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Abstract. Uncrewed aerial vehicles (UAVs) are increasingly becoming essential monitoring tools across a rapidly growing set
of applications, due to their operational versatility, relatively low operating cost, and provision of data at a range of spatial
scales. However, UAV-based measurement methodologies and associated instruments for atmospheric research are still in their
early stages and require extensive efforts to exploit their full potential. In Arctic regions, geological CH4 seeps can release
CH, at rates significantly higher than typical biogenic sources and those associated with permafrost degradation processes;
hence, accurate quantification of their emission rates is crucial for the overall CH4 budget of the Arctic. The application of
conventional greenhouse gas monitoring platforms—flux chambers and eddy-covariance towers—may become impractical
as eddy-covariance towers are stationary point measuring devices that require long observation times with reliable footprint
modeling to constrain emissions while flux chambers have a small footprints and therefore require multiple measurements and
have a high potential of introducing disturbances. UAVs can overcome these limitations as they can capture the spatial extent
of the gas plume released from a point source with minimal disturbance to the source. In July 2025, we deployed two UAV
platforms with different sensing instruments to sample a known geological CH, seep located at the Mackenzie River Delta,
Canada. We flew vertical "curtain” patterns with open-path and closed-path CH, instruments to sample gas concentrations
in flux planes at different downwind distances from the gas seep. We first evaluated the performance of the UAV-mounted
instrumentation, comparing the open- and closed-path greenhouse gas analyzers. We then compared two widely used quan-
tification techniques—mass-balance and Gaussian plume inversion—finding that mass-balance approaches yielded the most
robust quantification with smaller uncertainties. We estimate that the seep emission rate falls in the range of 7.1 to 16.2
kgCH, h~1, with an average estimated rate of 11.4 & 6.8 kgCH, h™'. The emissions from this single point are equivalent to
the biogenic flux from approximately 2.2 km? of the surrounding permafrost landscape, underscoring the need to assess the

potentially significant contribution of geological seeps to regional and pan-Arctic carbon budgets.
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1 Introduction

Arctic permafrost ecosystems are subjected to warming about four times faster than the global average (i.e., Arctic ampli-
fication) (Rantanen et al., 2022), which results in accelerated permafrost degradation that may cause the decomposition of
previously frozen carbon, amplifying the release of greenhouse gases (GHGs) such as CO, and CH4. Additionally, permafrost
and glaciers act as natural barriers that play a critical role in trapping large amounts of geological CH,4 below ground (Wal-
ter Anthony et al., 2012). As permafrost becomes unstable due to warming, this natural barrier is compromised. Fractures and
conduits can develop or expand, facilitating the release of geological CH, into the atmosphere (Walter Anthony et al., 2012).

Geological CH, seeps are abundant in the outer Mackenzie River Delta, frequently observed within channels, rivers,
marshes, and lakes (Wesley et al., 2023; Walter Anthony et al., 2012; Dallimore et al., 2024). This collocation of seeps with
bodies of water constrains the methods that one can apply to quantify emissions, primarily due to limited accessibility and the
risk of disturbing the source during the measurements. Thus far, locating and estimating the emission flux from these under
water seeps has been challenging. Aerial imaging spectroscopy is poorly suited for this application due to water’s extremely
low reflectance in the shortwave infrared (Zhang et al., 2017; Baskaran et al., 2022; Ayasse et al., 2018; Elder et al., 2019).
Airborne eddy covariance analysis lacks the spatial resolution that is required to resolve these point sources (Kohnert et al.,
2017). Furthermore, conventional surface-based monitoring systems such as eddy covariance towers or flux chambers are im-
practical for locating and identifying new point or localized sources, and are generally more difficult to establish on bodies
of water, wetlands, and marshlands. Accurately estimating the emission rates from point or localized sources is only possible
if the locations are already known, allowing monitoring systems to be positioned such that sources fall within their spatial
coverage.

In contrast, small uncrewed aerial vehicles (UAVs) equipped with in-situ gas instruments are a very practical measurement
alternative that can access hard-to-reach areas over bodies of water, wetlands, and marshlands. Small UAVs create minimal
disturbance and can map the entire extent of a plume originating from a point source. Despite current limitations in their flight
time, small UAVs are becoming an essential tool in atmospheric science (Thielicke et al., 2021; Wildmann and Wetz, 2022;
Wetz et al., 2023, 2021; Bolek and Testik, 2022) and GHG emission measurements (Andersen et al., 2018, 2023; Galfalk et al.,
2021; Bolek et al., 2024; Bonne et al., 2023; Kunz et al., 2018, 2020; Shah et al., 2020; Scheller et al., 2022; Morales et al.,
2022). Significant progress has been achieved in UAV-based emission quantification over industrial sites such as power plants
and landfills (Shah et al., 2019; Galfalk et al., 2021; Morales et al., 2022), however methodologies over natural ecosystems are
still in the early stages of development (Bolek et al., 2024; Scheller et al., 2022; Shaw et al., 2021; Yazbeck et al., 2025).

Instrumentation for UAV-based GHG measurements must have high sensitivity, low power consumption, fast response time,
and be lightweight. Gas analyzers based on absorption spectroscopy in the mid-infrared region using tunable diode lasers can
meet these requirements and this is becoming a widely used technique to quantify the concentration of GHGs. For fast-moving
aerial vehicles, such as UAVs, a critical choice must be made between open- and closed-path gas analyzers. While both rely
on the same fundamental measurement principle, their gas sampling approaches differ, which influences data characteristics

and processing requirements. The measuring cell of the open-path analyzers is directly exposed to the atmosphere, allowing
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near-instantaneous response to rapid changes in concentration caused by turbulence. Conversely, the enclosed sample cell in
closed-path analyzers effectively smooths the measured concentration profiles due to the much lower air exchange rate in the
sample cell and sampling tubes (Detto et al., 2011; Takriti et al., 2021). Closed-path analyzers typically feature temperature- and
pressure-controlled sample cells, which minimize the impact of variable environmental conditions on measurement accuracy.
However, the necessary sampling pumps and thermal regulation systems increase instrument weight and power consumption
compared to open-path alternatives. Conversely, open-path analyzers are directly exposed to changing atmospheric conditions
that can affect their performance, often requiring post-acquisition corrections.

