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Abstract. The possibility of influencing extreme weather phenomena has been discussed for decades; however, it remains far
from operational practice, and there is still no established framework for designing small, spatially localized perturbations that
can reliably steer chaotic geophysical flows. In this study, we propose a hybrid control method, termed ensemble-Kalman-
guided model predictive path integral control (EKG-MPPI), which combines ensemble Kalman control (EnKC) with model
predictive path integral (MPPI) control. Within a control simulation experiment framework, an ensemble Kalman filter is
first used for state estimation, after which EnKC computes a candidate perturbation by treating the control objective as a
pseudo-observation. An adaptive thresholding procedure then enforces spatial sparsity, so that the EnKC perturbation identifies
candidate actuator locations and their nominal amplitudes. This information is embedded into the mean and covariance of
Gaussian proposal distributions for MPPI, which subsequently refines the perturbation through sampling-based optimization
with nonlinear rollouts, without linearizing the dynamics or computing gradients. Numerical experiments with the Lorenz—96
model and the surface quasi-geostrophic (SQG) model demonstrate that EKG-MPPI can suppress extremes in state variables
and regional wind speed more effectively than EnKC alone, while using comparable or smaller control inputs. These results
highlight EKG-MPPI as a promising building block for simulation-based assessment of localized intervention strategies in

geophysical flows.

1 Introduction

The idea of deliberately influencing extreme weather phenomena, such as tropical cyclones (TCs), has been discussed for
decades. However, it remains far from operational practice and there is still no established framework for designing small,
spatially localized interventions with predictable effects. For example, Project STORMFURY attempted to weaken maximum
wind speeds by artificially inducing convection around the TC eyewall, but its lack of effectiveness was reported by Willoughby
et al. (1985). More recently, several studies have explored potential intervention mechanisms primarily in numerical modeling
settings: based on simulations by Zhang et al. (2006), Cotton et al. (2007) discussed the possibility that mineral dust injection
could suppress TC development, and Saharan dust has been shown to exert a strong influence on TCs. Furthermore, Latham

et al. (2012) investigated TC weakening via sea-surface-temperature reduction, and Jacobson and Kempton (2014) demon-
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strated in simulations that arrays of offshore wind turbines can suppress near-surface wind speeds. A comprehensive review of
these proposed approaches, together with feasibility and governance considerations, is provided by Miller et al. (2023). While
these studies identify candidate actuators such as aerosols, mineral dust, and wind turbines, achieving concrete objectives (e.g.,
a substantial reduction in maximum wind speed) requires more than selecting an actuator type. It also calls for a mathematical
framework that systematically optimizes where, when, and how strongly perturbations should be applied. This need is par-
ticularly acute because realistic anthropogenic influences are inherently local, weak, and intermittent. Therefore, it is crucial
to devise methods that can efficiently identify “small perturbations” that can nevertheless meaningfully steer the evolution of
chaotic geophysical flows, at least in simulation-based assessment settings.

An early step in this direction was taken by Henderson, who applied four-dimensional variational data assimilation (4D-
Var), widely used in numerical weather prediction, to derive optimal initial perturbations for mitigating damage from tropical
cyclones. This approach assumes that perturbations are applied only at the initial time. In contrast, Sun et al. (2023) proposed a
framework in which small perturbations are applied continuously and adaptively. This concept, referred to as control simulation
experiments (CSEs), has subsequently been employed and extended in later studies, including Kawasaki and Kotsuki (2024)
and Ouyang et al. (2023), and has emerged as a practical approach for systematically evaluating the feasibility and potential
side effects of candidate intervention strategies.

More recently, Sawada (2024a) introduced ensemble Kalman control (EnKC), which leverages the EnKF/EnKS framework
to compute control increments by assimilating the control objective as a pseudo—observation, and demonstrated its effectiveness
in numerical experiments with the Lorenz—63 model. Building on this, Sawada (2024b) proposed a strategy to reduce the
magnitude of EnKC control inputs and to enforce spatial sparsity, with demonstrations in the Lorenz—96 model. While these
studies Sawada (2024a, b) indicate that EnKC can identify effective perturbations, its computation relies on an approximate
linearization of the dynamics over the prediction horizon, motivating strategies that can more fully exploit nonlinear dynamics.

To address the linearization limitation of EnKC while retaining a derivative-free formulation, we combine EnKC with model
predictive path integral (MPPI) control. Like EnKC, MPPI is derivative-free; however, it evaluates candidate perturbations
through nonlinear forward rollouts rather than linearized dynamics. At the same time, MPPI can be sample-inefficient when
informative prior knowledge about the control distribution is unavailable, particularly in high-dimensional control spaces Power
and Berenson (2022). We therefore introduce EnKC-guided MPPI (EKG-MPPI), which uses the sparse perturbations obtained
from EnKC to construct an informative sampling distribution for MPPL. In this way, EnKC provides ensemble-based candidate
perturbations that encode where control is likely to be effective and their nominal magnitude, while MPPI refines them via
sampling-based optimization under the full nonlinear model without computing gradients. We demonstrate the effectiveness
of the proposed method through numerical experiments with the Lorenz—96 model and the surface quasi-geostrophic (SQG)
model.

This paper makes three contributions: (i) we propose EKG-MPPI, a hybrid framework that couples EnKC-based sparse ac-
tuation proposals with MPPI-based nonlinear refinement; (ii) we provide an explicit algorithmic formulation of EKG-MPPI,

including a practical procedure for embedding EnKC-derived actuator locations and amplitudes into Gaussian sampling dis-
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tributions for MPPI; and (iii) through numerical experiments with the Lorenz—96 and SQG models, we show that EKG-MPPI

suppresses target extremes more strongly than EnKC (and uninformed MPPI) while using comparable or smaller control inputs.

