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Abstract 
The subantarctic Southern Ocean is a climatically important region, where primary production largely drives the 

seasonal uptake of atmospheric CO2, contributing to the sequestration of anthropogenic carbon emissions. 

Seasonal iron and light limitation control annual net primary production (NPP) in this region, but the explicit 

mechanisms that drive interannual variability in NPP remain elusive due to sparse observations. This uncertainty 15 

is reflected in inconsistent interannual variability and trend estimates of remotely-sensed NPP algorithms. 

Without clear mechanistic underpinning, confidence in remotely-sensed NPP trends remains low and hinders 

predictive capability. To overcome observational limitations and better understand the drivers of interannual NPP 

variability, we analyse the explicit bottom-up and top-down controls of depth integrated NPP in a biogeochemical 

ocean model historical run (1958-2022) from the Indian sector of the subantarctic zone. The highest NPP years 20 

were primarily driven by increased relief of iron limitation, with iron supplied from both deeper mixing in 

winter/spring and enhanced remineralisation in summer. In spring, higher phytoplankton growth rates were 

decoupled from surface biomass, such that years with higher NPP were due to faster growth in the mixed layer. 

Faster growth rates emerged following deeper winter mixed layers, driving phytoplankton distributions deeper in 

winter and reducing mixed layer grazing loss rates in spring. This generated a predator-prey dynamic favouring 25 

surface biomass accumulation moving into summer. Thus, inconsistent remote-sensing NPP estimates may derive 

from how algorithms link biomass (rather than growth rates) to NPP. We applied our analysis to CMIP6 models, 

and while  all historical simulations converged with respect to positive trends in NPP, bias from sea surface 

temperature trends influenced the mechanisms driving interannual NPP variability. These findings show that 

interacting top-down and bottom-up processes can decouple changes in NPP with respect to phytoplankton 30 

biomass, which has important implications for remote sensing NPP estimates based on biomass. Therefore, the 

need for cautionary approaches to NPP trend interpretation is highlighted, and that further observational data are 

needed to ground truth mechanistic understanding of NPP drivers. 
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1. Introduction 35 

The subantarctic region south of Australia hosts the seasonal formation of subantarctic mode water which 

transports heat, carbon and nutrients below the pycnocline and into the low latitude ocean (Sabine et al., 2004; 

Khatiwala et al., 2013). Over the annual cycle, this region is a net CO2 sink (Lenton et al., 2013; Shadwick et al., 

2023), driven predominantly by biological processes (primary production) (Shadwick et al., 2015; Yang et al., 

2024). However, the impact of warming, freshening, stratification and acidification (Orr et al., 2005; Keeling et 40 

al., 2010; Bindoff and Hobbs, 2013; Pardo et al., 2017; Auger et al., 2021; Thomalla et al., 2023) due to the 

uptake of excess anthropogenic heat and carbon dioxide (Feely et al., 2004; Cheng et al., 2022) could alter this 

region's role in global carbon cycling. How primary productivity responds to these changes is uncertain but is 

critical to assessing how regional biogeochemical cycles and ecosystems change (Henley et al., 2020; 

Anugerahanti and Tagliabue, 2024; Henson et al., 2024; Hutchins and Tagliabue, 2024). 45 

While remote sensing has begun to reveal regional trends in Southern Ocean net primary production (NPP) a 

deeper understanding of the underlying mechanisms is needed. Trends in NPP from different satellite estimates 

show varied relationships to plausible physical drivers (Ryan-Keogh et al., 2025b), reducing confidence in our 

understanding of the why NPP is changing (Tagliabue et al., 2021). Much of this uncertainty stems from the 

mechanistic parameterisation of NPP across satellite algorithms, which is derived from different estimates of the 50 

depth inventory of phytoplankton, biomass and the rate at which they divide. Each variable used to derive NPP, 

including sea surface temperature (SST), absorption coefficients, the chlorophyll to backscatter ratio, nutrient 

concentrations, photosynthetically available radiation and mixed layer depth (MLD), can in turn carry its own 

form of bias (Ryan-Keogh et al., 2023a).  

Significant advances in our understanding of the drivers of seasonal and interannual variability in 55 

biogeochemistry in the Subantarctic Zone (SAZ) have been achieved using observations generated by Southern 

Ocean Time Series (SOTS) program, located south-west of Tasmania, Australia (Wynn-Edwards et al., 2020; 

Shadwick et al., 2023; Yang et al., 2024; Shadwick et al., 2025; Traill et al., 2025). In this region, iron has been 

shown to be a seasonally limiting factor for primary productivity using both composite time series observations 

and optical methods (Schallenberg et al., 2020; Traill et al., 2025). The strong link between seasonal and sub-60 

seasonal iron supply and NPP in the SAZ (Bowie et al., 2009; Barrett et al., 2021; Traill et al., 2024; Traill et al., 

2025) may be in part driven by variability in the southern extension of the East Australian Current (Traill et al., 

2025), which moves southward into the SOTS region through summer (Yang et al., 2024; Traill et al., 2025). 

However, the decoupling of iron distributions from the prevailing physical supply pathways due to biological 

processes (Tagliabue et al., 2012; Traill et al., 2024; Traill et al., 2025), and absence of high resolution multi-year 65 

iron and primary production incubation measurements, challenges our understanding of NPP drivers using 

observational methods.  

Biogeochemical models are a valuable tool in addressing this research gap. By assessing the mechanistic links 

between environmental drivers and productivity, models can help us to investigate the explicit links between 

micronutrient supply and productivity over broad temporal and spatial scales. Recent improvements in the 70 

numerical modelling of iron biogeochemical cycling have improved the ability of models to recreate observed 

dissolved iron (DFe) distributions (Tagliabue et al., 2023), a key step in assessing NPP drivers in the iron limited 

Southern Ocean. In CMIP6 models, projected increases in Southern Ocean NPP are fairly consistent 

(Kwiatkowski et al., 2020; Tagliabue et al., 2021; Fisher et al., 2025). However, without a mechanistically 

constrained observational understanding of emerging trends it is impossible to know if models are recreating 75 

these trends for the right reasons (Laufkötter et al., 2015; Tagliabue et al., 2021; Fisher et al., 2025; Ryan-Keogh 

et al., 2025b). This leaves future projections highly vulnerable to uncertainties in the physical response of the 

ocean to a changing climate. Amidst this uncertainty, the first step is to determine exactly what is driving trends 

in the models (Tagliabue et al., 2021; Fisher et al., 2025). 

In this paper, we examine the drivers of interannual productivity in the SAZ south of Australia using a 80 

combination of observational and biogeochemical model analyses. We first examine the relationship between 
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interannual productivity variability and broadscale drivers from observational NPP data streams, including the 

influence of the STF as a proxy for EAC extension into the region. Then, using a biogeochemical model, we 

investigate mechanistic physical drivers by interrogating the explicit nutrient limitation, temperature limitation, 

light limitation and grazing terms that dictate phytoplankton growth and loss rates. Finally, we discuss the 85 

implications of these findings for NPP trends derived from observations and a suite of CMIP6 models, helping to 

disentangle uncertainty in first-order productivity drivers and observational/model disagreement.  

2. Methods 

2.1 – Study region and oceanographic properties  

To investigate the mechanisms driving interannual variability in NPP, the region 45-49S, 140-150E was 90 

selected (Figure 1a) and referred to as the study region hereafter. In assessing temporal variability and trends in 

the SOTS region, all observational and simulated terms have been grid cell area weighted and spatially averaged 

over the SOTS region. This regional subset, slightly larger than the region previously defined around the SOTS 

observatory (140-144E, 46-48S; e.g. Yang et al. (2024)), was selected to capture the broader seasonal and 

interannual variability in STF movement that might be associated with the East Australian Current extension 95 

(Figure 1a) and larger scale NPP. The larger spatial average also helps remove higher frequency variability and 

facilitate the identification of small but emerging temporal trends.  

