cluster and more to ANME-2a/2b. *Archaeoglobaceae* remains peripheral but
609 shows weak links to *Nitrososphaeraceae* and methanogens.

610 Overall, the pockmark network shows low modularity and relatively dense connectivity,
611 indicating a closely coupled archaeal community. At the same time, the strongest GDGT links
612 centre on *Nitrosopumilaceae*, implying that AOA dominate GDGT co-variation in these
613 methane-rich sediments, while methanogens/ANME form more distinct subclusters with
614 weaker GDGT coupling.

615
 616

617 Fig. 7. Correlation networks linking archaeal lipid biomarkers and community members in pockmark
 618 and reference (non-pockmark) sediments. Nodes represent lipid variables (GDGTs, OH-GDGTS) and
 619 archaeal taxa (family level). Edge thickness reflects correlation strength; node colour denotes
 620 modules/modules (1–3); node size reflects centrality (larger nodes indicate more central or highly
 621 connected features). Lipid variables form a tightly connected subnetwork (module 1; red), while
 622 additional modules comprise methane-cycling and other archaeal lineages. Module connectivity differs
 623 between sediment types, indicating habitat-dependent coupling between biomarkers and archaeal taxa.
 624 Pockmark networks show tighter coupling between lipid biomarkers and methane-cycling lineages,
 625 whereas reference sediments display clearer module separation, with lipids and the archaeal community
 626 varying more independently.

627
 628

4 Discussion

4.1 Archaeal community diversity and methanogenesis

630 Pockmark sediments exhibit substantially higher methanogen diversity (11 genera detected)
 631 and a higher abundance of methane-cycling archaea (approximately threefold) compared with
 632 non-pockmark reference sediments (six genera). Correspondingly, total iGDGT and OH-GDGT

633 concentrations are approximately three times higher in pockmarks than in non-pockmark
634 references. In the correlation network (Fig. 7), pockmarks represent a tightly coupled metabolic
635 system in which various archaeal groups act in concert — likely carrying out methanogenesis
636 and ammonia oxidation — whereas at the reference (non-pockmark) sites these groups form
637 less integrated sub-communities. This suggests that, in the absence of fluid seepage, these
638 microorganisms adopt more independent or niche-partitioned ecological roles.

639 *Methanosarcina* predominates throughout all sediment horizons in both pockmark and non-
640 pockmark reference sediments, likely owing to its metabolic versatility (Sowers et al., 1993;
641 Galagan et al., 2002; Maeder et al., 2006), which confers competitive advantages under
642 fluctuating environmental conditions (e.g., hydrostatic pressure governing seeps, seasonal
643 thermocline dynamics, nutrients availability, North Sea saline water inflow). The vertical
644 distribution of methanogenic archaea shifts with sediment depth, with *Methanosarcina* and
645 *Methanosaeta* predominating, particularly in non-pockmark reference sediments. Both taxa
646 drive acetoclastic methanogenesis (Conklin et al., 2006; Welte et al., 2014) and are favoured in
647 sediments with high labile organic matter (Li et al., 2022). In MET1-MP and MET1-BH sites,
648 their abundance remains high, consistent with elevated TOC LOI-based levels (**Error!**
649 **Reference source not found.b.**) Both are major contributors to the GDGT-0 pool in estuarine
650 sediments (De Rosa et al., 1977; Schouten et al., 2013; Bauersachs et al., 2015). GDGT-0 is the
651 second most abundant GDGT in the analysed samples (**Error! Reference source not found.**)
652 and exhibits fluctuating concentrations in the MET1-area pockmarks (supplementary material
653 Fig. S1), which are characterised by strong SGD.

654 In contrast, *Methanosaeta* abundance declines sharply with depth in MET3 and MET4 and is
655 replaced by diverse hydrogenotrophic genera, including *Methanospirillum*, *Methanogenium*,
656 *Methanomicrobium*, *Methanoculleus*, *Methanocorpusculum*, *Methanobrevibacter*, and
657 *Methanolinea*. MET4 pockmark sediments, characterised by the highest total GDGT
658 concentrations and the most pronounced individual GDGT peaks (Fig. 2, 4; supplementary
659 material Fig. S1), harbour exceptionally abundant hydrogenotrophic methanogens (particularly
660 *Methanoregula*) alongside *Methanosarcina*, with the MET3 pockmark showing the next
661 highest abundance. These hydrogenotrophs belong to the class Methanomicrobia and are
662 known to produce acyclic GDGTs (Bale et al., 2019; Zeng et al., 2022), with a genus like
663 *Methanobrevibacter* identified as a GDGT-0 producer (Bauersachs et al., 2015; Elling et al.,
664 2017). Similar hydrogenotrophic communities have been documented in an inactive pockmark
665 in the Hanko Basin, northern Baltic Sea (Purkamo et al., 2022). In this dataset, pockmark MET3
666 was also inactive during the study period, and pockmark MET4 is characterised by low-
667 intensity SGD.

668 Pronounced differences are observed among sites. *Methanoregula* is notably absent from
669 MET3 sediments. Contrary to earlier observations suggesting a near-absence of methanogens
670 at MET3 (Brodecka-Goluch et al., 2022), the 16S rRNA gene data reveal multiple
671 methanogenic lineages (as noted above) throughout the sediment profile, indicating episodic or
672 niche-specific methanogenic activity. MET4 hosts the most diverse and abundant methanogen
673 community (supplementary material Fig. S9), coinciding with exceptionally high GDGT
674 concentrations (**Error! Reference source not found.**, 4), which suggests efficient production
675 and favourable preservation of GDGTs. Elevated GDGT concentrations in MET4 and MET3
676 may reflect deposition in a fine-grained depocenter of the Gdańsk Basin/Gdańsk Deep, where
677 sediment focusing (including trapping within the concave pockmark morphology) and
678 accumulation can be substantial, although the Gulf of Gdańsk also exhibits high accumulation
679 driven by terrigenous input. However, the MET3 and MET4 study sites were characterised by

680 stable, non-ebullitive methane emissions, which could have contributed to the better
681 preservation of iGDGTs.

682 Several archaeal groups, including Thermoplasmata, Bathyarchaeia, Lokiarchaeia,
683 Heimdallarchaeia, Archaeoglobi, and the Deep Sea Euryarchaeotic Group (DSEG), are
684 associated with the degradation of complex organic matter, aromatic carbon breakdown, protein
685 catabolism, and fermentation (Zinke et al., 2019). These groups — particularly Bathyarchaeia
686 and Thermoplasmata — are more abundant in non-pockmark sediments than in pockmarks and
687 may contribute to GDGT production in anoxic environments (Besseling et al., 2018, 2020;
688 Baxter et al., 2021). Bathyarchaeia thrive in anoxic settings, degrading recalcitrant organic
689 matter (Baxter and Zalar, 2019; Blewett et al., 2022; Zeng et al., 2022), while Archaeoglobi
690 mediate both sulphate reduction and methanogenesis (Lynes et al., 2024). Asgard archaea,
691 including hydrocarbon-degrading Lokiarchaeia and hydrogen-dependent acetogenic
692 Heimdallarchaeia (Zhang et al., 2025), also show higher abundance in non-pockmark sediments
693 and may contribute to iGDGT production, likely GDGT-0 (Zeng et al., 2022). Although the
694 tetraether synthase (tes) gene, essential for GDGT biosynthesis, has been identified in
695 Hadarchaeia and Altarchaeia, GDGTs have not yet been detected in these groups (Zeng et al.,
696 2022). Notably, some Hadarchaeia grow syntrophically with methanogens (Yu et al., 2024).

697 Pockmark sediments exhibit more frequent shifts in the dominance of alternative methanogenic
698 genera than non-pockmark sediments, which may reflect the dynamic geochemical conditions
699 characteristic of these gas systems.

700 **4.2 Assessing AOM: iGDGT indices and ANME composition**

701 Peaks in archaeal abundance and GDGT concentrations within 5–45 cm sediment depth may
702 mark the sulphate–methane transition zone (SMTZ), strongest at MET4 and MET3 and weakest
703 at MET1 (Fig. 2). This pattern inversely correlates with gas flow and bubbling intensity reported
704 previously (Jaśniewicz et al., 2019; Brodecka et al., 2013; Idczak et al., 2020; Brodecka-Goluch
705 et al., 2022; Kurowski et al., 2024). However, iGDGTs indices (Table) do not support a strong
706 AOM imprint, as values remain uniformly low. MI values (<0.09) fall well below the 0.3-0.5
707 threshold indicative of methane-impacted sediments observed by Zhang et al. (2011).

708 The MI index, calculated as the ratio of GDGT-1-3 to crenarchaeol, typically indicates minimal
709 methanotrophic contribution relative to Nitrososphaeria-derived sources when low (Zhang et
710 al., 2011). The uniformly low MI values observed here likely reflect a strong crenarchaeol
711 signal from ammonia-oxidising archaea (Fig. 3) and/or limited GDGT-1-3 production by the
712 dominant AOM lineages, rather than definitively excluding AOM. GDGT-1 to -3, which
713 increase substantially in ANME-1-dominated systems (Rossel et al., 2008), are two orders of
714 magnitude less abundant in the analysed samples, consistent with the near-absence of ANME-
715 1 (maximum relative abundance of 0.6% in S/MET3/5; Fig. 6). Correspondingly, only the
716 inactive pockmark MET3 exhibited relatively elevated sulphate concentrations among the sites
717 previously examined (Brodecka-Goluch et al., 2022).

718 Although the applicability of MI to ANME-2 and ANME-3 (which dominate the AOM
719 community here; supplementary material Fig. S8, S9) has been questioned, comprehensive
720 biomarker investigations generally validate its utility for AOM detection (Kim and Zhang,
721 2023). Nevertheless, ANME-2 and ANME-3 alone are unlikely to contribute substantially to
722 GDGT production (Niemann and Elvert, 2008; Weijers et al., 2011), rendering MI non-
723 diagnostic in the analysed settings. The consistently low GDGT-2/cren ratios (maximum 0.4)

724 corroborate this interpretation. This ratio typically indicates methane-rich AOM conditions
725 when ANME-1-synthesized GDGT-2 (Rossel et al., 2008) is elevated relative to crenarchaeol.