2 Preliminary Knowledge

This section reviews the Ensemble Kalman filter/control and Model Predictive Path Integral control.
2.1 Ensemble Kalman Filter (EnKF)

Let us first review the EnKF. Consider a discrete-time state—space system

Xy =M(X¢—1) +qi—1, (D
yi =H(x;) +ry, (2
where x; denotes the state vector, M the forecast model, q; the model error or the system noise, y{ the observation vector, H

the observation operator, and r; the observation error or the measurement noise. At an assimilation time ¢, the EnKF updates

the model forecast by approximately minimizing the quadratic cost function
J(xe) = 5(xe = %) TPy (xe = %)) + 5 (v7 — H(x)) "R™H (yf — H(xt)), 3)

where ii’ and P, are the ensemble mean and background error covariance, and R is the observation error covariance matrix.

The analysis ensemble {x; @ } V| is obtained by applying the EnKF update

x?(i) _ X{(i) + K(yf(i) _ H(xf(i))), 4)
K=P,H (HP,H' +R) ', .

where x{ @) and x; ) denote the ith forecast and analysis ensemble members, respectively, and H denotes the matrix represen-
tation of the (possibly linearized) observation operator H. In practice, the products P,H™ and HP,H " are computed using
ensemble statistics, so that the full covariance matrix P need not be formed explicitly. This ensemble representation enables
the EnKF to handle high-dimensional systems efficiently. To mitigate sampling errors arising from the use of a finite ensemble,

covariance localization is commonly employed. The localized Kalman gain is written as

K =poP,H' (po(HP,H)+R) ", (6)
where o denotes the Schur (element-wise) product and

p = exp|—d(i,j)/L] ™)

is a smooth correlation function defined in terms of the distance d(i, ;) between grid points and a localization length scale
L. This localization suppresses spurious long-range correlations, thereby improving the stability and accuracy of the EnKF

updates.
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Closely related to the EnKF is the ensemble Kalman smoother (EnKS), which extends the filter in time by estimating the
state over an assimilation window using both past and future observations. Operationally, the EnKS can be implemented by
propagating an ensemble forward with EnKF updates at each observation time and then applying a backward smoothing step
that uses ensemble-based cross-covariances between states at different times and the observations. Readers interested in further

details of the EnKF/EnKS family are referred to Houtekamer and Zhang (2016) for a comprehensive review.
2.2 Ensemble Kalman Control (EnKC)

EnKC builds directly on the EnKF and EnKS framework to formulate and solve an optimal control problem for various state-
space (dynamical) systems. After the EnKF analysis at time ¢, let {x?(i)}fvzl denote the analysis ensemble, with mean x{ and

error covariance P . Over a prediction horizon Txr,kc, EnKC considers the quadratic cost function

1
Jo(x¢) = 5 (x¢ — X?)TPgl (xe —%f) + 3 (Tt Tomie — HC(Xt+TEnKC))TRC_1 (*i4 Tonxe — He(Xt4 Touxe)) 3)

DN =

subject to the model dynamics
Xpp1 = M(xg), k=t,...,t+Tgaxc — 1. 9

Here, riy 7, 18 a prescribed reference (target) vector at time ¢ + Tgnkc, H. maps the state variables to the control criteria
(e.g., a regional average or maximum of a physical quantity), and R, is a user-defined weight (pseudo—observation error
covariance). The first term penalizes the size of the perturbation to the initial analysis state, while the second term penalizes the
mismatch between the predicted future state and the control objective. Assuming that the dynamics over the prediction horizon
are approximately linear, the minimizer of J. can be obtained by applying an EnKS. In this formulation, the reference vector

T4 Tpoxo 15 assimilated as a “pseudo—observation” with error covariance R.. The resulting EnKS analysis at time ¢,
Xi =X + K (T4 Toace — He(X4roue)): (10)

yields the optimal perturbation x§ —X{ to be applied to the system. The Kalman gain K is computed from the cross—covariance
between the analysis ensemble at time ¢ and the ensemble prediction at ¢ + TE,kc, and from the covariance of the projected
prediction, in direct analogy with standard EnKF/EnKS formulations.

The EnKC algorithm can be summarized as follows:
1. Apply EnKF with real observations to obtain the analysis ensemble at time .

2. From the analysis ensemble, perform ensemble forecasting up to ¢t + Tgn,kc and project the predicted states onto the

control criteria via H..
3. Run EnKS, assimilating ry; 7, . as a pseudo—observation with error covariance R, and obtain the perturbation x; —X¢.

4. Add this perturbation to the real system and to all analysis ensemble members, thereby updating the controlled “nature”

and its ensemble representation.
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5. Propagate the updated ensemble to the next data assimilation time. The resulting forecast serves as the new background

for the next EnKF cycle, thus completing the loop and returning to Step 1.

In this way, EnKC integrates ensemble data assimilation and model predictive control by treating the control objective as
a pseudo—observation within an EnKS framework, and by interpreting the resulting analysis increment as the optimal small
perturbation to steer the system toward the desired future state. The control perturbation estimated by EnKC (Sawada (2024b)),
x{ — X¢, has the same dimension as the full model state. In practical applications such as weather modification, however, it is
unrealistic to apply perturbations to all state variables at every control step. It is therefore desirable to enforce spatial sparsity
so that only a limited number of grid points (or regions) are actively perturbed, which naturally aligns with the interpretation
of actuators placed at specific locations. Ideally, such sparsity can be promoted by augmenting the EnKC cost function with an
{y-norm penalty:

1 Sa — Sa 1 — T
Je(xt) = Q(Xt—xt ) P, (% — X )+§( 1 Tomce — He(Xt4 o)) T R (Pt Tone — He(Xet Tonee )+ As [Ixe — %7 [lo, (11)

where | - ||o counts the number of nonzero elements (i.e., £o-norm) and Ay controls the strength of the sparsity constraint.
However, direct minimization of this objective is computationally demanding for high-dimensional systems, so an empirical
yet effective strategy is adopted.

Following the idea of Schneider et al. (2022), we impose sparsity on the EnKC-estimated perturbation by applying a thresh-
olding operator to its components. Specifically, after computing the standard EnKC update, we apply a thresholding operator
T'(0) to each entry of x§ —x¥ so that small-magnitude components are discarded as noise and only sufficiently large perturba-
tions are retained:

0, if 0] < V2N,
=" "< (12)

0, otherwise.