Figure 1. (a) Regional bounding box (solid black line) in which observational and modelled climatological 

averages were calculated. Mean monthly contours of the subtropical front (STF; 11-degree isotherm at 100 m depth, 

definition per Orsi et al. 1995) for the period 1998-2022 are given by coloured lines, with the mean given by the 100 

dashed black line. (b) climatological STF extent (1998-2022) as the mean latitude (N) (1 from the mean) of the 

11-degree isotherm at 100 m depth (Orsi et al., 1995), (c) Climatological (1998-2022) means of MLD (blue) derived 

from Hadley EN4.2.2. profiles and SST (red) from ARMOR-3D, shading is 1 from the mean in the SOTS region 
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box (a), (d) Climatological mean NPP estimates from OC-CCI based satellite algorithms (1998-2022), shading is 

1 from the temporal mean.  105 

The seasonal oceanographic, biogeochemical and productivity cycles in the SOTS region are well described 

(Shadwick et al., 2015; Eriksen et al., 2018; Schallenberg et al., 2019; Trull et al., 2019; Shadwick et al., 2025; 

Traill et al., 2025) and discussed in detail in Chapter 3.2.1. While the SOTS observatory, nominally located at 

142E, 47S, is situated in the SAZ, the broader region is influenced by contrasting physical properties north and 

south of the STF. Warm, salty subtropical waters from the Zeehan and East Australian Current extensions are 110 

present in the surface. These overlay cooler, fresher and well oxygenated subantarctic mode waters formed 

during winter where mixed layer depths can exceed 300 m (Figure 1c). The seasonal progression of the STF 

reaches its maximum climatological southern extent in March, slightly later that peak climatological SST in 

February (Figure 1b, c). Climatological NPP increases rapidly through spring as the mixed layer shoals, peaking 

in December through to February (Figure 1d).  115 

2.2 – Observational datasets 

Remote sensing time series data for the period 1998-2022 were compiled to assess variability and trends in 

physical drivers (SST, MLD and STF locations) and NPP (Figure 1). Physical environmental variables SST and 

STF were derived from the Copernicus Marine Service Multi Observation Global Ocean ARMOR-3D L4 

analysis product (Table 1). This observation-based product combines in situ temperature and salinity profiles 120 

(predominantly Argo network) with synthetic satellite sea surface temperature and altimetry derived salinity 

fields using an optimal interpolation method (Guinehut et al., 2012). For MLD, the same product as used in the 

generation of the OC-CCI NPP algorithms was selected (Ryan-Keogh et al., 2023a). MLDs were derived from 

the Hadley EN4.2.2 temperature and salinity profiles (Good et al., 2013) and the Gouretski and Reseghetti (2010) 

bias corrections, using a density threshold of 0.03 kg m-3 (De Boyer Montégut et al., 2004).  125 

Estimates of NPP from five remote sensing algorithms were obtained from the OC-CCI-based dataset processed 

by (Ryan-Keogh et al., 2023a): the Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski 

(1997)), the Eppley-VGPM which includes the Eppley temperature dependent growth parameterisation (eVGPM; 

Eppley (1972)), the Carbon-based Production Model (CbPM; Westberry et al. (2008)), Carbon, Absorption, and 

Fluorescence Euphotic-resolving model (CAFE; Silsbe et al. (2016)), and Absorption-based Production Model 130 

(AbPM; Lee et al. (2011)). Detailed discussion on the algorithm input dependencies and assessment is given in 

Figure 2, Ryan-Keogh et al. (2023a) and Ryan-Keogh et al. (2025b).  

2.3 – Resolving the mechanisms driving net primary production interannual variability in 

PISCES-Quota-Fe  

To understand the mechanisms between physical and biogeochemical drivers of interannual variability in NPP 135 

and move beyond the limitations imposed by observational platforms, we use an ocean biogeochemical model. 

This approach allows us to dissect the explicit thermal, light, nutrient and loss processes driving interannual 

variability in NPP explicitly (Table 1). 

We analyse output from the Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota 

biogeochemical model with improved iron cycling (PISCES-Quota-Fe) (Tagliabue et al., 2023). PISCES-Quota-140 

Fe is built upon PISCES-Quota (Kwiatkowski et al., 2018) and incorporates three phytoplankton types 

(nanophytoplankton, picophytoplankton and diatoms), independent carbon, nitrogen, phosphorus, silica and iron 

stoichiometry within phytoplankton, and dissolved organic and particle pools. Two zooplankton groups 

(microzooplankton and mesozooplankton) are included, but both have fixed stoichiometry (Kwiatkowski et al., 

2018). PISCES-Quota-Fe also includes two aeolian-derived lithogenic particle tracers (fine lithogenic particles 145 

and aggregated lithogenic particles), two additional particulate authigenic iron tracers (small and large particulate 

authigenic Fe), an updated Fe chemistry routine that decouples the cycling of colloidal iron from the equilibrium 

with ligands previously employed in PISCES-Quota, and updated ligand parameterisation based on optimised 

model-observation fit (Tagliabue et al., 2023).  

https://doi.org/10.5194/egusphere-2026-44
Preprint. Discussion started: 23 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 5 

 

These changes to the iron cycling in PISCES-Quota-Fe result in improved skill over PISCES-Quota relative to 150 

global DFe and PFe observations, while retaining performance in core biogeochemical tracer distributions 

(nutrients, chlorophyll, oxygen, carbon export) (Tagliabue et al., 2023). These improvements are particularly 

relevant to the Southern Ocean iron cycle, where interchange between particulate iron pools controls the resupply 

of sub-surface iron sources that can impact seasonal resupply during winter mixing (Bressac et al., 2019; 

Tagliabue et al., 2019; Tagliabue et al., 2023). A full description of the model including equations and 155 

comparison between PISCES-Quota and PISCES-Quota-Fe are described in Tagliabue et al. (2023).  

PISCES-Quota-Fe was coupled to the Nucleus for European Modelling of the Ocean version 4.0 (NEMO-v4.0) 

general ocean circulation model and Sea Ice modelling Integrated Initiative (SI3) sea ice model. The hindcast 

simulation was forced with JRA-55 atmospheric reanalysis (Tsujino et al., 2018) for the period 1958-2022. 

Horizontal model resolution is nominally 2° but increases to ∼1° at high latitudes and ∼0.5° at the equator, while 160 

the vertical resolution varies between 10- and 500-m thickness over 31 depth-coordinate levels. Model output 

analysis was performed on the mean monthly time series from 1975-2022 to avoid model initialization bias in the 

first 17 years of the simulation (Buchanan and Tagliabue, 2021). The analysis presented here was restricted to the 

observational study region in Figure 1a. Key model output and diagnostics are described in Table 1.  

2.4 – Analysis of productivity drivers, mechanisms and responses 165 

To determine the relative influence of mechanisms (Table 1) driving interannual variability in primary 

productivity across both observational and simulated data, we considered the highest and lowest NPP periods in 

respective time series. This was done to assess the highest anomalous NPP years and identify the most important 

drivers, since competing drivers and their interactions across the whole time series limits correlative signals 

across the whole time series. We first selected the 5 highest and 5 lowest seasons (Austral summer; July to June) 170 

of integrated NPP from the time series. The selection of 5 highest/lowest NPP years was based on the top and 

bottom 10% percentiles of the 48-year simulated time series, where the top 5 years of seasonally integrated NPP 

values lie outside 1 standard deviation from the mean. We also used the top/bottom 5 years in observational time 

series, noting the limitation of a shorter observational time series with which to compare.  

The differences in each variable (var) between years corresponding to the highest and lowest NPP were 175 

calculated for all variables and assigned the  prefix (Equation 1).  

