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Abstract
The subantarctic Southern Ocean is a climatically important region, where primary production largely drives the
seasonal uptake of atmospheric CO», contributing to the sequestration of anthropogenic carbon emissions.
Seasonal iron and light limitation control annual net primary production (NPP) in this region, but the explicit

15  mechanisms that drive interannual variability in NPP remain elusive due to sparse observations. This uncertainty
is reflected in inconsistent interannual variability and trend estimates of remotely-sensed NPP algorithms.
Without clear mechanistic underpinning, confidence in remotely-sensed NPP trends remains low and hinders
predictive capability. To overcome observational limitations and better understand the drivers of interannual NPP
variability, we analyse the explicit bottom-up and top-down controls of depth integrated NPP in a biogeochemical

20 ocean model historical run (1958-2022) from the Indian sector of the subantarctic zone. The highest NPP years
were primarily driven by increased relief of iron limitation, with iron supplied from both deeper mixing in
winter/spring and enhanced remineralisation in summer. In spring, higher phytoplankton growth rates were
decoupled from surface biomass, such that years with higher NPP were due to faster growth in the mixed layer.
Faster growth rates emerged following deeper winter mixed layers, driving phytoplankton distributions deeper in

25  winter and reducing mixed layer grazing loss rates in spring. This generated a predator-prey dynamic favouring
surface biomass accumulation moving into summer. Thus, inconsistent remote-sensing NPP estimates may derive
from how algorithms link biomass (rather than growth rates) to NPP. We applied our analysis to CMIP6 models,
and while all historical simulations converged with respect to positive trends in NPP, bias from sea surface
temperature trends influenced the mechanisms driving interannual NPP variability. These findings show that

30  interacting top-down and bottom-up processes can decouple changes in NPP with respect to phytoplankton
biomass, which has important implications for remote sensing NPP estimates based on biomass. Therefore, the
need for cautionary approaches to NPP trend interpretation is highlighted, and that further observational data are
needed to ground truth mechanistic understanding of NPP drivers.
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35 1. Introduction
The subantarctic region south of Australia hosts the seasonal formation of subantarctic mode water which
transports heat, carbon and nutrients below the pycnocline and into the low latitude ocean (Sabine et al., 2004;
Khatiwala et al., 2013). Over the annual cycle, this region is a net CO; sink (Lenton et al., 2013; Shadwick et al.,
2023), driven predominantly by biological processes (primary production) (Shadwick et al., 2015; Yang et al.

40  2024). However, the impact of warming, freshening, stratification and acidification (Orr et al., 2005; Keeling et
al., 2010; Bindoff and Hobbs, 2013; Pardo et al., 2017; Auger etal., 2021; Thomalla et al., 2023) due to the
uptake of excess anthropogenic heat and carbon dioxide (Feely et al., 2004; Cheng et al., 2022) could alter this
region's role in global carbon cycling. How primary productivity responds to these changes is uncertain but is

critical to assessing how regional biogeochemical cycles and ecosystems change (Henley et al., 2020;
45 Anugerahanti and Tagliabue, 2024; Henson et al., 2024; Hutchins and Tagliabue, 2024).

While remote sensing has begun to reveal regional trends in Southern Ocean net primary production (NPP) a
deeper understanding of the underlying mechanisms is needed. Trends in NPP from different satellite estimates
show varied relationships to plausible physical drivers (Ryan-Keogh et al., 2025b), reducing confidence in our
understanding of the why NPP is changing (Tagliabue et al.. 2021). Much of this uncertainty stems from the

50  mechanistic parameterisation of NPP across satellite algorithms, which is derived from different estimates of the
depth inventory of phytoplankton, biomass and the rate at which they divide. Each variable used to derive NPP,
including sea surface temperature (SST), absorption coefficients, the chlorophyll to backscatter ratio, nutrient
concentrations, photosynthetically available radiation and mixed layer depth (MLD), can in turn carry its own
form of bias (Ryan-Keogh et al., 2023a).

55  Significant advances in our understanding of the drivers of seasonal and interannual variability in
biogeochemistry in the Subantarctic Zone (SAZ) have been achieved using observations generated by Southern
Ocean Time Series (SOTS) program, located south-west of Tasmania, Australia (Wynn-Edwards et al., 2020;
Shadwick et al., 2023; Yang et al., 2024; Shadwick et al., 2025; Traill et al., 2025). In this region, iron has been
shown to be a seasonally limiting factor for primary productivity using both composite time series observations

60 and optical methods (Schallenberg et al., 2020; Traill et al., 2025). The strong link between seasonal and sub-
seasonal iron supply and NPP in the SAZ (Bowie et al.. 2009; Barrett et al., 2021; Traill et al., 2024; Traill et al.,
2025) may be in part driven by variability in the southern extension of the East Australian Current (Traill et al.
2025), which moves southward into the SOTS region through summer (Yang et al., 2024; Traill et al., 2025).
However, the decoupling of iron distributions from the prevailing physical supply pathways due to biological

65 processes (Tagliabue et al., 2012; Traill et al., 2024; Traill et al.. 2025), and absence of high resolution multi-year
iron and primary production incubation measurements, challenges our understanding of NPP drivers using
observational methods.

Biogeochemical models are a valuable tool in addressing this research gap. By assessing the mechanistic links
between environmental drivers and productivity, models can help us to investigate the explicit links between

70  micronutrient supply and productivity over broad temporal and spatial scales. Recent improvements in the
numerical modelling of iron biogeochemical cycling have improved the ability of models to recreate observed
dissolved iron (DFe) distributions (Tagliabue et al., 2023), a key step in assessing NPP drivers in the iron limited
Southern Ocean. In CMIP6 models, projected increases in Southern Ocean NPP are fairly consistent
(Kwiatkowski et al., 2020; Tagliabue et al., 2021; Fisher et al., 2025). However, without a mechanistically

75  constrained observational understanding of emerging trends it is impossible to know if models are recreating
these trends for the right reasons (Laufkotter et al.. 2015; Tagliabue et al., 2021; Fisher et al., 2025; Ryan-Keogh

etal., 2025b). This leaves future projections highly vulnerable to uncertainties in the physical response of the

ocean to a changing climate. Amidst this uncertainty, the first step is to determine exactly what is driving trends
in the models (Tagliabue et al., 2021; Fisher et al., 2025).

80  In this paper, we examine the drivers of interannual productivity in the SAZ south of Australia using a
combination of observational and biogeochemical model analyses. We first examine the relationship between
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interannual productivity variability and broadscale drivers from observational NPP data streams, including the
influence of the STF as a proxy for EAC extension into the region. Then, using a biogeochemical model, we
investigate mechanistic physical drivers by interrogating the explicit nutrient limitation, temperature limitation,

85  light limitation and grazing terms that dictate phytoplankton growth and loss rates. Finally, we discuss the
implications of these findings for NPP trends derived from observations and a suite of CMIP6 models, helping to
disentangle uncertainty in first-order productivity drivers and observational/model disagreement.

2. Methods

2.1 — Study region and oceanographic properties

90  To investigate the mechanisms driving interannual variability in NPP, the region 45-49°S, 140-150°E was
selected (Figure 1a) and referred to as the study region hereafter. In assessing temporal variability and trends in
the SOTS region, all observational and simulated terms have been grid cell area weighted and spatially averaged
over the SOTS region. This regional subset, slightly larger than the region previously defined around the SOTS
observatory (140-144°E, 46-48°S; e.g. Yang et al. (2024)), was selected to capture the broader seasonal and

95  interannual variability in STF movement that might be associated with the East Australian Current extension
(Figure 1a) and larger scale NPP. The larger spatial average also helps remove higher frequency variability and
facilitate the identification of small but emerging temporal trends.
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Figure 1. (a) Regional bounding box (solid black line) in which observational and modelled climatological
averages were calculated. Mean monthly contours of the subtropical front (STF; 11-degree isotherm at 100 m depth,
100 definition per Orsi et al. 1995) for the period 1998-2022 are given by coloured lines, with the mean given by the
dashed black line. (b) climatological STF extent (1998-2022) as the mean latitude (°N) (1o from the mean) of the
11-degree isotherm at 100 m depth (Orsi et al., 1995), (¢) Climatological (1998-2022) means of MLD (blue) derived
from Hadley EN4.2.2. profiles and SST (red) from ARMOR-3D, shading is £1c from the mean in the SOTS region
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box (a), (d) Climatological mean NPP estimates from OC-CCI based satellite algorithms (1998-2022), shading is
105  tlo from the temporal mean.