726 Nevertheless, ANME lineages are more prevalent in pockmark sediments (supplementary
727 material Fig. S6, S8), suggesting enhanced AOM activity, particularly at MET3 and MET4.
728 Peaks in GDGT-1 to -3 concentration also occur at non-pockmark reference sites, though at
729 lower concentrations, following the general trend for all iGDGTs (supplementary material Fig.
730 S3). The limited contribution of GDGT-1-3 to bulk GDGTs likely reflects the low sulphate
731 concentrations documented previously (Broclawik et al., 2020; Brodecka-Goluch et al., 2022;
732 Idczak et al., 2020; Łukawska-Matuszewska et al., 2022; Ehlert von Ahn et al., 2024), which
733 constrains the metabolic activity of sulphate-dependent ANME clades (Timmers et al., 2015).
734 In addition, certain core GDGTs (e.g., GDGT-1) may originate from diagenesis and degradation
735 of phosphohexose headgroups predominantly produced by *Nitrosopumilus* in the Baltic Sea
736 (Wittenborn et al., 2023).

737 Overall, AOM activity appears constrained in studied pockmarks, consistent with previous
738 investigations demonstrating weak AOM confined to thin, shallow sediment layers and
739 potentially dependent on alternative electron acceptors (Broclawik et al., 2020; Idczak et al.,
740 2020; Brodecka-Goluch et al., 2022; Łukawska-Matuszewska et al., 2022; Ehlert von Ahn et
741 al., 2024). The minor contribution of *Ca. Methanoperedens* in the dataset (MET1-MP;
742 supplementary material Fig. S8) further supports AOM coupled to nitrate and/or metal oxide
743 reduction. Members of the family *Methanoperedenaceae* (formerly ANME-2D) typically
744 inhabit sulphate-depleted freshwater systems and conduct AOM independently of syntrophic
745 partnerships (Haroon et al., 2013; Ettwig et al., 2016; Vaksmaa et al., 2017; Leu et al., 2020).

746 Within the methane-cycling archaeal community, methanogens appear to be the principal
747 contributors to GDGT biosynthesis (Fig. 7). Although GDGT-0 and crenarchaeol predominate
748 in marine sediments (Schouten et al., 2002), their elevated concentrations across all investigated
749 gas systems indicate that they function as primary iGDGTs biomarkers in the sediments of the
750 Gdańsk Basin, even in methane-rich settings harbouring both methanogenic and
751 methanotrophic communities. However, GDGT-0 lacks source specificity and can be
752 synthesised by multiple archaeal lineages, including methanogens and methanotrophs (Pancost
753 et al., 2001; Blaga et al., 2009; Inglis et al., 2015; Słowakiewicz et al., 2016; Petrick et al.,
754 2019), which may also produce cyclised GDGTs (Koga et al., 1993; Weijers et al., 2006;
755 Schouten et al., 2013; Bauersachs et al., 2015), although this is not always replicable in culture
756 studies (Bauersachs et al., 2015).

757 **4.3 AOA-driven GDGT signatures in pockmarks: the dominance of crenarchaeol**

758 The network analysis indicates that AOA-associated lipids (crenarchaeol and statistically co-
759 varying GDGT-0) are the primary drivers of variation in the bulk GDGT pool (Fig. 7), likely
760 masking the methanogen signal through the influence of Nitrosphaerota on the GDGT-0/cren
761 ratio. The observed GDGT-0/cren ratios below 0.99 in Gdańsk Basin samples fall well below
762 the threshold of 2, characteristic of methanogen-dominated systems (Schouten et al., 2002;
763 Blaga et al., 2009), indicating minimal methanogen contribution and AOA predominance.
764 Despite this AOA dominance, GDGT-0 concentrations remain relatively elevated across the
765 pockmark sites, particularly at the inactive pockmark P/MET3 and the low-SGD pockmark
766 MET4, compared with active venting systems characterised by advective methane flow, such
767 as mud volcanoes on the Canadian Beaufort Sea slope (Lee et al., 2018).

768 Methane seepage creates chemically reducing conditions that limit the growth of oxygen-
769 requiring organisms. However, seep systems also generate sharp chemical gradients and
770 microenvironments (e.g., thin oxic/suboxic boundary layers) in which AOA can survive and
771 function (Jakobs et al., 2016). Consequently, crenarchaeol remains the dominant iGDGT in
772 both pockmark and reference sediments (Fig. 3), as it is abundant in the overlying water column.

773 In the northern Baltic Sea pockmarks (Hanko Basin), Nitrososphaeria – including some
774 populations of groundwater origin – constitute a major component of the archaeal community
775 (Purkamo et al., 2022), consistent with evidence that *Ca. Nitrosopumilus* is widespread in the
776 Baltic Sea and represents an important GDGT-producing lineage (Wittenborn et al., 2023).
777 However, amplicon-based relative abundance reflects the compositional distribution of
778 recovered 16S rRNA gene reads after DNA extraction (Gloor et al., 2017), rather than directly
779 measuring lipid production rates, whereas sedimentary iGDGTs integrate archaeal lipid
780 production and export over longer timescales, with their distribution further shaped by
781 preservation conditions (Lengger et al., 2013). Given that AOA are abundant in the Baltic Sea
782 under low-oxygen conditions and along redox gradients (Berg et al., 2015b), the consistently
783 low GDGT-0/cren ratios (<1) observed herein indicate a crenarchaeol-rich iGDGT pool,
784 suggesting substantial pelagic contribution from the settling and export of AOA-derived
785 crenarchaeol from the water column.

786 Nanoarchaeota, prevalent across the samples, are likely involved in ectosymbiosis with
787 Nitrososphaeria, consistent with their reliance on symbiotic relationships (Waters et al., 2003).
788 Nanoarchaeota may also possess GDGTs, previously attributed to their biological hosts (Zeng
789 et al., 2022), which could explain their correlation with GDGTs (Fig. 6). They can also associate
790 with methanogens (Brick et al., 2025), which may account for their high relative abundance
791 (~40% in non-pockmark and ~55% in pockmark sediments). Other frequent groups (e.g., AR15,
792 AR20) are likewise symbiotic or parasitic; the latter, linked to groundwater (Castelle et al.,
793 2015), underscores the influence of SGD in the Gulf of Gdańsk.

794 **4.4 Influence of SGD and pockmark activity on marine pore waters and GDGT
795 production**

796 The elevated methanogen populations observed in our dataset (supplementary material Fig. S8)
797 may be influenced by freshwater inputs associated with SGD, as methanogenic archaea can be
798 more abundant under lower-salinity conditions along estuarine gradients, as demonstrated by
799 Li et al. (2022). However, the effects of SGD are highly site-specific; the MET1 area and the
800 MET4 pockmark are subject to differing degrees of freshwater infiltration (supplementary
801 material Table S1). In the Gdańsk Basin, freshwater inflow further dilutes the already low
802 chloride and sulphate concentrations (Idczak et al., 2020; Brodecka-Goluch et al., 2022;
803 Łukawska-Matuszewska and Dwornik, 2025). Idczak et al. (2020) and Brodecka-Goluch et al.
804 (2022) reported fluctuating low-oxygen to anoxic conditions in the bottom waters (MET1 area,
805 MET3), promoting steep redox gradients which, together with sulphate depletion, favour
806 methanogenesis. This may account for the high GDGT-0 concentrations (supplementary
807 material Fig. S3). In addition, high terrestrial (MET1) or marine organic matter input (MET3,
808 MET4) (estimated TOC levels; Fig. 2), enhanced by anthropogenic contamination, creates
809 favourable conditions for intensive organic matter mineralisation and methanogenesis.

810 Following the SGD-focused framework of Purkamo et al. (2022), SGD-driven advection can
811 compress redox and reaction zones into the uppermost centimetres, reduce organic matter
812 accumulation, and suppress SMTZ development. In such active pockmarks, archaeal

813 communities are dominated by AOA (Purkamo et al., 2022). Conversely, inactive pockmarks
814 dominated by diffusion accumulate organic-rich fine-grained sediments and are characterised
815 by sulphate reduction and methanogenesis, with methanogens prominent in the archaeal
816 community. This suggests that advection, typical of active pockmarks, dominates in the MET1
817 area, whereas diffusion governs the inactive MET3, and that MET4 is probably not sufficiently
818 active, as its iGDGT and archaeal abundance trends resemble those of MET3.

819 Microbial activity hotspots typically develop at interfaces and mixing zones (Stegen et al.,
820 2016). The elevated archaeal abundances (particularly methanogenic and methanotrophic
821 groups; Fig. 6; supplementary material Fig. S7, S8) and elevated iGDGT concentrations (Fig.
822 2, 4) observed at MET4 and in the MET1 area likely result from SGD–marine water mixing
823 within a shallow redox-transition layer, where freshened groundwater mixes with marine
824 porewater. This mixing occurs immediately below the sediment–water interface (SWI) or
825 within a few decimetres of the seafloor (depending on hydrostatic conditions), sharpening redox
826 gradients (within ~40 cm; Idczak et al., 2020; Brodecka-Goluch et al., 2022), which
827 corresponds well with the elevated iGDGT concentrations detected in the upper 45 cm.
828 Additionally, Jaśniewicz et al. (2019) noted the mechanical displacement of sub-bottom
829 stratification and the disruption of sediment layering caused by gas bubbles in the sediments of
830 the Gdańsk Basin. Furthermore, bottom currents likely redistribute pockmark-discharged
831 sediments, particularly in the MET1 area, where typical pockmark deposits are absent (Idczak
832 et al., 2020). The elevated crenarchaeol concentrations in the upper 45 cm, therefore likely
833 reflect a combination of deposition/export and near-surface retention, as well as sustained local
834 production under fluctuating salinity–redox conditions in the advective flushing sediment layer,
835 together with redistribution along fluid-ventilation pathways.