𝛥𝑣𝑎𝑟(𝑚) =  𝑣𝑎𝑟̅̅ ̅̅ ℎ̅𝑖𝑔ℎ(𝑚) −  𝑣𝑎𝑟̅̅ ̅̅ 𝑙̅𝑜𝑤(𝑚)         (1) 

Where Δvar(m) is the difference in mean monthly climatological values for variable var in month m between the 

high- and low-NPP years,  is the mean monthly climatological value of var at month m calculated over the five 

highest integrated NPP years, and is the mean monthly climatological value of var at month m calculated over the 180 

five lowest-NPP years. 

To assess whether the differences between high- and low-NPP years (Δ-variable) were statistically significant 

relative to background variability, we applied a non-parametric bootstrap resampling approach. This method is 

well suited to our analysis because it tests the difference between two empirical samples (high- and low-NPP 

years), rather than comparing a single sample against a theoretical population mean and does not assume 185 

underlying distributions. Specifically, we generated an empirical distribution of Δ-variable values by randomly 

resampling years from the full time series without replacement, repeating this process 10,000 times. This allowed 

us to calculate two-sided p-values and corresponding 95% confidence intervals for each variable, representing the 

probability that the observed Δ-variable could arise by chance under the null hypothesis of no systematic 

difference. The bootstrap analysis was applied independently to all variables listed in Table 1 across both 190 

observational and model-based datasets.
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Table 1. Catalogue of remote sensing observations, model output and diagnostics. For phytoplankton class specific variables, i 

denotes individual phytoplankton classes (i = Nanophytoplankton, Picophytoplankton, Diatoms). References are provided for 

specific data sources, with methods used to determine specific metrics given in parenthesis. For PISCES-Quota-Fe, references 

given are for the output configuration used in this study, with those in parentheses denoting specific equations used to generate 

terms. If no method is given, variable equations are provided in the model description references. Except where otherwise stated, 

PISCES-Quota-Fe variable depth integrals were calculated over the full depth grid.  

Variable 

ID 
Parameter Units 

Processing (depth resolved; column 

integral) 

Data source (method) 

reference 

Remote sensing and observational variables 

NPP Net primary production 
mmol C m-2 

d-1 

OC-CCI remote sensing product based 

VGPM, eVGPM, CbPM, CAFE and AbPM 

algorithms 

Ryan-Keogh et al. 

(2023a) 

MLD Mixed layer depth m Density threshold criteria of 0.03 kg m-3 

Ryan-Keogh et al. 

(2023a) 

(De Boyer Montégut et 

al., 2004; Good et al., 

2013) 

SST Sea surface temperature °C - Guinehut et al. (2012) 

STF Subtropical front °N 
Mean latitude of 11°C isotherm at 100 m 

depth within the 140-150°E longitude range 

Guinehut et al. (2012) 

(Orsi et al., 1995) 

                                   PISCES-Quota-Fe model output Tagliabue et al. (2023) 

NPPi 

Phytoplankton class 

specific net primary 

production 

mmol C m-

2 d-1 

Grid-cell concentration; depth integrated 

(volume normalised) 
 

MLD Mixed layer depth m ∆0= 0.01 kg m-3 with respect to -10 m 
(De Boyer Montégut et 

al., 2004) 

SST Sea surface temperature °C -  

STF Subtropical front °N 
Mean latitude of 11°C isotherm at 100 m depth 

within the 140-150°E longitude range 
(Orsi et al., 1995) 

thetao Potential temperature °C -  

so Practical salinity PSU -  

DFe 

NO3 

Si 

O2 

Dissolved iron 

Nitrate 

Silicate 

Dissolved oxygen 

mmol m-3 
Grid-cell concentration; surface 300 m depth 

integrated (volume normalised) 
 

Remin_Fe 
Remineralisation supply 

of iron rate 

mmol Fe 

m-3 d-1 

Grid-cell rate; depth integrated (volume 

normalised) 
 

µi Realised growth rate. d-1 
Grid-cell specific; biomass-weighted depth-

averaged (BWDA) 

(Kwiatkowski et al., 

2018) 

 
Phytoplankton class 

specific biomass 

mmol C m-

3 

Grid-cell concentration; depth integrated 

(volume normalised) 

 
Microzooplankton 

biomass 

mmol C m-

3 

Grid-cell concentration; depth integrated 

(volume normalised) 

 
Mesozooplankton 

biomass 

mmol C m-

3 

Grid-cell concentration; depth integrated 

(volume normalised) 
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192 

Llight
i 

Phytoplankton class 

specific light limitation 

term 

unitless 
Grid-cell specific; biomass-weighted depth-

averaged (BWDA) 

LFe
i 

Phytoplankton class 

specific iron limitation 

term 

unitless 
Grid-cell specific; biomass-weighted depth-

averaged (BWDA) 

LN
i 

Phytoplankton class 

specific nitrogen 

limitation term 

unitless 
Grid-cell specific; biomass-weighted depth-

averaged (BWDA) 

PISCES-Quota-Fe model derived diagnostics 

 
Temperature dependency 

of growth rate 
d-1 

Grid-cell specific; biomass-weighted depth-

averaged (BWDA) 

 

(Kwiatkowski et al., 

2018) 

Grazing  

Grazing loss rate. 

Phytoplankton specific 

rate at which 

phytoplankton are lost to 

grazing 

d-1 
Grid-cell rate; depth integrated (volume and 

phytoplankton biomass normalised). 
(Rohr et al., 2023) 

NGL  

Non-grazing loss rate 

(from mortality and 

aggregation) 

d-1 
Grid-cell rate; depth integrated (volume and 

phytoplankton biomass normalised) 
 

Clearance Clearance rate 
m3 mmol 

C-1 d-1 

Phytoplankton specific rate at which 

phytoplankton are grazed per unit zooplankton 
(Rohr et al., 2022) 

CMIP6 model output 

NPP Net primary production 
mmol C m-2 

d-1 
Column integrated net primary production Table 2 

MLD Mixed layer depth m Mixed Layer Depth Table 2 

SST Sea surface temperature °C Sea Surface Temperature Table 2 

STF Subtropical front °N 

Subtropical front mean latitude of 11°C 

isotherm at 100 m depth within the 140-150°E 

longitude range 

Table 2 

Orsi et al. (1995) 
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2.5 – Productivity projections in CMIP6 models 

In addition to remote sensing NPP algorithms and PISCES-Quota-Fe, we examined trends in NPP and its drivers 

across 8 earth system models from the historical Coupled Model Intercomparison Project Phase 6 (CMIP6) 195 

simulation suite (Table 2). CMIP6 model output was sourced from the Earth System Grid Federation (Table 2), 

with model selection restricted to those with outputs saved for gridded temperature at depth in order to derive 

STF locations (Table 1). Trends in spatial mean monthly NPP, MLD, SST and STF mean latitude anomalies for 

remote sensing algorithms (1998-2022), PISCES-Quota-Fe (1975-2022) and historical CMIP6 model (1950 – 

2014) were determined using an ordinary least squares linear regression.  200 

Table 2. CMIP6 simulations used in the analysis of NPP and subtropical front (STF) time series trends. 

References are provided in columns 1-3 for the descriptions of BGC, earth system and publicly hosted model 

output.  