While Schneider et al. (2022) treated +/2)\s as a fixed hyperparameter, the present study adopts an adaptive formulation in
which the threshold depends on the amplitude of the EnKC-derived perturbation at each control step. More precisely, the

threshold parameter is updated as
V2As = A max |xj — X7|. (13)

where A is a user-specified coefficient that controls the enforced sparsity. This adaptive thresholding allows the sparsity level
to automatically adjust to the magnitude of the EnKC-derived perturbations, thereby concentrating actuator effort on only the
most influential grid points. In particular, choosing A =1 retains only the grid point with the largest perturbation, which is

consistent with the actuator-placement interpretation in which localized increments indicate candidate actuator locations.
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2.3 Model Predictive Path Integral Control (MPPI)

We next summarize the MPPI control framework. MPPI is a sample-based model predictive control (MPC) method grounded

in probabilistic inference (Williams et al. (2018)). MPPI considers the following nonlinear dynamical system:

Xt4+1 :M(Xt,ut). (14)
145  Ateach time step, MPPI optimizes an open-loop control sequence over a finite horizon of length T'. Let U = (ug, uy,...,ur_1)
denote the mean control sequence. MPPI introduces stochastic exploration by sampling control sequences V = (v, v1,...,Vr_1)

from a Gaussian distribution centered at U:

T—1
q(V]U%) = [[N-iu,, D), (15)

7=0

where ¥ € R™«*™ is a user-specified positive definite covariance matrix. Equivalently, one may write v, = u, + €, with
150 €, ~N(0,X). Given a sampled control sequence V, the system is rolled out according to x, 1 = M (x,,v,) (starting from

the current state), and we define the total trajectory cost functional as

T-1

S(V)=®(x1)+ Y L(Xr,v7). (16)

7=0

Under this setup, the stochastic optimal control problem at each time step is
U* = in Ey . V). 17
arg mitt Evq(viu,s) [S(V)] (17)

155 MPPI can be derived via a variational free-energy bound. Let p(V') denote a base (prior) distribution over control sequences

(typically chosen as a Gaussian), and define the free energy

S(V)

F=—-MXlogEv.p {exp ()\ﬂ . (18)

Then, for any distribution ('V'), the following inequality holds:
F <Ev.[S(V)]+ ADxw(r||p), 19)
160 where Dy, is the Kullback-Leibler divergence. The minimizer of the right-hand side of (19) is the optimal distribution

RN | S(V)
(V)= HGXP ()\> p(V), (20)

and substituting (V) = ¢*(V) into (19) yields equality (see Williams et al. (2018) for details). In practice, MPPI restricts

r(V) to a Gaussian family with fixed covariance ¥ and optimizes only the mean U. This corresponds to the KL projection

T:T:arg[r}leilbl{DKL(q*Hq(V | U,%)), 21
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whose minimizer satisfies, for fixed X2,
U =Ey.,[V]. (22)

Since direct sampling from ¢* is intractable, we estimate (22) by Monte Carlo sampling with importance weights. When

samples { V. }/_, are drawn from the base distribution p(V), (22) can be written as a normalized weighted average:
K

Ur > o(Vi) Vi, (23)
k=1

with log-weights and normalized weights

1
w(Vi) :_XS(Vk)7 (24)

exp(W(Vi))
S exp(w(V)))

(If samples are drawn from a proposal distribution g(V) # p(V), the weights are modified by the standard importance-

(Vi) = (25)

sampling factor p(V)/g(V).)

Typically, only the first element of the optimized control sequence U is applied as the control input at each time step,
after which the horizon is shifted forward and the procedure is repeated. As can be seen from (23)—(25), the weights for all
samples can be computed in parallel, allowing efficient implementation on GPUs. Moreover, MPPI does not require gradient

information of the dynamics or cost function and can be implemented using only forward simulations of the model.

3 EKG-MPPI: Proposed hybrid control method
3.1 Overall framework

EnKC provides a principled framework for determining small yet effective perturbations at each control step. However, EnKC
computes the control increment by (approximately) linearizing the system dynamics over a finite prediction horizon, and its
performance may therefore deteriorate when the dynamics are strongly nonlinear. To overcome this limitation, we propose a
hybrid control scheme, termed EnKC-guided MPPI (EKG-MPPI), which combines EnKC with MPPI. In contrast to EnKC,
MPPI evaluates candidate perturbations via nonlinear forward rollouts and thus can handle nonlinear dynamics without lin-
earization. Nevertheless, as pointed out by Power and Berenson (2022), MPPI may suffer from poor sampling efficiency when
applied without informative prior knowledge of the control distribution. This issue is particularly severe in high-dimensional
geophysical systems, where the control space is large and naive sampling may fail to discover effective perturbations under a
realistic computational budget.

EKG-MPPI addresses this issue by using the EnKC perturbation as prior information for MPPI. Intuitively, EnKC provides
a sparse and physically informed guess of (i) where the system is most sensitive and (ii) how strongly it should be perturbed.

We embed this information into the mean and variance (or covariance) of Gaussian sampling distributions, from which MPPI



195

200

205

https://doi.org/10.5194/egusphere-2026-419
Preprint. Discussion started: 3 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

]
MPPI u” | Nature y°
(Step3,4) run

Estimation part: EnKF
)

........... -

.
Forecast | ¥=/}Y,
model

{xa(i)}f\rzl

EnKF
(Step1)

[t ettt s

Figure 1. Block diagram of the proposed EKG-MPPI.

draws candidate actuator locations and magnitudes. MPPI then refines the perturbation through sampling-based optimization
based on nonlinear rollouts, without any linearization or gradient computation.

