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Abstract. Prediction of shallow landslides at the regional scale generally relies on statistical analyses of landslide 

inventories. Rainfall-duration thresholds and susceptibility maps are among the most common approaches to anticipate 15 

future landslide occurrences. However, the outputs and reliability of these approaches can be strongly affected by the 

representativeness of the landslides included in the inventory. This study specifically investigates the impact of landslides 

triggered by an extreme rainfall event on the determination of rainfall-duration thresholds and susceptibility maps. We 

consider the case of Storm Alex, a millennial return period rainfall event, which hit the Alpes-Maritimes region (France) on 

October 2, 2020. The analysis is based on an inventory of 5,383 shallow landslides, including 1,656 landslides triggered by 20 

Storm Alex. The CTRL-T algorithm was used to compute statistical rainfall-duration thresholds with and without the 

inclusion of Storm Alex landslides. A Random Forest approach was used to produce and compare susceptibility maps under 

the same two configurations. Results show that: (a) rainfall-duration thresholds derived from datasets including Storm Alex 

landslides are significantly higher; (b) the exceptional rainfall intensity triggered landslides in areas having an initial lower 

susceptibility; and (c) including these events in susceptibility modeling alters the spatial distribution of susceptibility values. 25 

This study provides a quantitative analysis of the impact of landslides triggered by extreme rainfall events on statistical 

prediction models. 

1 Introduction 

Mountainous areas are highly prone to mass wasting processes, among which shallow landslides, also called soil slip 

(Cruden and Varnes, 1996) are frequently observed. In this study, a shallow landslide is defined by a sudden and relatively 30 

rapid movement of the material overlying the bedrock, typically involving a 1–2 m thick soil layer. These phenomena can 

cause significant damage to infrastructures and, in some cases, endanger human lives. They also play a role in the natural 
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evolution of slopes, by reshaping the landscapes and participating in sediment transfer (Clapuyt et al., 2019). Thus, 

improving knowledge on landslide triggering conditions is essential for a reliable risk assessment, land use planning 

strategies and the establishment of effective early warning systems.  35 

Rainfall plays a major role in triggering shallow landslides (Iverson, 2000), since intense or prolonged precipitation events 

can rapidly increase soil moisture and pore water pressure, decreasing slope stability (Montrasio and Valentino, 2008; Tsai, 

2008). The first attempts at linking rainfall to landslide occurrence were based on simple empirical thresholds, such as those 

introduced by Caine (1980) and later by (Terlien, 1998). Based on these pioneer studies, various empirical, statistical and 

probabilistic approaches were developed to better identify the rainfall conditions favourable to landslides. Among these 40 

different approaches, cumulative/duration thresholds (ED thresholds), which combine the cumulative precipitation and the 

duration of rainfall events associated with landslides, have taken an important place (Segoni et al., 2018). They provide a 

simple and robust tool, used in several regions of the world to design early warning systems (Segoni et al., 2018; Gonzalez et 

al., 2024).  

Susceptibility maps are another key tool in the analysis of landslide processes. Susceptibility represents the likelihood of 45 

landslide occurrence at any given location, regardless of the temporal probability (Fell et al., 2008; Corominas et al., 2014). 

In our case, susceptibility maps aim to identify areas prone to shallow landslides based on terrain characteristics. They are 

based on the combination of various predisposing factors, the most common of which include geomorphological features 

(e.g. slope, aspect, curvature, landform), geological features (e.g. lithology, distance to fault), or soil properties (e.g. soil 

thickness, texture) (Reichenbach et al., 2018). The construction of susceptibility maps can be based on deterministic methods 50 

(i.e. simulating slope stability using physical parameters) (Gökceoglu and Aksoy, 1996; Armaş et al., 2014; Pradhan and 

Kim, 2016), or on statistical and machine learning approaches (Reichenbach et al., 2018). Among these, Random Forest 

(RF) has become increasingly popular in recent years, due to its robustness and high predictive capabilities (Trigila et al., 

2015; Chen et al., 2017; Park and Kim, 2019), and has been largely applied to compute susceptibility maps (Catani et al., 

2013; Reichenbach et al., 2018; Taalab et al., 2018; Sun et al., 2020; Zhou et al., 2021).  55 

These tools, rainfall thresholds and susceptibility maps, are usually established using inventories of past landslides. The 

assumption here is that knowledge of past events is valuable to guide the prediction of future instabilities. This requires 

representative inventories including landslides triggered by different rainfall intensity, ranging from moderate to extreme 

rainfall events. However, extreme rainfall typically triggers a large number of landslides. Rainfall intensity strongly affects 

soil infiltration patterns and hydrological response (Iverson, 2000; Ran et al., 2018), which can modify the triggering 60 

mechanisms of landslides compared to more moderate rainfall events. Recent studies have shown that, during years 

characterized by extreme rainfall, certain morphological factors, such as slope, local relief, and excess topography, become 

more determinant in controlling landslide occurrence (Jones et al., 2021). This indicates that landslides triggered by extreme 

rainfall do not necessarily follow the same spatial patterns as more common events, which highlights the importance of 

examining their impact on predictive models. However, this topic is currently poorly documented in the literature.  65 
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A few studies focus on the effect of extreme rainfall on slope stability (Shou and Lin, 2020), on forecasting landslides 

triggered by such rainfall (Lee et al., 2008; Lombardo et al., 2014), or on how extreme rainfalls may alter the slopes 

susceptibility in the long term (Bebi et al., 2019; Jones et al., 2021; Achu et al., 2024). In this study, we are interested in 

examining the specificities of landslides triggered by extreme rainfall events in terms of predisposing factors, and in 

quantifying their influence on the robustness of susceptibility maps and ED rainfall thresholds. The general hypothesis 70 

behind this question is that landslides triggered by an extreme rainfall event exhibit specific triggering conditions and 

predisposing patterns that can alter the generalization capacity of predictive models. Storm Alex, which occurred on October 

2, 2020 in the Alpes-Maritimes region (France) and is estimated to have had a millennial return period, is used as a 

representative case study for an extreme rainfall event. The analysis of cumulative rainfall/duration thresholds makes it 

possible to assess how the inclusion of Storm Alex landslides in the inventory modifies the statistical triggering conditions. 75 

Susceptibility maps allow us to quantify the impact of landslides triggered by an extreme rainfall event on the spatial 

distribution of areas prone to landslides. Analysing these effects can help to better understand the limits of data-driven 

models and could help to understand how to calibrate tools used for anticipating landslides in meteorological contexts prone 

to extreme rainfall events.  

This article begins with an overview of the study area and the description of the Storm Alex extreme rainfall event (Sect. 2). 80 

It is followed by a detailed presentation of the datasets used, including meteorological information, predisposing factors and 

the landslide inventory (Sect. 3). The methodological framework is then described, focusing on the computation of rainfall-

duration thresholds using the CTRL-T algorithm and the development of susceptibility maps based on Random Forest 

algorithm (Sect. 4). The subsequent section presents and compares the results obtained for both the thresholds and 

susceptibility maps (Sect. 5). Finally, the discussion highlights the main insights derived from the analysis (Sect. 6), before 85 

the conclusion summarizes the key contribution, limitations, and future research (Sect. 7).  

2 Context  

2.1 Study area  

The Alpes-Maritimes region is located in the southeastern part of France, bordering the Mediterranean Sea (Fig. 1a). 