Biogeochemistry 

(BGC) model 
Earth system model Simulation 

Institution 

(location) 

CMOC 

(Zahariev et al., 2008) 

CanESM5 

(Christian et al., 2022) 

Historical 1950 - 2014 

(Swart et al., 2019b) 
CCCM (Canada) 

WOMBAT 

(Law et al., 2017) 

ACCESS ESM1.5 

(Law et al., 2017) 

Historical 1950 - 2014 

(Ziehn et al., 2019) 
CSIRO (Australia) 

MARBL 

(Long et al., 2021) 

CESM2 

(Danabasoglu et al., 2020) 

Historical 1950 - 2014 

(Danabasoglu, 2019) 
NCAR (USA) 

CanOE 

(Christian et al., 2022) 

CanESM5-CanOE 

(Christian et al., 2022) 

Historical 1950 - 2014 

(Swart et al., 2019a) 
ECCC (Canada) 

PISCESv2 

(Aumont et al., 2015) 

IPSL-CM6A-LR 

(Bonnet et al., 2021) 

Historical 1950 - 2014 

(Boucher et al., 2018) 
IPSL (France) 

PISCESv2 

(Aumont et al., 2015) 

CNRM-ESM2.1 

(Séférian et al., 2019) 

Historical 1950 - 2014 

(Seferian, 2018) 
CNMR (France) 

BFM5.2 

(Lovato et al., 2022) 

CMCC-ESM2 

(Lovato et al., 2022) 

Historical 1950 - 2014 

(Lovato et al., 2021) 
CMCC (Italy) 

COBALTv2 

(Stock et al., 2020) 

GFDL4.1 

(Dunne et al., 2020) 

Historical 1950 -2014 

(Krasting et al., 2018) 
GFDL (USA) 

 

3. Results 

3.1 – Remote Sensing Products Disagree on the Drivers of Interannual Variability in NPP  

When we examined the difference in potential drivers of NPP, calculated as the difference in climatological 

depth integrated NPP between years corresponding to the highest and lowest periods of total seasonally 205 

integrated NPP, inconsistent patterns emerged depending on the NPP algorithm used (Figure 2). In the first case, 

NPP in VGPM/eVGPM models was associated with occasionally deeper MLDs, but consistently warmer SSTs 

and a STF latitude located further south. Alternatively, NPP in CbPM, AbPM, CAFE algorithms were 

associated with shallower MLDs and insignificant but indicative cooler SSTs and a STF latitude located further 

north (Figure 2).  210 
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Figure 2. (a) Change in integrated NPP (∆NPP) from five OC-CCI-based remote sensing algorithms calculated 

from the difference in climatological means of the five highest and five lowest NPP seasons for observations in 

the region 140-150E, 45-49S, for the period 1998-2022. Corresponding changes in the physical drivers for 

corresponding algorithm high and low NPP year groups are shown for (b) MLD, (c) SST and (d) STF mean 

latitude. Positive values of MLD, SST and STF indicate deeper MLDs, warmer SSTs and further north mean 215 

STF latitude during high NPP seasons respectively. Stars indicate that mean monthly climatological difference in 

the selected high and low NPP season groups is significant relative to the full time series climatological 

variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis). The figure legend 

describes the specific observational and spectral variables used in each NPP algorithm (Chlorophyll a (Chl-a), 

photosynthetically active radiation (PAR), backscatter at 443nm (bbp), phytoplankton absorption at 443nm (aph), 220 

detrital absorption at 443nm (adg), diffuse attenuation coefficient at 490nm (Kd), the spectral slope of backscatter 

(η), the backscatter of pure water (bbw), Hadley EN4.2.2 mixed-layer depth (MLD), sea surface temperature 

(SST), nitracline depth, and sea surface salinity (SSS)). 

For VGPM/eVGPM algorithms, positive ∆NPP (higher NPP) was associated with significantly higher SSTs in 

spring (Oct) and autumn (March-April), coincident with a mean STF latitude located significantly further south 225 
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through summer and autumn (Figure 2). Higher NPP for VGPM/eVGPM was associated with deeper MLDs 

through winter and shallower MLDs in spring (October-November), although not statistically significant (Figure 

2b). The highest NPP was observed in February and was associated with a shallower MLD and a STF latitude 

further south, indicative of a greater presence of warmer subtropical waters. Increased VGPM/eVGPM NPP at 

elevated SSTs is not surprising given the temperature dependent growth rate parameterisation of VGPM/EVGPM 230 

algorithms. However, MLD is not directly included in these algorithms, so it is interesting to see deeper winter 

and spring MLDs at elevated SSTs.  

For the CbPM algorithm, maximum NPP was larger than all other algorithms and occurred in spring 

(November), while all other algorithms showed maximum NPP values in February (Figure 2a). The October 

and November peaks in CbPM NPP were associated with significantly shallower MLD (Figure 2a, b), and 235 

preceded by significantly cooler SSTs in winter (Figure 2c). Cooler SSTs were consistent with a STF mean 

latitude further north but not significantly so (Figure 2d). Similar relationships were observed in the CAFE and 

AbPM algorithms, however no environmental features were significantly associated with increased NPP. 

Interestingly, during peak ∆NPP in February, changes in the environment between high and low NPP seasons in 

CAFE and AbPM algorithms were barely detected (Figure 2). 240 

3.2 – Simulated environmental drivers of interannual variability in NPP  

The simulated climatology of NPP, MLD, SST and STF mean latitude in PISCES-Quota-Fe (Figure 3) was 

generally consistent with observations (Figure 1) despite some biases. Seasonal mixed layer depth amplitude was 

notably reduced and the STF mean latitude was further north in simulations compared to observations Figure 3d). 

However, the good agreement between simulated NPP and remote sensing algorithms provides a strong basis 245 

with which to test the simulated mechanistic drivers of anomalously high and low NPP. 

Figure 3. (a) Mean climatological MLD (blue) and SST (red), (b) STF mean latitude in the longitude range 140-

150E extent, and (c) Phytoplankton class and total resolved depth-integrated NPP, including percentage 

contribution of each class to the total NPP inventory, and (d) Taylor diagram summarising climatological 

differences between NPP, MLD, SST and STF latitude between PISCES-Quota-Fe and observations for the period 250 

1998-2023. Relative bias (%) is given as marker size and colour.  

The relationships between drivers and NPP in PISCES-Quota-Fe (Figure 4a - d) were generally more consistent 

with CbPM, CAFE and AbPM remote sensing algorithms than VGPM and eVGPM algorithms (cf. Figure 2). Of 

the physical drivers examined in PISCES-Quota-Fe, variability in temperature and STF location did not dominate 

as drivers of NPP interannual variability (Figure 4c, d). Climatological SST was consistently negative during 255 

high NPP periods but only significant in March when negative SST peaked (Figure 4c). Cooler temperatures at 
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depth (∆thetao) between high and low NPP seasons were observed during summer, but were generally 

insignificant (Figure 4e). Lower temperatures at depth were linked to a northern shift in the STF in spring and 

late autumn, more consistent with CbPM, CAFE and AbPM NPP algorithms than VGPM/eVGPM (Figure 4d). 

However, the STF latitude did not vary significantly between high and low NPP periods (Figure 4d), suggesting 260 

that variability in NPP is not linked to increases in subtropical water mass presence in this region.  

Figure 4. Mean Monthly climatological differences in NPP (a) and simulated physical drivers of MLD (b), SST 

(c) and STF mean latitude (d), and depth resolved (interpolated onto a 10 m regular depth grid) potential 

temperature (e) and salinity (f) between high and low total integrated NPP seasons. Stars and stippling indicate 

that mean monthly climatological difference in the selected high and low NPP season groups is significant relative 265 

to the full time series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping 

analysis). Red and blue solid lines denote mean MLDs in respective high and low NPP year groups.  

Mixed layer depths were generally deeper in high NPP periods, with significantly positive MLD in August and 

February (Figure 4b). However, MLD was very small from November to January and during March (Figure 

4b), months where positive total NPP was strongest (Figure 4a). Changes in mixed layer depth during spring 270 

may have a lasting memory effect into summer by modifying mixed layer nutrient, light and predator-prey 

interactions .  
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Indeed, higher NPP seasons were associated with significant increases in NO3, Si and DFe mixed layer 

inventories (Figure 5a, b, c). The average (biomass-weighted) community composition showed a clear iron 

limitation signal during the productive season (Appendix Figure A1), with the exception of picophytoplankton 275 

that were generally nitrogen limited (Appendix Figure A2). 