The proposed EKG-MPPI scheme is implemented within the CSE framework, and the overall workflow is summarized in
Fig. 1. At each data-assimilation time, we first apply the EnKF to assimilate observations and estimate the current state (Step 1).
We then run EnKC using the analysis ensemble to obtain a sparse perturbation (Step 2). This perturbation is interpreted as a
candidate actuator configuration and mapped to the parameters of Gaussian sampling distributions for actuator location and
control magnitude. MPPI samples multiple candidate control inputs from these distributions, evaluates their performance over
a prediction horizon, and computes a weighted average to obtain the final control input (Steps 3—4). In the CSE framework, the
model trajectory obtained by integrating the forecast model without any control perturbation is referred to as the nature run,
which serves as a proxy for the true atmosphere. The computed control is applied both to the nature run and to the analysis

ensemble, after which the forecast—assimilation—control loop continues to the next time step.
3.2 Algorithmic steps (Step 1-5)

In this subsection we describe the EKG-MPPI procedure at a single control time ¢. We denote the ensemble size by N and the

current analysis ensemble by {x?(i)}fil.
Step 1: EnKF state estimation

As in standard CSE studies, accurate estimation of the system state is a prerequisite for effective control. At each assimilation

time ¢, we apply the EnKF to assimilate the available observations y; and update the forecast ensemble. The EnKF update is
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given in Sect. 2.1 and yields the analysis ensemble {x?(i)}fil. We then compute the analysis ensemble mean

| N
=a _ a(i)
= Z z (26)
i=1
which serves as the current state estimate used to initialize the subsequent control computation.
Step 2: EnKC-based control perturbation

In the second step, we apply EnKC (Sect. 2.2) to compute a control perturbation that will serve as prior information for MPPI.
EnKC minimizes the quadratic cost function in (8) via an EnKS, interpreting the control objective as a pseudo—observation. The
resulting control perturbation zf — Z¢ is then sparsified by the adaptive thresholding procedure described in Sect. 2.2. Among
the information contained in the sparsified control vector, the key components for localized intervention are (i) the indices of its
nonzero entries, which indicate candidate actuator locations, and (ii) the corresponding magnitudes, which represent nominal
control amplitudes at those locations. To simplify the presentation, we set A = 1 in (13), so that only the grid point with the
largest perturbation remains nonzero. The resulting sparse control vector is denoted by uF"X€, and encodes both the actuator

location and its nominal control magnitude to be exploited by MPPI.

Step 3: EnKC-informed sampling of actuator location and magnitude

The third step embeds the information contained in u"¥€ into the sampling distributions from which MPPI draws candidate

control inputs. In this study, we parameterize each candidate actuator configuration by its location and magnitude. Let fi1oc
and X, ¢ denote the mean and variance (scalar in the single-actuator case) that determine the sampling distribution of actuator

locations, and let fiyag,; and Xp,,e ; denote the corresponding quantities for the control magnitude. We define

2SEnKC) EnKC) ,

Hloc,t = floc (U 3 2loc,t = Jloc (ut

Hmag,t = fmag (UEHKC) ) Emag,t = Gmag (UEHKC) ) (27)

where fioc, Jlocs fmag, and gmag are embedding functions that map the EnKC output to the parameters of the MPPI sampling

distributions. Using the parameters in (27), we draw Kyrpp1 samples of actuator locations and magnitudes,
lt,i ~ g(l ‘ ,Uloc,tazloc,t)a meq ~ g(m | ,Umag,tazmag,t)a 1= 1727 cee 7KMPP17 (28)

where G(- | 1, %) denotes a Gaussian distribution. Because actuator locations correspond to discrete grid indices, we round /; ;
to the nearest integer and clip it to the valid index range; with a slight abuse of notation, we denote the resulting index again

by I, ;. Each pair (I; ;,m, ;) specifies one candidate actuator configuration for MPPL
Step 4: MPPI rollout and importance weighting

In the fourth step, we evaluate the sampled actuator configurations via MPPI rollouts and compute their importance weights.

Let z; = Z{¢ denote the current state estimate (i.e., the state from which MPPI rolls out). Let n,, denote the dimension of the
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control input, and let e, € R™ be the ¢-th standard basis vector. For each sample (;;,m;;), we construct a sparse control

vector

Up; =My g€, ;- (29)

Starting from x% = x4, we propagate the system over the MPPI prediction horizon Typpr as

= M6 ). o
$E2+1:M($§9—;0)7 T=12,... ., Tvppr1 — 1, o

where 0 denotes the zero control input. That is, the perturbation is applied only at the first rollout step, and no further input
is provided during the remaining rollout. This reflects the single-step actuation setting used in our CSEs and also reduces the
effective dimension of the control space, thereby improving sampling efficiency.

Let S(uy;,z¢, M) be a state-dependent cost functional that quantifies the performance of the i-th control sample. In our
implementation, the EnKC-informed Gaussian distribution in Step 3 is used as the base distribution of MPPI, and therefore no

importance-sampling correction term is required. The (unnormalized) log-weight is computed as

1

w(ut,i) = _X S(ut,ivth)v (32)
where ) is the temperature parameter in MPPI. The normalized weight is then computed as
_ exp(w(ug,;)
Wi = 70— ( ) : (33)

Z exp(w(utvk))

k=1
Finally, we first compute the weighted-average control vector

Kwvpp1
Uy = Z Wy, i Ut i (34)
i=1

and then project it to a single-actuator (1-sparse) control by keeping only the largest-magnitude component:
Iy = argmeax|ﬂt(€)|, (35)
uy = (1}) ey (36)

Step 5: Feedback

In the final step, the optimal control u; computed in (36) is applied both to the nature run and to each member of the analysis
ensemble, i.e.

220 28Dy i=1,2,...,N. (37)
The updated ensemble is then advanced by the forecast model until the next assimilation time, at which point the procedure

returns to Step 1.

10
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Algorithm 1 EKG-MPPI algorithm

Require: initial analysis ensemble {xg(i) }f-vzl; localization scale L; observation-error covariance matrix R ; forecast model M ; observation
operator H; control-weight matrix R.; EnKC prediction horizon T&nkc; MPPI prediction horizon Tippr; sparsity coefficient A; state-
cost functional .S; embedding functions fioc, gloc, fmag, gmag; number of MPPI samples Knppr; temperature parameter A; total number
of assimilation steps Tgim.