Spanning an area of 1,299 km², this region has a population of 1.1 million inhabitants (INSEE, 2022), of which 94% are 90 

concentrated in the 66 municipalities surrounding the Mediterranean coast. It presents a contrasting geomorphological 

context, with the northern part dominated by high mountainous relief and deep valleys shaped by glaciers, while the southern 

part exhibits gentler terrain and pronounced urbanization along the coast. The elevation varies from sea level to 3,143 m.  

The harmonized geological map of the Alpes-Maritimes (Gonzales, 2008) indicates that the territory exhibits a highly 

diverse geology, with a majority (77%) of sedimentary rocks (Fig. 1b). Marly and clayey formations weather into clay-rich 95 

soils that are highly sensitive to water saturation and alteration. In addition, recent unconsolidated deposits such as moraines 
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(3%), alluvial deposits (5%) and scree or debris cone deposits (20%), represent unstable materials that can further increase 

the susceptibility to landslides.  

The study area presents four main types of climates (Joly et al., 2010), including Mediterranean climate, altered 

Mediterranean climate, semi-continental climate, and mountain climate (Fig. 1c). This climatic heterogeneity implies 100 

differences in precipitation regimes, as shown in Fig.1d, which represents the mean annual rainfall over the period 1997-

2019. Mountainous areas typically receive more precipitation (from 1000mm.yr-1 to more than 1300mm.yr-1) than 

Mediterranean areas (< 900mm.yr-1). However, the latter are characterized by a pronounced seasonal regime (Fig. 3c), with 

a cold season marked by a higher amount of rainfall (Lionello et al., 2006), and a dry season favourable to intense and 

localized rainstorms that can generate landslides as well as other geomorphological processes (torrential floods, debris flows, 105 

rockfalls…etc) (Rebora et al., 2013; Liébault et al., 2024). 

 

Figure 1: (a) Overview of the study area. (b) Main rock types.  (c) Climatic classification according to Joly et al. (2010). (d) Spatial 

distribution of the mean annual rainfall over the period 1997-2019 (COMEPHORE radar data). 

2.2 Storm Alex 110 

On October 2, 2020, a large part of the Alpes Maritimes region was affected by Storm Alex, an extreme rainfall event with a 

millennial return period (Carrega and Michelot, 2021). These record-breaking rainfalls were caused by a combination of 

meteorological conditions favourable to stationary thunderstorms, enhanced by the mountainous terrain and a significant 

influx of moisture from the Mediterranean area (Chochon et al., 2022). The valleys of Tinée, Vésubie and Roya were 
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particularly impacted by the storm (Fig. 2a). For example, the municipality of Tournefort recorded 600 mm in 24 hours (Fig. 115 

2b). The rainfall began on October 2 at 01:00 am and lasted until the end of the same day. This exceptional rainfall event 

deeply altered the landscape and triggered violent floods as well as numerous mass movements, including shallow 

landslides, debris flows, and bank erosion. The storm is responsible for the death of 17 people, and hundreds of people were 

evacuated. The event caused significant damage to infrastructure, with an estimated cost exceeding 1 billion euros (Arbizzi 

et al., 2021). 120 

 

Figure 2: Spatio-temporal description of Storm Alex.  (a) Map of recorded rainfall accumulation during Storm Alex, from October 

1, 2020, at 12:00 PM to October 3, 2020, at 06:00 AM (COMEPHORE data, Météo-France). The blue triangle represents the 

location of Tournefort municipality. (b) Accumulated rainfall over Tournefort municipality 

3 Data 125 

3.1 Meteorological data 

Two meteorological datasets have been exploited for the computation of ED rainfall thresholds. Precipitation data derived 

from the COMEPHORE dataset are used to characterize rainfall events. COMEPHORE is a meteorological product provided 

by Meteo-France, covering the metropolitan French territory (Tabary et al., 2012). It consists of hourly accumulated 
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precipitation on a spatial grid of 1 km × 1 km, resulting from the fusion of radar measurements and in situ observations from 130 

a rain gauge network. The data are available from 1997-01-01 to the present day.  

The second used dataset, SIM (SAFRAN-ISBA-MODCOU), is a hydrometeorological reanalysis. It results from the 

combination of a meteorological model (SAFRAN), a land surface model (ISBA), and a hydrogeological model (MODCOU) 

(Habets et al., 2008). The dataset, also distributed by Météo-France, provides 25 climatic and hydrological variables at a 

daily time step and on a regular grid of 8 km × 8 km. In this study, we used the temperature and potential and real 135 

evapotranspiration. Data are available from 1958-08-02 to the present day. 

3.2 Predisposing factors 

Eleven predisposing factors were analysed, including geologic, topographic, and soil properties, all in raster format (see Fig. 

A1):  

• Lithology is obtained from the harmonized geological map of the Alpes-Maritimes region at 1:50,000 scale 140 

(Gonzales, 2008). The 274 initial classes were grouped into 28 classes (Fig. A1a) based on prior knowledge about 

susceptibility of lithologies to landslides.  

• Land cover data come from the CORINE Land Cover Level 2 (2006 edition), a satellite-derived European product 

comprising 13 classes, with a spatial resolution of 25 meters (Fig. A1b).  

• A 25m DEM provided by the French National Institute of Geographic and Forest Information 145 

(https://www.data.gouv.fr/datasets/bd-alti-r-1/) was used to derive slope (Fig. A1c), Topographic Positional Index (TPI) 

(Fig. A1d), and aspect (Fig. A1e) using GDAL tools and a 3x3 pixel window in QGIS software.  

• Landform (Iwahashi and Pike) (Iwahashi and Pike, 2007) was derived from the DEM using the SAGA Terrain 

Surface Classification tool in QGIS, with 8 classes, a four-neighbour Laplacian Filter, and a 10 pixels window (Fig. A1f).  

• Landform (Weiss) (Weiss, 2001) was derived from the DEM using the TPI Based Landform Classification tool, and 150 

a bandwidth equal to 400 m, resulting in 10 classes (Fig. A1g). Note that, although the Weiss landform classification is 

derived from TPI values, the two metrics are complementary. TPI indicates the relative elevation of a given pixel, compared 

to neighboring pixels, thus capturing fine-scale variations. The Weiss landform integrates TPI at a larger scale, defined by 

the bandwidth parameter, to produce a categorical classification of larger-scale morphological patterns.  

• The general curvature (Fig. A1h) was also calculated from the DEM using the SAGA toolbox, applying the 9 155 

parameters second-order polynomial method (Zevenbergen and Thorne, 1987).  

• Three rasters of soil texture, namely the percentages of clay (Fig. A1i), sand (Fig. A1j), and silt (Fig. A1k) in the 

upper 30 cm of soil, were used. These three products are available at national scale with a 90 meters spatial resolution. They 

are obtained from a Random Forest algorithm calibrated with French soil samples from the 0-30 cm topsoil layer and using a 

set of environmental covariates such as terrain, climate, vegetation, geology, land use and satellite indices (Suleymanov et 160 

al., 2024).  
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The eleven rasters of predisposing factors were harmonized onto a common 25 m resolution grid using QGIS resampling 

tool, with the DEM as the reference. 

3.3 Landslide inventory 

3.3.1 General description 165 

The landslide inventory used in this study relies on previous mapping efforts (Lucas, 2023; Thiery et al., 2025). It comprises 

5,383 rainfall-induced shallow landslides distributed across the study area (Fig. 3a). This inventory covers a period of nearly 

330 years, ranging from 1696 to 2024 (Fig. 3b). The monthly distribution (based on 2,645 landslides) reveals a seasonal 

trend in landslide occurrence, with the highest number of events recorded during the cold season (from October to January). 