The seasonal oceanographic, biogeochemical and productivity cycles in the SOTS region are well described
(Shadwick et al., 2015; Eriksen et al., 2018; Schallenberg et al., 2019; Trull et al., 2019; Shadwick et al., 2025;
Traill et al., 2025) and discussed in detail in Chapter 3.2.1. While the SOTS observatory, nominally located at
142°E, 47°8S, is situated in the SAZ, the broader region is influenced by contrasting physical properties north and

110 south of the STF. Warm, salty subtropical waters from the Zeehan and East Australian Current extensions are
present in the surface. These overlay cooler, fresher and well oxygenated subantarctic mode waters formed
during winter where mixed layer depths can exceed 300 m (Figure 1c). The seasonal progression of the STF
reaches its maximum climatological southern extent in March, slightly later that peak climatological SST in
February (Figure 1b, c¢). Climatological NPP increases rapidly through spring as the mixed layer shoals, peaking

115  in December through to February (Figure 1d).

2.2 — Observational datasets
Remote sensing time series data for the period 1998-2022 were compiled to assess variability and trends in
physical drivers (SST, MLD and STF locations) and NPP (Figure 1). Physical environmental variables SST and
STF were derived from the Copernicus Marine Service Multi Observation Global Ocean ARMOR-3D L4
120  analysis product (Table 1). This observation-based product combines in situ temperature and salinity profiles
(predominantly Argo network) with synthetic satellite sea surface temperature and altimetry derived salinity
fields using an optimal interpolation method (Guinehut et al., 2012). For MLD, the same product as used in the
generation of the OC-CCI NPP algorithms was selected (Ryan-Keogh et al., 2023a). MLDs were derived from
the Hadley EN4.2.2 temperature and salinity profiles (Good et al., 2013) and the Gouretski and Reseghetti (2010)
125  bias corrections, using a density threshold of 0.03 kg m™ (De Boyer Montégut et al., 2004).

Estimates of NPP from five remote sensing algorithms were obtained from the OC-CClI-based dataset processed
by (Ryan-Keogh et al., 2023a): the Vertical Generalized Production Model (VGPM; Behrenfeld and Falkowski
(1997)), the Eppley-VGPM which includes the Eppley temperature dependent growth parameterisation (eVGPM,;
Eppley (1972)), the Carbon-based Production Model (CbPM; Westberry et al. (2008)), Carbon, Absorption, and

130 Fluorescence Euphotic-resolving model (CAFE; Silsbe et al. (2016)), and Absorption-based Production Model
(AbPM; Lee etal. (2011)). Detailed discussion on the algorithm input dependencies and assessment is given in
Figure 2, Ryan-Keogh et al. (2023a) and Ryan-Keogh et al. (2025b).

2.3 — Resolving the mechanisms driving net primary production interannual variability in
PISCES-Quota-Fe

135  To understand the mechanisms between physical and biogeochemical drivers of interannual variability in NPP
and move beyond the limitations imposed by observational platforms, we use an ocean biogeochemical model.
This approach allows us to dissect the explicit thermal, light, nutrient and loss processes driving interannual
variability in NPP explicitly (Table 1).

We analyse output from the Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota
140  biogeochemical model with improved iron cycling (PISCES-Quota-Fe) (Tagliabue et al., 2023). PISCES-Quota-
Fe is built upon PISCES-Quota (Kwiatkowski et al., 2018) and incorporates three phytoplankton types
(nanophytoplankton, picophytoplankton and diatoms), independent carbon, nitrogen, phosphorus, silica and iron
stoichiometry within phytoplankton, and dissolved organic and particle pools. Two zooplankton groups
(microzooplankton and mesozooplankton) are included, but both have fixed stoichiometry (Kwiatkowski et al.
145  2018). PISCES-Quota-Fe also includes two acolian-derived lithogenic particle tracers (fine lithogenic particles

and aggregated lithogenic particles), two additional particulate authigenic iron tracers (small and large particulate
authigenic Fe), an updated Fe chemistry routine that decouples the cycling of colloidal iron from the equilibrium
with ligands previously employed in PISCES-Quota, and updated ligand parameterisation based on optimised
model-observation fit (Tagliabue et al., 2023).




https://doi.org/10.5194/egusphere-2026-44
Preprint. Discussion started: 23 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

150  These changes to the iron cycling in PISCES-Quota-Fe result in improved skill over PISCES-Quota relative to
global DFe and PFe observations, while retaining performance in core biogeochemical tracer distributions
(nutrients, chlorophyll, oxygen, carbon export) (Tagliabue et al., 2023). These improvements are particularly
relevant to the Southern Ocean iron cycle, where interchange between particulate iron pools controls the resupply
of sub-surface iron sources that can impact seasonal resupply during winter mixing (Bressac et al., 2019;

155  Tagliabue et al., 2019; Tagliabue et al., 2023). A full description of the model including equations and
comparison between PISCES-Quota and PISCES-Quota-Fe are described in Tagliabue et al. (2023).

PISCES-Quota-Fe was coupled to the Nucleus for European Modelling of the Ocean version 4.0 (NEMO-v4.0)
general ocean circulation model and Sea Ice modelling Integrated Initiative (SI3) sea ice model. The hindcast
simulation was forced with JRA-55 atmospheric reanalysis (Tsujino et al., 2018) for the period 1958-2022.

160  Horizontal model resolution is nominally 2° but increases to ~1° at high latitudes and ~0.5° at the equator, while
the vertical resolution varies between 10- and 500-m thickness over 31 depth-coordinate levels. Model output
analysis was performed on the mean monthly time series from 1975-2022 to avoid model initialization bias in the
first 17 years of the simulation (Buchanan and Tagliabue, 2021). The analysis presented here was restricted to the
observational study region in Figure 1a. Key model output and diagnostics are described in Table 1.

165 2.4 — Analysis of productivity drivers, mechanisms and responses
To determine the relative influence of mechanisms (Table 1) driving interannual variability in primary
productivity across both observational and simulated data, we considered the highest and lowest NPP periods in
respective time series. This was done to assess the highest anomalous NPP years and identify the most important
drivers, since competing drivers and their interactions across the whole time series limits correlative signals

170 across the whole time series. We first selected the 5 highest and 5 lowest seasons (Austral summer; July to June)
of integrated NPP from the time series. The selection of 5 highest/lowest NPP years was based on the top and
bottom 10% percentiles of the 48-year simulated time series, where the top 5 years of seasonally integrated NPP
values lie outside 1 standard deviation from the mean. We also used the top/bottom 5 years in observational time
series, noting the limitation of a shorter observational time series with which to compare.

175  The differences in each variable (var) between years corresponding to the highest and lowest NPP were
calculated for all variables and assigned the A prefix (Equation 1).

Avar(m) = Varpgp(m) — var,, (m) )

Where Avar(m) is the difference in mean monthly climatological values for variable var in month m between the
high- and low-NPP years, is the mean monthly climatological value of var at month m calculated over the five

180  highest integrated NPP years, and is the mean monthly climatological value of var at month m calculated over the
five lowest-NPP years.