Figure 5. Climatological difference in simulated mean nutrient water column inventories (barplots) and depth 

resolved concentration differences interpolated onto a 10 m regular grid (heatmaps) for (a) NO3, (b) Si, (c) 

DFe, (d) O2, and (e) the difference in the rate of remineralised iron supply (∆Remin_Fe) between high and low 

NPP seasons. Stars and stippling indicate that mean monthly climatological difference in the selected high and low 280 

NPP season groups is significantly outside the full time series climatological variability at the p < 0.05 level (10,000 

iteration random year bootstrapping analysis). Red and blue solid lines denote mean MLDs in respective high and 

low NPP year groups.  
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3.3 – Variability in simulated NPP is decoupled from biomass  285 

While the largest NPP (Figure 6a) generally corresponded to positive Biomass, predominantly driven by 

significantly increased nanophytoplankton NPP (Figure 6a) and corresponding nanophytoplankton biomass 

(Figure 6b), climatological changes in total biomass and NPP were not directly correlated. Total Biomass was 

largest in spring, peaking in October when the mixed layer shoals (Figure 3a), while NPP was largest in 

January. This increase in total spring biomass occurred despite significantly reduced total phytoplankton division 290 

rates (µ) from July to October (Figure 6c). In summer, Biomass was still significantly increased in high NPP 

years (December to March), indicating sustained elevated biomass contributed to NPP in summer (Figure 6a, b) 

while total average growth rates (µ) did not change significantly (Figure 6c). 

Figure 6. Simulated changes (∆) in phytoplankton class specific and total mean climatological terms determined 

from the mean climatological difference between high and low integrated total NPP seasons for: (a) depth 295 

integrated NPP, (b) depth integrated Biomass, (c) biomass-weighted depth-averaged growth rate ∆µ, (d) 

biomass-weighted depth-averaged iron limitation, ∆LFe, (positive ∆LFe indicates reduced iron limitation), (e) 

biomass-weighted depth-averaged nitrogen limitation ∆LN (positive ∆LN indicates reduced nitrate limitation), (f) 

biomass-weighted depth-averaged light limitation ∆Llight (negative ∆LLight indicates increased light limitation), (g) 

biomass-weighted depth-averaged growth rate temperature dependency µmax, (h) phytoplankton biomass 300 

normalized specific grazing loss rate ∆Grazing, and (i) phytoplankton biomass normalized specific non-grazing 

loss rate ∆NGL. Stars denote that mean monthly climatological difference in the selected high and low NPP season 

groups is significantly exceeds the full time series climatological variability at the p < 0.05 level (10,000 iteration 

random year group bootstrapping analysis).  

In determining why decreases in spring division rates emerge in high NPP periods, we found lower temperatures 305 

are unlikely to dominate reduced growth rates. Assessment of the growth rate temperature dependency (µmax) 

showed that while negative ∆µmax occurred with lower temperatures during high NPP periods (Figure 4c, e), 

∆µmax was not significantly reduced for the total phytoplankton population over the climatology (Figure 6g). To 
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evaluate why average phytoplankton division rates (µ) decreased in spring despite increased NPP, we 

investigated the explicit depth resolved limitation terms that drive phytoplankton growth rates and thus biomass 310 

evolution and NPP responses.  

3.4 – Multiple competing mechanisms associated with MLD drive interannual variability in 

simulated NPP 

In higher NPP years, biomass-weighted depth-averaged realised growth rates (∆µ) were significantly reduced 

from July to October (Figure 6c). The co-existence of higher NPP despite poorer growth conditions for the 315 

average phytoplankton requires the role of either top-down processes affecting biomass loss rates or a physical 

decoupling between where changes in biomass and growth rates occur in the water column in response to bottom-

up processes. Both top-down and bottom-up roles regulated interannual variability in NPP, but their relative 

influence changed throughout the productivity season.  

We found that increased NPP during the spring arose from the unique ways in which bottom-up and top-down 320 

processes responded to deeper mixing. Initially, strong bottom-up controls linked to relief of iron limitation 

appeared to drive increased NPP. Significantly higher depth resolved ∆µ within the mixed layer reflected better 

growth conditions for the average phytoplankton (Figure 7c). This corresponded to increases in surface NPP 

(Figure 7a), despite a non-significant increase in surface biomass during the July-November period (Figure 7b, 

Appendix Figures A3, A4, A5). Through the same period, Fe limitation was reduced, with consistently and 325 

significantly increased class specific and total phytoplankton community averaged LFe terms in high NPP years 

(Figure 6d). This effect was confined to depths from the surface to just below the mixed layer (Figure 7d), 

following increased mixed layer DFe inventories (Figure 5c). Increased DFe mixed layer inventories during 

spring were not from remineralised iron sources (Figure 5e), suggesting that springtime relief of iron limitation 

was driven by entrainment.  330 

However, increased phytoplankton division rates within the mixed layer did not translate to increased biomass 

Figure 7b, c), because deeper mixing drove biomass below the mean monthly mixed layer. The redistribution of 

simulated phytoplankton biomass to depth led to additional top-down controls on phytoplankton biomass 

accumulation into summer, possibly through the destabilizing properties of the prescribed grazing functional 

response (Gentleman and Neuheimer, 2008; Rohr et al., 2022). Between high and low NPP periods, depth-335 

integrated biomass significantly increased in spring (Figure 7b), while total grazing loss rates significantly 

decreased (Figure 7h, Appendix Figures A3, A4, A5) with decreasing zooplankton biomass (Appendix Figure 

A6). Resolved over depth, the reduction in grazing loss rates was strongest in the mixed layer (Figure 7h). While 

grazing rates decreased, total mixed layer phytoplankton biomass remained the same (or significantly decreased 

in the cases of picophytoplankton and diatoms, Appendix Figures A4, A5), while below the mixed layer, biomass 340 

increased (Figure 7b).  

The significant deep biomass anomalies below the mean monthly MLD (Figure 7b) were likely due to synoptic 

scale mixing events averaged out in mean monthly MLD. This redistribution of phytoplankton biomass 

significantly reduced grazing loss rates in the mixed layer (Figure 7h), alongside reduced micro- and 

mesozooplankton biomass (Appendix Figure A6e, f). This reduction in top-down loss pressure likely contributed 345 

to increased mixed layer NPP by reducing grazing pressure in the mixed layer where growth conditions were 

enhanced, while also mitigating biomass losses to detrainment. These results highlight that higher spring NPP can 

occur despite biomass-weighted depth-average decreases in µ (Figure 6c, 7c) that arise from shifting biomass to 

greater depth where growth conditions were unfavourable due to insufficient light (Figure 7f). 
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Figure 7. Simulated integrated (barplots) and depth resolved (interpolated onto a 10 m regular grid) mean 350 

climatological (a) NPP, (b) Biomass, (c) biomass-weighted depth-averaged growth rate ∆µ, (d) biomass-

weighted depth-averaged iron limitation, ∆LFe, (e) biomass-weighted depth-averaged nitrogen limitation ∆LN, (f) 

biomass-weighted depth-averaged light limitation ∆Llight, (g) Biomass-weighted depth-averaged growth rate 

temperature dependency µmax, (h) phytoplankton biomass normalized specific grazing loss rate ∆Grazing, and (i) 

phytoplankton biomass normalized specific non-grazing loss rate ∆NGL. ∆ terms were determined from the mean 355 

climatological difference between high and low integrated total NPP seasons. Stars and stippling denote that mean 

monthly climatological difference in the selected high and low NPP season groups significantly exceeds the full 

time series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis). 

Red and blue solid lines denote mean MLDs in respective high and low NPP year groups. 