836 Average OH-GDGT% values are broadly consistent with those reported for Baltic Sea surface
837 sediments by Sinninhe Damsté et al. (2022). Non-pockmark sediments and MET3/MET4
838 cluster around the central Baltic range reported by Sinninhe Damsté et al. (2022) and the
839 Skagerrak Sea (Kaiser and Arz, 2016), whereas MET1 pockmark samples approach the higher
840 OH-GDGT% values previously reported for the Gulf of Finland or the Bothnian Sea.
841 Differences are more pronounced between the MET1 area and MET3/MET4 than between
842 pockmark and non-pockmark sediments. As OH-GDGT% distributions can be affected by
843 salinity changes and lateral sediment influx (Sinninhe Damsté et al., 2022), we interpret these
844 inter-site contrasts as reflecting SGD-shaped hydrography and ecology rather than a simple
845 methane versus non-methane differentiation.

846 RI-OH and RI-OH' fall within the Baltic/Skagerrak surface-sediment ranges (Sinninhe
847 Damsté et al., 2022). Slightly higher RI-OH' values in non-pockmark sediments likely reflect
848 shifts along the brackish–freshwater–marine continuum and/or sediment sourcing effects.
849 Salinity is a primary control on OH-GDGT behaviour in the Baltic Sea (Sinninhe Damsté et
850 al., 2022), but recent work shows that OH-GDGT distributions also respond strongly to other
851 non-thermal variables, including nitrate availability and water-column stratification (Harning
852 and Sepúlveda, 2024), meaning that RI-OH/RI-OH' shifts can reflect ecological factors. The
853 most defensible biological interpretation is that OH-GDGTS largely track AOA, namely
854 Nitrososphaeria, as they are observed in culture studies of Nitrosopumilales (Sinninhe Damsté
855 et al., 2022). In the analysed dataset, OH-GDGTS covary tightly with crenarchaeol, as in
856 previous research by Kaiser and Arz (2016).

857 **5 Conclusions**

858 This study presents the first integrated analysis of archaeal 16S rRNA community profiles,
859 sedimentary iGDGT/OH-GDGT distributions, and correlation network for methane pockmarks
860 in the Gdańsk Basin. Pockmarks host a more diverse and abundant archaeal community than
861 non-pockmark reference sites, functioning as tightly coupled metabolic systems in which
862 multiple archaeal groups operate synergistically, whereas reference sites exhibit more
863 independent, niche-partitioned ecological structures. Although *Methanosarcina* predominates
864 across all horizons due to its metabolic versatility, vertical shifts in methanogenic taxa reflect
865 community responses to changes in organic matter quality and sediment depth.

866

867 Despite the methane-rich environment, evidence for anaerobic oxidation of methane (AOM)
868 remains limited. Low Methane Index values and near-absence of ANME-1 confirm previously
869 reported thin, shallow sulphate–methane transition zone, though ANME-2b and ANME-3 are
870 the most abundant methanotrophs in pockmarks. AOM may also rely on alternative electron
871 acceptors (e.g., *Ca. Methanoperedens*). Low GDGT-0/cren and GDGT-2/cren ratios indicate
872 that ammonia-oxidising archaea, particularly *Nitrosopumilus*, dominate the GDGT pool and
873 obscure the methanogenic signal, highlighting the limited reliability of GDGT-based proxies
874 for diagnosing AOM in environments with low ANME-1 abundance.

875

876 Results suggest that submarine groundwater discharge and pockmark activity drive
877 geochemical conditions and microbial distribution. Mixing of freshened groundwater with
878 marine porewater, potentially combined with gas ebullition, generates microbial activity
879 hotspots (marked by iGDGT concentration maxima) and disrupts sub-bottom stratification.
880 Contrasts between active advective systems (MET1) and inactive or diffusive systems (MET3,
881 MET4) influence organic matter accumulation and archaeal community structure, and these
882 effects could be further investigated through porewater analyses of chloride and methane
883 profiles.

884

885 OH-GDGT distribution primarily reflects AOA populations and, to a lesser extent, site-specific
886 hydrographic conditions associated with SGD — including salinity variations and lateral
887 sediment influx — rather than methane seepage. In complex estuarine settings like the Gdańsk
888 Basin, freshwater infiltration, fluid-transport mechanisms, redox fluctuations, and organic
889 matter input exert stronger short-term control on archaeal tetraether lipid signatures than
890 methane alone.

891

892 To establish AOM occurrence and identify responsible ANME clades, future investigations
893 should incorporate methane-cycling tracers independent of GDGT-ratio frameworks, including
894 hydrocarbon and ether-lipid biomarkers associated with ANME lineages (e.g., crocetane, PMI,
895 archaeol, hydroxyarchaeol), ideally with compound-specific stable carbon isotope
896 measurements to detect ^{13}C -depleted methane-derived signatures. Targeted functional gene and
897 transcriptomic analyses (e.g., *mcrA* abundance and expression) would provide activity-based
898 constraints on methanotrophy. These approaches would differentiate between (i) ANME-
899 2/ANME-3-dominated communities actively mediating AOM yet contributing minimally to
900 bulk iGDGT concentrations, and (ii) limited AOM activity where GDGT distributions are
901 governed by biomarker synthesis of Nitrososphaeria and other methane-cycling archaea.
902 Additionally, both core lipids and intact polar lipids of GDGTs should be measured in the water
903 column to understand GDGT production, transport, and preservation in sediment, as only core
904 lipids were measured here, which accumulate over longer timescales. To understand bacteria's
905 contribution to these gas systems, brGDGTs and 16S rRNA community profiles should be
906 investigated.

907

908 This study underscores the need for multi-proxy and multi-omic approaches to disentangle
909 active lipid production from preserved diagenetic signals. Combining GDGTs with other
910 biomarkers (e.g., crocetane, archaeol), isotopic analyses, and metagenomic and transcriptomic
911 data will enable more accurate reconstruction of methane cycling and redox dynamics. Such
912 approaches will improve the application of lipid proxies in the Baltic Sea and provide broader
913 insights into seep ecosystems worldwide, where SGD, methane seepage, and dynamic
914 geochemistry shape microbial ecology and biogeochemical fluxes.
915

916 *Data availability.* All iGDGT data is available in the repository 10.5281/zenodo.18414700.

917 *Author contributions.* IDMS and MS designed the research; IDMS evaluated the geochemical
918 and microbiological data; AB, ABG, and KLM collected the samples; AB prepared the
919 microbiological dataset; IDMS and AB performed the statistical analyses; IDMS wrote the
920 manuscript; FP and MS reviewed and edited the manuscript.

921 *Competing interests.* The contact author has declared that none of the authors has any
922 competing interests.

923 *Acknowledgements.* This study was partially funded by the Elsevier Research Scholarship
924 (awarded to IDMS). IDMS is grateful to the Organic Geochemistry Group (Utrecht University)
925 for assistance with analyses. AB, ABG, and KLM thank the captain and crew of RV *Oceanograf*
926 for their help during the cruises. Paweł Działak is thanked for isolating material for DNA
927 analysis.

928 **References**

930 Aitchison, J.: The statistical analysis of compositional data, *Journal of the Royal Statistical
931 Society: Series B (Methodological)*, 44, 139–160, [https://doi.org/10.1111/j.2517-
932 6161.1982.tb01195.x](https://doi.org/10.1111/j.2517-6161.1982.tb01195.x), 1982.

933 Bale, N. J., Palatinszky, M., Rijpstra, W. I. C., Herbold, C. W., Wagner, M., and Sinninghe
934 Damsté, J. S.: Membrane lipid composition of the moderately thermophilic ammonia-
935 oxidizing archaeon “*Candidatus Nitrosotenuis uzonensis*” at different growth temperatures,
936 *Applied and Environmental Microbiology*, 85, e01332-19,
937 <https://doi.org/10.1128/AEM.01332-19>, 2019.

938 Bauersachs, T., Weidenbach, K., Schmitz, R. A., and Schwark, L.: Distribution of glycerol
939 ether lipids in halophilic, methanogenic and hyperthermophilic archaea, *Organic
940 Geochemistry*, 83–84, 101–108, <https://doi.org/10.1016/j.orggeochem.2015.03.009>, 2015.

941 Baxter, A. J., van Bree, L. G. J., Peterse, F., Hopmans, E. C., Villanueva, L., Verschuren, D.,
942 and Sinninghe Damsté, J. S.: Seasonal and multi-annual variation in the abundance of
943 isoprenoid GDGT membrane lipids and their producers in the water column of a meromictic
944 equatorial crater lake (Lake Chala, East Africa), *Quaternary Science Reviews*, 273, 107263,
945 <https://doi.org/10.1016/j.quascirev.2021.107263>, 2021.

946 Baxter, B. K. and Zalar, P.: The extremophiles of Great Salt Lake: Complex microbiology in
947 a dynamic hypersaline ecosystem, in: *Model Ecosystems in Extreme Environments*, edited by:
948 Seckbach, J. and Rampelotto, P., Academic Press, 57–99, [https://doi.org/10.1016/B978-0-12-812742-1.00004-0](https://doi.org/10.1016/B978-0-12-
949 812742-1.00004-0), 2019.

950 Berg, C., Listmann, L., Vandieken, V., Vogts, A., and Jürgens, K.: Chemoautotrophic growth
951 of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic
952 Sea, *Frontiers in Microbiology*, 5, <https://doi.org/10.3389/fmicb.2014.00786>, 2015a.

953 Berg, C., Vandieken, V., Thamdrup, B., and Jürgens, K.: Significance of archaeal nitrification
954 in hypoxic waters of the Baltic Sea, *The ISME Journal*, 9, 1319–1332,
955 <https://doi.org/10.1038/ismej.2014.218>, 2015b.

956 Besseling, M. A., Hopmans, E. C., Boschman, R. C., Sinninghe Damsté, J. S., and
957 Villanueva, L.: Benthic archaea as potential sources of tetraether membrane lipids in
958 sediments across an oxygen minimum zone, *Biogeosciences*, 15, 4047–4064,
959 <https://doi.org/10.5194/bg-15-4047-2018>, 2018.

960 Besseling, M. A., Hopmans, E. C., Bale, N. J., Schouten, S., Damsté, J. S. S., and Villanueva,
961 L.: The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine
962 Group II: Implications for lipid biosynthesis in Archaea, *Scientific Reports*, 10, 294,
963 <https://doi.org/10.1038/s41598-019-57035-0>, 2020.