To assess whether the differences between high- and low-NPP years (A-variable) were statistically significant
relative to background variability, we applied a non-parametric bootstrap resampling approach. This method is
well suited to our analysis because it tests the difference between two empirical samples (high- and low-NPP

185  years), rather than comparing a single sample against a theoretical population mean and does not assume
underlying distributions. Specifically, we generated an empirical distribution of A-variable values by randomly
resampling years from the full time series without replacement, repeating this process 10,000 times. This allowed
us to calculate two-sided p-values and corresponding 95% confidence intervals for each variable, representing the
probability that the observed A-variable could arise by chance under the null hypothesis of no systematic

190  difference. The bootstrap analysis was applied independently to all variables listed in Table 1 across both
observational and model-based datasets.
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Table 1. Catalogue of remote sensing observations, model output and diagnostics. For phytoplankton class specific variables, i
denotes individual phytoplankton classes (i = Nanophytoplankton, Picophytoplankton, Diatoms). References are provided for
specific data sources, with methods used to determine specific metrics given in parenthesis. For PISCES-Quota-Fe, references
given are for the output configuration used in this study, with those in parentheses denoting specific equations used to generate
terms. If no method is given, variable equations are provided in the model description references. Except where otherwise stated,
PISCES-Quota-Fe variable depth integrals were calculated over the full depth grid.

Variable . Processing (depth resolved; column Data source (method)
Parameter Units .
1D integral) reference
Remote sensing and observational variables
OC-CCI remote sensing product based
. . 1Cm? Ryan-Keogh et al.
NPP  Net primary production . " VGPM, eVGPM, CbPM, CAFE and AbPM HIERCOSAELE
d . (2023a)
algorithms
Ryan-Keogh et al.
(2023a)
MLD Mixed layer depth m Density threshold criteria of 0.03 kg m™ (De Boyer Montégut et
al., 2004; Good et al.
2013)
SST Sea surface temperature °C - Guinehut et al. (2012)
. Mean latitude of 11°C isotherm at 100 m Guinehut et al. (2012)
STF Subt 1 front °N
Hotropicat iron depth within the 140-150°E longitude range ~ (Orsi et al., 1995)
PISCES-Quota-Fe model output Tagliabue et al. (2023)
Phytoplankton cl
. Y .op 4 on.c ass mmol C m’ Grid-cell concentration; depth integrated
NPP specific net primary 2 11 .
) d (volume normalised)
production
. . De B Montégut et
MLD Mixed layer depth m Aco=0.01 kg m™ with respect to 6-10 m (De Boyer Moniczat ¢
al., 2004)
SST Sea surface temperature °C -
. Mean latitude of 11°C isotherm at 100 m depth .
STF Subt 1 front °N e . Orsi et al., 1995
ubtropicat tron within the 140-150°E longitude range (Orsicta )
thetao Potential temperature °C -
o) Practical salinity PSU -
DFe Dissolved iron
NOs Nitrate 3 Grid-cell concentration; surface 300 m depth
. - mmol m . .
Si Silicate integrated (volume normalised)
0, Dissolved oxygen
. Remineralisation supply =~ mmol Fe Grid-cell rate; depth integrated (volume
Remin Fe . 3 31 .
- of iron rate m~d normalised)
. . Grid-cell specific; biomass-weighted depth-
i Realised th rate. d! ’
# calised growth rate averaged (BWDA)
Phytoplankton class mmol C m Grid-cell concentration; depth integrated
specific biomass 3 (volume normalised) (Kwiatkowski et al.
Microzooplankton mmol C m’ Grid-cell concentration; depth integrated 2018)
biomass 3 (volume normalised)
Mesozooplankton mmol C m Grid-cell concentration; depth integrated
biomass 3 (volume normalised)
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Phytoplankton cl . . . .
Loy nypl?.l‘;lt ?n f:tats‘s il Grid-cell specific; biomass-weighted depth-
i specific li imitation nitless
light P & 4 averaged (BWDA)
term
Phytoplankton cl . . . .
Lo s ec}; f(i) Cp ia:)ln l(i)rr;ft:t?(s)n unitless Grid-cell specific; biomass-weighted depth-
Fe P averaged (BWDA)
term
Phytoplankton cl . .
L syeiri)f?:ni?rrcl) ce:;ss unitless Grid-cell specific; biomass-weighted depth-
N p o g averaged (BWDA)
limitation term

PISCES-Quota-Fe model derived diagnostics

Grid-cell specific; biomass-weighted depth-

Temperature dependency (Kwiatkowski et al.

-1
of growth rate d averaged (BWDA) 2018)
Grazing loss rate.
Phytoplankton specific . .
-cell rate; depth integrat 1
Grazing rate at which 4! Grid-cell rate; depth integrated (volume and (Rohr et al., 2023)

phytoplankton are lost to phytoplankton biomass normalised).

grazing

Non- ing 1 t . .
on-grazing 0SS rale Grid-cell rate; depth integrated (volume and

NGL fi rtali d d! . .
(from mo a.lty an phytoplankton biomass normalised)
aggregation)
3 1 Phytoplank ifi hich
Clearance Clearance rate m Tn?lo ytoplankton specific rate.at whie (Rohr et al., 2022)
cld phytoplankton are grazed per unit zooplankton
CMIP6 model output
. . 1C m? . . .
NPP Net primary production mmo . m Column integrated net primary production Table 2
MLD Mixed layer depth m Mixed Layer Depth Table 2
SST Sea surface temperature °C Sea Surface Temperature Table 2
Subtropical front mean latitude of 11°C Table 2
STF Subtropical front °N isotherm at 100 m depth within the 140-150°E

. Orsi et al. (1995
longitude range

192
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2.5 — Productivity projections in CMIP6 models
In addition to remote sensing NPP algorithms and PISCES-Quota-Fe, we examined trends in NPP and its drivers

195  across 8 earth system models from the historical Coupled Model Intercomparison Project Phase 6 (CMIP6)
simulation suite (Table 2). CMIP6 model output was sourced from the Earth System Grid Federation (Table 2),
with model selection restricted to those with outputs saved for gridded temperature at depth in order to derive
STF locations (Table 1). Trends in spatial mean monthly NPP, MLD, SST and STF mean latitude anomalies for
remote sensing algorithms (1998-2022), PISCES-Quota-Fe (1975-2022) and historical CMIP6 model (1950 —

200  2014) were determined using an ordinary least squares linear regression.

Table 2. CMIP6 simulations used in the analysis of NPP and subtropical front (STF) time series trends.
References are provided in columns 1-3 for the descriptions of BGC, earth system and publicly hosted model
output.
Biogeochemistry N . Institution
(BGC) model Earth system model Simulation (location)
CMOC CanESM5 Historical 1950 - 2014
M
(Zahariev etal., 2008)  (Christian et al.. 2022) (Swart et al.. 2019b) CCCM (Canada)
WOMBAT ACCESS ESML1.5 Historical 1950 - 2014 .
(Law et al., 2017) (Law et al., 2017) (Ziehn et al., 2019) CSIRO (Australia)
MARBL CESM2 Historical 1950 - 2014
NCAR (USA
(Long et al., 2021) (Danabasoglu et al., 2020) (Danabasoglu, 2019) ( )
CanOE CanESM5-CanOE Historical 1950 - 2014
(Christian etal., 2022)  (Christian et al., 2022) (Swart et al., 2019a) ECCC (Canada)
PISCESv2 IPSL-CM6A-LR Historical 1950 - 2014 IPSL (France)
(Aumont et al., 2015) (Bonnet et al., 2021) (Boucher et al., 2018)
PISCESv2 CNRM-ESM2.1 Historical 1950 - 2014
NMR (F
(Aumontetal., 2015)  (Séférian et al.. 2019) (Seferian, 2018) CNMR (France)
BFMS5.2 CMCC-ESM2 Historical 1950 - 2014
(Lovato et al., 2022) (Lovato et al., 2022) (Lovato et al., 2021) CMCC (ltaly)
COBALTV2 GFDLA4.1 Historical 1950 -2014
(Stock et al., 2020) (Dunne et al., 2020) (Krasting et al.. 2018) GEDL (USA)
3. Results
3.1 — Remote Sensing Products Disagree on the Drivers of Interannual Variability in NPP
When we examined the difference in potential drivers of ANPP, calculated as the difference in climatological