Following shoaling of the mixed layer in spring/summer, high NPP years were associated with divergent changes 360 

to growth conditions above and below the mixed layer. Higher NPP seasons were consistently linked to surface 

changes in growth conditions and biomass (Figure 7). In the mixed layer, growth conditions improved (Figure 

7c), due to relief of iron limitation (Figure 7d, Appendix Figure A2). This occurred despite significantly 
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increased light limitation (Figure 7f). Cooler temperatures reduced the thermal growth rate dependency but not 

significantly between high and low NPP seasons (Figure 7g). Both DFe and NO3 inventories were significantly 365 

higher through summer (Figure 5), reducing nutrient limitation and driving positive ∆µ in the mixed layer (Figure 

7d, e). Importantly, increased supply of remineralised iron was significantly increased in the mixed layer (Figure 

5e), maintaining iron limitation relief following mixed layer shoaling. The improved mixed layer growth 

conditions led to higher biomass (Figure 7b) and NPP (Figure 7a). Notably, summertime biomass-weighted depth 

averaged ∆µ, which was not significantly different between high and low NPP seasons, reflected poorer growth 370 

conditions below the mixed layer (Figure 7a, c, f).  

4. Discussion 

4.1 – Does our understanding of simulated drivers of NPP help explain remote-sensing NPP 

algorithm divergence?  

The inconsistent relationship between NPP and environmental drivers seen across VGPM/eVGPM and 375 

CbPM/AbPM/CAFE algorithms is also observed in previous Southern Ocean assessments (Pinkerton et al., 2021; 

Ryan-Keogh et al., 2025b; Tagliabue et al., 2025). This inconsistency between remote sensing NPP algorithms 

suggests uncertainty around the mechanistic links between drivers and NPP. This uncertainty may arise from 

potential biases in how NPP is derived from biomass and growth rates, or more complex competing mechanistic 

relationships than can be parameterised using first-order relationships of surface ocean environmental variables. 380 

The interannual variability in NPP in our biogeochemical model was linked to variability in winter/spring MLD, 

driving cascading changes to the bottom-up and top-down controls and demonstrating how decoupling between 

biomass and growth rates (µ) can arise. For remote sensing NPP algorithms, the CAFE and CbPM algorithms 

both include MLD. The CbPM algorithm also includes nitracline depth to determine nitrate limitation based on 

the proximity of MLD and nitracline depths (Westberry et al., 2008; Ryan-Keogh et al., 2023a). However, 385 

differences in climatological ∆NPP across CAFE and CbPM algorithms are likely driven by differences in how 

biomass, chlorophyll and absorption spectra are incorporated into respective algorithms (Figure 2).  

Our investigation of remote sensing algorithms did not find consistent and significant links between deeper 

MLDs in spring and increased NPP. Rather, the only significant relationship identified was in the CbPM 

algorithm, where shallower MLD was correlated with increased NPP in November (Figure 2). While this 390 

relationship was also indicated in CAFE and AbPM algorithms, it was not significant (Figure 2). This does 

provide some indication that earlier shoaling of the MLD enhanced light availability for mixed layer biomass, 

consistent with observations of light as a seasonal productivity driver in this region (Trull et al., 2019). This 

effect in the CbPM algorithm was not sustained through to summer however, indicative that algorithm sensitivity 

to light attenuation forms only part of mechanistic NPP variability and was confined to spring.  395 

The absence of stronger or more widespread relationships in remote sensing products may arise from several 

factors. First and most importantly, the complexity of mechanisms driving interannual NPP variability captured 

in the coupled physical–biogeochemical model likely reflects realistic, nonlinear interactions among physical 

processes, light, nutrients, and grazing. These processes often counteract one another, resulting in weak net 

effects that are difficult to detect in surface-constrained observations. Secondly, remote sensing algorithms rely 400 

on simplified parameterisations that may exclude subsurface processes critical to NPP variability, or biases in 

input variables (Saba et al., 2011). Third, the averaged MLD product may not accurately resolve sub-seasonal 

variability in MLD which is an important driver of SAZ primary production (Swart et al., 2015; Swart et al., 

2023). The last possibility is that the mechanisms generated in the model are poorly representative of the in-situ 

system. As such, the lack of consistent relationships does not imply an absence of physical–biological coupling 405 

but rather highlights the limitations of simplified remotely-sensed algorithms in resolving emergent and 

interacting drivers of phytoplankton biomass and growth rates.  
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4.2 – Bottom-up and top-down drivers of NPP are linked by ecosystem functional responses 

The uncertainty in environmental drivers of observed NPP likely occurs due to the many competing controls on 

biogeochemistry. Changes to the MLD in the Southern Ocean affects NPP by altering both nutrient and light 410 

availability in generally opposing directions. Deeper mixed layers entrain nutrients from below but also reduce 

light availability to phytoplankton that are mixed deeper in the water column (Tagliabue et al., 2014; Deppeler 

and Davidson, 2017; Llort et al., 2019). The timing of MLD shoaling, relative to seasonal changes in incoming 

radiation and SST also determines the response of the phytoplankton community (Deppeler and Davidson, 2017), 

as observed here in PISCES-Quota-Fe.  415 

In PISCES-Quota-Fe, the climatological average productivity response to changes in MLD was complicated 

through competing changes in ecosystem structure and top-down controls. Firstly, the responses of phytoplankton 

to bottom-up controls (class specific nutrient limitation) varied between groups, where reduced iron limitation in 

high NPP seasons benefited nanophytoplankton over picophytoplankton and diatoms (cf. Appendix Figures A3, 

A4, A5). And second, the decoupling between changes in the MLD and NPP over the climatological cycle was 420 

exacerbated by the response of grazers to changes in the prey field as dictated by their prescribed functional 

response curves.  

In our results, during spring the dilution of biomass over greater depth and the lack of increased biomass in the 

mixed layer corresponded to reduced grazing (Figure 7h), preconditioning the mixed layer to this destabilising 

predator-prey dynamic (Evans and Parslow, 1985; Behrenfeld, 2010). This was driven by the rate at which 425 

clearance rate, the volumetric rate at which phytoplankton are grazed per unit zooplankton, changes with 

phytoplankton concentrations. In type II (and circumstantially type III) prescribed functional responses 

(Gentleman et al., 2003; Gentleman and Neuheimer, 2008), clearance rates decrease with biomass accumulation 

during seasonal bloom formation as grazing becomes less efficient per unit zooplankton (Gentleman and 

Neuheimer, 2008; Rohr et al., 2022). This reduced grazing efficiency allows more rapid phytoplankton biomass 430 

accumulation, destabilizing grazing as a top-down control in the predator-prey dynamic (Gentleman and 

Neuheimer, 2008; Rohr et al., 2022).  

The impact of a more destabilising functional response amplifies changes in phytoplankton growth, which under 

reduced grazing loss rates, primes the growing population to greater potential growth ahead of increasing 

zooplankton population (Rohr et al., 2022). These properties likely contributed to significantly increased mixed 435 

layer biomass accumulation from January to March, when peak ∆NPP occurs, despite the same or lower biomass 

in the spring during initiation (Figure 6b, Figure 7b), and a lack of significant changes to summer grazing loss 

rates (Figure 7h). Indeed, clearance rates for the average phytoplankton in the mixed layer significantly decreased 

in summer (Appendix Figure A6) despite significantly increased summer mixed layer biomass (Figure 7b).  

To assess the intrinsic stability of the predator-prey functional response in PISCES-Quota-Fe, determination of 440 

the first order stability of the functional response, calculated from the rate of change in clearance rate as prey 

density increases, is required to assess the nonlinear way in which clearance rate changes with mixed layer 

reduced biomass (Gentleman and Neuheimer, 2008; Rohr et al., 2022). Unfortunately, the multispecies predator-

prey system of PISCES-Quota-Fe challenges the quantification of inherent changes in stability from the rate of 

clearance rate changes with respect to phytoplankton concentration, due to multi-prey responses sensitive to 445 

community composition. Nevertheless, we can be confident that the changes in grazing loss rates follow patterns 

in prey biomass distributions, instigated by deepening of the mixed layer, and favouring biomass accumulation 

and increased NPP in the surface moving into summer.  

