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Abstract. This study proposes a novel altimetry-radiometry synergistic approach for improving SMOS thin sea ice thickness
retrievals by incorporating permittivity estimates derived from CryoSat-2 backscatter observations. Since sea ice permittivity
remains the dominant source of uncertainty in L-band radiometric thickness retrievals, the sensitivity of the CryoSat-2 backscatter
signal to variations in this parameter offers a promising pathway to better constrain it. By integrating these permittivity
estimates into a hybrid scheme that includes the inversion of an L-band sea ice emission model using machine learning,
the approach aims to enhance the accuracy and robustness of thin sea ice thickness estimates obtained from SMOS. A set of
independent in situ datasets is used to validate the proposed methodology and to assess its performance across different ice
regimes. The CryoSat-2-derived permittivity values lead to realistic and physically consistent estimates, although its validity
is limited to first-year ice. Overall, the synergistic combination of Ku-band altimetry and L-band radiometry yields improved
results compared to SMOS-only retrieval methods, which are included as a baseline for reference. This highlights the potential
of cross-sensor synergies to advance thin sea ice monitoring, establishing a framework applicable to present and future satellite

missions such as CIMR, CRISTAL, and ROSE-L.

1 Introduction

Sea ice is a critical component of the Arctic climate system, influencing energy exchange, ocean circulation, and weather
patterns (Meredith et al., 2019). It also serves as a key indicator of climate change, with its thickness and extent closely
monitored using satellite remote sensing. Passive microwave radiometry has served for polar monitoring since the 1970s, with
the first satellites being capable of retrieving sea ice concentration (SIC). The launch of European Space Agency (ESA)’s Soil
Moisture and Ocean Salinity (SMOS, Kerr et al. (2010)) and National Aeronautics and Space Administration (NASA)’s Soil
Moisture Active Passive (SMAP; Entekhabi et al. (2010)) missions, which operate at L-band (1.4 GHz), enabled the retrieval
of sea ice thickness (SIT) for thin ice regimes (< 1 m; Kaleschke et al. (2012), Maass et al. (2015)). Furthermore, the upcoming
Copernicus Imaging Microwave Radiometer (CIMR) will extend these capabilities by integrating L-band with C-, X-, K-, and
Ka-band channels (1.41, 6.90, 10.65, 18.70 and 36.50 GHz, respectively), thus providing simultaneous continuity of both sea

ice concentration and thickness measurements (Donlon et al., 2023). Complementarily, satellite altimeters such as the current
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sensors on ESA’s CryoSat-2 (Laxon et al., 2013) and NASA’s ICESat-2 (Markus et al., 2017), are sensitive to thicker ice
(> 1 m). These satellites measure sea ice freeboard, which can be converted to total thickness under hydrostatic equilibrium
assumptions. However, this conversion remains sensitive to estimates of snow depth and density, and also ice density, which
are major sources of uncertainty (Warren et al. (1999), Mallett et al. (2021)). A combined SMOS and CryoSat-2 thickness
product exists (Ricker et al., 2017), offering full thickness coverage, but it inherits the individual limitations of both SMOS and

CryoSat-2 retrievals.

Nowadays, two SMOS-based thin sea ice thickness operational products exist for the non-melting period (October—April).
The first, ESA’s official product developed by the Alfred Wegener Institute (AWI), uses a semi-empirical algorithm that does not
account for snow cover, despite snow significantly affecting L-band radiation (Tian-Kunze et al., 2014). The second, from the
University of Bremen (UB), is an empirical product but has a limited sensitivity range, reaching only up to approximately 0.5
m (Huntemann et al., 2014). Recent efforts to enhance the retrieval have employed machine and deep learning methodologies
(Herndndez-Macia et al. (2024a), Herndndez-Macia et al. (2025)). Despite some improve in the accuracy and a reduction in
the required computational resources, these approaches did not lead to a groundbreaking advance. Therefore, these limitations
highlight the need for improved retrieval methods that can enhance accuracy and extend the sensitivity of SMOS-based ice
thickness estimates.

All these SMOS-based thin sea ice thickness retrieval methods rely on emission modeling, and therefore, the knowledge of
the sea ice permittivity is required, while it is a parameter that remains poorly constrained due to the complex composition of
the sea ice (Huntemann (2015), Herndndez-Macia et al. (2024b)). Theoretical models represent sea ice as a matrix containing
brine inclusions of different geometries (e.g., spheres, needles; Shokr (1998)) that depend on ice growth conditions. However,
no direct method exists to infer permittivity from satellite measurements, and the limited current knowledge of the modeled
permittivity introduces uncertainties in thickness retrievals. Hereafter, the terms permittivity and dielectric constant are used

interchangeably, as both usually appear in the literature with the same meaning.

Previous works have studied the physical dependencies of the so-called backscatter measured by CryoSat-2 (Dawson and
Landy, 2023). By definition, the measured backscatter is a function of various parameters of the satellite, but also of different
physical properties of the media where the reflection of the signal happens. To estimate the sea ice permittivity at L-band, a
relation with the backscatter measured at CryoSat-2’s Ku-band can be established. Physically, the backscatter signal represents
the fraction of the energy that is scattered back toward the satellite by the snow-covered sea ice. Its magnitude depends strongly
on the dielectric contrast of the medium, i.e. on the interface, where the reflection happens, as well as on its surface roughness.
Despite previous efforts (Landy et al., 2020), remains difficult to determine and distinguish the impact of these two variables
on the scattered signal. In fact, Grenfell et al. (1998) showed that nadir radar returns are primarily a function of effective
permittivity, modulated by surface roughness and internal inhomogeneities. However, this study is founded on the assumption
that the reflection happens in the snow-ice interface, and thus the observed backscatter is highly dependent on the refraction

index contrast of these two media, and so of the permittivity of the sea ice. Therefore, one can use this dependence to obtain
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information about the sea ice permittivity.

This study proposes a cross-sensor synergy that operates at a more fundamental level compared to the standard merging of
final products to extend spatial or temporal ranges. The synergy is exploited at an earlier stage, exploring the observational
sensitivity of one satellite to constrain the physical retrieval parameters relevant for the other. Specifically, sea ice permittivity
estimates derived from CryoSat-2 backscatter are incorporated into the L-band microwave emission model. By integrating this
constrained variable into the retrieval chain, it is aimed to refine the accuracy of thin sea ice thickness estimates obtained from
SMOS observations.