This trend closely matches the mean monthly rainfall (Fig. 3c).  170 

In the inventory, 28.3% of the landslides were taken from pre-existing databases, including those of the RTM service 

(https://geo-onf.opendata.arcgis.com/maps/760c436f2736431fb0cae21c14c7414b/about), of the French Geological Survey 

(https://www.georisques.gouv.fr/donnees/bases-de-donnees/base-de-donnees-mouvements-de-terrain), of the CEREMA, of 

the municipality of Menton, of the Departmental Council of Alpes Maritimes, and of the Regional Observatory for Major 

Risks (ORRM). In addition, numerous landslides were added through diachronic analysis of orthophotographs controlled by 175 

field recognitions (69.3%), and oral testimonies (2.4%). To ensure data quality and reliability, the inventory was rigorously 

checked to remove duplicates from different sources, non-superficial landslides, and anthropogenic landslides.  

Landslides in the database were initially represented either as polygons (75.8%) or points (24.2%). Among the polygons, 

61.5% include an accurate delineation of the ablation zone (Lucas, 2023). To create a homogeneous database, all polygons 

were converted into points, using either the centroid of the entire polygon or, when available, the centroid of the ablation 180 

zone. The location of each landslide was verified using textual information from the database when available, further 

improving the spatial accuracy of the dataset (Fig. 3d). A landslide is described as decametric when its location is estimated 

with meter-scale accuracy, hectometric when the accuracy is on the order of 100 meters, and kilometric when the location is 

known only at the kilometer scale. The temporal accuracy of the landslides is also indicated in Fig. 3d. All the landslides 

with unknown temporal accuracy correspond to those reported from orthophotographs.  185 

The shallow landslides of the inventory are categorized into five distinct types, based on textual information and 

orthophotographs. Cut-slope landslides (13.9%) develop where the basal part of a slope has been artificially excavated, 

resulting in destabilization. This type of landslide is predominantly located along the road network. Riverbank landslides 

(9.7%) are triggered by lateral river erosion, which induces basal undercutting of the bank. This undercutting destabilizes the 

lower part of the slope and can lead to a landslide propagating upslope, especially during flood events. Midslope landslides 190 

(41.3%) occur in the middle of slopes, in areas unaffected by artificial excavations or riverbank erosion. Lastly, flow-like 

landslides (34.1%) are characterized by long-distance propagation. The remaining landslides (1.0%) have an unknown type 

https://doi.org/10.5194/egusphere-2026-458
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



8 

 

due to lack of textual information and poor spatial accuracy. Note that all riverbank landslides were systematically excluded 

from further analysis, as their triggering is primarily governed by erosion rather than rainfall itself.  

Among the 5,383 landslides, 1,655 were directly associated with Storm Alex (Thiery et al., 2025). In the absence of precise 195 

information regarding the time of occurrence of the Ales-induced landslides, they have all been dated on 3 October, i.e. the 

day after the storm. They are mostly concentrated in the Vésubie, Tinée, and Roya valleys, due to two main causes: first, the 

strongest impact of the storm was located in these valleys (Fig. 2); and second, most Alex-induced landslides were identified 

through an orthophotograph acquired shortly after the storm, which was available only for these three valleys (post-Alex 

ortho-express, delimitation shown in Fig. 3a). Note that some landslides detected using the 2023 orthophotographs but 200 

outside of the ortho-express coverage could also have been triggered by the storm. However, due to lack of accurate dating, 

these landslides have not been associated with the Storm Alex.   

 

Figure 3: Spatio-temporal characterization of the landslide inventory across the study area. (a) Spatial distribution of Alex (blue), 

and non-Alex (orange) landslides. Red outlines indicate the area covered by the post-Alex ortho-express. (b) Yearly distribution of 205 
the landslides. (c) Monthly distribution of the landslides and mean monthly cumulative rainfall over the study area. (d) Spatial and 

temporal accuracy of the landslides. 

3.3.2 Subsets used for rainfall thresholds and susceptibility analysis 

Three different subsets were extracted from the global inventory to carry out the different analyses. The subset used for the 

ED rainfall threshold analysis includes 1,746 landslides with daily accuracy to ensure reliable comparison with the 210 

meteorological data, and decametric to hectometric spatial accuracy suitable for matching with the 1×1 km resolution of the 
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rainfall data grid. Only landslides dated after January 1, 1997 were considered, as meteorological data are only available 

after this date. In this subset, 1,335 landslides are associated with Storm Alex (Fig. 4a).  

For the analysis of susceptibility only landslides with decametric spatial accuracy were retained. For comparing the 

distributions of predisposing factors between Alex and non-Alex landslides, the selection was further restricted to landslides 215 

located within the area covered by the post-Alex ortho-express to avoid any bias. For both subsets, a small number of 

landslides (66 and 11, respectively) occurred on slopes less than 10°. These landslides were excluded, as their location was 

considered likely erroneous. The final subsets consist of 4,200 landslides for the susceptibility assessment (of which 1,319 

were induced by Storm Alex) and 1,544 landslides for the distribution analysis (of which 1,263 were induced by Storm 

Alex) (Fig. 4b-c). 220 

For clarity, Storm Alex-induced landslides are hereafter denoted Alex landslides, whereas non–Storm Alex-induced 

landslides are denoted non-Alex landslides. In every subset, datasets including Alex landslides are designated as WSAL 

(With Storm Alex Landslides), and those excluding Alex landslides are designated as WoSAL (Without Storm Alex 

Landslides). 

 225 

Figure 4: Spatial distributions of landslides subsets used for the analyses. (a) Landslides used for ED rainfall threshold analysis; 

(b) Landslides used for susceptibility analysis; (c) Landslides used for comparing the distributions of predisposing factors. Blue 

points represent Alex landslides and orange points represent non-Alex landslides.  

4 Methods 

As explained in the introduction, the main objective of this study is to compare rainfall thresholds and susceptibility maps 230 

constructed with and without the landslides triggered by Storm Alex. Cumulative/duration (ED) thresholds are computed 

based on COMEPHORE rainfall data. Landslide susceptibility is assessed using a Random Forest (RF) algorithm with the 

eleven predisposing factors described in Sect. 3.2. 
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4.1 ED rainfall thresholds 

The ED thresholds were computed using the CTRL-T algorithm (Calculation of Thresholds for Rainfall-Induced Landslides; 235 

Melillo et al., 2015, 2018). This tool is based on a frequentist approach, allowing the definition of thresholds for a specified 

non-exceedance probability Required input data are precipitation time series and a well-dated landslide inventory.  

The algorithm is divided into three blocks. For each grid point of the COMEPHORE rainfall dataset, the first block segments 

raw precipitation data into rainfall events and sub-events, defined as periods of continuous precipitation bounded by dry 

periods of a minimum duration. In the warm season, the minimum duration for these dry periods is 48 and 6 hours for 240 

rainfall events and sub-events, respectively. In the cold season, these minimum durations are multiplied by a spatially-

varying factor ranging from 1 to 3. This factor accounts for the climatic heterogeneity within the study area. It is computed 

from SIM climatic parameters according to Barthélemy et al. (2024).  