964 Bijl, P. K., Śliwińska, K. K., Duncan, B., Huguet, A., Naeher, S., Rattanasriampaipong, R.,
965 Sosa-Montes de Oca, C., Auderset, A., Berke, M. A., Kim, B. S., Davtian, N., Dunkley Jones,
966 T., Eefting, D. D., Elling, F. J., Fenies, P., Inglis, G. N., O'Connor, L., Pancost, R. D.,
967 Peterse, F., Rice, A., Sluijs, A., Varma, D., Xiao, W., and Zhang, Y. G.: Reviews and
968 syntheses: Best practices for the application of marine GDGTs as proxy for
969 paleotemperatures: sampling, processing, analyses, interpretation, and archiving protocols,
970 *Biogeosciences*, 22, 6465–6508, <https://doi.org/10.5194/bg-22-6465-2025>, 2025.

971 Blaga, C. I., Reichart, G.-J., Heiri, O., and Sinninghe Damsté, J. S.: Tetraether membrane
972 lipid distributions in water-column particulate matter and sediments: a study of 47 European
973 lakes along a north–south transect, *Journal of Paleolimnology*, 41, 523–540,
974 <https://doi.org/10.1007/s10933-008-9242-2>, 2009.

975 Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A., and Quake, S. R.: Genome of a
976 low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic
977 analysis, *PLoS One*, 6, e16626, <https://doi.org/10.1371/journal.pone.0016626>, 2011.

978 Blewett, J., Elling, F. J., Naafs, B. D. A., Kattein, L., Evans, T. W., Lauretano, V., Gallego-
979 Sala, A. V., Pancost, R. D., and Pearson, A.: Metabolic and ecological controls on the stable
980 carbon isotopic composition of archaeal (isoGDGT and BDGT) and bacterial (brGDGT)
981 lipids in wetlands and lignites, *Geochimica et Cosmochimica Acta*, 320, 1–25,
982 <https://doi.org/10.1016/j.gca.2021.12.023>, 2022.

983 Blondel, V. D., Guillaume, J.-L., Lambotte, R., and Lefebvre, E.: Fast unfolding of
984 communities in large networks, *Journal of Statistical Mechanics: Theory and Experiment*,
985 2008, P10008, <https://doi.org/10.1088/1742-5468/2008/10/P10008>, 2008.

986 Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann,
987 R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.: A marine microbial consortium
988 apparently mediating anaerobic oxidation of methane, *Nature*, 407, 623–626,
989 <https://doi.org/10.1038/35036572>, 2000.

990 van den Boogaart, K. G., Tolosana-Delgado, R., and Bren, M.: Package “compositions”:
991 Compositional Data Analysis, 2024.

992 Brick, S., Niggemann, J., Reckhardt, A., Könneke, M., and Engelen, B.: Interstitial microbial
993 communities of coastal sediments are dominated by Nanoarchaeota, *Frontiers in*
994 *Microbiology*, 16, 1532193, <https://doi.org/10.3389/fmicb.2025.1532193>, 2025.

995 Broczawik, O., Łukawska-Matuszewska, K., Brodecka-Goluch, A., and Bolałek, J.: Impact of
996 methane occurrence on iron speciation in the sediments of the Gdańsk Basin (Southern Baltic
997 Sea), *Science of The Total Environment*, 721, 137718,
998 <https://doi.org/10.1016/j.scitotenv.2020.137718>, 2020.

999 Brodecka, A., Majewski, P., Bolałek, J., and Klusek, Z.: Geochemical and acoustic evidence
1000 for the occurrence of methane in sediments of the Polish sector of the southern Baltic Sea*,
1001 *Oceanologia*, 55, 951–978, <https://doi.org/10.5697/oc.55-4.951>, 2013.

1002 Brodecka-Goluch, A., Łukawska-Matuszewska, K., Kotarba, M. J., Borkowski, A., Idczak, J.,
1003 and Bolałek, J.: Biogeochemistry of three different shallow gas systems in continental shelf
1004 sediments of the South-Eastern Baltic Sea (Gulf of Gdańsk): Carbon cycling, origin of
1005 methane and microbial community composition, *Chemical Geology*, 597, 120799,
1006 <https://doi.org/10.1016/j.chemgeo.2022.120799>, 2022.

1007 Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., and Taniguchi, M.: Groundwater
1008 and pore water inputs to the coastal zone, *Biogeochemistry*, 66, 3–33,
1009 <https://doi.org/10.1023/B:BIOG.0000006066.21240.53>, 2003.

1010 Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E., Charette, M. A.,
1011 Kontar, E., Krupa, S., Kulkarni, K. M., Loveless, A., Moore, W. S., Oberdorfer, J. A.,
1012 Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A. M. G., Rajar, R., Ramessur, R. T., Scholten,
1013 J., Stieglitz, T., Taniguchi, M., and Turner, J. V.: Quantifying submarine groundwater
1014 discharge in the coastal zone via multiple methods, *Science of The Total Environment*, 367,
1015 498–543, <https://doi.org/10.1016/j.scitotenv.2006.05.009>, 2006.

1016 Bussmann, I. and Suess, E.: Groundwater seepage in Eckernförde Bay (Western Baltic Sea):
1017 Effect on methane and salinity distribution of the water column, *Continental Shelf Research*,
1018 18, 1795–1806, [https://doi.org/10.1016/S0278-4343\(98\)00058-2](https://doi.org/10.1016/S0278-4343(98)00058-2), 1998.

1019 Callow, B., Bull, J. M., Provenzano, G., Böttner, C., Birinci, H., Robinson, A. H., Henstock,
1020 T. J., Minshull, T. A., Bayrakci, G., Lichtschlag, A., Roche, B., Yilo, N., Gehrmann, R.,
1021 Karstens, J., Falcon-Suarez, I. H., and Berndt, C.: Seismic chimney characterisation in the
1022 North Sea – Implications for pockmark formation and shallow gas migration, *Marine and*
1023 *Petroleum Geology*, 133, 105301, <https://doi.org/10.1016/j.marpetgeo.2021.105301>, 2021.

1024 Carrier, V., Svenning, M. M., Gründger, F., Niemann, H., Dessandier, P.-A., Panieri, G., and
1025 Kalenitchenko, D.: The impact of methane on microbial communities at marine Arctic gas
1026 hydrate bearing sediment, *Frontiers in Microbiology*, 11,
1027 <https://doi.org/10.3389/fmicb.2020.01932>, 2020.

1028 Castelle, C. J., Wrighton, K. C., Thomas, B. C., Hug, L. A., Brown, C. T., Wilkins, M. J.,
1029 Frischkorn, K. R., Tringe, S. G., Singh, A., Markillie, L. M., Taylor, R. C., Williams, K. H.,
1030 and Banfield, J. F.: Genomic expansion of domain Archaea highlights roles for organisms
1031 from new phyla in anaerobic carbon cycling, *Current Biology*, 25, 690–701,
1032 <https://doi.org/10.1016/j.cub.2015.01.014>, 2015.

1033 Chen, S., Zhou, Y., Chen, Y., and Gu, J.: fastp: an ultra-fast all-in-one FASTQ preprocessor,
1034 *Bioinformatics*, 34, i884–i890, <https://doi.org/10.1093/bioinformatics/bty560>, 2018.

1035 Conklin, A., Stensel, H. D., and Ferguson, J.: Growth kinetics and competition between
1036 Methanosaetaceae and Methanomicrobia in mesophilic anaerobic digestion, *Water Environment*
1037 *Research*, 78, 486–496, <https://doi.org/10.2175/106143006X95393>, 2006.

1038 De Rosa, M., De Rosa, S., Gambacorta, A., Minale, L., and Bu'lock, J. D.: Chemical structure
1039 of the ether lipids of thermophilic acidophilic bacteria of the Caldariella group,
1040 *Phytochemistry*, 16, 1961–1965, [https://doi.org/10.1016/0031-9422\(77\)80105-2](https://doi.org/10.1016/0031-9422(77)80105-2), 1977.

1041 Díaz-Mendoza, G. A., Krämer, K., von Rönn, G. A., Schwarzer, K., Heinrich, C., Reimers,
1042 H.-C., and Winter, C.: Circular structures on the seabed: differentiating between natural and
1043 anthropogenic origins—Examples from the Southwestern Baltic Sea, *Frontiers in Earth*
1044 *Science*, 11, 1170787, 2023.

1045 Ehler von Ahn, C. M., Dellwig, O., Szymczycha, B., Kotwicki, L., Rooze, J., Endler, R.,
1046 Escher, P., Schmiedinger, I., Sültenfuß, J., Diak, M., Gehre, M., Struck, U., Vogler, S., and
1047 Böttcher, M. E.: Submarine groundwater discharge into a semi-enclosed coastal bay of the
1048 southern Baltic Sea: A multi-method approach, *Oceanologia*, 66, 111–138,
1049 <https://doi.org/10.1016/j.oceano.2024.01.001>, 2024.

1050 Elling, F. J., Könneke, M., Nicol, G. W., Stieglmeier, M., Bayer, B., Speck, E., de la Torre, J.
1051 R., Becker, K. W., Thomm, M., Prosser, J. I., Herndl, G. J., Schleper, C., and Hinrichs, K.-U.:
1052 Chemotaxonomic characterisation of the thaumarchaeal lipidome, *Environmental*
1053 *Microbiology*, 19, 2681–2700, <https://doi.org/10.1111/1462-2920.13759>, 2017.

1054 Ettwig, K. F., Zhu, B., Speth, D., Keltjens, J. T., Jetten, M. S. M., and Kartal, B.: Archaea
1055 catalyze iron-dependent anaerobic oxidation of methane, *Proceedings of the National*
1056 *Academy of Sciences*, 113, 12792–12796, <https://doi.org/10.1073/pnas.1609534113>, 2016.

1057 Eurostat/GISCO, “Countries (Administrative units) — polygons (RG)” [dataset], scale 1:1M,
1058 2024, EPSG:4326 (file: CNTR_RG_01M_2024_4326), European Commission (Eurostat) /
1059 GISCO. <https://ec.europa.eu/eurostat/web/gisco/geodata/administrative-units> (Accessed
1060 January 30, 2026).