I: fort=1,2,...,Tsm do

2 Obtain observation y§.

3 {x¢OYY, — EnKF({x;)},,y?, LR, M, H).

4 Compute the analysis ensemble mean X§' «— % Zfil ' @,

5: uPC  EnKC({x{"}X,, Teake, A, Re, M, H.).

6:  Compute UUioc,t, Lloc,ts fmag,ts Smag,t according to (27).

7 for:=1,2,..., Knppr do

8 Sample I ; ~ G(I | pioc,t, Zloc,t)s Miti ~ G(M | fimag,t; Smag,t)-

9 Construct a sparse control vector u¢,; «<— ms,; ey, ;, where e¢ denotes the £-th standard basis vector.

10: Evaluate the cost S(u¢,;, Z¢, M) and compute the (unnormalized) log-weight w(ue,; ) using (32).

11:  end for

12:  Normalize the weights w; ; using (33).

13:  Compute the weighted-average control vector i «— ZQ‘FPI Wi i Ut,j-

14:  Select the actuator location If «— argmaxg | (£)].

15:  Set the single-actuator control uj « @ (If) ;.

16:  Apply u to the nature run and update each analysis ensemble member via z; @ xy @ 4 ug, t=1,...,N.

17:  Advance the forecast model M to the next assimilation time.

18: end for

3.3 Pseudocode of EKG-MPPI

The EKG-MPPI procedure described above can be summarized by Algorithm 1, where EnKF (line 3) denotes the ensemble
Kalman filter used for state estimation and EnKC (line 5) denotes the ensemble Kalman control scheme that computes sparse
optimal perturbations as described in Sect. 2.2.

4 Numerical Experiments

The effectiveness of EKG-MPPI is demonstrated through numerical experiments using the Lorenz—96 model and the SQG

model.

11
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4.1 Lorenz-96 model

Following the methodology of Sun et al. (2023); Sawada (2024b), we conduct a control simulation experiment (CSE) aimed at
mitigating extreme values in the Lorenz—96 system (Lorenz (1995)). The Lorenz—96 system is governed by

%:(XkH—Xk,g)Xk,l—Xk—i—F, ke{l,2,...,K}, (38)
where K =40 in this study, and the external forcing parameter is set to ' = 8.0. Cyclic boundary conditions are imposed
such that the indices are taken modulo K, i.e. Xy x = Xj. Equation (38) is numerically integrated using the fourth-order
Runge—Kutta method with a time step of At = 0.05.

Observations are available only at grid points with even indices (20 state variables) and are generated by adding Gaussian
white noise with mean 0 and variance 1.0 to the nature run. The observation interval is set to 0.05, i.e., observations are
taken at every model time step. The ensemble size is N = 40, and the observation-error covariance matrix is R = I with unit
variance. The EnKF is applied at each observation time with a localization length of L = 2.0 (see (7)). The control objective is
to suppress extremely large positive anomalies in the system. At each EnKF analysis time ¢, an additional forecast is integrated
over a prediction horizon of T, = 0.2, corresponding to four model time steps. EnKC is activated only when the ensemble-
mean forecast at ¢+ 7 indicates X, > 12 at one or more grid points. Following Sun et al. (2023); Sawada (2024b), we interpret
T. = 0.2 time units (four model steps) as a short lead time and use X, = 12 as a high-percentile threshold for extremes in the
Lorenz—96 system. Since the control goal is to prevent further growth beyond this threshold, the target pseudo-observation is
set to 7¢7, = 12. In the EnKC procedure, this pseudo-observation is assimilated using the EnKS, but only at grid points where
Xy > 12. The diagonal entries of the control-weight matrix R, are set to 10~*. The sparse control perturbation computed
by EnKC, denoted by u’"X€ is then used to construct the MPPI prior in EKG-MPPI. The embedding functions in (27) are

specified as

EnK EnK EnK
Sloc (ut " c) = argnz(ut n c) , Jloc (ut n C) =5.0,
[[uBnEe]| (39)
EnKC EnKC EnKC EnKC t 1
fmag(utn ):“tn (flcw(utn )), gmag(utn ): 5 )
where argnz(-) returns the index of the nonzero entry of its argument. For the initial solution of MPPI, we adopt the pertur-
bations obtained by EnKC, as represented by fioc and fi,ag. The variance of the Gaussian distribution used for sampling is
adaptively adjusted according to gp,,e. Furthermore, control samples whose magnitude exceeds the maximum absolute com-
ponent of u""KC are rejected, ensuring that the applied control remains sufficiently small. For MPPI, the prediction horizon is

set to Typpr = D, and the running state-cost function is defined as
S(zy) = [[max(ze — 12, 0) | , (40)

which penalizes the state only when it exceeds the threshold value of 12. We perform numerical simulations over 160,600 model
time steps. During the first 14,600 time steps, neither EnKC nor EKG-MPPI is applied; only EnKF is used to synchronize the

estimated state with the uncontrolled nature run (spin-up period). Control is activated for the remaining 146,000 time steps,
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during which EnKF, EnKC, and EKG-MPPI are all executed. All diagnostics reported below are computed over this controlled

period.
4.1.1 Simulation Results

To demonstrate the effectiveness of the proposed method, we compare four cases—no control (uncontrolled), EnKC, vanilla
MPPI, and EKG-MPPI—in terms of the state distribution during the simulation and the control effort required to suppress
extremes. For EKG-MPPI, we set the temperature parameter to A = 0.1 and the number of control-input samples to Kyppr =
40. For vanilla MPPI, we set A = 0.7 and Ky;pp1; = 40; the perturbation magnitude is sampled from a Gaussian distribution
N(0,0.5), and the perturbation location is sampled from A (0,20.0).

The simulation results are summarized in Figure 2 and Table 1. Figure 2a shows that the percentile curves over the full range
remain close to the uncontrolled case for all controllers, indicating that the interventions primarily affect the upper tail while
leaving the bulk distribution nearly unchanged in this experiment. The effect of control is concentrated in the far upper tail
(Figure 2b), where all controllers reduce the most extreme values relative to the uncontrolled run.