In the second block, the time of occurrence of each landslide in the inventory is compared to rainfall events and sub-events 

of all COMEPHORE grid points located within a 1,000 m radius around the landslide location. For daily-dated landslides, 245 

the hour of occurrence is arbitrarily fixed at 12:00 pm. The MRC (Multiple Rainfall Conditions) dataset is built by 

aggregating, for each landslide, all the possible combinations of event duration (D) and cumulative rainfall (E) in the 1,000 

m radius (including both rainfall events and sub-events). Next, each (D,E) pair of the MRC dataset is weighted according to 

the values of D and E, and to the distance between the grid point and the landslide. The algorithm selects, for each landslide, 

the (D,E) pair with the highest weight to create the MPRC (Most Probable Rainfall Conditions) dataset.  250 

 

Finally, the last block computes thresholds for both MRC and MPRC datasets, using a frequentist method (Brunetti et al., 

2010) combined with a bootstrapping (Peruccacci et al., 2012) with 100 repetitions to assess uncertainties. The thresholds 

assume the equation defined in Eq. (1):  

𝐸 = (𝛼 ± 𝛥𝛼) × 𝐷(𝛾±𝛥𝛾)             (1) 255 

 

with E the cumulative rainfall (in mm) of the rainfall event, D its duration (in h), α a scaling parameter and γ the shape 

parameter. Δα and Δγ represent the uncertainties on α and γ, respectively.  

In this study, thresholds corresponding to a 5% non-exceedance probability were computed, following the approach adopted 

in previous studies (Marra, 2019; Peres and Cancelliere, 2021). Only thresholds derived from the MPRC datasets are 260 

considered in the following. 

4.2 Susceptibility assessment 

Assessing landslide susceptibility requires accounting for complex interactions between topographic and geomorphological 

factors. In this study, a Random Forest (RF) method (Breiman, 2001) was selected for its robustness and its ability to capture 

nonlinear relationships between diverse variables (called features), while maintaining high predictive accuracy (Chen et al., 265 
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2017; Ng et al., 2021; Trigila et al., 2015). RF is generally less prone to overfitting than other machine learning algorithms 

(Breiman, 2001). Overfitting happens when a model is too closely adapted to the training data, and performs poorly on new 

data. It also allows the assessment of features importance, which in our case can provide useful insight into the main factors 

controlling landslide occurrence. The suitability of RF for spatial analyses of landslide susceptibility is reflected in its 

widespread application in previous research (Catani et al., 2013; Taalab et al., 2018; Sun et al., 2020; Li et al., 2022; 270 

Nocentini et al., 2024). 

4.2.1 Random Forest algorithm 

RF is a supervised learning algorithm, based on the bagging (Bootstrap Aggregating) principle: multiple independent 

decision trees are created and their predictions are combined to indicate a final result. Each tree is built by randomly 

selecting subsets of features (i.e., the predisposing factors in our case) and observations (i.e., the landslides and non-275 

landslides). At each division point (node) of a tree, the algorithm chooses the best split among these subsets to separate the 

data. This double random selection increases the diversity of trees and reduces overfitting.  

Here, the output of each tree is the occurrence or not of a landslide. For a classification problem, the final prediction 

corresponds to the majority class predicted by all the trees. In this study, the proportion of trees that predicted the positive 

class (i.e. landslide occurrence) is considered as a susceptibility score. It is important to realize that this score does not 280 

represent absolute probability of landslide occurrence. It should rather be regarded as a relative index of similarity between 

the predisposing factors at a given pixel on the map and those observed for landslides in the inventory. 

4.2.2 Non-landslides sampling 

In the context of supervised landslide susceptibility modeling, providing non-landslide samples is a crucial step that can 

strongly influence model performance and final results (Fu et al., 2025). The objective is to prevent the model from being 285 

biased towards the positive class (i.e. landslides). However, the selection of non-landslide locations involves a degree of 

arbitrariness. A common approach is to generate non-landslide points outside a buffer zone around known landslides (Gu et 

al., 2024, 2023). Following this approach, and considering also that landslides occurring near major infrastructures are more 

likely to be reported, we defined a valid area for non-landslide sampling as a 1 km buffer around major roads and excluding 

areas located within a 150 m radius from recorded landslides (Fig. A2).  290 

To account for the variability related to the location of non-landslide points, 50 distinct datasets were generated for each 

scenario (i.e., with and without Alex landslides), keeping landslide points fixed while randomly generating non-landslide 

points within the valid area. A balanced 1:1 ratio between landslide and non-landslide points was maintained to prevent class 

imbalance. Non-landslides points were first generated in the valid area for the WSAL datasets (i.e including Alex 

landslides). Each of these 50 datasets therefore include 4,200 landslides points and 4,200 non-landslides points. To generate 295 

the corresponding 50 WoSAL datasets (i.e. excluding Alex landslides), we started from the 50 WSAL datasets. In each 

dataset, the 1,319 Alex landslides were removed. Then, in each dataset, an equal number of non-landslide points was 
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randomly excluded. This approach avoids regenerating non-landslide points for the WoSAL datasets, which could 

potentially result in non-landslide points where Alex landslides had occurred. It also minimizes the differences in the spatial 

distribution of non-landslide points between the WSAL and WoSAL datasets, ensuring that subsequent analyses are not 300 

biased by variations in non-landslide locations. The procedure to generate the datasets is summarized on Fig. 5. 

 

Figure 5: Workflow of datasets generation and model optimization procedures. 

4.2.3 Model optimization 

Categorical features (lithology, landcover, and both landforms) were encoded using a One Hot Encoder. Hyperparameter 305 

optimization was performed on the WoSAL datasets using exhaustive GridSearch with five-fold cross-validation 
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(GridSearchCV) on 90% of each of the 50 datasets. These 90% training sets were constructed so that landslide points 

remained identical across all datasets, and each set maintained a balanced 1:1 ratio of landslide to non-landslide points.  

The GridSearchCV procedure explores a predefined grid of hyperparameters, summarized in Table 1, and retains the 

combination with the highest average accuracy score over the five folds. For each of the 50 datasets, an independent 310 

GridSearchCV was conducted, leading to 50 distinct optimal combinations. The most frequently selected combination was 

then applied to each training dataset to fit the model, which was subsequently validated on the corresponding 10% validation 

set. The final selected combination, which was selected 27 times, is indicated in Table 1. The workflow of model 

optimization is presented on Fig 5. The mean performance scores over the 50 datasets, including accuracy, area under the 

ROC curve (AUC-ROC), F1 score, and recall, with their corresponding standard deviations, minimum and maximum values 315 

are presented in Table 2. Overall, the results indicate that the model performs well across all datasets. 

 

Hyperparameter Description Tested values 

n_estimator Number of trees in the model 200, 500, 800 

max_depth Maximum depth of each tree None, 10, 20 

min_samples_split Minimum number of samples 

required to split an internal node 

2, 5, 10 

min_samples_leaf Minimum number of samples 

required to be at a leaf node 

1, 5, 10 

max_leaf_nodes Maximum number of terminal (leaf) 

nodes in a tree 

None, 100, 300 

 Table 1: Hyperparameter tested during GridSearchCV. Bold values indicate the ones that were selected. 

 

Score Mean Standard deviation Min Max 

Accuracy 0.81 0.01 0.77 0.84 

AUC-ROC 0.90 0.01 0.88 0.92 

F1 Score 0.81 0.01 0.78 0.84 

Recall 0.83 0.01 0.81 0.85 

Table 2: Mean performance metrics of the model across the 50 datasets, including accuracy, AUC-ROC, F1 score, and recall, 320 
along with their standard deviations, minimum and maximum values 
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4.2.4 Mean susceptibility maps 

Once the optimal combination of hyperparameters is identified and validated, a Random Forest was retrained on each 

complete dataset, in order to fully exploit all available information. This step was carried out on the 50 datasets for each 

scenario. For every trained model, a susceptibility map was generated. The susceptibility values assigned to each pixel 325 

correspond to the proportion of trees predicting a landslide occurrence. To integrate the variability related to the random 

selection of non-landslides points, the final map for each scenario is calculated as the average of the 50 individual maps. We 

checked that 50 non-landslides scenarios are sufficient to obtain a converged standard deviation among the individual maps. 