4.3 – Implications for NPP trends in historical observation and model projections.  

When we examined trends in the remotely-sensed NPP record (monthly anomalies 1998-2022), the divergence 450 

between significantly positive trends in VGPM/eVGPM algorithms and negative trends in CbPM, AbPM and 

CAFE algorithms was clear (Figure 8a), reflecting the disparity in their parametric derivation. This is supported 

by previous work investigating the emergence of broader Southern Ocean trends based on remote sensing NPP 

algorithms, with similarly divergent NPP trends between VGPM and CbPM algorithms (Pinkerton et al., 2021; 

https://doi.org/10.5194/egusphere-2026-44
Preprint. Discussion started: 23 January 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 18 

 

Ryan-Keogh et al., 2023b; Ryan-Keogh et al., 2025a). Trends in VGPM and eVGPM algorithms (Figure 8c, d) 455 

are particularly sensitive to start and end dates owing to climate modes, more so because they are driven by 

trends in surface chlorophyll and SST associated with Southern Ocean warming (Henley et al., 2020; Ryan-

Keogh et al., 2023b). Trends in CbPM NPP were spatially heterogenous (Figure 8b), reducing confidence in the 

overall negative trend (Figure 8a).  

Figure 8. (a) Timeseries (1998 – 2022) of monthly NPP anomalies from the five remote sensing NPP algorithms, 460 

spatially averaged over the SOTS region (45-49S, 140-150E). Trends were determined from ordinary least squares 

regression of the monthly anomalies, with trend slope and p-values for significance given. . (b – e) Spatial trends 

computed from ordinary least squares regressions on monthly single pixel NPP anomalies for each remote sensing 

NPP algorithm in (a). Stippling in pixels indicates significant rends at the p < 0.05 level. The black box denotes 

study region used for averaging in (a).  465 

In their comparison of OC-CCI based NPP algorithms, Ryan-Keogh et al. (2025b) suggested that more robust 

assessment of NPP drivers can be achieved with CAFE and AbPM algorithms, as these models have better 
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agreement with field observations (Lee et al., 2011; Saba et al., 2011; Wu et al., 2024; Ryan-Keogh et al., 2025b). 

Additionally, the light absorption efficiency parametrisation in AbPM and CAFE algorithms better reflects NPP 

responses to environmental conditions compared to the strong influence of temperature on metabolic rates in 470 

eVGPM and VGPM algorithms (Ryan-Keogh et al., 2025b). The validation of the best NPP algorithm in this 

region is beyond the scope of this study, but based on previous algorithm intercomparison, in-situ trends in this 

part of the SAZ region are very likely to reflect decreasing NPP as in AbPM, CAFE, CbPM algorithms (Figure 

8).  

For the same period as the remote sensing record (1998-2022), in the PISCES-Quota-Fe hindcast simulation, no 475 

significant trends in total monthly NPP anomalies were identified (Figure 9a), with the exception of a significant 

trend in decreasing diatom NPP. However, extension of the trend analysis to the full time series used to assess 

mechanistic drivers of NPP (1975-2022) indicated significantly positive trends in total NPP, driven by increasing 

nanophytoplankton NPP (Figure 9b). A concomitant reduction in iron limitation was confirmed as a significant 

trend (Appendix Figure A7). This sensitivity of trend analysis to time series length, start and end dates may limit 480 

our ability to confidently identify NPP trends and mechanisms driving interannual variability in both 

observational and simulated time series (Elsworth et al., 2020; Kwiatkowski et al., 2020).  

Figure 9. (a) PISCES-Quota-Fe simulated class specific NPP monthly anomalies (thin lines), fitted with ordinary 

least squares trend regressions for the period 1998-2022 corresponding to the remote sensing record. (b) Extended 

NPP trend analysis over the full study simulation time series 1975-2022.  485 

However, the convergence of increasing trends in simulated NPP in this study region in both PISCES-Quota-Fe 

and historical CMIP6 models, with the exception of ACCESS-ESM1.5 (Figure 10), and similarly reported 

Southern Ocean NPP projected increases elsewhere (Fisher et al., 2025; Ryan-Keogh et al., 2025b), suggests that 

biogeochemical models are reasonably consistent in the direction of future NPP projections despite significant 

uncertainty in the magnitude. Our mechanistic understanding of PISCES-Quota-Fe links increasing NPP with a 490 

reduction in iron limitation and destabilising predator-prey dynamics. CMIP6 NPP increases are generally 

associated with a trend in reduced iron limitation (Tagliabue et al., 2021) but is complicated by indirect diagnosis 

of iron limitation term impacts on phytoplankton growth rates and NPP (Tagliabue et al., 2025). Without specific 

growth limitation term archived for historical CMIP6 models, there remains large uncertainty surrounding the full 
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suite of environmental drivers. This is particularly the case with variability between models in the direction of 495 

∆MLD during high NPP years (Figure 11b), yet consistently increased ∆SSTs suggesting thermally driven NPP 

trends (Figure 11c). 

Figure 10. (a) Trends in monthly anomalous NPP time series from the 8 CMIP6 historical models listed in Table 

2, (b – i) Individual CMIP6 model time series of spatial mean monthly NPP anomalies. Linear trends were 

calculated using ordinary least squares regression, with slope and p-values given for trends significantly different 500 

from zero (climate modes were not subtracted).  

The convergence of model predictions indicating increasing NPP and decreasing iron limitation reported here and 

across the literature has important implications for addressing trend interpretations and observationally 

constrained model development. The findings of models is at odds with prior observations indicate decreasing 

NPP trends and increasing iron stress over the remote sensing record (Ryan-Keogh et al., 2023b). The uncertainty 505 

in mechanistic relationships between remote sensing algorithms, PISCES-Quota-Fe and CMIP6 simulations urges 

a cautionary interpretation of trends emerging in both observationally and simulated methods.  
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As such, further improvement to our understanding of mechanistic processes is required to constrain modelled 

biogeochemical and ecological systems relative to observed trends. With regards to addressing mechanistic 

knowledge gaps in NPP drivers, the processes of resource limitation, zooplankton dynamics and phytoplankton 510 

loss are identified as key priority areas for improving biogeochemical predictive capability (Rohr et al., 2023; 

Henson et al., 2024; Fisher et al., 2025). Our findings are directly applicable to these areas, giving critical insight 

into the specific processes that need, and can, be addressed with observational approaches (Tagliabue et al., 2021; 

Hutchins and Tagliabue, 2024; Fisher et al., 2025).  

Figure 11. (a) Bootstrap analysis of the change in mean climatological NPP between the 5 highest and 5 lowest 515 

seasons of NPP for 7 CMIP6 models listed in Table 2 (main text). (b – d) Change in MLD, SST and STF mean 

latitude correspond to mean climatological changes based on respective model high and low NPP season groups in 

(a). SST and MLD not available for GFDL-ESM4 output. Stars denote trends significantly different from zero at 

the p < 0.05 confidence level.  
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5. Conclusions 520 

Our analysis identified that in the SAZ south of Australia, remote sensing NPP algorithms showed inconsistent 

relationships between environmental drivers and interannual NPP variability. Moreover, divergence in both the 

indicative drivers and NPP trends showed that mechanistic relationships are not consistently represented between 

algorithms. While this is in part due to the biogeochemical and ecological mechanisms not included in remote 

sensing algorithms, these estimates are still essential tools in assessing the impact of climate change on 525 

productivity systems, providing the best estimate of large-scale Southern Ocean productivity change.  