The paper is organized as follows: Section 2 details the data sources used within the methodology, and the in situ datasets
used for validation. Section 4 describes the proposed retrieval methodology. Section 5 presents the results of the study, which

are then in Section 6. Finally, Section 7 summarizes the main findings and conclusions.

2 Data
2.1 SMOS brightness temperature

The SMOS satellite carries the Microwave Imaging Radiometer Aperture Synthesis (MIRAS), a passive L-band radiometer
that records full-polarization brightness temperatures (TB) and the four Stokes parameters across incidence angles spanning
0° to 60° (Kerr et al., 2001). The sensor provides full polar coverage on a daily basis, with a global revisit time of three days.
MIRAS generates 2D interferometric snapshots with a swath width of approximately 1200 km and a temporal resolution of
1.2 s. Depending on the incidence angle, the spatial resolution varies from ~35 km at nadir to over 50 km at the swath edges.
The instrument directly measures horizontally (TBH) and vertically (TBV) polarized TBs in the antenna reference frame, from
which the total intensity is calculated as the average of the two components. Given that the L-band intensity signal over sea ice
remains almost constant at lower incidence angles, the measurements acquired between 0° and 40° are averaged. Finally, daily
Arctic brightness temperature intensities are interpolated using a nearest-neighbor approach and mapped to the NSIDC polar
stereographic projection with 12.5 km grid spacing

In this study, the TB is extracted from the Alfred Wegener Institute (AWI)/European Space Agency (ESA) L3 Sea Ice
Thickness product. This product provides Arctic sea ice thickness (SIT) estimates from October to April, covering the period
2010-present (Tian-Kunze et al., 2014). This choice ensures consistency, as all datasets used in the methodology are regridded
to this product’s grid. Moreover, its SIT estimates are included in the results as a baseline. This product, called AWI/ESA
hereafter, relies on an iterative inversion scheme coupling a thermodynamic ice growth model with a three-layer radiative
transfer model, comprising sea ice and ocean components while neglecting snow cover. The forward model simulates the
medium emissivity, which is further used to estimate the TB. The bulk ice temperature is derived from 2 m air temperatures
provided by atmospheric reanalysis. Bulk salinity is parameterized using the empirical function described by Ryvlin (1974).
Ultimately, to account for sub-pixel heterogeneity within the radiometer’s footprint, the algorithm integrates a statistical

thickness distribution function calibrated against Operation IceBridge (OIB) airborne data.
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2.2 CryoSat-2 Ku-band backscatter

CryoSat-2 (hereafter CS2) is equipped with the Synthetic Aperture Interferometric Radar Altimeter (SIRAL), a Ku-band radar

altimeter (13.575 GHz) optimized for sea ice and polar observations. In SAR and SARIn modes, Doppler beam sharpening

95 improves the along-track resolution up to ~300 m while the across track is limited by the antenna footprint to ~1.5 km. In this

work, the CS2 Level-2 Baseline E data products are used, which include radar backscatter measurements derived from SAR

mode acquisitions over sea ice. These data have already undergone calibration and instrument corrections through the ESA
processing chain. Processing detail can be found in the CS2 Product Handbook (ESA, 2021).

The backscatter data are averaged within a 15 day window and regridded onto the 12.5 km NSIDC polar stereographic grid

100 to allow its inclusion in the algorithm’s workflow. This accounts for the spatial resolution mismatch between the two satellites,

limiting gaps in the backscatter maps while retaining sensitivity to variations.

For a spaceborne Ku-band radar altimeter such as CryoSat-2, the sea ice backscatter is dominated by surface, or interface,
scattering (Beaven et al., 1995). This contribution arises at dielectric discontinuities, thus at the snow-ice interface. Therefore,
105 the volume scattering contribution can be safely neglected. Following Fetterer et al. (1992) and Tonboe (2017), the backscatter

at nadir is:
H

o’ =0.9F|R(0)|>*—, (1)
uT

where | R(0)] is the Fresnel reflection coefficient at nadir, F is the fraction of the flat-patch area (unitless, inversely proportional
to the roughness), H is the satellite height, v the pulse propagation speed, and 7 the pulse length. Therefore, in general, this
110 backscatter is a function of the reflection coefficient, which depends on the dielectric contrast of the snow-ice interface, and
the surface roughness. Note that this assumption may not hold over fresh lake ice, where Ku-band penetration often leads to

double-peak waveforms reflecting from both the snow-ice and ice-water interfaces (Mangilli et al., 2024).
2.3 Ice surface temperature satellite product

Daily surface thermal fields are obtained from the Arctic Ocean-Sea and Ice Surface Temperature Reprocessed dataset (Copernicus
115 Marine Service (CMEMS), 2024a), produced by the Danish Meteorological Institute (DMI) and available through the Copernicus
Marine Service (CMEMS). This record aggregates reprocessed thermal infrared data from different sensors, including the
Advanced Very High Resolution Radiometer (AVHRR), the Advanced Along Track Scanning Radiometer (AATSR), and the
Sea and Land Surface Temperature Radiometer (SLSTR). These inputs are extracted from the ESA Climate Change Initiative
(CCI), the Copernicus Climate Change Service (C3S), and the Arctic & Antarctic Ice Surface Temperatures from Thermal
120 Infrared Satellite Sensors (AASTI) dataset. Provided on a 0.05° grid covering the open ocean, marginal ice zone, and packed

ice, the product employs an optimal interpolation method that utilizes the previous day’s analysis as the background field.
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In this study, a linear temperature profile within the ice is considered, following the approach of Huntemann (2015). Under
this assumption, the bulk ice temperature (7;..) is expressed as

Tsurface - Tsw

T‘ice = )
2

2

125  where Tsyr face 18 the satellite-derived surface temperature, and T, represents the seawater temperature, set to a typical Arctic

value of —1.8°C.
2.4 Arctic Ocean Physics Reanalysis

Auxiliary ocean and sea ice variables are extracted from the Arctic Ocean Physics Reanalysis, a product generated by the
Nansen Environmental and Remote Sensing Center (NERSC) and distributed by CMEMS (Copernicus Marine Service (CMEMS),

130 2024b). This reanalysis model is based on TOPAZ4b, which assimilates diverse observational datasets to constrain the model
state. Assimilated data sources include sea level anomalies from satellite altimetry, sea surface temperature from the Operational
Sea Surface Temperature and Sea Ice Analysis (OSTIA), OSI-SAF sea ice concentration, CS2SMOS sea ice thickness fields,
sea surface salinity from the Barcelona Expert Center (BEC) SMOS product, and in situ temperature and salinity profiles from
moorings and cruises.