The spatial resolution of the final susceptibility maps is 25 m, i.e., the same as the rasters of predisposing factors. 

4.2.5 Permutation importances  330 

Permutation importance is used to assess the relative influence of each feature on the predictions of the model. The principle 

consists in measuring the performance decrease when the values of a given feature are randomly shuffled. In practice, the 

accuracy of the model is first calculated on a test set (Altmann et al., 2010). The values of a given feature are then shuffled in 

the test set and the accuracy is recalculated. This process is repeated for all the features, once at a time. A larger decrease in 

accuracy indicates that the feature is more important for predictions. In this study, the use of One Hot encoding generated 335 

many binary variables from the same categorical feature, making it difficult to interpret the importance of individual 

features. To address this issue, a grouped permutation importance was applied, where all variables derived from the same 

original feature are permuted simultaneously. For the importance analysis, each dataset was split into 80% training and 20% 

test sets. This procedure was performed for all 50 datasets in both the WSAL and WoSAL datasets. For each split, the 

permutation importance of each feature group was calculated over 20 repetitions, and the reported importance values 340 

correspond to the averages across these 20 repetitions and the 50 datasets. 

5 Results 

5.1 ED thresholds 

The ED rainfall thresholds derived from the MPRCs (Most Probable Rainfall Conditions) are presented in Fig. 6. Both 

thresholds represent the 5% non-exceedance probability: the black threshold is based on the WSAL dataset, while the grey 345 

threshold is based on the WoSAL dataset. The associated uncertainties, estimated through the bootstrapping approach, are 

shown in light grey. 

Each point on the plot represents an individual landslide, with orange points corresponding to non-Alex landslides and blue 

points representing Alex landslides. All of the 1,335 Alex landslides could be associated with a rainfall event, except for two 

that occurred on October 7 and 8 (hence several days after the storm), for which no rainfall was recorded. Among the 411 350 

non-Alex landslides initially present in the subset, only 371 were used for the threshold computation. The 40 excluded 
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landslides were omitted either because they occurred more than 48 hours after the end of the reconstructed rainfall event or 

because the cumulative rainfall was less than 5 mm. These exclusion criteria are directly implemented in the CTRL-T 

algorithm.  

Non-Alex landslides are widely distributed, with rainfall durations ranging from 44 to 291 hours and cumulative rainfall 355 

ranging from 5.7 to 287 mm. However, most of the points are concentrated between durations of 10 to 100 hours and 

cumulative rainfall of 20 to 110 mm. In contrast, the majority of Alex landslides are associated with shorter rainfall 

durations, ranging from 24 to 37 hours, but with substantially higher cumulative rainfall, from 101 to 663 mm, reflecting the 

brief and intense character of Storm Alex.  

When examining these Alex landslides in more detail, two distinct vertical clusters appear in the plot: a first group 360 

characterized by durations between 24 and 29 hours, and a second one with durations between 34 and 39 hours. This 

separation does not reflect a temporal variability in landslide occurrence, since all of these landslides are dated from October 

3, but rather results from the spatial pattern of the Storm Alex. Shorter durations correspond to peripheral areas of the storm, 

where rainfall intensity and persistence were lower, whereas longer durations occurred mainly in areas affected by the core 

of the storm, where precipitation was more sustained and intense. Two Alex landslides are outside of this window, with 365 

durations of 61 and 73 hours and rainfall amounts of 205 and 162 mm, respectively. These two landslides occurred on 

October 4 after a minor secondary rainfall period still associated with Storm Alex.  

Overall, the most notable result in Fig. 6 is that the threshold derived from the WSAL dataset is approximately 3 times 

higher than the WoSAL threshold. However, despite this vertical offset, both thresholds are almost parallel. As a 

consequence, it is observed that 172 landslides fall below the WSAL threshold, all of which correspond to non-Alex 370 

landslides. In contrast, only 28 landslides fall below the WoSAL threshold. Finally, the WSAL threshold presents 

significantly larger uncertainties than the WoSAL threshold.  

Recall that the default hour of occurrence is set at 12:00 in the CTRL-T algorithm. To assess the influence of this arbitrary 

choice, sensitivity tests were performed by changing the assumed landslide occurrence time (00:00, 06:00, 12:00, 18:00, and 

23:00) (Fig. A3). This resulted in noticeable changes in the obtained thresholds. However, in all cases, the threshold 375 

including the Alex landslides remained significantly higher than the threshold computed without them, by a factor of 2.8 to 

3.5. 
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Figure 6: ED thresholds calculated under MPRC conditions (Most Probable Rainfall Conditions). The x-axis represents the 

duration (h) of the rainfall from the beginning of the rainfall event until the occurrence of the landslide, and the y-axis represents 380 
the corresponding amount of rainfall (mm), both in log-log scales. Blue points are associated with Alex landslides while orange 

points represent non-Alex landslides. The threshold computed from the WSAL and WoSAL datasets are represented in black and 

grey, respectively. The light grey shaded areas indicate the associated uncertainties. 

5.2 Predisposing factors  

5.2.1 Permutation importances  385 

Feature importances in the RF model are presented in Fig. 7. For the WoSAL datasets (Fig. 7a), the most influential features 

are slope and clay content (0–30 cm), followed by landform classification according to Iwahashi and Pike, and lithology. 

These four factors are largely dominant, while other features such as aspect, silt content (0–30 cm), and land cover have 

intermediate importance. The three lowest-ranked features (landform Weiss, TPI, curvature) form a distinct group clearly 

separated from other features.  390 

In contrast, for the WSAL datasets (Fig. 7b), clay content (0–30 cm) becomes the most influential feature, followed very 

closely by slope. Silt and sand content over 0–30 cm gain in importance compared to the WoSAL case and are placed just 

behind. Lithology still makes a significant contribution. The importance of landform according to Iwahashi and Pike 
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markedly decreases, falling to seventh place. Similarly to the WoSAL dataset, landform (Weiss), TPI and curvature remain 

the least influential features, forming a distinct group with consistently low importance scores. 395 

 

Figure 7: Permutation importances obtained for predisposing factors (a) with the WoSAL datasets (b) with the WSAL datasets. 

5.2.2 Comparative analysis of slope, clay content and lithology 

As shown in Fig. 7, slope, clay content and lithology are among the most influential factors for landslide initiation in our 

study area (Guzzetti et al., 1996; Reichenbach et al., 2018; Xu et al., 2012). The distributions of these three factors for Alex 400 

and non-Alex landslides are compared in Fig. 8.  

The distributions of slope angle for Alex and non-Alex landslides show a unimodal shape, with most landslides occurring 

between 20° and 40° (Fig. 8a). The distribution of Alex landslides appears slightly shifted towards lower values, with an 

average slope of 30°. In contrast, non-Alex landslides show a slightly higher average slope of 32°. Approximately 52% of 

Alex landslides occurred on slopes below 30°, compared to 44% for non-Alex landslides. Both distributions show a marked 405 

decrease for slope angles higher than 45°, even more pronounced for Alex landslides.  