1061 Galagan, J. E., Nusbaum, C., Roy, A., Endrizzi, M. G., Macdonald, P., FitzHugh, W., Calvo,
1062 S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., Naylor, J., Stange-Thomann,
1063 N., DeArellano, K., Johnson, R., Linton, L., McEwan, P., McKernan, K., Talamas, J., Tirrell,
1064 A., Ye, W., Zimmer, A., Barber, R. D., Cann, I., Graham, D. E., Grahame, D. A., Guss, A.
1065 M., Hedderich, R., Ingram-Smith, C., Kuettner, H. C., Krzycki, J. A., Leigh, J. A., Li, W.,
1066 Liu, J., Mukhopadhyay, B., Reeve, J. N., Smith, K., Springer, T. A., Umayam, L. A., White,
1067 O., White, R. H., Conway de Macario, E., Ferry, J. G., Jarrell, K. F., Jing, H., Macario, A. J.
1068 L., Paulsen, I., Pritchett, M., Sowers, K. R., Swanson, R. V., Zinder, S. H., Lander, E.,
1069 Metcalf, W. W., and Birren, B.: The genome of *M. acetivorans* reveals extensive metabolic
1070 and physiological diversity, *Genome Research*, 12, 532–542,
1071 <https://doi.org/10.1101/gr.223902>, 2002.

1072 Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egoscue, J. J.: Microbiome
1073 datasets are compositional: and this is not optional, *Frontiers in Microbiology*, 8, 2224, 2017.

1075 Guan, H., Liu, L., Birgel, D., Peckmann, J., Feng, D., and Li, S.: Hydroxylated GDGTs-0 in
1076 marine methane seep environments: A putative indicator for archaeal methanogenesis,
1077 *Organic Geochemistry*, 198, 104862, <https://doi.org/10.1016/j.orggeochem.2024.104862>,
1078 2024.

1079 Harning, D. J. and Sepúlveda, J.: Impact of non-thermal variables on hydroxylated GDGT
1080 distributions around Iceland, *Front. Earth Sci.*, 12,
1081 <https://doi.org/10.3389/feart.2024.1430441>, 2024.

1082 Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., and Tyson,
1083 G. W.: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal
1084 lineage, *Nature*, 500, 567–570, <https://doi.org/10.1038/nature12375>, 2013.

1085 HELCOM Secretariat, “Baltic Sea Bathymetry Database (BSBD)” [dataset], 500 m resolution
1086 bathymetric model (GeoTIFF; v0.91), HELCOM Metadata Catalogue, metadata record ID:
1087 8b46e4c7-f911-44ab-89e6-2c8b8d9fa2c0.
1088 <https://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/8b46e4c7-f911-44ab-89e6-2c8b8d9fa2c0> (Accessed January 30, 2026).

1089
1090
1091 Hoffmann, J. J. L., Schneider von Deimling, J., Schröder, J. F., Schmidt, M., Held, P.,
1092 Crutchley, G. J., Scholten, J., and Gorman, A. R.: Complex eyed pockmarks and submarine
1093 groundwater discharge revealed by acoustic data and sediment cores in Eckernförde Bay, SW
1094 Baltic Sea, *Geochemistry, Geophysics, Geosystems*, 21, e2019GC008825,
1095 <https://doi.org/10.1029/2019GC008825>, 2020.

1096 Hovland, M. and Judd, A. G.: Seabed Pockmarks and Seepages. Impact on Geology, Biology
1097 and the Marine Environment, *Graham & Trotman* (Kluwer), London, Dordrecht, Boston, 293
1098 pp., 1988.

1099 Hovland, M., Gardner, J. V., and Judd, A. G.: The significance of pockmarks to
1100 understanding fluid flow processes and geohazards, *Geofluids*, 2, 127–136, 2002.

1101 Huguet, C., Hopmans, E. C., Febo-Ayala, W., Thompson, D. H., Sinninghe Damsté, J. S., and
1102 Schouten, S.: An improved method to determine the absolute abundance of glycerol
1103 dibiphytanyl glycerol tetraether lipids, *Organic Geochemistry*, 37, 1036–1041,
1104 <https://doi.org/10.1016/j.orggeochem.2006.05.008>, 2006.

1105 Huguet, C., Fietz, S., and Rosell-Melé, A.: Global distribution patterns of hydroxy glycerol
1106 dialkyl glycerol tetraethers, *Organic Geochemistry*, 57, 107–118,
1107 <https://doi.org/10.1016/j.orggeochem.2013.01.010>, 2013.

1108 Idczak, J., Brodecka-Goluch, A., Łukawska-Matuszewska, K., Graca, B., Gorska, N., Klusek,
1109 Z., Pezacki, P. D., and Bolałek, J.: A geophysical, geochemical and microbiological study of a
1110 newly discovered pockmark with active gas seepage and submarine groundwater discharge
1111 (MET1-BH, central Gulf of Gdańsk, southern Baltic Sea), *Science of The Total Environment*,
1112 742, 140306, <https://doi.org/10.1016/j.scitotenv.2020.140306>, 2020.

1113 Inglis, G. N., Farnsworth, A., Lunt, D., Foster, G. L., Hollis, C. J., Pagani, M., Jardine, P. E.,
1114 Pearson, P. N., Markwick, P., Galsworthy, A. M. J., Raynham, L., Taylor, Kyle. W. R., and
1115 Pancost, R. D.: Descent toward the Icehouse: Eocene sea surface cooling inferred from

1116 GDGT distributions, *Paleoceanography*, 30, 1000–1020,
1117 <https://doi.org/10.1002/2014PA002723>, 2015.

1118 Jakobs, G., Labrenz, M., Rehder, G., Hietanen, S., Kießlich, K., Vogts, A., Blumenberg, M.,
1119 and Schmale, O.: A boreactor approach to investigate the linkage between methane oxidation
1120 and nitrate/nitrite reduction in the pelagic oxic-anoxic transition zone of the Central Baltic
1121 Sea, *Frontiers in Marine Science*, 3, <https://doi.org/10.3389/fmars.2016.00145>, 2016.

1122 Jakobsson, M., O'Regan, M., Mört, C.-M., Stranne, C., Weidner, E., Hansson, J.,
1123 Gyllencreutz, R., Humborg, C., Elfwing, T., Norkko, A., Norkko, J., Nilsson, B., and
1124 Sjöström, A.: Potential links between Baltic Sea submarine terraces and groundwater seeping,
1125 *Earth Surface Dynamics*, 8, 1–15, <https://doi.org/10.5194/esurf-8-1-2020>, 2020.

1126 Jäntti, H., Ward, B. B., Dippner, J. W., and Hietanen, S.: Nitrification and the ammonia-
1127 oxidizing communities in the central Baltic Sea water column, *Estuarine, Coastal and Shelf*
1128 *Science*, 202, 280–289, <https://doi.org/10.1016/j.ecss.2018.01.019>, 2018.

1129 Jaśniewicz, D., Klusek, Z., Brodecka-Goluch, A., and Bolałek, J.: Acoustic investigations of
1130 shallow gas in the southern Baltic Sea (Polish Exclusive Economic Zone): a review, *Geo-*
1131 *Marine Letters*, 39, 1–17, <https://doi.org/10.1007/s00367-018-0555-5>, 2019.

1132 Jaworowski, K., Wagner, R., Modliski, Z., Pokorski, J., Sokołowski, J., and Sokołowski, A.:
1133 Marine ecogeology in semi-closed basin: case study on a threat of geogenic pollution of the
1134 southern Baltic Sea (Polish Exclusive Economic Zone), *Geological Quarterly*, 54, 267–288,
1135 2010.

1136 Jensen, J. B., Kuijpers, A., Bennike, O., Laier, T., and Werner, F.: New geological aspects for
1137 freshwater seepage and formation in Eckernförde Bay, western Baltic, *Continental Shelf*
1138 *Research*, 22, 2159–2173, [https://doi.org/10.1016/S0278-4343\(02\)00076-6](https://doi.org/10.1016/S0278-4343(02)00076-6), 2002.

1139 Kaiser, J. and Arz, H. W.: Sources of sedimentary biomarkers and proxies with potential
1140 paleoenvironmental significance for the Baltic Sea, *Continental Shelf Research*, 122, 102–
1141 119, <https://doi.org/10.1016/j.csr.2016.03.020>, 2016.

1142 Kim, B. and Zhang, Y. G.: Methane Index: Towards a quantitative archaeal lipid biomarker
1143 proxy for reconstructing marine sedimentary methane fluxes, *Geochimica et Cosmochimica
1144 Acta*, 354, 74–87, <https://doi.org/10.1016/j.gca.2023.06.008>, 2023.

1145 King, L. H. and MacLean, B.: Pockmarks on the Scotian Shelf, *GSA Bulletin*, 81, 3141–3148,
1146 1970.

1147 Knittel, K. and Boetius, A.: Anaerobic oxidation of methane: progress with an unknown
1148 process, *Annual Review of Microbiology*, 63, 311–334,
1149 <https://doi.org/10.1146/annurev.micro.61.080706.093130>, 2009.

1150 Koga, Y., Nishihara, M., Morii, H., and Akagawa-Matsushita, M.: Ether polar lipids of
1151 methanogenic bacteria: structures, comparative aspects, and biosyntheses, *Microbiological
1152 Reviews*, 57, 164–182, <https://doi.org/10.1128/mr.57.1.164-182.1993>, 1993.

1153 Kotarba, M. J.: Origin of hydrocarbon gases accumulated in the Middle Cambrian reservoirs
1154 of the Polish part of the Baltic region, *Geological Quarterly*, 54, 197–204, 2010.

1155 1156 1157 1158 Kotarba, M. J. and Lewan, M. D.: Sources of natural gases in Middle Cambrian reservoirs in
Polish and Lithuanian Baltic Basin as determined by stable isotopes and hydrous pyrolysis of
Lower Palaeozoic source rocks, *Chemical Geology*, 345, 62–76,
<https://doi.org/10.1016/j.chemgeo.2013.02.023>, 2013.