205  depth integrated NPP between years corresponding to the highest and lowest periods of total seasonally
integrated NPP, inconsistent patterns emerged depending on the NPP algorithm used (Figure 2). In the first case,
ANPP in VGPM/eVGPM models was associated with occasionally deeper MLDs, but consistently warmer SSTs
and a STF latitude located further south. Alternatively, ANPP in CbPM, AbPM, CAFE algorithms were
associated with shallower MLDs and insignificant but indicative cooler SSTs and a STF latitude located further

210 north (Figure 2).
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Figure 2. (a) Change in integrated NPP (ANPP) from five OC-CClI-based remote sensing algorithms calculated
from the difference in climatological means of the five highest and five lowest NPP seasons for observations in
the region 140-150°E, 45-49°S, for the period 1998-2022. Corresponding changes in the physical drivers for
corresponding algorithm high and low NPP year groups are shown for (b) AMLD, (c) ASST and (d) ASTF mean
latitude. Positive values of AMLD, ASST and ASTF indicate deeper MLDs, warmer SSTs and further north mean
STF latitude during high NPP seasons respectively. Stars indicate that mean monthly climatological difference in
the selected high and low NPP season groups is significant relative to the full time series climatological
variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis). The figure legend
describes the specific observational and spectral variables used in each NPP algorithm (Chlorophyll a (Chl-a),
photosynthetically active radiation (PAR), backscatter at 443nm (by,), phytoplankton absorption at 443nm (aps),
detrital absorption at 443nm (a4), diffuse attenuation coefficient at 490nm (Ky), the spectral slope of backscatter
(1), the backscatter of pure water (bsw), Hadley EN4.2.2 mixed-layer depth (MLD), sea surface temperature
(SST), nitracline depth, and sea surface salinity (SSS)).

For VGPM/eVGPM algorithms, positive ANPP (higher NPP) was associated with significantly higher SSTs in
spring (Oct) and autumn (March-April), coincident with a mean STF latitude located significantly further south
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through summer and autumn (Figure 2). Higher NPP for VGPM/eVGPM was associated with deeper MLDs
through winter and shallower MLDs in spring (October-November), although not statistically significant (Figure
2b). The highest ANPP was observed in February and was associated with a shallower MLD and a STF latitude
further south, indicative of a greater presence of warmer subtropical waters. Increased VGPM/eVGPM ANPP at
elevated SSTs is not surprising given the temperature dependent growth rate parameterisation of VGPM/EVGPM
algorithms. However, MLD is not directly included in these algorithms, so it is interesting to see deeper winter
and spring MLDs at elevated SSTs.

For the CbPM algorithm, maximum ANPP was larger than all other algorithms and occurred in spring
(November), while all other algorithms showed maximum ANPP values in February (Figure 2a). The October
and November peaks in CbPM ANPP were associated with significantly shallower MLD (Figure 2a, b), and
preceded by significantly cooler SSTs in winter (Figure 2c). Cooler SSTs were consistent with a STF mean
latitude further north but not significantly so (Figure 2d). Similar relationships were observed in the CAFE and
ADbPM algorithms, however no environmental features were significantly associated with increased ANPP.
Interestingly, during peak ANPP in February, changes in the environment between high and low NPP seasons in
CAFE and AbPM algorithms were barely detected (Figure 2).

3.2 — Simulated environmental drivers of interannual variability in NPP

The simulated climatology of NPP, MLD, SST and STF mean latitude in PISCES-Quota-Fe (Figure 3) was
generally consistent with observations (Figure 1) despite some biases. Seasonal mixed layer depth amplitude was
notably reduced and the STF mean latitude was further north in simulations compared to observations Figure 3d).
However, the good agreement between simulated NPP and remote sensing algorithms provides a strong basis
with which to test the simulated mechanistic drivers of anomalously high and low NPP.
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Figure 3. (a) Mean climatological MLD (blue) and SST (red), (b) STF mean latitude in the longitude range 140-
150°E extent, and (¢) Phytoplankton class and total resolved depth-integrated NPP, including percentage
contribution of each class to the total NPP inventory, and (d) Taylor diagram summarising climatological
differences between NPP, MLD, SST and STF latitude between PISCES-Quota-Fe and observations for the period
1998-2023. Relative bias (%) is given as marker size and colour.

The relationships between drivers and NPP in PISCES-Quota-Fe (Figure 4a - d) were generally more consistent
with CbPM, CAFE and AbPM remote sensing algorithms than VGPM and eVGPM algorithms (cf. Figure 2). Of
the physical drivers examined in PISCES-Quota-Fe, variability in temperature and STF location did not dominate
as drivers of NPP interannual variability (Figure 4c, d). Climatological ASST was consistently negative during
high NPP periods but only significant in March when negative ASST peaked (Figure 4c). Cooler temperatures at
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depth (Athetao) between high and low NPP seasons were observed during summer, but were generally
insignificant (Figure 4e). Lower temperatures at depth were linked to a northern shift in the STF in spring and
late autumn, more consistent with CbPM, CAFE and AbPM NPP algorithms than VGPM/eVGPM (Figure 4d).

260  However, the STF latitude did not vary significantly between high and low NPP periods (Figure 4d), suggesting
that variability in NPP is not linked to increases in subtropical water mass presence in this region.
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Figure 4. Mean Monthly climatological differences in NPP (a) and simulated physical drivers of AMLD (b), ASST
(¢) and ASTF mean latitude (d), and depth resolved (interpolated onto a 10 m regular depth grid) Apotential
temperature (e) and Asalinity (f) between high and low total integrated NPP seasons. Stars and stippling indicate

265  that mean monthly climatological difference in the selected high and low NPP season groups is significant relative
to the full time series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping
analysis). Red and blue solid lines denote mean MLDs in respective high and low NPP year groups.

Mixed layer depths were generally deeper in high NPP periods, with significantly positive AMLD in August and
February (Figure 4b). However, AMLD was very small from November to January and during March (Figure

270  4b), months where positive total ANPP was strongest (Figure 4a). Changes in mixed layer depth during spring
may have a lasting memory effect into summer by modifying mixed layer nutrient, light and predator-prey
interactions .
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Indeed, higher NPP seasons were associated with significant increases in NO3, Si and DFe mixed layer
inventories (Figure 5a, b, ¢). The average (biomass-weighted) community composition showed a clear iron

275  limitation signal during the productive season (Appendix Figure A1), with the exception of picophytoplankton
that were generally nitrogen limited (Appendix Figure A2).
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Figure 5. Climatological difference in simulated mean nutrient water column inventories (barplots) and depth
resolved concentration differences interpolated onto a 10 m regular grid (heatmaps) for (a) ANOs, (b) ASi, (¢)
ADFe, (d) AO», and (e) the difference in the rate of remineralised iron supply (ARemin_Fe) between high and low
280  NPP seasons. Stars and stippling indicate that mean monthly climatological difference in the selected high and low
NPP season groups is significantly outside the full time series climatological variability at the p < 0.05 level (10,000
iteration random year bootstrapping analysis). Red and blue solid lines denote mean MLDs in respective high and
low NPP year groups.
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3.3 — Variability in simulated NPP is decoupled from biomass

While the largest ANPP (Figure 6a) generally corresponded to positive ABiomass, predominantly driven by
significantly increased nanophytoplankton ANPP (Figure 6a) and corresponding nanophytoplankton biomass
(Figure 6b), climatological changes in total biomass and NPP were not directly correlated. Total ABiomass was
largest in spring, peaking in October when the mixed layer shoals (Figure 3a), while ANPP was largest in
January. This increase in total spring biomass occurred despite significantly reduced total phytoplankton division
rates (i) from July to October (Figure 6¢). In summer, ABiomass was still significantly increased in high NPP
years (December to March), indicating sustained elevated biomass contributed to NPP in summer (Figure 6a, b)
while total average growth rates (p) did not change significantly (Figure 6c¢).