Fig. 8b shows the distribution of clay content (%) in the upper 0–30 cm of the soil for Alex and non-Alex landslides. Both 

distributions are centered around 20% clay content. However, non-Alex landslides exhibit a higher peak in probability 

density at this value. Alex landslides more frequently affect areas with lower clay content, with approximately 10% of Alex 

landslides occurring in soils with clay content below 18%, compared to only about 2% for non-Alex landslides. This 410 

indicates that Alex landslides were triggered in less clay-rich terrains.  

Fig. 8c presents the lithological ratios (LR) calculated for both Alex and non-Alex landslides that occurred in the post-Alex 

ortho-express zone (red outlines in Fig. 3). For each lithological class, this ratio corresponds to the proportion of landslides 

in that class, normalized by the surface proportion of the class within the post-Alex ortho-express zone. For non-Alex 

landslides, the marls lithology stands out with a much higher ratio (LR = 7.7) than other classes. Five lithologies exhibit 415 

moderate LR ratios, ranging from 2.7 to 1.2: limestone and others, gypsum, cargneules and clay, fluvial deposits, 

conglomerates and others, and heterogeneous slope deposits. The eleven other lithologies show low ratios (LR < 1). In 
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contrast, Alex landslides exhibit a different lithological distribution. Four lithologies are predominant: gneiss, flysch, marls, 

and fluvio-glacial deposits (LR between 3.3 and 4.4). The lithologies gypsum, cargneules and clay, marly limestone, 

anthropogenic deposits, heterogeneous slope deposits, moraines, and fluvial deposits show intermediate LR ratios, ranging 420 

from 2.0 to 1.1. Finally, the eleven remaining lithologies have LR ratios below 1, including limestone and others which show 

a higher LR ratio for non-Alex landslides. 

The analysis highlights clear disparities between Alex landslides, triggered by a millennial return period rainfall event, and 

non-Alex landslides, caused by less intense precipitation events. The results indicate that Alex landslides occurred on 

slightly gentler slopes than non-Alex landslides. In terms of soil texture, Alex landslides more frequently affected areas with 425 

lower clay content. Also, while some lithologies show similar low involvement in both groups, most lithological classes 

responded differently to Storm Alex. In particular, some lithological classes were mobilized exclusively during Storm Alex, 

as fluvio-glacial deposits, anthropogenic deposits, flysch, and gneiss. Conversely, magmatic and plutonic rocks, and 

calcareous marls exclusively appear for non-Alex landslides. Overall, this lithological analysis suggests that lithologies 

respond differently depending on the intensity of the triggering rainfall events. 430 
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Figure 8: Distribution of (a) slope angles (°) and (b) clay content (%) represented by density-normalized histograms and kernel 

density estimation (KDE) curves for Alex landslides (blue) and non-Alex landslides (orange). The x-axis shows slope angle and clay 

content, respectively, while the y-axis represents the probability density, i.e. the relative frequency at which landslides occurred for 

a given slope angle or clay content. (c) Comparison of lithological ratios (LR) between Alex and non-Alex landslides within the 435 
post-Alex Ortho-Express area. LR indicates how frequently landslides occurred in each lithological class relative to the surface 

coverage of that class. Blue bars correspond to Alex landslides, whereas orange bars represent non-Alex landslides. 

5.2.3 Landslide susceptibility maps 

Fig. 9a and 9b show the mean susceptibility maps calculated from the WoSAL and WSAL datasets, respectively. The 

susceptibility values are discretized into six classes to facilitate comparison. Both maps exhibit strong spatial variability. 440 

Low values (≤ 0.1) are typically found in the plains, while higher values occur predominantly in areas of pronounced relief 

located in the northern part of the department. The highest susceptibility values (> 0.9) are found in the municipality of 

Menton on both maps, as shown in the zoomed areas in Fig. 9c and 9d. This observation reflects the large number of 

landslides recorded in the municipality of Menton (see also Fig. 11c).  
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The statistical distribution of susceptibility values for both maps is presented on Fig. 10. Overall, both distributions show 445 

similar shapes. In both cases, a prominent peak appears near 0, indicating a high number of pixels with very low 

susceptibility values. Overall, pixels with susceptibility below 0.1 account for 13% and 16% of the total in the WoSAL and 

WSAL maps, respectively. A secondary peak in the distribution appears around 0.4, slightly more pronounced in the 

WoSAL distribution. Overall, 33% and 30% of pixels fall within the 0.3–0.5 range for the WoSAL and WSAL maps, 

respectively. Above 0.4, both distributions show a marked decline. Susceptibility values above 0.8 are extremely rare: less 450 

than 0.3% of pixels exceed this value in both maps.  

To better illustrate the impact of Alex landslides, a difference map is generated by subtracting the WoSAL map from the 

WSAL map (Fig. 11). Overall, the differences range from −0.2 to 0.6. About 72% of the territory presents a negative 

difference, while 28% show an increase in susceptibility. Large difference values are rare, as 94% of the territory shows a 

difference between −0.1 and 0.1, and about 16% presents no significant difference (between −0.01 and 0.01). Susceptibility 455 

increases are mainly located near the locations of the Alex landslides, as shown in the Vesubie Valley in Fig 11a. However, 

susceptibility increases are also observed in areas where no Alex landslides were recorded, as visible in the eastern part of 

the Roya valley in Fig. 11b. The municipality of Menton exhibits a small decrease in susceptibility (Fig. 11c) but the values 

remain nevertheless very high in the area (see zoom in Fig. 9c and 9d). This decrease reflects the fact that, proportionally, 

the majority of Alex landslides occurred in other locations. 460 

https://doi.org/10.5194/egusphere-2026-458
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



21 

 

 

Figure 9: Susceptibility maps computed from (a) the WoSAL dataset, and (b) the WSAL dataset. Insets (c) and (d) show close-ups 

on the municipality of Menton.  
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 465 

Figure 10: Kernel density estimation (KDE) of the distributions of susceptibility values for all pixels in the WSAL (blue) and 

WoSAL (orange) maps. 
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Figure 11: Difference of the two susceptibility maps (WSAL - WoSAL ). Positive values (red areas) correspond to an increase in 

susceptibility after integrating Alex landslides, while negative values (blue areas) indicate a decrease in susceptibility. Blue points 470 
correspond to location Alex landslides while orange points represent non-Alex landslides. Three insets show close-up views of (a) 

the Vésubie Valley, (b) the northern part of the Roya Valley, and (c) the municipality of Menton. 

5.2.4 Susceptibility values for Alex and non-Alex landslides 

Figure 12 shows the distributions of susceptibility values at the locations of Alex and non-Alex landslides. For both 

distributions, susceptibility values were extracted from the WoSAL map (computed without Alex landslides). The two 475 

curves display pronounced differences. Non-Alex landslides present a distribution centered on high values, with a mean 

susceptibility of 0.76, and values ranging from 0.37 to 0.95. Conversely, Alex landslides show a wider distribution with a 
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plateau between 0.5 and 0.7, a mean of 0.54, and values spanning from 0.05 to 0.81. Overall, Alex landslides tended to occur 

in areas with lower susceptibility values than non-Alex landslides. This result suggests that the predisposing configurations 

learned by the RF model from landslides associated with non-extreme rainfall does not entirely capture the predisposing 480 

patterns associated with extreme events. It is also observed that no Alex landslide occurred for susceptibility values above 

0.8. This surprising result actually reflects the fact that there are no areas with susceptibility greater than 0.8 in the area 

affected by Storm Alex (not shown). 

 

Figure 12: Kernel density estimates (KDE) distributions of susceptibility values at the locations of Alex (blue) and non-Alex 485 
(orange) landslides on the WoSAL map. Dashed lines indicate the means of each distribution. 