135 For this study, sea ice thickness, seawater salinity, and snow depth are extracted from this reanalysis. The bulk sea ice salinity

is estimated using the empirical relation proposed by Ryvlin (1974):
Sice - st(l - SR)e_a dice + SRSSUH (3)

where Sy, is the seawater salinity and d;.. is the sea ice thickness (in cm), both taken from the reanalysis product. The

growth rate coefficient is a, which typically ranges from 0.35 to 0.5, and Sk corresponds to the residual bulk salinity at the

140 end of the growth season. While the original formulation by Ryvlin (1974) proposed a = 0.5 and Sr = 0.13, the adjusted

parameterization from Kovacs et al. (1996) is used in this work, setting Sr = 0.175 to improve consistency with Arctic field
observations.

Snow presence is derived directly from the reanalysis snow thickness variable: a positive thickness indicates snow cover,

whereas a value of zero implies no snow.
145 2.5 Insitu datasets

The in situ validation datasets consist of measurements collected by moored instruments at two Arctic Ocean sites, complemented
with observations from a 2014’s field campaign in the Barents Sea, where unusually thin sea ice was encountered for that
season. For all the datasets presented, it is important to note that each in situ measurement corresponds to a single point
within much larger satellite pixels, and therefore substantial representation errors and biases are unavoidable. Nevertheless, the
150 validation procedure is applied consistently across all compared products, ensuring that the effects of this resolution mismatch

influence them in an equivalent manner to all SIT datasets.
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2.5.1 ESA SMOSice Campaign data

Part of the validation is performed using data from the ESA SMOSice campaign, which measured thin ice regimes southeast of
Svalbard, in the Barents Sea, during March 2014 (Kaleschke et al., 2016). The campaign involved coordinated acquisitions from
the RV Lance and the Polar 5 research aircraft. Electromagnetic induction (EM) sounders were deployed on both platforms: a
ship-based system (SEM) mounted on the vessel’s bow and an airborne system (HEM) suspended from a helicopter. Additionally,
the Polar 5 aircraft carried a Riegl VQ-580 airborne laser scanner (ALS) to measure freeboard, which was subsequently
converted to thickness assuming hydrostatic equilibrium. All datasets were subsequently interpolated to the 12.5 km grid of
the AWI/ESA SMOS sea ice thickness product using arithmetic averaging with the GMT blockmean tool (Wessel et al., 2019),
as provided by Dr. Lars Kaleschke. This dataset was also used to validate the ESA’s official SMOS sea ice thickness product
(Kaleschke et al., 2016).

2.5.2 Shipborne Sea Ice Monitoring System (SIMS) data

The Sea Ice Monitoring System (SIMS) is an instrument mounted onboard the Le Commandant Charcot ship from the
PONANT company. It is located in the front of the ship and it consists of two components, namely a sonar measuring the
distance to the air-snow interface and an EM31 measuring the distance to the ice-water interface (von Abedyll and Haas,
2024). It measures the total thickness (snow + sea ice), so a bias has to be expected when comparing to satellite-based SIT
retrievals. Given its nature, it allows to continuously monitor the thickness while navigating through the ice, delivering highly
valuable dataset for validating remote sensing products. Particularly, the data used in this study was collected from the 29th of
March to the 15th of April of 2025, in the west coast of Greenland. Specifically, it consists of measurements from two legs that

navigated in Baffin Bay and along the coast, from approximately 66°N 53°W to 74°N 57°W.
2.5.3 BGEP moorings data

The Upward-Looking Sonar (ULS) instruments deployed on moorings as part of the Beaufort Gyre Exploration Project (BGEP)
provide measurements of sea ice draft, i.e., the submerged portion of the ice. Since the ULS measures ice draft rather than
total thickness, a conversion step is required. A multiplicative scaling factor of 1.136 is applied to the draft, following the
approach validated by Belter et al. (2020). This coefficient is based on an empirical analysis of approximately 400 drill-hole
measurements collected in the Fram Strait (Vinje and Finnekasa, 1986). The BGEP dataset, used here for validation, consists

of the daily mean sea ice thickness values from three ULS moorings (A, B, and D) located within the Beaufort Gyre.

3 Sea ice permittivity modeling
The permittivity of the media is a key parameter of its emission modeling. It can be defined in a complex formulation:

e=¢ —ie’ “)
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Figure 1. Sea ice permittivity at L-band frequency (1.4 GHz) as a function of the axis ratio of the brine inclusions, modeled as randomly-

oriented ellipsoids (from Polder-van Santen model). The axis ratio (z/x) correspond to the ratio between the vertical (z) and horizontal (x)
axes of the ellipsoid.

where ¢’ is the real part, and ¢” is the imaginary part. In qualitative terms, the real part determines the extent to which energy
can penetrate a material, whereas the imaginary part corresponds to the loss, i.e. the amount of energy dissipated within the
material. Higher € indicates less penetration, whereas higher ¢’ denotes more energy dissipation.

Sea ice can be modeled as an heterogeneous mixture of pure ice, liquid brine inclusions, and air pockets (Ulaby et al., 2014).
These brine inclusions strongly affect the permittivity of the media, given the high contrast with the pure ice. The conditions
and the rate in which the sea ice grows play a role on the shape and orientation of the brine inclusions, but this information
is usually not known. In general, harsh conditions during formation are linked to randomly oriented needle-like inclusions,
while calmer conditions with low temperature fluctuations are related to spherical inclusions or vertically oriented needles or
ellipsoids (Vant et al. (1978), Shokr (1998)). Furthermore, it is also a function of the brine volume, which ultimately depends
on the temperature and salinity of the ice (Assur (1960), Frankenstein and Garner (1967)).

Figure 1 shows the sea ice permittivity, both real and imaginary parts, at L-band as a function of the shape of the brine
inclusions. The permittivity is computed using the Polder-van Santen model, assuming that the brine inclusions are randomly-
oriented ellipsoids with a certain axis ratio (Jones and Friedman, 2000), and with a fixed temperature and salinity of -10°C and
5, respectively.