1159 1160 1161 1162 Kotarba, M. J. and Nagao, K.: Molecular and isotopic compositions and origin of natural
gases from Cambrian and Carboniferous-Lower Permian reservoirs of the onshore Polish
Baltic region, *International Journal of Earth Sciences*, 104, 241–261,
<https://doi.org/10.1007/s00531-014-1063-0>, 2015.

1163 1164 1165 1166 Kreuzburg, M., Scholten, J., Hsu, F.-H., Liebetrau, V., Sütlenfuß, J., Rapaglia, J., and
Schlüter, M.: Submarine groundwater discharge-derived nutrient fluxes in Eckernförde Bay
(Western Baltic Sea), *Estuaries and Coasts*, 46, 1190–1207, <https://doi.org/10.1007/s12237-023-01202-0>, 2023.

1167 1168 1169 1170 1171 Kuliński, K., Rehder, G., Asmala, E., Bartosova, A., Carstensen, J., Gustafsson, B., Hall, P.,
O. J., Humborg, C., Jilbert, T., Jürgens, K., Meier, H. E. M., Müller-Karulis, B., Naumann,
M., Olesen, J. E., Savchuk, O., Schramm, A., Slomp, C. P., Sofiev, M., Sobek, A.,
Szymczycha, B., and Undeman, E.: Biogeochemical functioning of the Baltic Sea, *Earth
System Dynamics*, 13, 633–685, <https://doi.org/10.5194/esd-13-633-2022>, 2022.

1172 1173 1174 1175 Kurowski, S., Łukawska-Matuszewska, K., Čović, A., Jozić, D., and Brodecka-Goluch, A.:
Effects of pockmark activity on iron cycling and mineral composition in continental shelf
sediments (southern Baltic Sea), *Biogeochemistry*, 167, 135–154,
<https://doi.org/10.1007/s10533-024-01127-1>, 2024.

1176 1177 1178 1179 Labrenz, M., Sintes, E., Toetzke, F., Zumsteg, A., Herndl, G. J., Seidler, M., and Jürgens, K.:
Relevance of a crenarchaeotal subcluster related to *Candidatus Nitrosopumilus maritimus* to
ammonia oxidation in the suboxic zone of the central Baltic Sea, *The ISME Journal*, 4, 1496–
1508, <https://doi.org/10.1038/ismej.2010.78>, 2010.

1180 1181 1182 1183 Lee, D.-H., Kim, J.-H., Lee, Y. M., Stadnitskaia, A., Jin, Y. K., Niemann, H., Kim, Y.-G., and
Shin, K.-H.: Biogeochemical evidence of anaerobic methane oxidation on active submarine
mud volcanoes on the continental slope of the Canadian Beaufort Sea, *Biogeosciences*, 15,
7419–7433, <https://doi.org/10.5194/bg-15-7419-2018>, 2018.

1184 1185 1186 1187 Lengger, S. K., Kraaij, M., Tjallingii, R., Baas, M., Stuut, J.-B., Hopmans, E. C., Sinninghe
Damsté, J. S., and Schouten, S.: Differential degradation of intact polar and core glycerol
dialkyl glycerol tetraether lipids upon post-depositional oxidation, *Organic Geochemistry*, 65,
83–93, <https://doi.org/10.1016/j.orggeochem.2013.10.004>, 2013.

1188 1189 1190 1191 Leu, A. O., Cai, C., McIlroy, S. J., Southam, G., Orphan, V. J., Yuan, Z., Hu, S., and Tyson,
G. W.: Anaerobic methane oxidation coupled to manganese reduction by members of the
Methanoperedaceae, *The ISME Journal*, 14, 1030–1041, <https://doi.org/10.1038/s41396-020-0590-x>, 2020.

1192 1193 1194 1195 Li, X., Li, Y., Gao, D., Liu, M., and Hou, L.: Methane production linked to organic matter
molecule and methanogenic community in estuarine benthic sediments, *Journal of
Geophysical Research: Biogeosciences*, 127, e2022JG007236,
<https://doi.org/10.1029/2022JG007236>, 2022.

1196 Liu, Q., Charette, M. A., Breier, C. F., Henderson, P. B., McCorkle, D. C., Martin, W., and
1197 Dai, M.: Carbonate system biogeochemistry in a subterranean estuary – Waquoit Bay, USA,
1198 *Geochimica et Cosmochimica Acta*, 203, 422–439, <https://doi.org/10.1016/j.gca.2017.01.041>,
1199 2017.

1200 Liu, X.-L., Summons, R. E., and Hinrichs, K.-U.: Extending the known range of glycerol
1201 ether lipids in the environment: structural assignments based on tandem mass spectral
1202 fragmentation patterns, *Rapid Communications in Mass Spectrometry*, 26, 2295–2302,
1203 <https://doi.org/10.1002/rcm.6355>, 2012.

1204 Lu, J., Breitwieser, F. P., Thielen, P., and Salzberg, S. L.: Bracken: estimating species
1205 abundance in metagenomics data, *PeerJ Computer Science*, 3, e104,
1206 <https://doi.org/10.7717/peerj-cs.104>, 2017.

1207 Lu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S.
1208 L., and Steinegger, M.: Metagenome analysis using the Kraken software suite, *Nature
1209 Protocols*, 17, 2815–2839, <https://doi.org/10.1038/s41596-022-00738-y>, 2022.

1210 Lü, X., Liu, X.-L., Elling, F. J., Yang, H., Xie, S., Song, J., Li, X., Yuan, H., Li, N., and
1211 Hinrichs, K.-U.: Hydroxylated isoprenoid GDGTs in Chinese coastal seas and their potential
1212 as a paleotemperature proxy for mid-to-low latitude marginal seas, *Organic Geochemistry*,
1213 89–90, 31–43, <https://doi.org/10.1016/j.orggeochem.2015.10.004>, 2015.

1214 Łukawska-Matuszewska, K. and Dwornik, M.: Early diagenesis in anoxic sediments of the
1215 Gulf of Gdańsk (southern Baltic Sea): Implications for porewater chemistry and benthic flux
1216 of carbonate alkalinity, *Frontiers in Earth Science*, 13,
1217 <https://doi.org/10.3389/feart.2025.1593031>, 2025.

1218 Łukawska-Matuszewska, K., Kiełczewska, J., and Bolałek, J.: Factors controlling spatial
1219 distributions and relationships of carbon, nitrogen, phosphorus and sulphur in sediments of
1220 the stratified and eutrophic Gulf of Gdańsk, *Continental Shelf Research*, 85, 168–180,
1221 <https://doi.org/10.1016/j.csr.2014.06.010>, 2014.

1222 Łukawska-Matuszewska, K., Broćławik, O., Brodecka-Goluch, A., Rzepa, G., Manecki, M.,
1223 and Bolałek, J.: Biogeochemical and mineralogical effects of Fe-P-S dynamics in sediments
1224 of continental shelf sea: Impact of salinity, oxygen conditions, and catchment area
1225 characteristics, *Science of The Total Environment*, 807, 151035,
1226 <https://doi.org/10.1016/j.scitotenv.2021.151035>, 2022.

1227 Lynes, M. M., Jay, Z. J., Kohtz, A. J., and Hatzenpichler, R.: Methylotrophic methanogenesis
1228 in the Archaeoglobi revealed by cultivation of *Ca. Methanoglobus hypatiae* from a
1229 Yellowstone hot spring, *The ISME Journal*, 18, wrae026,
1230 <https://doi.org/10.1093/ismejo/wrae026>, 2024.

1231 Maeder, D. L., Anderson, I., Brettin, T. S., Bruce, D. C., Gilna, P., Han, C. S., Lapidus, A.,
1232 Metcalf, W. W., Saunders, E., Tapia, R., and Sowers, K. R.: The *Methanosaarcina barkeri*
1233 genome: comparative analysis with *Methanosaarcina acetivorans* and *Methanosaarcina mazae*
1234 reveals extensive rearrangement within methanosaarcinal genomes, *Journal of Bacteriology*,
1235 188, 7922–7931, <https://doi.org/10.1128/JB.00810-06>, 2006.

1236 Majewski, P. and Klusek, Z.: Expressions of shallow gas in the Gdańsk Basin, *Zeszyty
1237 Naukowe Akademii Marynarki Wojennej*, 52, 61–71, 2011.

1238 Moore, W. S.: The effect of submarine groundwater discharge on the ocean, *Annual Review*
1239 of Marine Science

2, 59–88, <https://doi.org/10.1146/annurev-marine-120308-081019>, 2010.

1240 Niemann, H. and Elvert, M.: Diagnostic lipid biomarker and stable carbon isotope signatures
1241 of microbial communities mediating the anaerobic oxidation of methane with sulphate,
1242 *Organic Geochemistry*, 39, 1668–1677, <https://doi.org/10.1016/j.orggeochem.2007.11.003>,
1243 2008.

1244 O'Reilly, S. S., Jordan, S. F., Monteys, X., Simpson, A. J., Allen, C. C. R., Szpak, M. T.,
1245 Murphy, B. T., McCarron, S. G., Soong, R., Wu, B., Jenne, A., Grey, A., and Kelleher, B. P.:
1246 Production of methane and gaseous compounds by surface microbial activity in a small
1247 pockmark field, Dunmanus Bay, Ireland, *Estuarine, Coastal and Shelf Science*, 255, 107340,
1248 <https://doi.org/10.1016/j.ecss.2021.107340>, 2021.

1249 Palarea-Albaladejo, J. and Martín-Fernández, J. A.: zCompositions — R package for
1250 multivariate imputation of left-censored data under a compositional approach, *Chemometrics*
1251 and Intelligent Laboratory Systems

143, 85–96,
1252 <https://doi.org/10.1016/j.chemolab.2015.02.019>, 2015.

1253 Pancost, R. D., Hopmans, E. C., and Sinninghe Damsté, J. S.: Archaeal lipids in
1254 Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation, *Geochimica et*
1255 *Cosmochimica Acta*, 65, 1611–1627, [https://doi.org/10.1016/S0016-7037\(00\)00562-7](https://doi.org/10.1016/S0016-7037(00)00562-7), 2001.