6 Discussion 

Using an inventory of 5,383 shallow landslides in the Alpes-Maritimes region, including 1,655 events triggered by the 

millennial Storm Alex (October 2020), this study shows that the inclusion of landslides triggered by extreme rainfall events 

substantially alters both rainfall–duration thresholds and susceptibility patterns. ED thresholds computed with Storm Alex 490 

landslides are increased by a factor of approximately 2.8 to 3.5 compared to thresholds derived from more common events. 

Susceptibility maps based on RF modelling reveals that Storm Alex landslides occurred under different predisposing 

conditions, and in areas characterized by a lower pre-event susceptibility. Incorporating Alex landslides modifies the spatial 

distribution of susceptibility, locally increasing values in areas sharing similar predisposing conditions, while slightly 

decreasing susceptibility elsewhere. 495 

6.1 Quality of landslide inventory 

Approximately 97% of Alex landslides were identified by orthophotography comparison and field analysis, ensuring a very 

good (decametric) spatial accuracy. In contrast, only 68% of non-Alex landslides were mapped using the same approach. To 

reduce this disparity, landslide locations were checked and adjusted whenever possible using textual information. Due to 
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incomplete information, it is possible that a very small number of landslides with a spatial accuracy indicated as decametric 500 

have in fact an erroneous location. However, this concerns a minority of landslides and does not affect the results of ED 

thresholds and susceptibility analyses.  

The temporal accuracy of the landslide inventory is also important for the ED threshold analysis. Approximately 43% of the 

landslides inventory have an hourly or daily temporal accuracy (Fig. 3d), ensuring that the thresholds can be computed based 

on a sufficient number of events. Note that all these landslides are dated on 3 October, although some of them may have 505 

occurred on 2 October during the storm itself. Consequently, the WSAL threshold should be considered as an upper bound, 

assuming that the whole storm Alex cumulative rainfall has contributed to the landslides. However, the sensitivity tests 

performed on landslide time occurrence ascertain that the difference between the WSAL and WoSAL thresholds is a robust 

result.  

6.2 Impact of Storm Alex landslides on rainfall triggering thresholds 510 

Although numerous recent studies have addressed empirical ED thresholds for shallow landslides, the influence of including 

storm-induced landslides and the implications for operational threshold design have received little attention. The difference 

between the WSAL and WoSAL thresholds is explained by the exceptional character of Storm Alex, which produced 

extreme rainfall accumulation and a large number of landslides over a short time window, therefore shifting the statistical 

relationship between rainfall and landslide occurrences towards higher values. Including such extreme events in the 515 

calculation of thresholds therefore reduces their sensitivity to more “common” rainfall events. This could lead to a higher 

rate of missed alarms, as illustrated by the larger number of landslides falling below the threshold (172) when Alex 

landslides are included compared to 28 when they are excluded (Fig. 6). However, it should be noted that in Fig. 6, all the 

points corresponding to Storm Alex significantly exceed the thresholds calculated without their inclusion. In practice, this 

means that a threshold calibrated with non-extreme events is effective at predicting the occurrence of landslides in a context 520 

of extreme rainfall.  

However, for operational use, it should also be kept in mind that these thresholds could also lead to a high rate of false 

alarms. Several studies have demonstrated that when rainfall intensity exceeds soil hydraulic conductivity, runoff moderates 

the effect of rainfall on slope stability, such that the critical stability threshold is reached less quickly (Suradi et al., 2016; 

Ran et al., 2018; Zhang et al., 2022). In other words, the instability of slopes is not always directly correlated to rainfall 525 

intensity in particular for exceptional rainfall events such as storm Alex. This could argue for including additional 

parameters in the definition of thresholds for extreme events such as e.g. the rainfall intensity, the return period, or the 

effective rainfall (the rainfall infiltrated in the soil).  

This study is based on a 5% non-exceedance probability for the computation of ED thresholds. It has been demonstrated that 

the selected non-exceedance probability strongly influences the balance between missed and false alarms, i.e., between the 530 

sensitivity and reliability of the thresholds (Barthélemy et al., 2024). In the present case, considering Alex landslides implies 

a decrease in the conservativeness of the threshold, as 14% of non-Alex landslides fall below the WSAL threshold. Choosing 
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more conservative probability levels could help enhancing the reliability of the WSAL threshold. In fact, when considering 

Alex landslides, a non-exceedence probability of about 0.5% is required to obtain a threshold comparable to the 5% WoSAL 

threshold. In general, it could be suggested to adapt the non-exceedance probability to the return period of the rainfall events 535 

considered in the analysis. It should also be mentioned that considering extreme events may invalidate the assumption of 

normal distribution of the residuals in the CTRL-T algorithm, and thus the determination of the thresholds.  

Finally, in our analysis, one data point is assigned to each landslide regardless of whether several landslides are associated 

with the same rainfall event. This approach can lead to a strong imbalance between Alex and non-Alex-induced landslides. 

This imbalance, combined with the extreme rainfall associated with Storm Alex contributes to the significantly higher level 540 

of the WSAL threshold. Approaches based on event clustering could help reduce this excessive weighting of Alex landslides 

(Benz and Blum, 2019). 

6.3 Interpretation of susceptibility scores 

Random Forest (RF) is a supervised machine learning algorithm. Although RF is generally considered robust (Goetz et al., 

2015), the performance of the algorithm is sensitive not only to the quality and structure of the input data but also to the 545 

choice of hyperparameters (Catani et al., 2013). This sensitivity arises because RF is a data-driven algorithm whose 

decisions reflect the empirical distribution of conditioning factors in the observations, rather than mechanical processes of 

slope failure. These characteristics are particularly important in the context of susceptibility mapping, since RF outputs 

reflect the empirical distribution of conditioning factors in the observations, rather than mechanical processes of slope 

failure. In our case, the considered susceptibility scores correspond to the proportion of trees predicting a landslide 550 

occurrence for a given pixel. These scores should not be interpreted as absolute probabilities of failure, but rather as a 

relative index of similarity between the environmental conditions of the pixels on the map and those assigned to landslides. 

In general, however, identifying areas sharing similar conditions with past landslides is the fundamental principle of 

susceptibility mapping. The fact that the model presents high predictive performances demonstrates that this similarity index 

is operationally relevant, as it is able to identify unstable configurations that are not present in the calibration set, and can 555 

effectively be interpreted as susceptibility score. 