(a) NPP (b) Biomass (3] Realised Growth Rate (p)
*
80 001
50 T
_ T 000
at e a T
EE g o0l
=] * *x KK
D Ea]| *op Ky KK Z 002
'Eg H * * % 4
10 g

-0.03

Alge (BWDA)

* * * _0.04
Jﬁl Aﬂg Sép O‘ct N&v Déc javn Féb Mér Abr Méy )u’n )QI Aﬁg Sép O'ct Név Déc javn Féb M'ar Abr Méy )u’n Jﬁl Aﬁg Sép O‘ct N&v Déc jén Féb Mér Abr Méy )u’n
() Fe-Limitation (e) N-Limitation 0.00 [(3] Light-Limitation
*
0.04 *

* * _

- * <

< 0.03 a

S =

H a

— 0.02 * E

5 =)

* =

= <

—0.01

—0.02

Apmax-BWDA (d™)

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct MNov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
Temperature Dependency
(g) of Growth Rate (pmnay) 003 (h) Grazing Loss Rate 0] Non-grazing Loss Rate
: *
*

0.0015

00010

00005

0.0000

A[Grazing (d-)
&
o
=
A[NGL (d-?)

—0.0005

* _0.04 4 —0.0010

295

300

305

Jul Alg Sep Oct Nov Dec Jan Feb Mar Apr May Jun JUl Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sép Oct Nov Dec Jan Feb Mar Apr May Jun
EEE Nanophytoplankton I Picophytoplankton B Diatoms B Total Phytoplankton

Figure 6. Simulated changes (A) in phytoplankton class specific and total mean climatological terms determined
from the mean climatological difference between high and low integrated total NPP seasons for: (a) depth
integrated ANPP, (b) depth integrated ABiomass, (¢) biomass-weighted depth-averaged growth rate Ap, (d)
biomass-weighted depth-averaged iron limitation, ALr., (positive ALr. indicates reduced iron limitation), (e)
biomass-weighted depth-averaged nitrogen limitation ALy (positive ALy indicates reduced nitrate limitation), (f)
biomass-weighted depth-averaged light limitation ALjigh (negative ALyigh: indicates increased light limitation), (g)
biomass-weighted depth-averaged growth rate temperature dependency pmax, (h) phytoplankton biomass
normalized specific grazing loss rate AGrazing, and (i) phytoplankton biomass normalized specific non-grazing
loss rate ANGL. Stars denote that mean monthly climatological difference in the selected high and low NPP season
groups is significantly exceeds the full time series climatological variability at the p < 0.05 level (10,000 iteration
random year group bootstrapping analysis).

In determining why decreases in spring division rates emerge in high NPP periods, we found lower temperatures
are unlikely to dominate reduced growth rates. Assessment of the growth rate temperature dependency (pmax)
showed that while negative Apmax occurred with lower temperatures during high NPP periods (Figure 4c, ¢),
Apmax Was not significantly reduced for the total phytoplankton population over the climatology (Figure 6g). To
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evaluate why average phytoplankton division rates (1) decreased in spring despite increased NPP, we
310  investigated the explicit depth resolved limitation terms that drive phytoplankton growth rates and thus biomass
evolution and NPP responses.

3.4 — Multiple competing mechanisms associated with MLD drive interannual variability in
simulated NPP
In higher NPP years, biomass-weighted depth-averaged realised growth rates (Ap) were significantly reduced

315  from July to October (Figure 6¢). The co-existence of higher NPP despite poorer growth conditions for the
average phytoplankton requires the role of either top-down processes affecting biomass loss rates or a physical
decoupling between where changes in biomass and growth rates occur in the water column in response to bottom-
up processes. Both top-down and bottom-up roles regulated interannual variability in NPP, but their relative
influence changed throughout the productivity season.

320  We found that increased NPP during the spring arose from the unique ways in which bottom-up and top-down
processes responded to deeper mixing. Initially, strong bottom-up controls linked to relief of iron limitation
appeared to drive increased NPP. Significantly higher depth resolved Ap within the mixed layer reflected better
growth conditions for the average phytoplankton (Figure 7c). This corresponded to increases in surface NPP
(Figure 7a), despite a non-significant increase in surface biomass during the July-November period (Figure 7b,

325  Appendix Figures A3, A4, AS). Through the same period, Fe limitation was reduced, with consistently and
significantly increased class specific and total phytoplankton community averaged Lr. terms in high NPP years
(Figure 6d). This effect was confined to depths from the surface to just below the mixed layer (Figure 7d),
following increased mixed layer DFe inventories (Figure 5c). Increased DFe mixed layer inventories during
spring were not from remineralised iron sources (Figure 5e), suggesting that springtime relief of iron limitation

330  was driven by entrainment.

However, increased phytoplankton division rates within the mixed layer did not translate to increased biomass
Figure 7b, c), because deeper mixing drove biomass below the mean monthly mixed layer. The redistribution of
simulated phytoplankton biomass to depth led to additional top-down controls on phytoplankton biomass
accumulation into summer, possibly through the destabilizing properties of the prescribed grazing functional

335  response (Gentleman and Neuheimer, 2008; Rohr et al., 2022). Between high and low NPP periods, depth-
integrated biomass significantly increased in spring (Figure 7b), while total grazing loss rates significantly
decreased (Figure 7h, Appendix Figures A3, A4, AS) with decreasing zooplankton biomass (Appendix Figure
A6). Resolved over depth, the reduction in grazing loss rates was strongest in the mixed layer (Figure 7h). While
grazing rates decreased, total mixed layer phytoplankton biomass remained the same (or significantly decreased

340  in the cases of picophytoplankton and diatoms, Appendix Figures A4, AS), while below the mixed layer, biomass
increased (Figure 7b).

The significant deep biomass anomalies below the mean monthly MLD (Figure 7b) were likely due to synoptic
scale mixing events averaged out in mean monthly MLD. This redistribution of phytoplankton biomass
significantly reduced grazing loss rates in the mixed layer (Figure 7h), alongside reduced micro- and

345  mesozooplankton biomass (Appendix Figure A6e, f). This reduction in top-down loss pressure likely contributed
to increased mixed layer NPP by reducing grazing pressure in the mixed layer where growth conditions were
enhanced, while also mitigating biomass losses to detrainment. These results highlight that higher spring NPP can
occur despite biomass-weighted depth-average decreases in p (Figure 6¢, 7¢) that arise from shifting biomass to
greater depth where growth conditions were unfavourable due to insufficient light (Figure 7f).
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350  Figure 7. Simulated integrated (barplots) and depth resolved (interpolated onto a 10 m regular grid) mean
climatological (a) ANPP, (b) ABiomass, (¢) biomass-weighted depth-averaged growth rate Ap, (d) biomass-
weighted depth-averaged iron limitation, ALr., (€) biomass-weighted depth-averaged nitrogen limitation AL, (f)
biomass-weighted depth-averaged light limitation ALjign, (g) Biomass-weighted depth-averaged growth rate
temperature dependency pmax, (h) phytoplankton biomass normalized specific grazing loss rate AGrazing, and (i)

355  phytoplankton biomass normalized specific non-grazing loss rate ANGL. A terms were determined from the mean
climatological difference between high and low integrated total NPP seasons. Stars and stippling denote that mean
monthly climatological difference in the selected high and low NPP season groups significantly exceeds the full
time series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis).