Beyond monitoring system considerations, the choice of data analysis method is critical for accurately quantifying fluxes.
One well-established technique to quantify emission rates from mobile platforms is the mass balance approach (Morales et al.,
2022; Andersen et al., 2023; Bonne et al., 2023). In this method, the emission rate is estimated by integrating the enhanced
concentration signal over the observational plane (Bonne et al., 2023). This method usually requires interpolation of the non-
uniform sparse UAV measurements onto a uniform 2D-grid using techniques such as the Kriging method (Morales et al., 2022;
Andersen et al., 2021). Fitting a covariance model to a geo-spatial dataset requires the user to optimize predefined variances
and length scales, as the covariance model is highly sensitive to these parameters (Morales et al., 2022). The mass balance
technique can also be applied without using a complicated interpolation scheme, provided that the collected data have high
spatial resolution (Bonne et al., 2024; Scheutz et al., 2025; Borchardt et al., 2025). In this direct approach, horizontal flight
transects are treated individually, and transect-integrated flux densities are interpolated between each transect, and extrapolated
between the lowest-altitude transect and the ground. Gaussian plume inversion is another widely used approach to quantify
the emission rates using UAVs (Shah et al., 2019; Andersen et al., 2021). In this technique, the concentration profile generated
by emissions from a constant point source is assumed to be time-invariant and to follow a Gaussian distribution. UAV-based
sampling close to the source may not always yield a Gaussian-like concentration field due to small-scale turbulence, short
observation times, and insufficient repeated measurements; however, several studies have shown that this method can be used
to generate reasonable flux estimates (Shah et al., 2019, 2020; Andersen et al., 2021). Both the Gaussian plume inversion and
mass balance approaches require wind speed data in addition to concentration measurements.

In this study, we deployed two UAV platforms, one equipped with an open-path instrument and the other with a closed-path
instrument, to quantify the source strength of a geological CH, seep. We applied three emission rate quantification methods to
the measured data: mass balance with Kriging interpolation, direct mass balance, and Gaussian plume inversion. Finally, we
compared the results obtained from the two gas analyzers and the different quantification methods, evaluating their advantages

and disadvantages for UAV-based applications.

2 Methods
2.1 Measurement site, UAV platforms, and sampling strategies

Our study site is a known CH, seep of geologic origin located within the outer Mackenzie River Delta, west of Richards Island,

Northwest Territories, Canada (69.319583° N, -135.477520° W), Fig. 1 (a). The permafrost underlying the delta is relatively
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thin (< 100 m) as it was formed during the Holocene and there is an abundance of water bodies (Burn and Kokelj, 2009;
Dallimore et al., 2024). While several parameters influence the permafrost thermal state, including snow cover, vegetation, and
ground temperature, hydrology exerts the greatest influence on the local ground thermal regime (Burn et al., 2009; Burn and
Kokelj, 2009; Miner et al., 2022). We focus on a seep that was previously identified and named as Channel Seep 2 (Wesley
et al., 2023; Dallimore et al., 2024), which originates from the river bed with a very high ebullition rate (see Fig. 1 (b)). Across
the outer Mackenzie River Delta, Dallimore et al. (2024) documented 46 natural gas seeps with diverse characteristics in
geological formation via isotopic signatures, occurrence, and size. Strong CH4 emissions throughout this thin permafrost area
were previously detected by the Polar 5 research aircraft (Kohnert et al., 2017) and attributed to geological sources based on
emission rates much higher than typical biogenic sources. This attribution was later confirmed by isotopic analysis (Dallimore

et al., 2024; Wesley et al., 2023).

Far Transect

8 Near Transect

A " Channel Seep2 [ 10

Figure 1. Study area in the outer Mackenzie River Delta, NT, Canada (a); Aerial image of the location of Channel Seep 2 (69.319583° N,
135.477520° W ) indicated by red dot and approximate transects flown indicated by dashed lines (b) ((a) and (b) overlaid on satellite images
from ©Google Maps); Images showing the two UAV platforms, UAV-MPI (c) and UAV-NRCan (d). Image (e) shows the two UAVs sampling
downwind of CH4 seep in the near (UAV-MPTI) and far (UAV-NRCan) distances.
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To quantify the emission rate at Channel Seep 2, we used two UAV platforms: UAV-MPI (Fig. 1 (¢)) and UAV-NRCan (Fig. 1
(d)). UAV-MPI is a hexacopter (PM X6 Pro XL) that is equipped with CH4 and CO4 gas analyzers along with an ultrasonic
anemometer (Licor LI-550) that measures 2D wind speed, temperature, humidity, and pressure (see Bolek et al. (2024) for more
details). The CH4 analyzer is a closed path (CP) analyzer (Strato, Aeris Technologies) that measures the dry mole fraction of
CHy at 2 Hz sampling frequency with < 1 ppb s~! of sensitivity. The CP instrument was customized by adding a thermally
controlled enclosure to control the temperature of the measuring cell, which reduces the instrument drift (see Appendix A).
The anemometer deployed on UAV-MPI recorded wind measurements at 2 Hz with a reported accuracy of £0.2 m s~ for
speed and £1.0 °for direction. UAV-NRCan is a DJI Matrice 300 RTK quadcopter equipped with a custom-built CH4 gas
analyzer and a 2D anemometer (WindUltra, Gill Instruments) to measure wind speed and direction. The CH,4 analyzer is a
mid-infrared tunable diode laser absorption spectroscopic system with an open path (OP) gas cell, a sampling rate of 100 Hz,
and a resolution of 26 ppb at 10 Hz, calibrated over the concentration rage of 2 ppm to 50 ppm. The Gill WindUltra anemometer
on UAV-NRCan has an accuracy of < 2% RMSE for wind speed and < 1.0 °RMSE for wind direction. Two additional ground-
based wind sensors were deployed to verify the UAV-based measurements. UAV-based wind speed and direction measurements
showed good agreement with the ground-based measurements (data not shown). With the full scientific payload, each UAV
platform achieved flight times of about 20 minutes.