In microwave remote sensing of sea ice, the relevance of the complex permittivity components varies by application. The

real part is typically more relevant in altimetry, as it governs not only the surface reflection coefficient but also the propagation
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Figure 2. Conceptual workflow of the proposed synergistic methodology. The retrieval is performed in a cascade: first, CryoSat-2 backscatter
constrains the sea ice permittivity (RF-eps); second, this permittivity informs the inversion of SMOS brightness temperatures to retrieve sea

ice thickness (RF-sit).

velocity, a critical factor for correcting range biases in penetrating radar signals. Conversely, the imaginary part is often the
primary driver in radiometry, as it dictates the dielectric loss and penetration depth, thereby defining the effective emission layer.
However, € also influences significantly the radiometric brightness temperatures by determining the impedance mismatch and
transmissivity at the interfaces. In fact, both components are intrinsically coupled, since they are both derived from the same
brine inclusions configurations and the same brine volume fraction, i.e. temperature and salinity conditions. In this work, the

focus is specifically the First-Year Ice (FYI), as the study and the method proposed addresses thin ice regimes only.

4 Methodology

This study proposes a synergistic methodology to retrieve thin SIT by combining active and passive microwave observations.
This is done with a two-stage hybrid inversion scheme that utilizes Ku-band radar altimeter backscatter to constrain the
dielectric properties of sea ice prior to inverting L-band TBs. The workflow, summarized in Figure 2, is composed of two
sequential steps. First, CS2 backscatter is used to estimate the sea ice permittivity. This is achieved through a hybrid scheme
where the Snow Microwave Radiative Transfer (SMRT) model simulates the link between surface scattering and dielectric
properties to train the regression algorithm. Secondly, the CS2-derived permittivity estimates are combined with SMOS TB
observations. These inputs are fed into a second hybrid retrieval algorithm that estimates thin SIT. The methodology is detailed
in the following subsections. Section 4.1 describes the generation of the synthetic training dataset using the SMRT model,
which establishes the link between Ku-band backscatter and sea ice permittivity. Section 4.2 outlines the application of the
trained regression model with CS2 observations. Finally, Section 4.3 presents the synergistic retrieval framework, explaining

how the CS2-estimated permittivity is combined with SMOS TB (and auxiliary inputs) to retrieve SIT.
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4.1 SMRT simulations: linking backscatter and permittivity

To generate the training dataset for estimating the sea ice permittivity from the radar backscatter, the SMRT model is used in
the altimetry set up (validated in Larue et al. (2021)). The forward model is configured with the CryoSat-2 sensor geometry,
using the nadir_lrm_altimetry module. Surface and interface roughness is modeled with a Geometrical Optics (GO)
rough interface, assuming a Mean Square Slope (MSS) of 0.03 m for both the air-snow and the snow-ice interfaces (based on
Landy et al. (2020) and Larue et al. (2021)). The simulated medium consists of a snow-covered ice column. The snowpack is
parameterized as a single exponential layer of 0.1 m thickness, density of 300 kg m~3, correlation length of 5 x 10~° m, and
fixed temperature (268 K) with no salinity. Below the snowpack, a first-year sea ice layer of 1 m thickness is included. The ice
microstructure follows the independent-sphere model with radius 1 mm, density of 900 kg m~3, and variable bulk salinity. To
account for non-spherical inclusions, the Polder-Van Santen mixing formula (modified to include randomly oriented ellipsoids)
is used to compute the complex permittivity as a function of brine inclusion axis ratio, temperature, and salinity. Simulations
are carried out across a parameter space of sea ice temperature (255-270 K, step 0.5 K), sea ice salinity (3-10, step 0.5), and
a wide range of ellipsoidal axis ratios (1073~10%). For each configuration, the model computes the backscatter coefficient
(%) in dB. Specifically, the simulated backscatter is defined as the maximum of the simulated waveform. This formulation is
consistent with Larue et al. (2021), who compute the backscatter coefficient via the echo amplitude following Wingham et al.
(1986), a parameter that is largely governed by the peak power. Furthermore, sensitivity tests conducted within this framework
have confirmed an equivalence between the waveform maximum and the computed amplitude.

A sensitivity analysis can be performed to showcase which roles are the permittivity and the roughness (determined by the
MSS) playing in the simulated backscatter. Figure 3 shows the simulated CS2 backscatter as a function of the axis ratio of
the brine inclusions of the sea ice, ranging from a disc (left), through and sphere, and to a needle (right). The simulation is
run for different roughness parameterizations, with values for the MSS ranging from 1e — 05 to 1 m. SMRT is run with the
GO approximation for both interfaces, as done in Larue et al. (2021). This roughness model is valid for MSS similar or larger
than the wavelength of the sensor, i.e. 2.3 cm for the Ku-band. Figure 3 contains the simulations within a reasonable valid
range at the CS2 frequency. As shown, variations in surface roughness primarily affect the absolute magnitude of the simulated
backscatter, while the spread between the maximum and minimum values changes only marginally.

A notable outcome is that the simulated CS2 backscatter values are negative, whereas the distributed CS2 products typically
exhibit positive values of similar magnitude. This discrepancy arises because the satellite backscatter coefficients are calibrated
using system-specific reference constants that are not available to be included in the simulations (Dinardo, 2016). However,
this absolute offset does not impact the validity of the proposed method. Since the analysis relies on the relative variations
and statistical correlation of the signal rather than on the values accuracy, the simulation results remain robust. Crucially, the
dynamic range of the simulations mirrors that of the observations, ensuring that the distribution of backscatter differences

remains consistent with satellite data.
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Figure 3. CryoSat-2 backscatter simulated with SMRT as a function of the axis ratio of the brine inclusions of the sea ice. The output is
showed for different Mean Square Slope (MSS) values, i.e. for different roughness’. All the other parameters are fixed and constant along

the different simulations. The axis ratio (z/x) correspond to the ratio between the vertical (z) and horizontal (x) axes of the ellipsoid.

Prior to training, the dataset is scaled using a Standard Scaler, which standardizes it by removing the mean and scaling to

unit variance:

.
¥ = O_“, ©)

where z is the original feature value, p is the mean of the feature, and o its standard deviation. This is done to ensure consistency
with Figure 3, which indicates that the relative range of backscatter as a function of the axis ratio is largely preserved for the
different roughness cases, as stated before. Therefore, the scaling is applied to use the backscatter differences across the axis
ratio range, rather than the absolute simulated backscatter values.