Red and blue solid lines denote mean MLDs in respective high and low NPP year groups.
360  Following shoaling of the mixed layer in spring/summer, high NPP years were associated with divergent changes

to growth conditions above and below the mixed layer. Higher NPP seasons were consistently linked to surface
changes in growth conditions and biomass (Figure 7). In the mixed layer, growth conditions improved (Figure
7¢), due to relief of iron limitation (Figure 7d, Appendix Figure A2). This occurred despite significantly
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increased light limitation (Figure 7f). Cooler temperatures reduced the thermal growth rate dependency but not

365  significantly between high and low NPP seasons (Figure 7g). Both DFe and NOjs inventories were significantly
higher through summer (Figure 5), reducing nutrient limitation and driving positive Ap in the mixed layer (Figure
7d, e). Importantly, increased supply of remineralised iron was significantly increased in the mixed layer (Figure
5e), maintaining iron limitation relief following mixed layer shoaling. The improved mixed layer growth
conditions led to higher biomass (Figure 7b) and NPP (Figure 7a). Notably, summertime biomass-weighted depth

370  averaged Ap, which was not significantly different between high and low NPP seasons, reflected poorer growth
conditions below the mixed layer (Figure 7a, c, f).

4. Discussion

4.1 — Does our understanding of simulated drivers of NPP help explain remote-sensing NPP
algorithm divergence?

375  The inconsistent relationship between NPP and environmental drivers seen across VGPM/eVGPM and
CbPM/AbPM/CAFE algorithms is also observed in previous Southern Ocean assessments (Pinkerton et al., 2021;
Ryan-Keogh et al., 2025b; Tagliabue et al., 2025). This inconsistency between remote sensing NPP algorithms
suggests uncertainty around the mechanistic links between drivers and NPP. This uncertainty may arise from

potential biases in how NPP is derived from biomass and growth rates, or more complex competing mechanistic
380  relationships than can be parameterised using first-order relationships of surface ocean environmental variables.

The interannual variability in NPP in our biogeochemical model was linked to variability in winter/spring MLD,
driving cascading changes to the bottom-up and top-down controls and demonstrating how decoupling between
biomass and growth rates () can arise. For remote sensing NPP algorithms, the CAFE and CbPM algorithms
both include MLD. The CbPM algorithm also includes nitracline depth to determine nitrate limitation based on

385 the proximity of MLD and nitracline depths (Westberry et al., 2008; Ryan-Keogh et al., 2023a). However,
differences in climatological ANPP across CAFE and CbPM algorithms are likely driven by differences in how
biomass, chlorophyll and absorption spectra are incorporated into respective algorithms (Figure 2).

Our investigation of remote sensing algorithms did not find consistent and significant links between deeper
MLDs in spring and increased NPP. Rather, the only significant relationship identified was in the CbPM

390  algorithm, where shallower MLD was correlated with increased NPP in November (Figure 2). While this
relationship was also indicated in CAFE and AbPM algorithms, it was not significant (Figure 2). This does
provide some indication that earlier shoaling of the MLD enhanced light availability for mixed layer biomass,
consistent with observations of light as a seasonal productivity driver in this region (Trull et al., 2019). This
effect in the CbPM algorithm was not sustained through to summer however, indicative that algorithm sensitivity

395  to light attenuation forms only part of mechanistic NPP variability and was confined to spring.

The absence of stronger or more widespread relationships in remote sensing products may arise from several
factors. First and most importantly, the complexity of mechanisms driving interannual NPP variability captured
in the coupled physical-biogeochemical model likely reflects realistic, nonlinear interactions among physical
processes, light, nutrients, and grazing. These processes often counteract one another, resulting in weak net

400  effects that are difficult to detect in surface-constrained observations. Secondly, remote sensing algorithms rely
on simplified parameterisations that may exclude subsurface processes critical to NPP variability, or biases in
input variables (Saba et al., 2011). Third, the averaged MLD product may not accurately resolve sub-seasonal
variability in MLD which is an important driver of SAZ primary production (Swart et al., 2015; Swart et al.
2023). The last possibility is that the mechanisms generated in the model are poorly representative of the in-situ

405  system. As such, the lack of consistent relationships does not imply an absence of physical-biological coupling
but rather highlights the limitations of simplified remotely-sensed algorithms in resolving emergent and
interacting drivers of phytoplankton biomass and growth rates.
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4.2 — Bottom-up and top-down drivers of NPP are linked by ecosystem functional responses

The uncertainty in environmental drivers of observed NPP likely occurs due to the many competing controls on
410  biogeochemistry. Changes to the MLD in the Southern Ocean affects NPP by altering both nutrient and light

availability in generally opposing directions. Deeper mixed layers entrain nutrients from below but also reduce

light availability to phytoplankton that are mixed deeper in the water column (Tagliabue et al.. 2014; Deppeler

and Davidson, 2017; Llort et al., 2019). The timing of MLD shoaling, relative to seasonal changes in incoming
radiation and SST also determines the response of the phytoplankton community (Deppeler and Davidson, 2017),
415  as observed here in PISCES-Quota-Fe.

In PISCES-Quota-Fe, the climatological average productivity response to changes in MLD was complicated
through competing changes in ecosystem structure and top-down controls. Firstly, the responses of phytoplankton
to bottom-up controls (class specific nutrient limitation) varied between groups, where reduced iron limitation in
high NPP seasons benefited nanophytoplankton over picophytoplankton and diatoms (cf. Appendix Figures A3,

420 A4, AS). And second, the decoupling between changes in the MLD and NPP over the climatological cycle was
exacerbated by the response of grazers to changes in the prey field as dictated by their prescribed functional
response curves.

In our results, during spring the dilution of biomass over greater depth and the lack of increased biomass in the
mixed layer corresponded to reduced grazing (Figure 7h), preconditioning the mixed layer to this destabilising
425  predator-prey dynamic (Evans and Parslow, 1985; Behrenfeld, 2010). This was driven by the rate at which

clearance rate, the volumetric rate at which phytoplankton are grazed per unit zooplankton, changes with
phytoplankton concentrations. In type II (and circumstantially type III) prescribed functional responses
(Gentleman et al., 2003; Gentleman and Neuheimer, 2008), clearance rates decrease with biomass accumulation

during seasonal bloom formation as grazing becomes less efficient per unit zooplankton (Gentleman and
430  Neuheimer, 2008; Rohr et al., 2022). This reduced grazing efficiency allows more rapid phytoplankton biomass

accumulation, destabilizing grazing as a top-down control in the predator-prey dynamic (Gentleman and
Neuheimer, 2008; Rohr et al., 2022).

The impact of a more destabilising functional response amplifies changes in phytoplankton growth, which under
reduced grazing loss rates, primes the growing population to greater potential growth ahead of increasing

435  zooplankton population (Rohr et al., 2022). These properties likely contributed to significantly increased mixed
layer biomass accumulation from January to March, when peak ANPP occurs, despite the same or lower biomass

in the spring during initiation (Figure 6b, Figure 7b), and a lack of significant changes to summer grazing loss
rates (Figure 7h). Indeed, clearance rates for the average phytoplankton in the mixed layer significantly decreased
in summer (Appendix Figure A6) despite significantly increased summer mixed layer biomass (Figure 7b).