1256 Petrick, B., Reuning, L., and Martínez-García, A.: Distribution of glycerol dialkyl glycerol
1257 tetraethers (GDGTs) in microbial mats from Holocene and Miocene sabkha sediments,
1258 *Frontiers in Earth Science*, 7, <https://doi.org/10.3389/feart.2019.00310>, 2019.

1259 PGI-NRI/CBDG, “Bathymetric map of the South Baltic Sea, 1:200,000” [web map service],
1260 OGC WMS 1.3.0. Landing page: <https://dane.gov.pl/en/dataset/3328/resource/51084>; Service
1261 endpoint:
1262 <https://cbdmapa.pgi.gov.pl/arcgis/services/geomorze/batymetria/MapServer/WMServer?>
1263 (Accessed January 30, 2026).

1264 Piekarek-Jankowska, H.: Hydrochemical effects of submarine groundwater discharge to the
1265 Puck Bay [Southern Baltic Sea, Poland], *Geographia Polonica*, 67, 103–119, 1996.

1266 Pimenov, N. V., Ulyanova, M. O., Kanapatsky, T. A., Veslopolova, E. F., Sigalevich, P. A.,
1267 and Sivkov, V. V.: Microbially mediated methane and sulfur cycling in pockmark sediments
1268 of the Gdansk Basin, Baltic Sea, *Geo-Marine Letters*, 30, 439–448,
1269 <https://doi.org/10.1007/s00367-010-0200-4>, 2010.

1270 Pokorski, J.: Geological section through the lower Paleozoic strata of the Polish part of the
1271 Baltic region, *Geological Quarterly*, 54, 123–130, 2010.

1272 Purkamo, L., von Ahn, C. M. E., Jilbert, T., Muniruzzaman, M., Bange, H. W., Jenner, A.-K.,
1273 Böttcher, M. E., and Virtasalo, J. J.: Impact of submarine groundwater discharge on
1274 biogeochemistry and microbial communities in pockmarks, *Geochimica et Cosmochimica
1275 Acta*, 334, 14–44, <https://doi.org/10.1016/j.gca.2022.06.040>, 2022.

1276 Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and
1277 Glöckner, F. O.: The SILVA ribosomal RNA gene database project: improved data processing

1279 and web-based tools, *Nucleic Acids Research*, 41, D590–D596,
1280 <https://doi.org/10.1093/nar/gks1219>, 2013.

1281 Quinn, T. P., Erb, I., Gloor, G., Notredame, C., Richardson, M. F., and Crowley, T. M.: A
1282 field guide for the compositional analysis of any-omics data, *GigaScience*, 8, giz107,
1283 <https://doi.org/10.1093/gigascience/giz107>, 2019.

1284 R Core Team: R: A language and environment for statistical computing. R Foundation for
1285 Statistical Computing, 2023.

1286 Reeburgh, W. S.: Oceanic methane biogeochemistry, *Chemical Reviews*, 107, 486–513,
1287 <https://doi.org/10.1021/cr050362v>, 2007.

1288 Rinke, C., Chuvochina, M., Mussig, A. J., Chaumeil, P.-A., Davín, A. A., Waite, D. W.,
1289 Whitman, W. B., Parks, D. H., and Hugenholtz, P.: A standardized archaeal taxonomy for the
1290 Genome Taxonomy Database, *Nature Microbiology*, 6, 946–959,
1291 <https://doi.org/10.1038/s41564-021-00918-8>, 2021.

1292 Rise, L., Bellec, V. K., Chand, S., and Bøe, R.: Pockmarks in the southwestern Barents Sea
1293 and Finnmark fjords, *Norwegian Journal of Geology*, 94, 2014.

1294 Rossel, P. E., Lipp, J. S., Fredricks, H. F., Arnds, J., Boetius, A., Elvert, M., and Hinrichs, K.-
1295 U.: Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria, *Organic*
1296 *Geochemistry*, 39, 992–999, <https://doi.org/10.1016/j.orggeochem.2008.02.021>, 2008.

1297 Ruff, S. E., Biddle, J. F., Teske, A. P., Knittel, K., Boetius, A., and Ramette, A.: Global
1298 dispersion and local diversification of the methane seep microbiome, *Proceedings of the*
1299 *National Academy of Sciences*, 112, 4015–4020, <https://doi.org/10.1073/pnas.1421865112>,
1300 2015.

1301 Schlüter, M., Sauter, E. J., Andersen, C. E., Dahlgaard, H., and Dando, P. R.: Spatial
1302 distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western
1303 Baltic Sea), *Limnology and Oceanography*, 49, 157–167,
1304 <https://doi.org/10.4319/lo.2004.49.1.0157>, 2004.

1305 Schmuck, E. A. and Paull, C. K.: Evidence for gas accumulation associated with diapirism
1306 and gas hydrates at the head of the Cape Fear Slide, *Geo-Marine Letters*, 13, 145–152,
1307 <https://doi.org/10.1007/BF01593187>, 1993.

1308 Schouten, S., Hopmans, E. C., Pancost, R. D., and Damsté, J. S. S.: Widespread occurrence of
1309 structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-
1310 temperature relatives of hyperthermophiles, *Proceedings of the National Academy of*
1311 *Sciences*, 97, 14421–14426, <https://doi.org/10.1073/pnas.97.26.14421>, 2000.

1312 Schouten, S., Hopmans, E. C., Schefuß, E., and Sinninghe Damsté, J. S.: Distributional
1313 variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea
1314 water temperatures?, *Earth and Planetary Science Letters*, 204, 265–274,
1315 [https://doi.org/10.1016/S0012-821X\(02\)00979-2](https://doi.org/10.1016/S0012-821X(02)00979-2), 2002.

1316 Schouten, S., Hopmans, E. C., and Sinninghe Damsté, J. S.: The organic geochemistry of
1317 glycerol dialkyl glycerol tetraether lipids: A review, *Organic Geochemistry*, 54, 19–61,
1318 <https://doi.org/10.1016/j.orggeochem.2012.09.006>, 2013.

1319 Shaw, J., Courtney, R. C., and Currie, J. R.: Marine geology of St. George's Bay,
1320 Newfoundland, as interpreted from multibeam bathymetry and back-scatter data, *Geo-Marine*
1321 Letters, 17, 188–194, <https://doi.org/10.1007/s003670050025>, 1997.

1322 Sinninghe Damsté, J. S., Schouten, S., Hopmans, E. C., Duin, A. C. T. van, and Geenevasen,
1323 J. A. J.: *Crenarchaeol, Journal of Lipid Research*, 43, 1641–1651,
1324 <https://doi.org/10.1194/jlr.M200148-JLR200>, 2002.

1325 Sinninghe Damsté, J. S., Warden, L. A., Berg, C., Jürgens, K., and Moros, M.: Evaluation of
1326 the distributions of hydroxylated glycerol dibiphytanyl glycerol tetraethers (GDGTs) in
1327 Holocene Baltic Sea sediments for reconstruction of sea surface temperature: the effect of
1328 changing salinity, *Climate of the Past*, 18, 2271–2288, <https://doi.org/10.5194/cp-18-2271-2022>, 2022.

1330 Słowakiewicz, M., Whitaker, F., Thomas, L., Tucker, M. E., Zheng, Y., Gedl, P., and Pancost,
1331 R. D.: Biogeochemistry of intertidal microbial mats from Qatar: New insights from organic
1332 matter characterisation, *Organic Geochemistry*, 102, 14–29,
1333 <https://doi.org/10.1016/j.orggeochem.2016.09.006>, 2016.

1334 Sowers, K. R., Boone, J. E., and Gunsalus, R. P.: Disaggregation of *Methanosa*cina spp. and
1335 growth as single cells at elevated osmolarity, *Applied and Environmental Microbiology*, 59,
1336 3832–3839, <https://doi.org/10.1128/aem.59.11.3832-3839.1993>, 1993.

1337 Stadnitskaia, A., Muyzer, G., Abbas, B., Coolen, M. J. L., Hopmans, E. C., Baas, M., van
1338 Weering, T. C. E., Ivanov, M. K., Poludetskina, E., and Sinninghe Damsté, J. S.: Biomarker
1339 and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate
1340 precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea, *Marine Geology*,
1341 217, 67–96, <https://doi.org/10.1016/j.margeo.2005.02.023>, 2005.

1342 Stegen, J. C., Fredrickson, J. K., Wilkins, M. J., Konopka, A. E., Nelson, W. C., Arntzen, E.
1343 V., Chrisler, W. B., Chu, R. K., Danczak, R. E., Fansler, S. J., Kennedy, D. W., Resch, C. T.,
1344 and Tfaily, M.: Groundwater–surface water mixing shifts ecological assembly processes and
1345 stimulates organic carbon turnover, *Nature Communications*, 7, 11237,
1346 <https://doi.org/10.1038/ncomms11237>, 2016.

1347 Szczepańska, T. and Uścinowicz, S.: *Atlas geochemiczny południowego Bałtyku*, Państwowy
1348 Instytut Geologiczny, Warszawa, 1–55 pp., 1994.

1349 Szymczak-Żyła, M. and Lubecki, L.: Biogenic and anthropogenic sources of sedimentary
1350 organic matter in marine coastal areas: A multi-proxy approach based on bulk and molecular
1351 markers, *Marine Chemistry*, 239, 104069, <https://doi.org/10.1016/j.marchem.2021.104069>,
1352 2022.

1353 Szymczak, B., Kroeger, K. D., and Pempkowiak, J.: Significance of groundwater discharge
1354 along the coast of Poland as a source of dissolved metals to the southern Baltic Sea, *Marine*
1355 *Pollution Bulletin*, 109, 151–162, <https://doi.org/10.1016/j.marpolbul.2016.06.008>, 2016.

1356 Szymczak, B., Kłostowska, Ż., Kuliński, K., Winogradow, A., Jakacki, J., Klusek, Z.,
1357 Grabowski, M., Brodecka-Goluch, A., Graca, B., Stokowski, M., Koziorowska, K., and Rak,
1358 D.: Deep submarine groundwater discharge indicated by pore water chloride anomalies in the
1359 Gulf of Gdańsk, southern Baltic Sea, *E3S Web of Conferences*, 54, 00035,
1360 <https://doi.org/10.1051/e3sconf/20185400035>, 2018.