In parallel, the permittivity of the sea ice is computed after the Polder-van Santen dielectric mixing model (see Section 3),
using the same axis ratio, temperature and salinity that are used to run the SMRT simulation. The resulting dataset links o°
with the real and imaginary parts of the permittivity, as well as the physical drivers (sea ice temperature and salinity). Figure 4
shows the simulated Ku-band backscatter (already scaled) as a function of the real and imaginary parts of the sea ice L-band
permittivity for the range of temperature and salinity conditions. It is important to remark that this relation is obtained from the
simulations, so its reliability lies in the robustness of the used models. Therefore, it is not claimed that this relation is valid in
any circumstance, and the proposed method relies on the statistical relation, which is further learned by the machine learning

algorithm.

10



265

270

275

https://doi.org/10.5194/egusphere-2026-422
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

'
)
3
3

0
N
=3
>

o o
z °
3 - 264 5:; B -7
g 5 8 z
2, 5 2 £
5 262 5 % 6
g 5 8
8 2602 2 5
[5] [=}
© ©
[2a] o

- 258

-4
- 256
-3
34 36 38 40 42 44 46 48 50 34 36 38 40 42 44 46 48 50
Real part - Permittivity Real part - Permittivity
- 268 9
\
4 4

o - 266 & -8
A ho2
k3 -84 3 -7
® 2 \\ o w 2 -
k3 \ 2 8 =
= ® = =
5 (N 262 5§ & o
® £ ®
80\ 6 0
2 2602 2 5
[5] [*}
© y ©
28] [2a])

!
N
/
$
N N
53 &
3 &
!
)

0.0 0.5 1.0 15 20 25 3.0 0.0 0.5 1.0 15 20 25 3.0
Imaginary part - Permittivity Imaginary part - Permittivity

Figure 4. Simulated Ku-band backscatter (scaled) as a function of the real (upper) and imaginary (lower) parts of the L-band sea ice

permittivity. The colormaps show the temperature (left) and salinity (right) for each simulated estimation.

This generated dataset can then be used to train a Random Forest (RF) regression model, hereafter called RF-eps (as “eps’
makes reference to ¢, used to depict the permittivity of a media). Since RF-eps is based on a decision tree algorithm, it enables
the interpretation of predicted results by analyzing the feature importance: backscatter dominates ( 89%), followed by salinity

(6%) and temperature ( 5%).
4.2 Estimating permittivity using CryoSat-2 backscatter

After the RF-eps algorithm being trained with the dataset generated through SMRT model-based simulations, permittivity
estimations can be done from CS2 data. To do so, biweekly CS2 data (see Section 2.2) is interpolated to the 12.5 km x 12.5
km NSIDC Polar Stereographic grid, which is the one used for the SMOS product. Prior to be used as input for the RF-
eps algorithm, the biweekly CS2 backscatter maps are denoised using a bilateral filter (Tomasi and Manduchi, 1998), which
performs edge-preserving smoothing by combining a spatial kernel with an intensity kernel. In practice, each grid cell is
replaced by a weighted average of its neighbors, where the weights decrease with both geographical distance and backscatter
difference, thus reducing small-scale noise while maintaining sharp spatial gradients in the signal. Figure 5 shows the workflow
of the training and prediction stages for the RF-eps algorithm. In the training step, the temperature, salinity and axis ratio

conditions are taken from the ranges detailed in Section 4.2, and used to simulate the backscatter and the permittivity in
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Figure 5. Diagram summarizing the training and predicting workflows of the RF-eps algorithm.

parallel. It is worth mentioning that, even though the brine inclusion axis ratio is used to simulate both the Ku-band backscatter
with SMRT and the L-band sea ice permittivity with the formulation presented in Section 3, it is not included as a input in the
RF-eps algorithm (dashed line in 5). This is because this variable is normally not known at the satellite scales, and even less
for pan-Arctic applications. When computing the L-band sea ice permittivity estimations, the sea ice temperature and salinity
are obtained from the same sources as for the SMOS-only thin sea ice thickness retrieval (Herndndez-Macia et al. (2024a),

Hernandez-Macia et al. (2025)), and also for the informed retrieval presented in the next Section 4.3.
4.3 Integrating altimetry-derived permittivity into SMOS thin sea ice thickness retrieval

Once the permittivity estimates have been retrieved from the CS2 backscatter observations, this information is used as input
to retrieve the thin SIT from SMOS TB measurements. This second part of the methodology has been described in detail
in previous works, such as Herndndez-Macia et al. (2024a) and Hernandez-Macia et al. (2025). However, in this study it is
slightly modified to include the sea ice permittivity as input. In the original method, the sea ice permittivity was only a function
of the bulk temperature and salinity, using the Vant empirical formulation (Vant et al., 1978). In this improved methodology,
the permittivity is derived from CS2 backscatter observations using the RF-eps algorithm (described in Section 4.2), which
follows the theoretical framework of Shokr (1998). The key advancement lies in accounting for a permittivity that depends not
only on sea-ice temperature and salinity, but also on the ellipsoidal shape of the brine inclusions.

Similarly to what is done to train RF-eps, and due to the lack of in situ data available in the Arctic, a training dataset is

generated through a model-based simulation to train a RF algorithm. Specifically, the Burke formulation (Burke et al., 1979) is
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selected as radiative transfer model. This model relies on a set of simplifying assumptions. Radiation is treated within an energy
conservation framework (i.e., incoherently), with no emission or attenuation considered along the propagation path between
the surface and the sensor. The atmosphere is represented by an isotropic sky brightness temperature of 5 K. Each layer is
assumed to be homogeneous, characterized by constant permittivity, temperature, and salinity, and the interface is treated as
smooth. Under these conditions, the observed brightness temperature results from the superposition of the emission from the
layered medium and the fraction of the sky radiation reflected at the surface. Since the model represents the medium as a
stratified system, four layers are considered in this approach: air — snow — ice — water, with the uppermost (air) and lowermost
(ocean) layers treated as semi-infinite, assuming for the latter typical Arctic conditions of —1.8°C temperature and a salinity
of 33. The overlying snow is assumed to be isothermal with the underlying ice, non-saline, and to have a thickness equal to
10% of the ice thickness, following the formulation of Doronin (1971). Previous work (Maass et al., 2015) has shown that, at
L-band, the satellite-observed brightness temperature is sensitive only to the presence of snow and not to its amount, allowing
the effect of varying snow depth to be neglected.