440  To assess the intrinsic stability of the predator-prey functional response in PISCES-Quota-Fe, determination of
the first order stability of the functional response, calculated from the rate of change in clearance rate as prey
density increases, is required to assess the nonlinear way in which clearance rate changes with mixed layer
reduced biomass (Gentleman and Neuheimer, 2008; Rohr et al., 2022). Unfortunately, the multispecies predator-
prey system of PISCES-Quota-Fe challenges the quantification of inherent changes in stability from the rate of

445  clearance rate changes with respect to phytoplankton concentration, due to multi-prey responses sensitive to
community composition. Nevertheless, we can be confident that the changes in grazing loss rates follow patterns
in prey biomass distributions, instigated by deepening of the mixed layer, and favouring biomass accumulation
and increased NPP in the surface moving into summer.

4.3 — Implications for NPP trends in historical observation and model projections.

450  When we examined trends in the remotely-sensed NPP record (monthly anomalies 1998-2022), the divergence
between significantly positive trends in VGPM/eVGPM algorithms and negative trends in CbPM, AbPM and
CAFE algorithms was clear (Figure 8a), reflecting the disparity in their parametric derivation. This is supported
by previous work investigating the emergence of broader Southern Ocean trends based on remote sensing NPP
algorithms, with similarly divergent NPP trends between VGPM and CbPM algorithms (Pinkerton et al., 2021;
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455  Ryan-Keogh et al., 2023b; Ryan-Keogh et al., 2025a). Trends in VGPM and eVGPM algorithms (Figure 8c, d)
are particularly sensitive to start and end dates owing to climate modes, more so because they are driven by
trends in surface chlorophyll and SST associated with Southern Ocean warming (Henley et al., 2020; Ryan-

Keogh et al., 2023b). Trends in CbPM NPP were spatially heterogenous (Figure 8b), reducing confidence in the
overall negative trend (Figure 8a).
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460  Figure 8. (a) Timeseries (1998 — 2022) of monthly NPP anomalies from the five remote sensing NPP algorithms,
spatially averaged over the SOTS region (45-49S, 140-150E). Trends were determined from ordinary least squares
regression of the monthly anomalies, with trend slope and p-values for significance given. . (b — e) Spatial trends
computed from ordinary least squares regressions on monthly single pixel NPP anomalies for each remote sensing
NPP algorithm in (a). Stippling in pixels indicates significant rends at the p < 0.05 level. The black box denotes

465  study region used for averaging in (a).

In their comparison of OC-CCI based NPP algorithms, Ryan-Keogh et al. (2025b) suggested that more robust
assessment of NPP drivers can be achieved with CAFE and AbPM algorithms, as these models have better
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agreement with field observations (Lee et al., 2011; Saba et al., 2011; Wu et al., 2024; Ryan-Keogh et al., 2025b).
Additionally, the light absorption efficiency parametrisation in AbPM and CAFE algorithms better reflects NPP

470  responses to environmental conditions compared to the strong influence of temperature on metabolic rates in
e¢VGPM and VGPM algorithms (Ryan-Keogh et al., 2025b). The validation of the best NPP algorithm in this
region is beyond the scope of this study, but based on previous algorithm intercomparison, in-situ trends in this
part of the SAZ region are very likely to reflect decreasing NPP as in AbPM, CAFE, CbPM algorithms (Figure
8).

475  For the same period as the remote sensing record (1998-2022), in the PISCES-Quota-Fe hindcast simulation, no
significant trends in total monthly NPP anomalies were identified (Figure 9a), with the exception of a significant
trend in decreasing diatom NPP. However, extension of the trend analysis to the full time series used to assess
mechanistic drivers of NPP (1975-2022) indicated significantly positive trends in total NPP, driven by increasing
nanophytoplankton NPP (Figure 9b). A concomitant reduction in iron limitation was confirmed as a significant

480  trend (Appendix Figure A7). This sensitivity of trend analysis to time series length, start and end dates may limit
our ability to confidently identify NPP trends and mechanisms driving interannual variability in both

observational and simulated time series (Elsworth et al., 2020; Kwiatkowski et al., 2020).
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Figure 9. (a) PISCES-Quota-Fe simulated class specific NPP monthly anomalies (thin lines), fitted with ordinary
least squares trend regressions for the period 1998-2022 corresponding to the remote sensing record. (b) Extended
485  NPP trend analysis over the full study simulation time series 1975-2022.

However, the convergence of increasing trends in simulated NPP in this study region in both PISCES-Quota-Fe
and historical CMIP6 models, with the exception of ACCESS-ESM1.5 (Figure 10), and similarly reported
Southern Ocean NPP projected increases elsewhere (Fisher et al., 2025; Ryan-Keogh et al., 2025b), suggests that
biogeochemical models are reasonably consistent in the direction of future NPP projections despite significant
490  uncertainty in the magnitude. Our mechanistic understanding of PISCES-Quota-Fe links increasing NPP with a
reduction in iron limitation and destabilising predator-prey dynamics. CMIP6 NPP increases are generally
associated with a trend in reduced iron limitation (Tagliabue et al., 2021) but is complicated by indirect diagnosis
of iron limitation term impacts on phytoplankton growth rates and NPP (Tagliabue et al., 2025). Without specific
growth limitation term archived for historical CMIP6 models, there remains large uncertainty surrounding the full
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495  suite of environmental drivers. This is particularly the case with variability between models in the direction of
AMLD during high NPP years (Figure 11b), yet consistently increased ASSTs suggesting thermally driven NPP
trends (Figure 11c).
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Figure 10. (a) Trends in monthly anomalous NPP time series from the 8 CMIP6 historical models listed in Table
2, (b — i) Individual CMIP6 model time series of spatial mean monthly NPP anomalies. Linear trends were
500  calculated using ordinary least squares regression, with slope and p-values given for trends significantly different
from zero (climate modes were not subtracted).
The convergence of model predictions indicating increasing NPP and decreasing iron limitation reported here and
across the literature has important implications for addressing trend interpretations and observationally
constrained model development. The findings of models is at odds with prior observations indicate decreasing
505  NPP trends and increasing iron stress over the remote sensing record (Ryan-Keogh et al., 2023b). The uncertainty

in mechanistic relationships between remote sensing algorithms, PISCES-Quota-Fe and CMIP6 simulations urges
a cautionary interpretation of trends emerging in both observationally and simulated methods.
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As such, further improvement to our understanding of mechanistic processes is required to constrain modelled
biogeochemical and ecological systems relative to observed trends. With regards to addressing mechanistic

510  knowledge gaps in NPP drivers, the processes of resource limitation, zooplankton dynamics and phytoplankton
loss are identified as key priority areas for improving biogeochemical predictive capability (Rohr et al., 2023;
Henson et al., 2024; Fisher et al., 2025). Our findings are directly applicable to these areas, giving critical insight
into the specific processes that need, and can, be addressed with observational approaches (Tagliabue et al., 2021;
Hutchins and Tagliabue, 2024; Fisher et al., 2025).
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515  Figure 11. (a) Bootstrap analysis of the change in mean climatological NPP between the 5 highest and 5 lowest
seasons of NPP for 7 CMIP6 models listed in Table 2 (main text). (b — d) Change in MLD, SST and STF mean
latitude correspond to mean climatological changes based on respective model high and low NPP season groups in
(a). SST and MLD not available for GFDL-ESM4 output. Stars denote trends significantly different from zero at
the p < 0.05 confidence level.

21



https://doi.org/10.5194/egusphere-2026-44
Preprint. Discussion started: 23 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

520 5. Conclusions
Our analysis identified that in the SAZ south of Australia, remote sensing NPP algorithms showed inconsistent
relationships between environmental drivers and interannual NPP variability. Moreover, divergence in both the
indicative drivers and NPP trends showed that mechanistic relationships are not consistently represented between
algorithms. While this is in part due to the biogeochemical and ecological mechanisms not included in remote
525  sensing algorithms, these estimates are still essential tools in assessing the impact of climate change on
productivity systems, providing the best estimate of large-scale Southern Ocean productivity change.