We conducted a total of four flights, with each UAV platform flying curtains at two distances from the Channel Seep 2,
corresponding to roughly 80 m and 150 m downwind (Fig. 1 (b)). Table 1 shows the flight details. Flight curtains were oriented
to be approximately perpendicular to the local wind direction. The lowest flight transects were conducted as close to the
ground surface as possible to minimize quantification uncertainty associated with a near-ground measurement gap. UAV-MPI
(flight IDs CP-1 and -2) was flown manually, since programming flight pattern on-site was not convenient for this UAV, at a
constant speed while maintaining a fixed heading. UAV-NRCan (flight IDs OP-1 and -2) was flown with a pre-programmed
flight trajectory where the heading aligned with the direction of UAV travel. The width of the far curtains for both platforms
(CP-1 and OP-1) was approximately 250 m. The near curtain width (CP-2 and OP-2) was approximately 150 m.

Table 1. Details of the conducted flights, all flights were performed on August 1, 2025. Mean air temperature during flights was about 19 °C.

Flight Start Time End Time UAV Platform Sensor gi‘i‘;?cvénd Altitude Wind Inci- grggrzi]

D (UTC) (UTC) Tye o (m) dence SE’ 1
Closed-

CP-1 15:17:45 15:35:27 UAV-MPI path 163 2-25 17.3° 2-3
Closed- o

CP-2 15:49:34 16:08:20 UAV-MPI path 87 2-14 17.3 2-3
Open- o

OP-1 15:48:18 16:05:28 UAV-NRCan path 149 25-25 7.5 7
Open- o

OP-2 15:26:19 15:36:57 UAV-NRCan path 77 25-175 7.5 5
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All four curtain flight transects are shown in a top-down "bird’s-eye" view in Fig. 2. The z-axis is defined to align with the
mean prevailing wind direction for all flights, which is 188.5°. The downwind distance from the source (i.e., seep location)
to each flux curtain along the x-axis is indicated. Along the central axis, the curtains flown by closed-path UAV-MPI (CP-
1 and CP-2) are 10-14 m farther from the source than the corresponding curtains for open-path UAV-NRCan (OP-1 and
OP-2), but in all cases the flight transects extended beyond the boundaries of the plume. In all curtains, the dominant wind
direction approximately coincides with the location of the observed CH,4 peak enhancements along the transects. The mean
wind incidence angle was < 20°in all cases (see Fig. 2 and Table 1) and the non-zero wind incidence angle is expected to have

a negligible impact on the emission rate calculation (Mohammadloo et al., 2025).

CP OP
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Figure 2. Bird’s-eye view of measured methane concentrations after removing the background for the four curtain flights. The origin of the
coordinate system is defined at the gas seep (69.319583°, -135.477520°) and the z-axis is aligned with the dominant wind direction (188.5°).
Here, OP and CP indicate open-path and closed-path and refer to UAV-NRCan and UAV-MPI, respectively.

2.2 Flux quantification methods
2.2.1 Mass balance approach

The mass balance approach is widely used to estimate net emissions released from a point source or a defined area, and the
mass conservation equation is typically simplified by neglecting diffusion and assuming the plume is statistically stationary
during the sampling period. We applied a mass balance approach to UAV-based sampling similar to the approach used in piloted
aircraft-based sampling (Karion et al., 2013; Fiehn et al., 2020). The mass balance method applied to piloted aircraft-based
sampling often requires —or assumes— vertically well-mixed boundary layer since measuring plumes vertical variability is

not always possible (Karion et al., 2013; Fiehn et al., 2020). Although at sufficiently downwind distances this assumption
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may hold, for UAVs where the sampling being made close to the source, the plume is most likely not vertically well-mixed,
hence dense sampling along vertical and horizontal axes are required (Shaw et al., 2021). The net emission flux (@) through a

sampling plane transecting the plume is given by:

Q://QHleAS(y/az)dy/dZ (1)

where the flux plane is defined along the measured transect (y’) and altitude (2), and gmeas(¥’, 2) is the CHy flux density at
each point in the flux plane, as defined in Eq. 2 below. Note that ¢’ is curtain-specific, as it is derived from the UAV’s flight
path. The flux densities are given by

Qmeas(y/az) = ([CH4]meas(y/az) - [CH4}bkg) UL (y/az) 'pCH4(Z) 2

where [CHylmeas is the measured CH, mixing ratio, [CHy4]pk, is the background mixing ratio, u, is the component of the
recorded wind speed perpendicular to the flux curtain, and pcy, (z) is the density of CHy gas, used to convert the CH,4 mixing

ratio [ppm] to mass concentration [gCH,m 3], whichis calculated according to

P(Z)MCH4

R Tovg 3)

pen, (2) =
where P(z) is the altitude-dependent pressure, Mcy, is the molar mass of CHy (16.04 gmol 1), R is the universal gas constant
(8.314 m®*PaK~'mol ™), and Ty, is the average temperature. P(z) and T, are measured during the experiment on board
the UAV.