6.4 Changes in susceptibility maps due to Storm Alex landslides  

The use of RF allowed us to compute two susceptibility maps, with and without including Alex landslides. The high 

performance scores in Table 2 demonstrate that the RF has a strong generalization capability, i.e. that it can accurately 

predict landslides that were not included in its training datasets. This is also illustrated by the spatial distribution of the 560 

susceptibility, where high values (>0.5) occur not only in areas where landslides have been recorded, but also in potentially 

susceptible zones without any known landslides, as shown in the Roya Valley (Fig. 9). The fact that a majority of the Alex 

landslides are well captured in the WoSAL susceptibility map (60.5% of Alex landslides having a susceptibility higher than 

0.5) also demonstrate the robustness and reliability of the model.  
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Overall, the changes between the two maps remain moderate (94% of the observed differences fall between -0.1 and 0.1). 565 

However, comparing the two maps reveals clear differences in susceptibility patterns. The zones where susceptibility 

increases after integrating Alex landslides are primarily located where these landslides occurred, or in areas with similar 

predisposing conditions that were not directly affected by the storm. By including numerous Alex landslides, the RF model 

learned new combinations of variables associated with landslide initiation under extreme rainfall events. As a consequence, 

however, susceptibility also slightly decreased in 72% of the territory, because the inclusion of Alex landslides weakened the 570 

statistical signal of the pre-existing predisposing patterns. Therefore, the observed differences between the two maps are not 

only consequences of adding new landslides, but also reflect how the model internally redefines what constitutes a 

susceptible environment, once exposed to landslides generated under extreme, atypical conditions. Such changes 

demonstrate that the inclusion of Alex landslides has a tangible impact on the resulting susceptibility patterns, with potential 

consequences for operational management.  575 

These spatial variations of susceptibility are supported by the analysis of distributions of slope angles, lithologies and clay 

content, which show significant differences between Alex and non-Alex landslides. During Storm Alex, landslides tended to 

occur on slightly gentler slopes and more frequently affected areas with lower clay content (<18%), and some lithological 

units being more affected than others. This indicates that landslides triggered by Storm Alex developed under different 

geomorphological and lithological conditions. This observation explains that on average Alex landslides occurred in areas 580 

with lower susceptibility values (0.54) compared to non-Alex landslides (0.76), with the WoSAL susceptibility map as 

reference. The exceptional rainfall intensity associated with Storm Alex lowered the predisposition threshold required to 

trigger landslides, causing events in areas considered as less susceptible.  

The analysis of feature importance highlights that soil texture parameters such as clay, sand and silt content are among the 

most influential predictors, particularly when including Alex landslides. The increased importance of these features after 585 

integrating the Alex landslides suggests that soil texture plays a more prominent role under extreme conditions, due to their 

influence on water infiltration and retention as well as on the mechanical properties of soil. This further supports the idea 

that exceptional triggering conditions can amplify the influence of certain predisposing factors.  

Overall, these results are consistent with the fact that landslide initiation results from a combination of predisposing factors 

(such as geology, topography, land use, etc.) and triggering variables, mainly related to rainfall (Corominas et al., 2014; Ran 590 

et al., 2018; Lombardo et al., 2020; Moreno et al., 2024; Steger et al., 2024). They show the limitations of approaches for 

which landslides are predicted based on predisposing factors only, particularly for extreme rainfall events. A promising 

prospect to produce more reliable and accurate predictive models, could be to jointly consider predisposing and triggering 

conditions, thereby enabling the model to recognize potentially unstable configurations even under unusual conditions. 

https://doi.org/10.5194/egusphere-2026-458
Preprint. Discussion started: 4 February 2026
c© Author(s) 2026. CC BY 4.0 License.



28 

 

7 Conclusions 595 

This study examines how extreme rainfall events affect the development of rainfall–duration (ED) thresholds and 

susceptibility maps for shallow landslides. The analysis relies on an inventory of 5,383 shallow landslides, of which 1,655 

were directly triggered by Storm Alex (October 2, 2020), a rainfall event with an estimated millennial return period. The 

objective is to determine to what extent the inclusion of landslides triggered by this storm modifies the statistical models 

commonly used for hazard assessment and mapping. The CTRL-T algorithm was applied to calculate and compare ED 600 

thresholds constructed with and without Storm Alex-induced landslides. A Random Forest (RF) method was used to 

generate and compare susceptibility maps constructed with or without these landslides. Particular attention was paid to the 

impact of non-landslide points on the outputs.  

The results reveal several key findings. First, the inclusion of landslides associated with Storm Alex leads to a substantial 

increase in the ED threshold, by up to a factor of 3.5, compared to that established using only the other landslides in the 605 

inventory. This increase reflects the extreme nature of the storm and highlights the high sensitivity of statistical approaches 

to the presence of rare events. Incorporating such events into the statistical threshold calculations therefore reduces their 

sensitivity to more common rainfall events and could increase the rate of missed alerts. Conversely, thresholds calibrated 

without the storm-induced landslides maintain a very good predictive capacity for extreme rainfall, emphasizing the 

importance of distinguishing between ordinary and exceptional rainfall regimes when defining operational thresholds.  610 

Second, the comparative analysis of the distributions of predisposing factors (slope, clay and lithology) between Alex and 

non-Alex landslides, together with the susceptibility maps produced using the RF method, indicates that landslides triggered 

by Storm Alex occurred under predisposing conditions that differ from those associated with more recurrent events. On 

average, the storm-induced landslides developed on slightly gentler slopes, more frequently impacted terrains with lower 

clay contents (<18%), affected specific lithologies, and occurred in areas with lower susceptibility values. Such differences 615 

suggest that the exceptional rainfall intensity associated with Storm Alex lowered the stability threshold of slopes. 

Accordingly, the inclusion of these events in the RF training dataset altered the statistical relationships between predisposing 

factors and landslide occurrence, resulting in a susceptibility increase in localized areas but in an overall susceptibility 

decrease elsewhere. This demonstrates that extreme events do not simply add more data points to the inventory, but that they 

reshape susceptibility patterns, and have serious implications for the robustness of statistical models and operational risk 620 

management.  

These findings have implications that extend beyond our local case study, contributing to the broader understanding of the 

limits and applicability of data-driven landslide prediction models when extreme cases are considered. More specifically, 

this work highlights that (i) inventories containing landslides triggered during rare rainfall event should be considered 

carefully, (ii) landslide predictive tools based on statistical and machine-learning behave differently under exceptional 625 

forcing conditions and (iii) methodologies developed using more common events cannot always be directly extrapolated to 
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rare events. In the context of climate change, where the frequency and intensity of extreme rainfall events are expected to 

increase, we believe that these conclusions can help to design more effective predictive tools. 

From a methodological perspective, several prospects emerge from this study. First, the analysis points out the importance of 

jointly considering predisposing (e.g., slope, lithology, land use) and triggering factors (e.g., rainfall intensity and duration) 630 

in landslide susceptibility assessment. Statistical models integrating both predisposing factors and triggering variables would 

presumably better capture the full range of conditions under which landslides occur, thereby improving hazard assessment 

and risk management strategies. Secondly, incorporating additional parameters, such as antecedent soil moisture, snowmelt 

indicators, or effective rainfall rather than event-based rainfall metrics, could further enhance the predictive capability of 

these models. Finally, performing analyses by landslide type (e.g., riverbank landslides, flow-like landslides, mid-slope 635 

landslides and cut-slope landslides) is also relevant, as different processes are controlled by distinct conditioning and 

triggering mechanisms; however, such stratification inevitably reduces the number of available landslides for model 

calibration and validation, potentially limiting statistical robustness and requiring larger or longer-term inventories. 

2 Appendices 

 640 
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Appendix A1: Landslide predisposing factors : a Lithology; b Corine Landcover; c Landform of Iwashi and Pike; d Landform of 

Weiss; e Slope angle; f Topographic Position Index (TPI); g Aspect; h Curvature; i Clay content over 0-30 cm depth; j Sand 

content over 0-30 cm depth; k Silt content over 0-30 cm depth. 645 

 

Appendix A2: Definition of the valid area (shown in light blue) used for generating non-landslide samples, corresponding to a 1 

km buffer around major roads, excluding zones within 150 m of recorded landslides. 
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Appendix A3: ED thresholds calculated according to different hours of occurrence for landslides. Solid lines correspond to 650 
WoSAL thresholds, while dashed lines indicate WSAL thresholds. Line colours represent the triggering hour of landslides (00:00, 

06:00, 12:00, 18:00, and 23:00). 
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