To address why decoupling of environmental variables and NPP occur, we used a complex multi-species 

biogeochemical model to probe the mechanisms that decouple physical environmental drivers as direct controls 

of NPP variability. These simulations showed that periods of deeper spring mixed layer depth initiates both top 

down and bottom-up responses: specifically increasing iron availability by physical and remineralisation supply 530 

of Fe, and redistributing/diluting phytoplankton biomass to alter grazing. Together these mechanisms, originate in 

increased MLD in winter/spring, and sustain nutrient supply into summer to perpetuate increased NPP throughout 

the season.  

Our focus on mechanisms underscores the importance for assessing remotely-sensed derived NPP trends with a 

degree of caution. The identification of biomass and growth decoupling as a result of altered mixing serves to 535 

explain how divergent trends patterns can emerge in NPP algorithm trends due to differences in biomass and 

growth rates dependencies. Therefore, the assumption of generalised responses of a phytoplankton community to 

environmental changes may not represent multiple competing community responses that are more sensitive to 

changes in nutrients, light or grazing, rather than environment drivers such as temperature and mixing.  

When contextualised to historical NPP trends, our understanding of PISCES-Quota-Fe suggests that it and other 540 

CMIP6 models generate convergent trends in increasing Southern Ocean NPP that vary in magnitude. The strong 

bias towards SST trends in several CMIP6 to models is likely due to poorly constrained productivity stabilising 

mechanisms in models (multi-resource limitation, zooplankton grazing and phytoplankton loss). This 

understanding is critical since the improvement of biogeochemical models needs to be informed by relevant 

observational targets that help to constrain biogeochemical feedback processes that account for nutrient, 545 

ecological and thermal drivers (Hutchins and Tagliabue, 2024). Moreover the explicit mechanisms identified here 

are contributing to our understanding of earth system model NPP drivers, and are directly linked to the most 

important mechanisms that require attention across model intercomparisons (Henson et al., 2024), which can be 

used to inform future biogeochemical model development.  

550 
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Appendix A.  

Additional Figures for Traill et al. (2026) “Towards Constraining the Drivers of Variability and Trends in 

Subantarctic Productivity”. 

Figure A1. Simulated PISCES-Quota-Fe climatological biomass-weighted depth-averaged difference between LN 

and LFe limitation terms for the period 1975-2022. Red shading denotes LFe dominance (LFe < LN), and blue shading 555 

denotes LN dominance (LFe > LN), defining the nutrient limitation state of phytoplankton classes. Black box denotes 

study region used to calculate spatial means.  
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Figure A2. Simulated PISCES-Quota-Fe class specific (nanophytoplankton, diatom, picophytoplankton and 

community average) depth-resolved biomass-weighted differences between LN and LFe limitation terms averaged 

for the 5 highest seasonally integrated NPP years (a, c, e, g) and 5 lowest seasonally integrated NPP years from the 560 

1975-2022 time series. Red shading denotes LFe dominance (LFe < LN), and blue shading denotes LN dominance 

(LFe > LN), defining the nutrient limitation state of phytoplankton classes.  
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Figure A3. Simulated nanophytoplankton class specific integrated (barplots) and depth resolved (interpolated onto 

a 10 m regular grid) mean climatological a) NPP b) Biomass, c) biomass-weighted depth-averaged growth rate 565 

∆µ, d) biomass-weighted depth-averaged iron limitation, ∆LFe,, e) biomass-weighted depth-averaged nitrogen 

limitation ∆LN, f) biomass-weighted depth-averaged light limitation ∆Llight, g) Biomass-weighted depth-averaged 

growth rate temperature dependency µmax, h) phytoplankton biomass normalized specific grazing loss rate, 

∆Grazing, i) phytoplankton biomass normalized specific non-grazing loss rate, ∆NGL. ∆ terms were determined 

from the mean climatological difference between high and low integrated total NPP seasons. Stars denote that mean 570 

monthly climatological difference in the selected high and low NPP season groups significantly exceeds the full 

time series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis).  
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Figure A4. Simulated picophytoplankton class specific integrated (barplots) and depth resolved (interpolated onto 

a 10 m regular grid) mean climatological a) NPP b) Biomass, c) biomass-weighted depth-averaged growth rate 575 

∆µ, d) biomass-weighted depth-averaged iron limitation, ∆LFe,, e) biomass-weighted depth-averaged nitrogen 

limitation ∆LN, f) biomass-weighted depth-averaged light limitation ∆Llight, g) Biomass-weighted depth-averaged 

growth rate temperature dependency µmax, h) phytoplankton biomass normalized specific grazing loss rate, 

∆Grazing, i) phytoplankton biomass normalized specific non-grazing loss rate, ∆NGL. ∆ terms were determined 

from the mean climatological difference between high and low integrated total NPP seasons. Stars denote that mean 580 

monthly climatological difference in the selected high and low picophytoplankton NPP season groups significantly 

exceeds the full time series climatological variability at the p < 0.05 level (10,000 iteration random year 

bootstrapping analysis).  
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Figure A5. Simulated diatom class specific integrated (barplots) and depth resolved (interpolated onto a 10 m 585 

regular grid) mean climatological a) NPP b) Biomass, c) biomass-weighted depth-averaged growth rate ∆µ, d) 

biomass-weighted depth-averaged iron limitation, ∆LFe,, e) biomass-weighted depth-averaged nitrogen limitation 

∆LN, f) biomass-weighted depth-averaged light limitation ∆Llight, g) Biomass-weighted depth-averaged growth rate 

temperature dependency µmax, h) phytoplankton biomass normalized specific grazing loss rate, ∆Grazing, i) 

phytoplankton biomass normalized specific non-grazing loss rate, ∆NGL. ∆ terms were determined from the mean 590 

climatological difference between high and low integrated total NPP seasons. Stars denote that mean monthly 

climatological difference in the selected high and low diatom NPP season groups significantly exceeds the full time 

series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis).  
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Figure A6. Simulated integrated (barplots) and depth resolved (interpolated onto a 10m regular grid) mean 595 

climatological clearance rates for specific and total phytoplankton groups a) Clearance rate for nanophytoplankton 

b) Clearance rate for picophytoplankton, c) Clearance rate for diatoms and d) Clearance total phytoplankton 

(class weighted), and zooplankton biomass e) Microzooplankton Biomass, and f) Mesozooplankon Biomass. 

∆Clearance and ∆Zooplankton biomass were determined from the mean climatological difference between high 

and low integrated total NPP seasons. Stars denote that mean monthly climatological difference in the selected high 600 

and low NPP season groups significantly exceeds the full time series climatological variability at the p < 0.05 level 

(10,000 iteration random year bootstrapping analysis).   
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Figure A7. Trends in PISCES-Quota-Fe phytoplankton class specific biomass-weighted, depth-averaged 

(BWDA) iron limitation terms (positive values indicate decreasing iron limitation). 
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Code Availability 

All open-source Python code used to process and analyse data and produce all figures is available at 

https://doi.org/10.5281/zenodo.18148572. 

Data Availability 

Multi Observation Global Ocean ARMOR3D L4 analysis (https://doi.org/10.48670/moi-00052) can be obtained 610 

from the Copernicus Marine Service.  

MLDs are derived from the Hadley observation product following the methods of (Ryan-Keogh et al., 2023a) and 

references in Table 1. Hadley temperature and salinity profiles: 

https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-2.html.  

NPP reprocessed from the OC-CCI algorithms can be found in open-access repositories Ryan-Keogh (2025); 615 

Ryan-Keogh et al. (2025a) with details described in Ryan-Keogh et al. (2023a).  

CMIP6 data are hosted by the Earth System Grid Federation, with references provided in Table 2 for each 

specific model historical output data.  

Output for the PISCES-Quota-Fe historical (JRA55) simulation at mean monthly interannual ~2 1 grid 

resolution is available at https://doi.org/10.5281/zenodo.18041475.  620 
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