Table 1 quantifies extreme-event suppression and control effort. EKG-MPPI reduces the number of exceedances at X > 12.5
and X > 13.0 compared with both EnKC (3293 — 3215 and 1308 — 1176) and vanilla MPPI (3528 — 3215 and 1284 —
1176). At the same time, EKG-MPPI achieves these reductions with smaller control inputs: the maximum input decreases from
1.311 (EnKC) and 1.780 (MPPI) to 1.037, and the mean input decreases from 1.638 x 10~* (EnKC) and 1.547 x 10~* (MPPI)
to 1.187 x 10~%. Here the mean input is computed as a time- and grid-averaged absolute input (including time steps with no
control where u; , = 0). We attribute the improvement over EnKC to the nonlinear evaluation in the MPPI refinement stage,
and the improvement over vanilla MPPI to the EnKC-informed proposal distribution, which concentrates samples on effective

actuator locations and magnitudes under a fixed sampling budget.

Table 1. Comparison of EKG-MPPI, EnKC, and MPPI in the Lorenz—96 control simulation experiment. Columns 2-3 quantify the control
effort: Max Input = max,k [u¢ x| and Mean Input = - S ST ue,k| (time- and grid-averaged absolute input, including time steps
with no control where u¢ ;. = 0). Columns 4-5 report extreme-event counts, defined as #{ (¢, k) : Xy, > 6} for thresholds 6 € {12.5, 13.0},

where #{-} denotes set cardinality.

Approach Max Input Mean Input X>125 X >13.0

EKG-MPPI 1.037 1.187 x 107% 3215 1176
EnKC 1.311 1.638 x 1074 3293 1308
MPPI 1.780 1.547 x 1074 3528 1284

Next, we investigate how changes in the hyperparameters of EKG-MPPI affect control performance. The temperature pa-
rameter A is varied over {10,1,0.1,0.01,0.001}, and the number of samples is varied over {5,10,20,40,80}. For each config-
uration, we record the number of threshold exceedances, the average magnitude of the applied control input, and the number
of control applications. The results are shown in Figure 3. As shown in Figure 3, decreasing A generally increases the av-

erage control magnitude while decreasing the control frequency. In MPPI, A controls how strongly the importance weights
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Figure 2. The percentile of state variables of the Lorenz 96 system in the control simulation experiments. While (a) shows the whole

percentile ranges from 0 to 100, (b) shows the zoom-in of the range from 99.9 percentile to the maximum.

concentrate on low-cost samples: smaller A\ yields more peaked weights and thus drives the update toward more aggressive
perturbations found in the sampled rollouts. In our EKG-MPPI setting, the proposal distribution is EnKC-informed (with mean
and variance depending on u*XC), 50 a smaller \ corresponds to a stronger deviation from this EnKC-guided proposal toward
the best-performing samples. When A is very small (e.g., 0.01 or 0.001), increasing the sample size tends to further increase
the average control magnitude and reduce the control frequency. A likely explanation is that, with more samples, the algorithm
more often discovers rare, highly effective perturbations; when A is small, the update places disproportionately large weight
on these samples, amplifying the resulting control magnitude. Consistently, Figure 3 also shows that larger sample sizes and
smaller A tend to suppress extreme events more strongly. An interesting non-monotonic behavior is observed for the average
input: the smallest average input occurs around A = 1 in this experiment. Although one might expect A = 10 to yield smaller
inputs, a too-large A produces overly diffuse weights and thus overly conservative updates, which may allow extremes to persist
and require larger (or more sustained) inputs later to suppress them.

Finally, we compare the computational time required to compute the control input at each control step. Table 2 summarizes
the mean and standard deviation of the wall-clock time for calculating uf over the simulation. As shown in the table, EKG-
MPPI has the largest computational cost, followed by MPPI, while EnKC is the fastest. This ordering is expected: EKG-MPPI
combines the EnKC computation (ensemble forecasts and an EnKS-based update) with the MPPI refinement stage (multiple
nonlinear rollouts), and is therefore more expensive than either component alone. The relatively high cost of MPPI in our
implementation is mainly due to the repeated forward simulations required for each sample over the prediction horizon (i.e.,
O(KyppiTvppr) model evaluations in a straightforward implementation). On the other hand, MPPI rollouts and weight

computations are embarrassingly parallel across samples, and can be accelerated substantially using multi-core CPUs and/or
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Figure 3. Hyperparameter configuration map displaying the effects of varying A and sample size on control outcomes.

GPUs. Such acceleration directly benefits the MPPI stage within EKG-MPPI as well, and is therefore a promising route to

reduce the overall wall-clock cost of the proposed method.

Table 2. Mean and Standard Deviation of the Control Input Computation Time (in sec) During Simulation

Approach Mean Std

EKG-MPPI 9.21x10™* 1.12x1073
EnKC 3.34x 107" 1.14x 1074
MPPI 777x107% 1.96 x 1074

4.2 Surface quasi-geostrophic model

The quasi-geostrophic (QG) model is a standard framework for describing mesoscale barotropic and baroclinic dynamics; for
a comprehensive review, see Vallis (2017). The surface quasi-geostrophic (SQG) model is derived from the QG model under
the assumption of uniform interior potential vorticity. A key feature of the SQG model is that the surface buoyancy acts as an
active tracer from which the horizontal velocity field is diagnosed. All numerical experiments follow the setup and parameter

values in Resseguier et al. (2017).
4.2.1 SQG dynamics and diagnostic velocity

Let b(z,t) denote the surface buoyancy on a doubly periodic domain = (z,%) € T?. In the SQG model, b evolves as an active

tracer and the velocity is diagnosed from b via a streamfunction 1):