The reliability of the simulation depends on the accuracy of L-band sea ice emission modeling, which cannot be directly
validated due to the lack of Arctic-wide ground truth. The Burke model has been tested before, combined with not only
the Vant permittivity formulation, but others too, provides a robust representation of snow-covered sea ice emission at L-
band, as has been proved in previous works (Gabarré et al. (2022), Herndndez-Macia et al. (2024a), Herndndez-Macia et al.
(2024b), Hernandez-Macia et al. (2025)). The main uncertainty arises from the permittivity, as brine inclusions play a key role
and no single formulation has been universally accepted, but this is tackled in this work. Ultimately, the training dataset
consists of 199,385,08 pixels extracted from 366 Arctic-wide maps from the model simulations covering two freeze-up
seasons (2019-2020 and 2020-2021). After duplicate removal and random shuffling, the dataset was sub-sampled to balance
computational cost and performance, resulting in 100,000 unique pixels.

Therefore, this methodology is based in the consecution of two ML inversion steps using RF algorithms: RF-eps (described
in Section 4.2), and RF-sit, which is an upgraded version of RF-standard, a previously proposed SMOS-only RF-based method
(Hernandez-Macia et al., 2024a). In this precursor approach, the sea ice complex permittivity was computed only as a function
of its temperature and salinity, following the Vant empirical formulation (Vant et al., 1978). Hereafter, the improved novel
methodology algorithm is called RF-synergy (integrating RF-eps and RF-sit), and the RF-standard is kept in the study as a
baseline. Figure 6 shows the training and predicting workflows of the RF-sit algorithm. The sea ice conditions are extracted
from the same sources as for RF-eps, and are used for both training and predicting. Regarding the permittivity, the training is
done using the formulation described in 4.1, and it is then used as an input of the emission model that is inverted to generate
the modeled sea ice thickness part of the training dataset. Once the RF-sit algorithm has been trained, the same variables as for
RF-standard (Herndndez-Macia et al., 2024a) are used alongside the permittivity estimated using RF-eps.

The feature importance analysis highlights differences between the two models. For RF-standard, SMOS TB dominates
(94%), with smaller contributions from sea ice temperature (4%), salinity (1%), and snow presence (0.4%). In RF-synergy,
which includes the same inputs plus the real and imaginary parts of the complex sea ice permittivity, TB intensity remains the

most important (73%), followed by the imaginary part of the the permittivity (26%), while the real part and the thermodynamic
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Figure 6. Diagram summarizing the training and predicting workflows of the RF-sit algorithm.

variables contribute marginally (summing 1% among all them). The difference in importance between the real and imaginary
parts arises from their distinct variability ranges: the more variable imaginary component (see Figure 4) has a stronger impact
on the predictions. Intuitively, when two samples are close in the real-part space, its limited variability reduces its influence,

and the imaginary part becomes the dominant factor.

5 Results

The proposed RF-synergy method can be validated using available in situ datasets, and also it can be compared with the
AWI/ESA operational product and the previous RF-standard (Herndndez-Macia et al., 2024a) method. Although the CS2 data
is averaged biweekly, given the daily SMOS coverage, the delivered outputs are daily, allowing the comparison with the other
existing SMOS thin SIT products. Figure 7 shows an example of the retrieved SIT from the proposed CS2-SMOS synergy
method, RF-synergy, alongside the AWI/ESA and RF-standards baselines, for a particular day (7th of December 2019). It also
contains the key variables that are involved in the methodology, i.e. the CS2 backscatter and the SMOS TB, the CS2-estimated
permittivity (both real and imaginary parts), and the sea ice temperature and salinity conditions. As shown, both the AWI/ESA
and the RF-standard maps are similar, while the pan-Arctic estimation from the RF-synergy present significant differences

with them. It presents relevant variance in the thinner sea ice area, but also in the thickest area where no sensitivity is expected

14
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Figure 7. Sea ice thickness from the AWI/ESA operational product (upper-left), the RF-standard method (upper-center) and the synergistic
CS2-SMOS approach RF-synergy method (upper-right), alongside the key variables involved in the methodology: CS2 backscatter, estimated
real and imaginary parts of the permittivity, sea ice temperature and salinity, and SMOS brightness temperature. Example from the 7th of
December 2019.

(Kaleschke et al., 2012). Regarding the CS2 backscatter, which is scaled as detailed in Section 4.2, shows interesting patterns
that could be linked to different types of sea ice and thus permittivity variations. The estimated permittivity shows similar
behavior as the CS2 backscatter, and it is correlated also with the salinity and specially the temperature. Finally, SMOS TB
shows a strong correlation with the different sea ice conditions, thickness (retrieved), temperature and salinity, as expected

(Kaleschke et al. (2012), Huntemann et al. (2014)).

Despite the RF-synergy thickness estimations for the particular day that is qualitatively studied are uneven with the other
two algorithms, remain crucial to use the sparse but available in situ data to analyze its potential. For this purpose, data from
the ESA SMOSice campaign (Kaleschke et al., 2016), from the shipborne SIMS, and from the BGEP moorings is used (see
Section 2.5 for furtehr details). Figure 8 shows the estimations from the RF-synergy method alongside the defined baseline

products. The validation results are shown separately for each subgroup, HEM, SEM, and ALS, to ease the visualization of
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campaign measurements (19th to 26th of March 2014).

Table 1. Metrics for each method for the ESA SMOSice campaign data validation.

Metric AWI/ESA  RF-standard RF-synergy

HEM

R? 0.70 0.73 0.62

MAE (m) 0.39 0.36 0.28
SEM

R? 0.10 0.12 0.16

MAE (m) 0.09 0.09 0.24
ALS

R? 0.86 0.87 0.79

MAE (m) 0.36 0.35 0.30
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Figure 9. Sea ice thickness estimated with the RF-synergy method alongside the baseline products as a function of the in situ shipborne

SIMS measurements in spring 2025 in West Greenland.

Metric AWI/ESA  RF-standard RF-synergy
R? 0.36 0.53 0.63
MAE (m) 0.36 0.31 0.26

Table 2. Metrics for each method for the shipborne SIMS data validation.

their performances. Table 1 presents the metrics for each product, the correlation coefficient (R?) and the Mean Absolute Error
(MAE). In general, the SMOS-only methods, AWI/ESA and RF-standard, have a better correlation but also a higher MAE. This
can explain that the RF-synergy seems to be closer to the in situ measurements, thus reducing the error, but also have greater
dispersion, leading to the reduced correlation. It is clear that the SEM data is not reproducible by any method, but the HEM
and ALS measurements are reasonably well matched, specially with RF-synergy. Specifically for the SEM data, the low MAE
mainly reflects the narrow range of the values rather than true predictive skill. In the absence of correlation, the predictions
remain numerically close to the targets simply because of the limited dispersion, which artificially lowers the error metric.