In this study, we used two different mass balance approaches to estimate the emission rate: direct mass balance (DMB),
Section 3.2.1, and cluster Kriging mass balance (CKMB), Section 3.2.2. The DMB approach uses the measured enhancements
without any in-plane interpolations. In DMB, transect integrated flux densities ( f Gmeasdy’ in gCH s~ 'm™1) are calculated
using simple linear interpolation, for each horizontal transect and then subsequent integration carried out in the vertical di-
rection. At the lowest level of the sampling plane, we used a logarithmic function to complete the vertical profile, assuming
zero flux at the ground level (Bonne et al., 2024). The CKMB approach, on the other hand, uses Kriging interpolation to map
the measured CH,4 enhancement onto a regular grid. Kriging is a technique that employs an interpolation based on predefined
covariance models (Miiller et al., 2022). We used the cluster Kriging method that was developed by Morales et al. (2022) and
first clustered the data into two groups—enhanced and background—using a Gaussian Mixture Model. We fit the data within
each cluster with a variogram (scikit-gstat analysis module was used), optimizing the variance and length-scales through least-
square regression. We exported the fitted variograms to covariance models (gstools library), which we later used to apply
Ordinary Kriging (pykrige library). We interpolated the measured wind field onto the same grid as the concentrations; however
in this case, we applied ordinary Kriging without clustering the data as clustering is not required for wind data.

In both mass balance approaches, uncertainties are attributed to instrument errors, interpolation errors, plume capture un-

certainty, and non-stationary plume dynamics. We quantified the instrument errors using error propagation based on field
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measurement data as well as laboratory tests. In the CKMB method, the uncertainties are quantified using the covariance ma-
trices provided by the Kriging algorithms, which were below 10% of the calculated emission rates for all cases. For the DMB
method, the uncertainties associated with linear interpolation along the vertical axis are estimated to be around 10% based on
the Kriging algorithm uncertainties. Plume capture uncertainty arises when the UAV misses the plume on one or more tran-
sects. Here, we quantify this uncertainty by leaving one transect out and running the algorithm again. The estimated flux values
are about 20% smaller when the transect with the highest CH, enhancement is excluded. Overall, we conservatively estimate
the uncertainty contribution from the plume capture component to be 25% of the calculated flux values. The uncertainties
originating from the turbulent nature of the atmospheric transport however, are challenging to quantify and were not included

in the uncertainty estimation here.
2.2.2 Gaussian plume inversion approach

The Gaussian plume model provides a simplified solution for the advection-diffusion equation and is used to simulate the at-
mospheric transport of GHGs such as CH. In the Gaussian plume model, the concentration field is assumed to be steady-state,
meaning that the wind field is stable over time such that the concentration field is time invariant. However, this assumption may
not hold under turbulent and variable wind conditions, especially close to the source (Shah et al., 2019). Several formulations
have been proposed to overcome this issue, such as replacing the diffusivity parameter with a near-field mixing factor (Shah
et al., 2019) or incorporating variable wind direction into the model (Vergassola et al., 2007; van Hove et al., 2025). Here, we
adapt the approach from Shah et al. (2019) where the time-averaged flux density is presumed to follow from the morphology

of a Gaussian plume, such that the modeled flux density (gmoq) is given by

Gmod (2,Y,2) = 27my(fy‘z(x)exp (—W) {exp (_(220_3(];))2> +exp (—(;:é(};);> } “)

where () is the total emission flux from the CHy source, o, () and o, (x) are the horizontal and vertical mixing factors, yq is
the center of the plume along the y-axis, and h is the height of the emission source. We assume that the mixing factors o, ()
and o () vary linearly with distance « from the source, such that g, () = 7yx and 0, (z) = T, .

Given experimentally determined flux densities over a measured flux curtain, the emission rate through the flux curtain can
be estimated by fitting Eq. 4 to the measured data. The flux densities can be computed from measured concentration data

[CH4)meas according to:

Gineas(,9,2) = ([CHalmeas(,.2) — [CHalbi ) (2,9, 2) - o, (2) ®)

This definition is similar to that for flux density given in Eq. 2, except that we replace the perpendicular wind speed with u,,
which is the z-component of instantaneous wind vector, where z is aligned with the prevailing wind direction (see Fig. 2). In
this work, the CHy source is a gas seep in a water channel, and so we fix h = 0. We fit the remaining parameters Q, yo, Ty,

and 7, using the LMFIT package in Python. The uncertainty in the emission rate can be estimated by evaluating how well the
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model fits the measured data (Shah et al., 2019) such that:

Z ; ((Qmeas.j - Qmod,j)2)
AQ = J . 6
Q Q\/ Zj (qIZrleas,j) ( )

This formulation for the uncertainty in () accounts for both the variability in wind direction and the uncertainty in the positional
data. We assume that uncertainties in the measurements of CH,4 concentration, wind speed, temperature, and pressure are
negligible compared to the uncertainty in the model itself, and that the frequency of spatial sampling is sufficient to avoid any

bias in flux estimation.

3 Results and Discussions
3.1 Comparing sensor response and wind measurements between UAV platforms

Both UAV-platforms were instrumented with an anemometer and CH, analyzer. The measured wind speed and direction for
each system are corrected to account for the velocity of the UAV platform. Measured wind speeds from all four curtain flights
are illustrated as a function of altitude in Fig. 3. The wind speed measurements are relatively consistent between the UAV
platforms, and the wind conditions are similar for the far- and near-curtain flights. Both platforms show large wind speed
variability at each altitude, with average standard deviations of 0.68 ms~! and 0.64 ms~! for UAV-MPI (CP-1 and CP-2)
and UAV-NRCan (OP-1 and OP-2) at both curtains, respectively. Following Bolek et al. (2024), assuming a neutral boundary
layer condition and logarithmic wind profile, we estimate the friction velocity «* from the measured wind speed profile for
each curtain (see Fig. 3). These values (u*) are very similar across all flights, indicating comparable turbulence conditions. The
uncertainty in u* is smaller for UAV-NRCan compared to UAV-MPI, which can primarily be attributed to denser measurements
in the vertical direction and faster movement of the UAV-NRCan. We correct UAV-MPI wind direction measurements for
misalignment of the wind sensor relative to north, to yield mean wind directions of 189.8° +10.8°, 189.1° £ 11.9°, 188.0° £
7.9°, and 189.0° & 7.9° for CP-1, CP-2, OP-1, and OP-2, respectively.