Ob+v-Vb=D(b) + f, (41)
0=V = (=0, 0,0), 42)
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Here D(b) denotes a dissipation operator and f is an external forcing term. Equivalently, in Fourier space, QZ(I{) = \k|*13(k)
for k # 0, with the mean mode set to zero; see Resseguier et al. (2017) for numerical implementation details. We discretize b
on a 128 x 128 grid and denote the vectorized buoyancy field at discrete time ¢ by x; € R™ with n = 1282, Let M : R* — R"

be the one-step forecast model corresponding to the numerical time integrator of (41) (including the SQG inversion (43)):
Ti41 = MO(.’Et). (44)

It is assumed that the surface buoyancy can be controlled via a small, spatially localized increment. Accordingly, we model the

actuation as an additive perturbation applied at the control time ¢:

x;r =Ty + Uy, 45)
followed by the uncontrolled model integration. Thus, the controlled forecast model M used in Step 4 (Sect. 3.2) is defined by
M (zp,up) = Mo(xe +ue), M(x,0) = Mo(xy). (46)

This is consistent with the single-step actuation setting assumed in Step 4 (Sect. 3.2), where the perturbation is applied only
at the first rollout step and no further input is provided during the remaining rollout. We consider a single localized actuator at
each control time. Let I; = (i, ;) denote the actuator location on the 128 x 128 grid and m, € R its magnitude. Let ¢;, € R"
be the standard basis vector corresponding to grid point I; (i.e., a Kronecker delta on the vectorized grid). The control input is

then
up =myey,. 47)

In the EKG-MPPI/MPPI sampling step, [; is sampled in R? and then rounded to the nearest integer grid index and clipped to
the valid range in each coordinate, following the same discretization convention as in Sect. 3.2. Given a buoyancy state x;, we

diagnose the streamfunction and velocity using (42)—(43), and define the wind-speed magnitude field as
w(ae)(x) = [lo(ze)(2)]]2- (48)

Let 4, denote a prescribed target region (a set of grid points). Our control objective is to suppress wind speed within Qy,;,

and we define the running state-cost function as
S(xy) = target(w(z)), (49)

where target(-) aggregates wind speed within ., (e.g., regional mean or maximum). See Resseguier et al. (2017) for numer-

ical details of the SQG inversion and the diagnostic computation of w(-).
4.2.2 Simulation Results

To compare the control performance of EKG-MPPI and EnKC, we conduct control simulations on a 128 x 128 grid map

under eight different target regions: [85,95] x [85,95], [85,95] x [90,100], [85,95] x [95,105], [90,100] x [85,95], [90,100] x
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[90,100], [90,100] x [95,105], [95,105] x [85,95] and [95,105] x [90, 100]. Hereafter, these experiments are referred to as expl
through exp8. One simulation is performed for each target region, resulting in a total of eight simulations. The total number
of simulation steps is set to 10118, which corresponds to approximately 10 days of real time. For EnKC, the ensemble size
is set to N = 40, the prediction horizon is set to Tg,xc = 500 steps (approximately 12 hours), and the control weight is set
to 10. For EKG-MPPI, the number of samples is set to Kyppr = 40, and the prediction horizon is also set to 500 steps. The

embedding function into the prior distribution is defined as follows:

Sloc (u;EnKC) =argnz (utEnKC) , Jloc (u;EnKC) =10.0,

(50)
fmag (uf}nKC) _ utEnKC (floc (uEnKC) )7 gmag (uf]nKC) _ Huf]nKC || 1
The state cost function for EKG-MPPI is defined as follows:
S(z:) = max(target(w(z)) — wen,0) (51)

where w(+) is a function that converts the buoyancy state x; into the corresponding wind speed, and target(-) is a function that
computes the magnitude of the wind speed within the target region. Here wy;, denotes the wind speed threshold, and in this
study we set wy;, = 2. For details of the function w(+), the reader is referred to Resseguier et al. (2017). The results are shown
in Figure 4. EKG-MPPI achieves lower maximum wind speeds in the target region than EnKC (Figures 4a), while requiring
smaller mean control magnitudes (Figures 4b). One reason why EKG-MPPI demonstrates superior control performance com-
pared to EnKC is that EKG-MPPI leverages prior information provided by EnKC to perform MPPI with high sample efficiency,
enabling the computation of control inputs that explicitly account for the nonlinear dynamics of the atmospheric system. In
Scenario 7, EKG-MPPI results in larger control inputs than EnKC. A possible explanation is that the difficulty of the control
task varies across target regions. In particular, the target region in Scenario 7, [85,95] x [95,105], is characterized by strong
wind speeds from the beginning of the simulation. In such regions, achieving the desired control performance is challenging
even for EKG-MPPI, which may obscure the performance difference between EKG-MPPI and EnKC. As potential improve-
ments, developing control methods that operate more robustly than EKG-MPPI in complex environments, or initiating control
actions before wind speeds intensify, could be considered.

For clarity, Figure 5 shows visualizations of the no-control, EKG-MPPI, and EnKC simulations for the target region [85, 95] x
[90,100]. From Figures 5a, 5b and 5c, it can be observed that strong winds occur in the target region in the absence of control.
From 5d, 5e and 5f, EnKC suppresses the wind speed in the target region compared to the no-control case; however, localized
regions of strong wind still remain. From 5g, Sh and 5i, EKG-MPPI achieves stronger wind-speed suppression in the target

region than EnKC.
4.3 Conclusions

We developed EnKC-guided MPPI (EKG-MPPI), a hybrid control scheme that uses EnKC to obtain a sparse candidate pertur-
bation and then refines it by MPPI using nonlinear forward rollouts. The EnKC output is used to shape the sampling distribution
in MPPI, so that exploration is concentrated around plausible actuator locations and magnitudes instead of relying on unin-

formed sampling.
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Figure 4. For each experiment, we compare the maximum wind speed and the mean input magnitude obtained by EKG-MPPI and EnKC. As
an evaluation metric, we use the percentage difference defined as (EKG — EnKC)/EnKC X 100. A negative value of this metric indicates
that EKG-MPPI achieves a smaller maximum wind speed and mean input magnitude than EnKC, whereas a positive value indicates that

EnKC yields smaller values.