1361 Taniguchi, M., Dulai, H., Burnett, K. M., Santos, I. R., Sugimoto, R., Stieglitz, T., Kim, G.,
1362 Moosdorf, N., and Burnett, W. C.: Submarine groundwater discharge: updates on its
1363 measurement techniques, geophysical drivers, magnitudes, and effects, *Frontiers in*
1364 *Environmental Science*, 7, <https://doi.org/10.3389/fenvs.2019.00141>, 2019.

1365 Taylor, M. H., Dillon, W. P., and Pecher, I. A.: Trapping and migration of methane associated
1366 with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data,
1367 *Marine Geology*, 164, 79–89, [https://doi.org/10.1016/S0025-3227\(99\)00128-0](https://doi.org/10.1016/S0025-3227(99)00128-0), 2000.

1368 Timmers, P. H. A., Widjaja-Greefkes, H. C. A., Ramiro-Garcia, J., Plugge, C. M., and Stams,
1369 A. J. M.: Growth and activity of ANME clades with different sulfate and sulfide
1370 concentrations in the presence of methane, *Frontiers in Microbiology*, 6,
1371 <https://doi.org/10.3389/fmicb.2015.00988>, 2015.

1372 Ulyanova, M., Sivkov, V., Kanapatskij, T., Sigalevich, P., and Pimenov, N.: Methane fluxes
1373 in the southeastern Baltic Sea, *Geo-Marine Letters*, 32, 535–544,
1374 <https://doi.org/10.1007/s00367-012-0304-0>, 2012.

1375 Uścinowicz, S. (Ed.): *Geochemistry of Baltic Sea surface sediments*, Polish Geological
1376 Institute–National Research Institute, Warsaw, 356 pp., 2011.

1377 Vaksmaa, A., Guerrero-Cruz, S., van Alen, T. A., Cremers, G., Ettwig, K. F., Lüke, C., and
1378 Jetten, M. S. M.: Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus
1379 Methanoperedens nitroreducens' archaea from an Italian paddy field soil, *Appl Microbiol*
1380 *Biotechnol*, 101, 7075–7084, <https://doi.org/10.1007/s00253-017-8416-0>, 2017.

1381 Varma, D., Hopmans, E. C., van Kemenade, Z. R., Kusch, S., Berg, S., Bale, N. J., Sangiorgi,
1382 F., Reichart, G.-J., Sinninghe Damsté, J. S., and Schouten, S.: Evaluating isoprenoidal
1383 hydroxylated GDGT-based temperature proxies in surface sediments from the global ocean,
1384 *Geochimica et Cosmochimica Acta*, 370, 113–127, <https://doi.org/10.1016/j.gca.2023.12.019>,
1385 2024.

1386 Virtasalo, J. J., Schröder, J. F., Luoma, S., Majaniemi, J., Mursu, J., and Scholten, J.:
1387 Submarine groundwater discharge site in the First Salpausselkä ice-marginal formation, south
1388 Finland, *Solid Earth*, 10, 405–423, <https://doi.org/10.5194/se-10-405-2019>, 2019.

1389 Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S., and Sinninghe Damsté, J. S.:
1390 Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea,
1391 *Geochimica et Cosmochimica Acta*, 67, 1359–1374, [https://doi.org/10.1016/S0016-7037\(02\)01220-6](https://doi.org/10.1016/S0016-7037(02)01220-6), 2003.

1393 Waters, E., Hohn, M. J., Ahel, I., Graham, D. E., Adams, M. D., Barnstead, M., Beeson, K.
1394 Y., Bibbs, L., Bolanos, R., Keller, M., Kretz, K., Lin, X., Mathur, E., Ni, J., Podar, M.,
1395 Richardson, T., Sutton, G. G., Simon, M., Söll, D., Stetter, K. O., Short, J. M., and
1396 Noordewier, M.: The genome of *Nanoarchaeum equitans*: Insights into early archaeal
1397 evolution and derived parasitism, *Proceedings of the National Academy of Sciences*, 100,
1398 12984–12988, <https://doi.org/10.1073/pnas.1735403100>, 2003.

1399 Weijers, J. W. H., Schouten, S., Hopmans, E. C., Geenevasen, J. A. J., David, O. R. P.,
1400 Coleman, J. M., Pancost, R. D., and Sinninghe Damsté, J. S.: Membrane lipids of mesophilic
1401 anaerobic bacteria thriving in peats have typical archaeal traits, *Environmental Microbiology*,
1402 8, 648–657, <https://doi.org/10.1111/j.1462-2920.2005.00941.x>, 2006.

1403 Weijers, J. W. H., Lim, K. L. H., Aquilina, A., Sinninghe Damst , J. S., and Pancost, R. D.:
1404 Biogeochemical controls on glycerol dialkyl glycerol tetraether lipid distributions in
1405 sediments characterized by diffusive methane flux, *Geochemistry, Geophysics, Geosystems*,
1406 12, 1–15, <https://doi.org/10.1029/2011GC003724>, 2011.

1407 Welte, C., Kr ninger, L., and Deppenmeier, U.: Experimental evidence of an acetate
1408 transporter protein and characterization of acetate activation in aceticlastic methanogenesis of
1409 *Methanosarcina mazei*, *FEMS Microbiology Letters*, 359, 147–153,
1410 <https://doi.org/10.1111/1574-6968.12550>, 2014.

1411 Werner, F.: Depressions in mud sediments (Eckernfoerde Bay, Baltic Sea), related to sub-
1412 bottom and currents, *Meyniana*, 30, 99–104, 1978.

1413 Wever, Th. F., Abegg, F., Fiedler, H. M., Fechner, G., and Stender, I. H.: Shallow gas in the
1414 muddy sediments of Eckernf rde Bay, Germany, *Continental Shelf Research*, 18, 1715–1739,
1415 [https://doi.org/10.1016/S0278-4343\(98\)00055-7](https://doi.org/10.1016/S0278-4343(98)00055-7), 1998.

1416 Whiticar, M. J.: Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity,
1417 pockmarks and freshwater seepages in Eckernf rde Bay, *Marine Geology*, 182, 29–53,
1418 [https://doi.org/10.1016/S0025-3227\(01\)00227-4](https://doi.org/10.1016/S0025-3227(01)00227-4), 2002.

1419 Whiticar, M. J. and Werner, F.: Pockmarks: Submarine vents of natural gas or freshwater
1420 seeps?, *Geo-Marine Letters*, 1, 193–199, <https://doi.org/10.1007/BF02462433>, 1981.

1421 Wickham, H.: *ggplot2: Elegant Graphics for Data Analysis*, Springer International Publishing,
1422 260 pp., 2016.

1423 Wittenborn, A. K., Bauersachs, T., Hassenr ck, C., K ding, K., W ge-Recchioni, J., J rgens,
1424 K., Arz, H. W., and Kaiser, J.: Nitrosopumilus as main source of isoprenoid glycerol dialkyl
1425 glycerol tetraether lipids in the central Baltic Sea, *Frontiers in Microbiology*, 14,
1426 <https://doi.org/10.3389/fmicb.2023.1216130>, 2023.

1427 Wood, D. E., Lu, J., and Langmead, B.: Improved metagenomic analysis with Kraken 2,
1428 *Genome Biology*, 20, 257, <https://doi.org/10.1186/s13059-019-1891-0>, 2019.

1429 Yu, T., Fu, L., Wang, Y., Dong, Y., Chen, Y., Wegener, G., Cheng, L., and Wang, F.:
1430 Thermophilic Hadarchaeota grow on long-chain alkanes in syntrophy with methanogens,
1431 *Nature Communications*, 15, 6560, <https://doi.org/10.1038/s41467-024-50883-z>, 2024.

1432 Zehnder, A. J. B. and Brock, T. D.: Anaerobic methane oxidation: occurrence and ecology,
1433 *Applied and Environmental Microbiology*, 39, 194–204,
1434 <https://doi.org/10.1128/aem.39.1.194-204.1980>, 1980.

1435 Zell, C., Kim, J.-H., Hollander, D., Lorenzoni, L., Baker, P., Silva, C. G., Nittrouer, C., and
1436 Sinninghe Damst , J. S.: Sources and distributions of branched and isoprenoid tetraether
1437 lipids on the Amazon shelf and fan: Implications for the use of GDGT-based proxies in
1438 marine sediments, *Geochimica et Cosmochimica Acta*, 139, 293–312,
1439 <https://doi.org/10.1016/j.gca.2014.04.038>, 2014.

1440 Zeng, Z., Chen, H., Yang, H., Chen, Y., Yang, W., Feng, X., Pei, H., and Welander, P. V.:
1441 Identification of a protein responsible for the synthesis of archaeal membrane-spanning

1442 1443 GDGT lipids, *Nature Communications*, 13, 1545, <https://doi.org/10.1038/s41467-022-29264-x>, 2022.

1444 1445 1446 1447 Zhang, Y. G., Zhang, C. L., Liu, X.-L., Li, L., Hinrichs, K.-U., and Noakes, J. E.: Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates, *Earth and Planetary Science Letters*, 307, 525–534, <https://doi.org/10.1016/j.epsl.2011.05.031>, 2011.

1448 1449 1450 1451 Zhang, Z., Shan, H., Feng, X., Jia, Z., Jiang, L., Wang, S., and Zhu, C.: Review of research progress on the impact of submarine groundwater discharge on pockmark formation and evolution, *Journal of Marine Science and Engineering*, 13, 1070, <https://doi.org/10.3390/jmse13061070>, 2025.

1452 1453 1454 1455 Zinke, L. A., Glombitza, C., Bird, J. T., Røy, H., Jørgensen, B. B., Lloyd, K. G., Amend, J. P., and Reese, B. K.: Microbial organic matter degradation potential in Baltic Sea sediments is influenced by depositional conditions and in situ geochemistry, *Applied and Environmental Microbiology*, 85, e02164-18, <https://doi.org/10.1128/AEM.02164-18>, 2019.

1456