Figure 4 shows the CH4 enhancements measured in each of the four curtain flights as a function of position in the curtain. A
constant background CH4 of 2.03 ppm and 2.06 ppm is removed from the measured concentrations for UAV-MPI and UAV-
NRCan, respectively. The corresponding timeseries data is shown in the Appendix (Fig. B1). As UAV-MPI (CP-1 and CP-2)
was piloted manually, the horizontal transect length and vertical spacing are less regular than for UAV-NRCan (OP-1 and
OP-2), which used pre-programmed flights. In both cases, i.e. manual and pre-programmed flights, we ensured that the extents
of the plume were captured by monitoring the sensors’ data over a radio link in real-time. In addition, the lower transects in
CP-2 were repeated after the initial curtain flight was complete (at around 15 m above takeoff), collecting additional data at the
bottom of the curtain until the UAV-MPI battery was depleted.

The measured peak CH, enhancements for both OP curtains are 2-3 times larger than those measured in the CP curtains. The

peak concentration enhancements measured in the far curtain flights CP-1 and OP-1 are 6.1 and 15.5 ppm, respectively. For the
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Figure 3. Measured wind speed and estimated friction velocities from (a, b) UAV-MPI and (c, d) UAV-NRCan. Closed circles represent mean
wind speed at each altitude while standard deviations are represented as horizontal bars. The black dashed lines represent the logarithmic
fitting. The flight ID is indicated in the top left corner for each flight (see Table 1).

near-curtain flights, the peak enhancements are 17.7 and 46.6 ppm for CP-2 and OP-2, respectively. The altitudes corresponding
to the transects containing the peak concentrations are similar for both platforms: 5.2 m and 6.0 m for the far curtains CP-1 and
OP-1, and 3.2 m and 3.4 m for the near curtains CP-2 and OP-2, respectively. Rather than indicating a substantial difference in
the actual CH,4 concentration, the higher concentrations measured by the OP sensor are indicative of its much faster response
time and lack of an enclosed sampling cell compared to the CP sensor. The limited pump speed and mixing within the enclosed
sampling cell for the CP sensor result in an effective smoothing and broadening of the measured data. For this reason, distinct
color scales are defined for the CP sensor curtains and the OP sensor curtains, capped at 16 ppm and 40 ppm for CP and OP,
respectively.

To compare the performance of the closed path (CP; UAV-MPI) and open path (OP; UAV-NRCan) analyzers, we examine the
transects with the peak concentration enhancement. The comparison is shown in Fig. 5(a) and (b) for far and near curtains,
respectively. To facilitate comparison, the measured CH, concentration is plotted as a function of distance Ay relative to the
peak along the y-axis (as defined in Fig. 2). The direction of travel along the transect for each UAV is indicated by an arrow
in the legends of Fig. 5(a) and (b). In general, the signal from the OP analyzer shows much higher temporal resolution and
associated fluctuations compared to CP, for which the measurements were much smoother. The width of the peak signal of both
analyzers is more similar for the far curtain (OP-1 and CP-1) than for the near curtain. This is because the plume is more evenly
dispersed at further distances from the source. Both sensors observe additional peaks on both sides of the central peak that are

attributed to the plume meandering under turbulent conditions. However, the shape of the plume recorded by the CP sensor is
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Figure 4. Measured methane concentrations after removing the background for the four curtain flights. (a, b) Curtains for the closed-path
sensor at downwind distances of 163 m and 87 m, respectively. (c, d) Curtains for the open-path sensor at 149 m and 77 m downwind.

consistently asymmetrical with a gradual tail appearing after the UAV has crossed the plume (see Fig. 5 and Fig. B1). Apart
from the smoothing and broadening of the measured data, the extended tail of CP measurement in the flight direction may also
be attributed to (i) a slightly larger wind-incidence angle—supported by the shorter tail in the opposite flight direction, (ii)

limited pump speed and/or friction within the tubing that prevents complete flush of the sampled air effectively.
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Figure 5. Comparison of methane concentrations measured by the closed- and open-path sensors over a single horizontal transect. (a)
Horizontal transects measured at z =~ 5 m above ground-level for downwind distances of 163 m (CP-1) and 149 m (OP-1). (b) Transects at
z ~ 3 m for 87 m (CP-2) and 77 m (OP-2). To facilitate comparison, the horizontal axis shows the distance Ay relative to the recorded peak.
Arrows in the legends indicate the flight directions.

3.2 Emission flux quantification
3.2.1 Direct mass balance

The calculated transect integrated flux densities (i.e., f Gmeasdy’) for all curtains are illustrated in Figure 6. In all flights, the
flux profiles converge to zero with increasing altitude, indicating that the plume extent in the vertical direction is fully captured.
Using the DMB method, the emission rate of the seep is calculated to be 10.24-4.6 kgCH, h—! and 8.0 + 4.3 kgCH4 h™*
from CP-1 and CP-2, respectively. For OP-1 and OP-2, the calculated emission rates are 8.2 + 3.5 kgCHy h~!land 7.1+
3.4 kgCH,4 h—1, respectively. For the far curtains (CP-1 and OP-1), minor enhancements are detected even above 15 m AGL,
whereas for the near curtains (CP-2 and OP-2), no enhancement is captured above 10 m. Due to atmospheric turbulence, at
some altitudes both platforms miss the plume, with only minimal enhancements observed at 5.5 m for CP-2, at 7 m for OP-1,
and at 4.5 m for OP-2. As UAVs capture only the instantaneous plume, these events are unavoidable. However, dense vertical
sampling and repeated measurements can minimize the impact of missing the plume; still, we estimate that missed plume

sections contribute at most about 25% uncertainty (see Sec. 2.2.1) to the emission flux values reported here.
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Figure 6. Calculated transect-integrated flux densities ([ gmeasdy’) for each transect used in the DMB approach. The dashed lines indicate
the logarithmic fitting that was employed to extrapolate the profile from the ground to the height of the first measurement transect.