A similar analysis can be done with the shipborne SIMS data that was collected in spring (late March, early April) 2025 in
West Greenland. Figure 9 shows the estimations from the RF-synergy method along with the baseline products as a function

of the SIMS-collected measurements. Table 2 shows the metrics, where in this case not only the correlation is higher for the
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Metric AWI/ESA  RF-standard  RF-synergy

BGEP-A

R? 0.74 0.79 0.66

MAE (m) 0.39 0.36 0.19
BGEP-B

R? 0.66 0.70 0.45

MAE (m) 0.48 0.44 0.21
BGEP-D

R? 0.69 0.72 0.53

MAE (m) 0.39 0.37 0.22

Table 3. Metrics for each method for the BGEP moorings data validation.

RF-synergy, but also the MAE is reduced, compared to the SMOS products. In this case, the CS2-SMOS synergistic approach
delivers closer estimations to the in situ observations, but also with less dispersion than the baseline methods. Even though the

thinner part is covered by all the products, the sensitivity seems to be improved in the thicker part (above 0.6 m) by RF-synergy.

To extend the analysis, the BGEP moorings data can be used to study the sea ice evolution from when it starts growing until
when it reaches around 1 m of thickness. This can allow to understand if the integration of the CS2 data to estimate the sea ice
permittivity can help in measuring the sea ice temporal evolution and periodicity. Figure 10 shows the SIT temporal evolution
estimated by the three methods, versus the BGEP moorings’ in situ measurements. The showcased data corresponds to the
growth period, from when the SMOS products are available (October 15th onward) until when the ice reaches a thickness of
1 m. Exceptionally, 2013’s data is not included because the ice was already too thick (higher than 1 m) at the beginning of the
season. Although all the methods are clearly able to follow the temporal evolution, RF-synergy estimations are closer to the in
situ observations. However, this matching is far from equal between different years and also between the different moorings,
even though they are located in the same area. For instance, 2012 is not reproducible by any method, while for other periods,
like 2019, the CS2-SMOS synergy SIT show better agreement. The differences shown in the lower part of Figure 10 confirm
that RF-synergy estimations result in an improvement when compared to the in situ observations. In general, the difference is
kept below 50 cm, whereas the baseline products are usually over it. Table 3 shows the metrics for each mooring separately.
Similarly to what is observed in Table 3, even though the SMOS only products present a higher correlation coefficient, RF-

synergy has a significantly reduced (almost 50%) error when compared to the in situ observations.

6 Discussion

To assess the reliability of the permittivity estimated from the CS2 backscatter, it is crucial to understand the physical mechanisms

underlying the improvement observed with the RF-synergy method, despite the promising results presented in Section 5. Figure
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(a) Sea ice thickness estimations from the RF-synergy and the baseline products alongside the in

situ BGEP moorings measurements. Each subplot corresponds to each mooring: A, B and D.
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Figure 10. Sea ice thickness estimations and differences from the RF-synergy and the baseline products with the in situ BGEP moorings
measurements. Each subplot corresponds to each mooring: A, B and D. The utilized data is limited to the growth period, until it reached 1

m, for each year between 2010 and 2021, except 2013 where the growth period was too short.

19



385

390

395

400

https://doi.org/10.5194/egusphere-2026-422
Preprint. Discussion started: 4 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

100

Ambiguous

Multi-Year Ice

40

First Year Ice

0SI-403-d: Sea Ice Type
0SI-401-d: Sea Ice Concentration (%)

No Ice/Very Open Ice

Figure 11. Sea ice type (EUMETSAT OSI SAF OSI-403-d) and sea ice concentration (EUMETSAT OSI SAF OSI-401-b) maps. Example
from the 7th of December 2019.

11 shows the sea ice type (EUMETSAT OSI SAF OSI-403-d) and concentration (EUMETSAT OSI SAF OSI-401-d) maps for
the same day as Figure 7. As shown, the patterns observed in the CS2 backscatter and the inconsistencies of the RF-synergy
SIT estimations mostly match with the multi-year ice (MY]) region. In fact, it is worth mentioning that the SMRT simulations
used to train RF-eps and thus RF-synergy, are only considering first-year ice (FYI). This is mainly because the applicability
of the L-band radiometry products is limited to thin ice, which in the freeze-up period (October-April) can be assumed to
be FYI. Furthermore, the modeling of MYI in the SMRT simulations, as well as in the permittivity model, would require
the inclusion of air pockets, in addition to brine inclusions. Therefore, the permittivity estimated with RF-eps can only be
considered valid for FYI. This can also be confirmed for what is shown in Figure 7, where both the real and imaginary parts of
the permittivity seem to be higher in the MY than for FYI, which is not realistic (Vant et al. (1978), Ulaby et al. (2014)). For
these reasons, to ensure the reliability of the proposed synergistic method, and also considering the patterns observed in Figure
7 in the RF-synergy SIT for the M YT area, its applicability has to be limited to FYI. Regarding the sea ice concentration (SIC)
in Figure 11, it presents the expected distribution, with lower concentrations in the marginal ice zone (MIZ), where the ice is
growing. There is no apparent relationship with the SIT obtained by RF-synergy, or at least not stronger than that observed
with the other products. This suggests that the integration of CS2 backscatter is not solely improving the results by correcting
the underestimation associated with the assumption of 100% sea ice concentration in the baseline methods (Tian-Kunze et al.
(2014), Hernandez-Macia et al. (2024a)). When sea ice concentration is below 100%, the observed inconsistency persists,
similarly to what is found in the other approaches.

To further confirm the reliability of RF-synergy, Figures 12 and 13 show scatter plots with the estimated SIT as a function of
the in situ measurements for a set of different key variables as colormaps. The analysis has been performed using the following
variables: the real and imaginary parts of the permittivity, the (scaled) CS2 backscatter, and the sea ice temperature and salinity

conditions. In general, what can be observed is that the thinner ice is related to a higher permittivity (both real and imaginary
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Figure 12. Scatter plots showing the RF-synergy estimations as a function of the ESA SMOSice campaign in situ measurements, with each
subplot having a colormap for each key variable identified: the real and imaginary parts of the sea ice permittivity, the CryoSat-2 backscatter,

and the sea ice temperature and salinity conditions.