In the Lorenz—96 control simulation experiment, EKG-MPPI reduced extreme-event counts compared with EnKC and
vanilla MPPI, while requiring no larger (and often smaller) inputs. For example, the number of exceedances decreased from
3293 to 3215 at X > 12.5 and from 1308 to 1176 at X > 13.0 relative to EnKC, and the maximum input decreased from
1.311 to 1.037 (with the mean input decreasing from 1.638 x 10~% to 1.187 x 10~*). In the SQG experiments over eight target
regions, EKG-MPPI also achieved lower maximum wind speeds in the target region than EnKC, while using smaller mean
control magnitudes.

The current implementation assumes localized actuation (a single or very sparse actuator) and applies the perturbation as
a one-step input within each MPPI rollout, and it does not yet impose hard physical constraints. Future work will address
multi-actuator and multi-step actuation, constraint-aware formulations, and evaluation metrics that explicitly quantify non-
target impacts and robustness to model/observation uncertainty, in addition to improving computational efficiency for higher-

dimensional models.
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Figure 5. The first, second, and third rows show the time evolution of the wind-speed field for the no-control, EnKC, and EKG-MPPI cases,

respectively. The white rectangle denotes the target region for wind-speed suppression.

19



435

440

445

450

455

460

465

https://doi.org/10.5194/egusphere-2026-419
Preprint. Discussion started: 3 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

References

Cotton, W., Zhang, H., Mcfarquhar, G., and Saleeby, S.: Should we consider polluting hurricanes to reduce their intensity, J. Weather Mod.,
39, 2007.

Houtekamer, P. L. and Zhang, F.: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation, Monthly Weather Review, 144,
4489 — 4532, https://doi.org/10.1175/MWR-D-15-0440.1, 2016.

Jacobson, M. and Kempton, W.: Taming hurricanes with arrays of offshore wind turbines, Nature Climate Change, 4,
https://doi.org/10.1038/nclimate2120, 2014.

Kawasaki, F. and Kotsuki, S.: Leading the Lorenz 63 system toward the prescribed regime by model predictive control coupled with data
assimilation, Nonlinear Processes in Geophysics, 31, 319-333, https://doi.org/10.5194/npg-31-319-2024, 2024.

Latham, J., Parkes, B., Gadian, A., and Salter, S.: Weakening of hurricanes via marine cloud brightening (MCB), Atmospheric Science
Letters, 13, 231-237, https://doi.org/10.1002/as1.402, 2012.

Lorenz, E.: Predictability: a problem partly solved, Ph.D. thesis, Shinfield Park, Reading, 1995.

Miller, J., Tang, A., Tran, T. L., Prinsley, R., and Howden, M.: The Feasibility and Governance of Cyclone Interventions, Climate Risk
Management, 41, 100 535, https://doi.org/https://doi.org/10.1016/j.crm.2023.100535, 2023.

Ouyang, M., Tokuda, K., and Kotsuki, S.: Reducing manipulations in a control simulation experiment based on instability vectors with the
Lorenz-63 model, Nonlinear Processes in Geophysics, 30, 183—193, https://doi.org/10.5194/npg-30-183-2023, 2023.

Power, T. and Berenson, D.: Variational Inference MPC using Normalizing Flows and Out-of-Distribution Projection, https://arxiv.org/abs/
2205.04667, 2022.

Resseguier, V., Mémin, E., and Chapron, B.: Geophysical flows under location uncertainty, Part III SQG and frontal dynamics under strong
turbulence conditions, Geophysical & Astrophysical Fluid Dynamics, 111, 209-227, https://doi.org/10.1080/03091929.2017.1312102,
2017.

Sawada, Y.: Ensemble Kalman filter meets model predictive control in chaotic systems, https://arxiv.org/abs/2403.06371, 2024a.

Sawada, Y.: Quest for an efficient mathematical and computational method to explore optimal extreme weather modification, https://arxiv.
org/abs/2405.08387, 2024b.

Schneider, T., Stuart, A. M., and Wu, J.-L.: Ensemble Kalman inversion for sparse learning of dynamical systems from time-averaged data,
Journal of Computational Physics, 470, 111559, https://doi.org/https://doi.org/10.1016/j.jcp.2022.111559, 2022.

Sun, Q., Miyoshi, T., and Richard, S.: Control simulation experiments of extreme events with the Lorenz-96 model, Nonlinear Processes in
Geophysics, 30, 117-128, https://doi.org/10.5194/npg-30-117-2023, 2023.

Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, 2 edn.,
2017.

Williams, G., Drews, P., Goldfain, B., Rehg, J. M., and Theodorou, E. A.: Information-Theoretic Model Predictive Control: Theory and
Applications to Autonomous Driving, IEEE Transactions on Robotics, 34, 1603—1622, https://doi.org/10.1109/TR0O.2018.2865891, 2018.

Willoughby, H. E., Jorgensen, D. P., Black, R. A., and Rosenthal, S. L.: Project STORMFURY: A Scientific Chronicle 1962—-1983, Bulletin
of the American Meteorological Society, 66, 505 — 514, https://doi.org/10.1175/1520-0477(1985)066<0505:PSASC>2.0.CO;2, 1985.

Zhang, H., Mcfarquhar, G., Saleeby, S., and Cotton, W.: Impacts of Dust in the SAL as CCN on the Evolution of an Idealized Tropical
Cyclone, AGU Fall Meeting Abstracts, 2006.

20



470

https://doi.org/10.5194/egusphere-2026-419
Preprint. Discussion started: 3 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Author contributions. Haru Kuroki: Conceptualization; investigation; methodology;validation; visualization; writing—original draft. Kazu-
mune Hashimoto: Investigation; methodology; supervision; funding acquisition. Yohei Sawada: Investigation; methodology; supervision;

funding acquisition. Le Duc: Investigation; methodology; Masashi Minamide: Investigation; writing—review and editing.
Competing interests. The authors declare no conflicts of interest.

Acknowledgements. This work was supported in part by the JST Moonshot R&D program under Grant JIMPIMS2281.

21