The calculated emission rates for all curtains and platforms agree within their estimated uncertainties. The uncertainty ranges
are about 45% of the estimated fluxes for all curtains, except for CP-2 (54%). The higher uncertainty range observed at CP-2
can be explained by the additional sampling of the lower transects after completing the curtain. This additional sampling close
to the ground increases the variations in the measured concentration as plume dynamics are changing with time. Excluding the
repeated transects, the emission rate is estimated to be 7.5 + 3.6 kgCHy h~!, where the uncertainty is 48% of the estimated
flux. This indicates that plume is time-variant and resampling a section of the curtain introduces additional uncertainties when
applying the DMB method. As the additional transect measurements in CP-2 do not capture the full vertical extent of the plume,
and therefore cannot be treated as an independent curtain. We combine the repeated transects close to the ground with the seg-
ment of the original curtain above 6 m to construct a new curtain (i.e., a second curtain patched with the repeated transects and
above 6 m). The emission rate calculated from this new curtain is 8.6 +4.1 kgCH4 h—!, which further supports the robustness
of the methodology and data. Therefore, sampling the background concentration once while repeating plume-enhancement
measurements close to the ground several times may be beneficial to optimize battery usage where on-site recharging is not

feasible.
3.2.2 Cluster Kriging mass balance

We apply Cluster Kriging to interpolate the measured concentration fields for all curtains onto regular grids (see Fig. 7).

Variograms are estimated using the Cressie-Hawkins method (Cressie and Hawkins, 1980) to fit the data with a model, as this

13



280

285

https://doi.org/10.5194/egusphere-2026-51
Preprint. Discussion started: 20 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

estimator exhibits better performance compared to other available estimators (for more details please see (Milicke, 2022)).
We use a stable variogram model for the wind fields, but apply stable, exponential, and spherical models interchangeably for
concentration fields whenever a better fit is observed. Here, to evaluate a better fit among the variograms we used RMSE (root
mean square error) values.

Using the CKMB approach, emission rates for the UAV-MPI platform are calculated as 13.63 + 5.3 kgCH, h—! and 14.5 &
5.7 kgCHy h~!. For UAV-NRCan, emission rates are estimated as 9.5 4 4.6 keCH, h™! and 8.2 4+ 4.6 kgCH4 h~! for OP-1
and -2, respectively. As expected, the plume that is captured by the CP sensor appears wider than the OP sensor, especially
when comparing curtains CP-2 and OP-2, which are nearer to the source (Fig. 7(b) and (d)). While Morales et al. (2022)
previously indicated that CKMB provides better estimates at downwind distances shorter than 75 m— a threshold exceeded
for all of the curtains in this study—that threshold assumed UAVs could not fully map plumes extending above 10 m. In this
work, however, both platforms flew up to 25 m altitude (Fig. 4), successfully capturing the full vertical extent of the plume.
Here, UAV-NRCan flew dense vertical transects with higher flight speed, whereas UAV-MPI was flying at a slower speed and
the transect spacing was adjusted at higher altitudes to accommodate the limited battery life while still sampling the full vertical

extent of the plume.
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Figure 7. Kriged CH4 enhancement fields from UAV-MPI for flights (a) CP-1 and (b) CP-2 and from UAV-NRCan for flights (c) OP-1 and
(d) OP-2. The measured curtain extents are illustrated with boxes indicated by white lines, and the center of the curtain is indicated with a
white vertical dashed line.
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290 3.2.3 Gaussian plume inversion

The near-field Gaussian plume inversion (GPI) is applied by fitting Eq. 4 to the measured flux densities gmeas, calculated
according to Eq. 5 and shown in the appendix (Fig. C1). The GPI allows the modeled plume to be reconstructed in three
dimensions. Therefore, for each measurement platform, we fit the measured data for one curtain but use the resulting plume
model to reconstruct both curtains, for illustration purposes. The fit parameters for each curtain are summarized in Table 2. The

295 modeled plumes obtained by fitting the far curtains (CP-1 and OP-1) are shown in Fig. 8, and the plumes obtained by fitting
the near curtains (CP-2 and OP-2) are shown in Fig. 9.

Table 2. Fitting parameters for Eq. 4 obtained using the near-field GPIL.

FlightID  yo(m) 7, Ty Q (kgCH4h_1) AQ (kgCH4h_1)

CP-1 -4.90 0.14 0.05 141 10.5
CP-2 -1.56 022 0.02 16.2 12.4
OP-1 6.60 0.11 0.03 109 9.7
OP-2 -16.78 0.07 0.03 16.0 134
-1 -2 -1 -2
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Figure 8. Modeled flux densities obtained from applying the near-field GPI to the far flux curtains (CP-1 and OP-1). The model results are
shown for all four flux curtains, though the model parameters were obtained using only CP-1 and OP-1, indicated as Fit.
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Figure 9. Modeled flux densities obtained from applying the near-field GPI to the near flux curtains (CP-2 and OP-2). The model results are
shown for all four flux curtains, though the model parameters were obtained using only CP-2 and OP-2, indicated as Fit.

In all cases, the source height is fixed at h = 0 and the remaining parameters are allowed to vary. We expected the plume to
be centered close to yo = 0, in line with the prevailing wind direction. However, turbulence and variability in the instantaneous
wind direction lead to non-zero values for g, ranging from -16.78 to +6.60 m. The deviations in yg are larger for the OP sensor
compared to the CP sensor.