21



https://doi.org/10.5194/egusphere-2026-422
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

-3.75

-24 -

i
N
N

-3.70

T B E _E s E "
< < = & = =
@ @ -025 2 9 s 2 =~ 9
] > 8 z3 20= 8 O 3
c B £ c T c < c
= 2 X e X L o <
] 209 E D . T o 25 2
= 365F = s o’ o T s z
= £ F o S = © 0=
0] O @ P} 18! o . 5 @ g
° o o c L g © 8 8 ©
. i & = £ 8
g O £ 8 g g 5 3 53 8
%] Fa >0 2 0 '; (%] s
5 360 B g 3 8% 5 s 3 @*
5] C @ © o o © © O -8
c X c @ c IS 2 g
2 2 £z 2 % [-10P
w w w w w
o 2 015 M o
- 3.55
12 6
-12
- 0.10
- 3.50 10
-4
2
SIMS Sea Ice Thickness (m) SIMS Sea Ice Thickness (m) SIMS Sea Ice Thickness (m) SIMS Sea Ice Thickness (m) SIMS Sea Ice Thickness (m)

Figure 13. Scatter plots showing the RF-synergy estimations as a function of the shipborne SIMS in situ measurements, with each subplot
having a colormap for each key variable identified: the real and imaginary parts of the sea ice permittivity, the CryoSat-2 backscatter, and the

sea ice temperature and salinity conditions.

405 parts). This is realistic as the thinnest ice is the one that is newer and thus is more saline and warmer, and so it has a higher
brine volume and so a higher permittivity (Ulaby et al., 2014). This is observed in Figure 12 and 13, as the thinnest ice is indeed
related to higher values of temperature and salinity. These findings strongly support the reliability of the proposed CS2-SMOS

method, also considering that these links are observed for two independent datasets that differ importantly in time and in space.

410 Regarding the relationship between Ku-band radar altimetry backscatter and L-band sea ice permittivity, the results demonstrate
a statistically robust relationship, as evidenced by the improved retrieval accuracy of RF-synergy. Although an explicit physical
formulation has not yet been derived, the correlation proves effective for the proposed retrieval. A systematic discrepancy exists
between the SMRT model, which yields negative backscatter values, and the operational CS2 products, which typically report
positive values. This difference is attributable to a fixed calibration offset or gain factor applied in the satellite processing chain.

415 However, the dynamic range of the modeled backscatter aligns well with the observations. Since the proposed methodology
relies on relative backscatter variations rather than absolute radiometric calibration, this constant offset effectively cancels out
and does not impact the validity of the results.

The impact of the roughness in the study is bypassed through the usage of backscatter difference instead of the absolute
values. This strategy has been proved to be effective with the accuracy-improved results from RF-synergy. Furthermore, since

420 the CS2 observations integrated in the methodology are interpolated onto the SMOS grid, the roughness variability within

the radiometer footprint can be considered to be averaged out, which is also expected to further reduce the influence of this
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parameter.

Ultimately, to explain the miss-correlation observed in 2012 season in Figure 10, it is important to remark that 2012

425 was marked by the record-breaking sea ice minimum in September 2012, which created a regime of high instability and
exceptionally high sea ice drift velocities. These extreme conditions can affect the ancillary data from reanalysis, i.e. the
ocean and sea ice variables used to compute the ice salinity (Section 2.4), leading to biased thickness values. As detailed

by Rheinl@nder et al. (2022), the ice pack was preconditioned to be thinner and mechanically weaker than usual, making it

susceptible to wind-driven fracturing, thus a state that the reanalysis model can struggle to represent.

430 7 Conclusions

This study has presented a novel synergistic methodology integrating Ku-band radar altimetry backscatter from CryoSat-2
into the SMOS L-band radiometry thin sea ice thickness retrieval algorithm. By addressing the uncertainty regarding sea ice
permittivity, the major source of uncertainty in L-band SIT retrievals, the new proposed approach aims to enhance the accuracy
of thickness estimates in the Arctic. The permittivity modeling adopted has allowed to simulate this variable under a wide range
435 of different conditions, and to relate it with the Ku-band backscatter using the SMRT model, resulting in a realistic training
dataset. The proposed workflow utilizes a two-stage hybrid inversion scheme. First, the RF-eps algorithm utilizes CryoSat-
2 backscatter to estimate the complex sea ice permittivity. Subsequently, the RF-sit algorithm integrates these permittivity
estimates within the SMOS SIT retrieval algorithm to retrieve sea ice thickness, resulting in the combined RF-synergy.
The performance of the synergistic method has been evaluated against independent in situ datasets and compared to SMOS-
440 only baselines (AWI/ESA and RF-standard). This validation demonstrated that the RF-synergy method generally yields lower
error compared those SMOS-only approaches. Notably, in comparisons with BGEP moorings, the synergistic approach significantly
reduced the error, by nearly 50% in some cases, compared to baseline products. Furthermore, the method produced physically
consistent results, where thinner ice was associated with higher permittivity values, reflecting the warmer and more saline
nature of newly formed ice. Despite these improvements, the analysis of sea ice type maps indicated that the validity of
445 the current method is limited to FYT areas. The training simulations did not account for air pockets characteristic of MYI,
leading to unrealistic sea ice permittivity and thickness estimates in those regions. Regarding the theoretical framework,
the statistical link between Ku-band backscatter and L-band permittivity derived from SMRT simulations is validated by
the improved retrieval performance. Furthermore, the influence of the roughness in the radar altimeter backscatter has been
effectively diminished with the CS2 data treatment, i.e. the scaling and the re-projection into to lower-resolution radiometer
450 grid. Ultimately, although an explicit physical formulation is yet to be established and a sign discrepancy exists between
modeled and observed backscatter, the consistency in absolute magnitudes and the method’s reliance on normalized variations
ensure the robustness of the approach.
Overall, this study highlights the potential of cross-sensor synergies to advance thin sea ice monitoring. By effectively

combining active Ku-band and passive L-band microwave observations, this method improves the current operational products
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455 and offers a robust framework for present and future satellite missions. Beyond the specific configuration of CryoSat-2 and
SMOS, this synergistic strategy establishes a paradigm applicable to other frequencies and sensor combinations, paving the
way for upcoming missions such as CIMR, CRISTAL or ROSE-L. Crucially, this work demonstrates that establishing synergy
at a fundamental level, by utilizing active sensor observations to constrain the physical parameters driving the passive retrieval,
rather than merely merging independent thickness products, presents a high-potential pathway for the next generation of polar

460 observing systems.
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