To address why decoupling of environmental variables and NPP occur, we used a complex multi-species
biogeochemical model to probe the mechanisms that decouple physical environmental drivers as direct controls
of NPP variability. These simulations showed that periods of deeper spring mixed layer depth initiates both top

530  down and bottom-up responses: specifically increasing iron availability by physical and remineralisation supply
of Fe, and redistributing/diluting phytoplankton biomass to alter grazing. Together these mechanisms, originate in
increased MLD in winter/spring, and sustain nutrient supply into summer to perpetuate increased NPP throughout
the season.

Our focus on mechanisms underscores the importance for assessing remotely-sensed derived NPP trends with a

535  degree of caution. The identification of biomass and growth decoupling as a result of altered mixing serves to
explain how divergent trends patterns can emerge in NPP algorithm trends due to differences in biomass and
growth rates dependencies. Therefore, the assumption of generalised responses of a phytoplankton community to
environmental changes may not represent multiple competing community responses that are more sensitive to
changes in nutrients, light or grazing, rather than environment drivers such as temperature and mixing.

540  When contextualised to historical NPP trends, our understanding of PISCES-Quota-Fe suggests that it and other
CMIP6 models generate convergent trends in increasing Southern Ocean NPP that vary in magnitude. The strong
bias towards SST trends in several CMIP6 to models is likely due to poorly constrained productivity stabilising
mechanisms in models (multi-resource limitation, zooplankton grazing and phytoplankton loss). This
understanding is critical since the improvement of biogeochemical models needs to be informed by relevant

545  observational targets that help to constrain biogeochemical feedback processes that account for nutrient,
ecological and thermal drivers (Hutchins and Tagliabue, 2024). Moreover the explicit mechanisms identified here
are contributing to our understanding of earth system model NPP drivers, and are directly linked to the most
important mechanisms that require attention across model intercomparisons (Henson et al., 2024), which can be

used to inform future biogeochemical model development.

550
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Appendix A.
Additional Figures for Traill et al. (2026) “Towards Constraining the Drivers of Variability and Trends in
Subantarctic Productivity”.
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Figure A1l. Simulated PISCES-Quota-Fe climatological biomass-weighted depth-averaged difference between Ly
555  and L. limitation terms for the period 1975-2022. Red shading denotes L. dominance (Lr. <L), and blue shading
denotes Ly dominance (L. > Lv), defining the nutrient limitation state of phytoplankton classes. Black box denotes
study region used to calculate spatial means.
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Figure A2. Simulated PISCES-Quota-Fe class specific (nanophytoplankton, diatom, picophytoplankton and

community average) depth-resolved biomass-weighted differences between Ly and Lg. limitation terms averaged
560  for the 5 highest seasonally integrated NPP years (a, ¢, ¢, g) and 5 lowest seasonally integrated NPP years from the

1975-2022 time series. Red shading denotes L. dominance (Lr. < Ly), and blue shading denotes Lx dominance

(Lre > L), defining the nutrient limitation state of phytoplankton classes.
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Figure A3. Simulated nanophytoplankton class specific integrated (barplots) and depth resolved (interpolated onto
565  a 10 m regular grid) mean climatological a) ANPP b) ABiomass, c¢) biomass-weighted depth-averaged growth rate
Ap, d) biomass-weighted depth-averaged iron limitation, ALf.,, €) biomass-weighted depth-averaged nitrogen
limitation ALx, f) biomass-weighted depth-averaged light limitation ALjigy, g) Biomass-weighted depth-averaged
growth rate temperature dependency pmax, h) phytoplankton biomass normalized specific grazing loss rate,
AGrazing, i) phytoplankton biomass normalized specific non-grazing loss rate, ANGL. A terms were determined
570  from the mean climatological difference between high and low integrated total NPP seasons. Stars denote that mean

monthly climatological difference in the selected high and low NPP season groups significantly exceeds the full
time series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis).
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Figure A4. Simulated picophytoplankton class specific integrated (barplots) and depth resolved (interpolated onto

a 10 m regular grid) mean climatological a) ANPP b) ABiomass, c) biomass-weighted depth-averaged growth rate

Ap, d) biomass-weighted depth-averaged iron limitation, AL, €¢) biomass-weighted depth-averaged nitrogen

limitation AL\, f) biomass-weighted depth-averaged light limitation ALy, g) Biomass-weighted depth-averaged
growth rate temperature dependency max, h) phytoplankton biomass normalized specific grazing loss rate,
AGrazing, 1) phytoplankton biomass normalized specific non-grazing loss rate, ANGL. A terms were determined
from the mean climatological difference between high and low integrated total NPP seasons. Stars denote that mean
monthly climatological difference in the selected high and low picophytoplankton NPP season groups significantly
exceeds the full time series climatological variability at the p < 0.05 level (10,000 iteration random year

bootstrapping analysis).
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585  Figure AS. Simulated diatom class specific integrated (barplots) and depth resolved (interpolated onto a 10 m
regular grid) mean climatological a) ANPP b) ABiomass, c) biomass-weighted depth-averaged growth rate Ay, d)
biomass-weighted depth-averaged iron limitation, ALk.,, ¢) biomass-weighted depth-averaged nitrogen limitation
ALN, f) biomass-weighted depth-averaged light limitation ALjign, g) Biomass-weighted depth-averaged growth rate
temperature dependency Wmax, h) phytoplankton biomass normalized specific grazing loss rate, AGrazing, i)

590

phytoplankton biomass normalized specific non-grazing loss rate, ANGL. A terms were determined from the mean
climatological difference between high and low integrated total NPP seasons. Stars denote that mean monthly
climatological difference in the selected high and low diatom NPP season groups significantly exceeds the full time
series climatological variability at the p < 0.05 level (10,000 iteration random year bootstrapping analysis).
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595  Figure A6. Simulated integrated (barplots) and depth resolved (interpolated onto a 10m regular grid) mean
climatological clearance rates for specific and total phytoplankton groups a) AClearance rate for nanophytoplankton
b) AClearance rate for picophytoplankton, ¢) AClearance rate for diatoms and d) AClearance total phytoplankton
(class weighted), and zooplankton biomass e) AMicrozooplankton Biomass, and f) AMesozooplankon Biomass.
AClearance and AZooplankton biomass were determined from the mean climatological difference between high

600  and low integrated total NPP seasons. Stars denote that mean monthly climatological difference in the selected high
and low NPP season groups significantly exceeds the full time series climatological variability at the p < 0.05 level
(10,000 iteration random year bootstrapping analysis).
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Figure A7. Trends in PISCES-Quota-Fe phytoplankton class specific biomass-weighted, depth-averaged
(BWDA) iron limitation terms (positive values indicate decreasing iron limitation).
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Code Availability
All open-source Python code used to process and analyse data and produce all figures is available at
https://doi.org/10.5281/zenodo.18148572.

Data Availability
610  Multi Observation Global Ocean ARMOR3D L4 analysis (https://doi.org/10.48670/moi-00052) can be obtained
from the Copernicus Marine Service.

MLDs are derived from the Hadley observation product following the methods of (Ryan-Keogh et al., 2023a) and
references in Table 1. Hadley temperature and salinity profiles:
https://www.metoffice.gov.uk/hadobs/en4/download-en4-2-2.html.

615  NPP reprocessed from the OC-CCI algorithms can be found in open-access repositories Ryan-Keogh (2025);
Ryan-Keogh et al. (2025a) with details described in Ryan-Keogh et al. (2023a).

CMIP6 data are hosted by the Earth System Grid Federation, with references provided in Table 2 for each
specific model historical output data.

Output for the PISCES-Quota-Fe historical (JRASS) simulation at mean monthly interannual ~2° x1° grid
620  resolution is available at https://doi.org/10.5281/zenodo.18041475.
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