When fitting the far curtains (CP-1 and OP-1, Fig. 8), the shape of the modeled plume is similar for both the OP and CP
systems, though the result obtained for the CP sensor appears more dispersed, attributed to the CP sensor’s signal broadening
effect. The results obtained when fitting the near curtains (CP-2 and OP-2, Fig. 9) show substantial differences in the shape
of the modeled plume, with much broader apparent horizontal dispersion (7,) for CP-2 compared to OP-2. In this case, at just
~80 m downwind of the source, the plume has had little opportunity to disperse and is highly influenced by turbulence and
local eddies. At this distance, the difference in response of the CP and OP sensors is pronounced. Furthermore, we see that
the perceived shape of the emission plume is strongly influenced by the response of the sensor. This suggests that application
of prescriptive dispersion models that define the expected shape of a plume based on average local atmospheric conditions
without accounting for the sensor response and the measurement duration, such as the Pasquill Stability Classes (Pasquill,
1961), are ill-suited for near-field measurements obtained by UAVs. However, in comparing Fig. 8 and Fig. 9, it is apparent

that the capacity of the near-field Gaussian plume formalism to reproduce the shape of the plume in three dimensions remains
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limited, at least for downwind distances in the 80 to 160 m range with short observation times and atmospheric conditions
similar to those presented here.

Comparing the emission flux estimates reported in Table 2, all values fall in the range from 10.9 to 16.2 kgCH,h~!, in
agreement within their respective uncertainties. The large error bounds, ranging from 74% to 89% of the corresponding flux
estimates, are due to the large residuals between the Gaussian plume model and the measured data, indicating the Gaussian
plume model does not adequately represent the measurement data. Though agreeing well within the prescribed uncertainty, we
note that the difference between the estimated flux rates for the far and near curtains is smaller for the CP sensor compared to
the OP sensor. We attribute this effect to the more gradual response of the CP sensor, which more closely resembles a smoothly

varying Gaussian plume than the OP sensor.
3.3 Comparison between flux estimates

The estimated emission rates from all of these methods are provided in Fig. 10. Overall, the estimated emission rates from
all UAV platforms and methods used in this study overlap within their respective uncertainty ranges. The application of DMB
is straightforward and produces the most consistent results across curtains and UAV platforms. However, adequate sampling
density is essential, particularly in the vertical direction. Sparse sampling in the vertical direction can lead to large uncertainties
and underestimation of the emission flux, especially when the plume center is missed (estimated to be about 25%). The
uncertainties associated with extrapolation between the ground and the first measuring height, and the linear interpolations
between transects, are largely unknown and may be underestimated in this study. Further investigation is needed to quantify
these uncertainties.

In the CKMB emission rate quantification method, the interpolation uncertainty can be directly and conveniently quantified
using covariance matrices. The CKMB method provides excellent agreement in the emission rate estimates when comparing
the far and near curtains for each UAV platform individually. However, the variation between the platforms is greatest for
CKMB compared to the other quantification methods. This is likely due to sensor response times and differences in flight
execution: the OP platform utilized autonomous flight paths (resulting in regular sampling spacing), whereas the CP platform
was manually piloted (resulting in irregular sampling spacing). Dense, autonomous flight patterns may be preferable to improve
the consistency of flux estimates. Compared to DMB, the CKMB method is more complicated to apply and computationally
more demanding as the curtain area increases. Additionally, fitting a variogram to the measured data usually requires optimizing
the variance and length scales, which may not always converge.

The near-field Gaussian Plume Inversion (GPI) generates larger emission rate estimates than DMB and CKMB for all flux
curtains except for CP-2, which fell between the corresponding mass balance estimates. However, estimations from CKMB and
GPI methods for the UAV-MPI samples were very similar, particularly for the near curtain. Because both methods (CKMB and
GPI) tend to smooth the observed methane enhancements and widen the modeled plume extent, both vertically and horizontally,
they typically yield larger emission rate estimates compared to DMB.

The difference between the DMB and CKMB flux estimates is larger for the UAV-MPI, 25% for CP-1 and 45% for CP-
2, whereas the differences for UAV-NRCan are about 15% for both OP-1 and -2. The observed differences between applied
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interpolation schemes in mass balance approaches can be due to the fact that UAVs sample instantaneous plume dynamics rather
than a static representation of the plume; hence, the variations in plume dynamics can lead to these differences in interpolation
and emission rate estimates. These differences can also be partly attributed to the different flight strategies. The curtains flown
by UAV-NRCan (OP) are denser and the data is more uniform than the UAV-MPI curtains (CP). This difference is most likely
350 reflected in the interpolation algorithms, either Kriging or linear interpolation, producing larger differences between these two
methods for CP-1 and -2. In addition, tailing towards the flight direction in CP data might be another factor that impacts the
interpolation algorithms and causes these discrepancies between the two methods. Even in OP-based flux estimations, where
no tailing and more uniform sampling were achieved, the 15% difference observed between these two methods can mainly be
attributed to different interpolation algorithms. With non-uniform sampling, the difference between interpolation schemes is

355 expected to increase, which was observed in CP-based flux calculations.
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Figure 10. Comparison of all flux estimations (Q) from different models and UAV platforms. Here, DMB, CKMB, and GPI denote Direct
Mass Balance, Cluster Kriging Mass Balance, and Gaussian Plume Inversion approaches. Far curtains OP-1 and CP-1 are represented as
solid red and green bars and near curtains OP-2 and CP-2 are represented with hashed red and green bars, respectively.

4 Conclusions

Atmospheric research using UAV-based measurement methodologies and associated instruments is still in its early stages and
their full potential remains to be determined. To that end, here we evaluate several point source emission rate quantification
methodologies using two UAV platforms equipped with methane analyzers, one open path (OP) and the other closed path

360 (CP). Each platform conducted two curtain flights at two downwind distances, near curtain (~80 m) and far curtain (~150
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m). Although we use different anemometers on each platform, the wind measurements are consistent between the two UAV
platforms, with close prediction (with about 15% discrepancy) of friction velocities. Comparison between the methane concen-
tration measurements for both UAV platforms shows that the OP analyzer often records sharper and larger CH,4 peaks, while
the peaks are much smoother and damped for the CP analyzer. The OP analyzer may be preferable for plume tracking due to its
higher sampling rate and lower latency compared to the CP analyzer. However, plume morphologies are discrete due to sharp
peaks in OP, and rather smooth in the CP.

If UAV-based wind measurements are available, mass balance approaches (CKMB and DMB) to quantification should be
preferred over the GPI because they reduce the number of assumptions involved in the calculations. Nevertheless, GPI method
can become practical whenever an on-board wind measurement is not available although this may lead to higher uncertainties.
Provided that the full extent of the plume is captured along both the crosswind and vertical axes, both of the mass balance
methods are expected to yield similar emission rate estimations. With dense sampling along vertical and horizontal directions,
the DMB method may be a better alternative, as it is straightforward to apply compared to CKMB. Overall, the UAV-based
methodologies presented in this study enable quantification of the emission rates from hard-to-access methane point sources
that would otherwise be difficult to quantify.

Despite the differences in equipment and analysis methodologies used here and their associated uncertainties, the present
work estimates that the methane emission rate of the investigated seep is in the range of 7.1 kgCHy/h to 16.2 kgCHy/h
with an average value of 11.4 & 6.8 keCH4 h~!. Although this value only represents emissions during the active-layer thaw
conditions, and does not reflect seasonal variations in emission rates, this average emission rate is significantly higher than
biogenic sources. When compared to maximum daily biogenic CH, fluxes from permafrost landscapes (ranges approximately
between 1.6 — 5mgm~2h~!, Friborg et al. (2000); Skeeter et al. (2022)), emissions from this point source are equivalent to
biogenic emissions from a minimum area of 2.2 km?, pointing to the importance of identification, quantification, and inclusion

of such emission sources in Earth-System models.

Code and data availability. The code and data used in this manuscript will be made publicly available upon acceptance.

Appendix A: Custom temperature controller for Aeris Strato

The Aeris Strato CHy4 analyzer used on the UAV-MPI platform was customized with a thermally controlled enclosure to
stabilize the cell temperature and reduce signal drift (see Fig. Al (a)). A thermal enclosure surrounding the measuring cell
was added, including peltier elements for heating/cooling to keep the temperature within that enclosure stable (at 41 °C) using
a temperature controller (TEC-1091, Meerstetter Engineering GmbH). This controller unit was directly powered up by the
analyzer board, minimizing system weight and complexity. We tested the performance of the analyzer against a calibration gas
in a climate chamber. The calibration gas was routed through a coil-shaped steel tubing to equilibrate the gas temperature with

the climate chamber temperature as much as possible.
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Prior to testing the impact of the temperature controller, we observed large temperature fluctuations (£10) within the analyzer
cell under relatively stable conditions (see Fig. Al (b)). The TEC OFF test was conducted between 13:50 to 14:10 (black
dashed lines in Fig. A1 (b)). Although the climate chamber temperature was set to cycle between 10 - 15 °C every minute for
about 20 minutes, the analyzer cell temperature was increasing throughout the test. This increase can be attributed to the low
cooling efficiency of the thermally controlled enclosure and self-heating of the analyzer’s cell. Later, the temperature controller
was turned on (TEC ON, 14:12) and the instrument was allowed to warm up for about 30 minutes until the cell temperature was
stabilized around 41 °C. The TEC ON test was conducted (red dashed lines in Fig. Al (b)) under the same climate chamber
setup as TEC OFF test. The standard deviation of the cell temperature during TEC ON was calculated as 0.01 °C, whereas
this was 1.62 °C during TEC OFF test. This was also reflected in CH4 measurements (see Fig. A1 (c)), the standard deviation
during TEC OFF was 5.48 ppb (IQR 10.5 ppb), whereas during TEC ON this was 1.45 ppb (IQR 1.94 ppb). The improvement
of the analyzer was also shown with Allan-Werle-plots (Fig. A1 (d)). The instrument noise for longer averaging times is much

smaller with the temperature controller unit compared to without one.
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Figure Al. Customized Aeris Strato analyzer (a) showing thermally controlled enclosure wrapped around the measuring cell (b) recorded
cell temperature of the analyzer during the climate chamber test, (c) measured CH4 concentration with and without temperature controller
(d) Allan-Werle=plots of both conditions. Here, red colors represent when the temperature controller unit was on (TEC ON) while black
colors represent when the temperature controller was off (TEC OFF).

20



https://doi.org/10.5194/egusphere-2026-51
Preprint. Discussion started: 20 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Appendix B: Timeseries data for measured flux curtains
405 Figure B1 shows the measured methane mixing ratios for all curtains from both UAV platforms.

205@)CP4 F 1(b) CP-2 i
15 - g

10 1 - -

0 +——— L S B S S S S B S S —r 1 T T T T
0 250 500 750 1000 O 250 500 750 1000
Time (s) Time (s)

[CH4]meas (ppm

60 +————
1 (c) OP-1 1(d) OP-2

[CH4]meas (ppm)

0 250 500 750 1000 O 250 500
Time (s) Time (s)

0

Figure B1. Measured methane concentration timeseries for the four curtain flights, labeled CP-1, CP-2, OP-1, and OP-2. The shaded regions
indicate the background methane concentration, recorded as 2.03 ppm for the closed-path sensor (a,b) and 2.06 ppm for the open-path sensor
(c.d).

Appendix C: Flux densities used for Gaussian plume inversion

The calculated methane flux densities (gmeas) for all curtains from both UAV platforms are shown in Fig. C1.
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Figure C1. Methane flux densities calculated from equation 5 (a, b). Flux density for the closed-path sensor at downwind distances of 163
m and 87 m, respectively. (c, d) Flux density for the open-path sensor at 149 m and 77 m downwind.
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