
Ensemble Kalman–Guided Model Predictive Path Integral Control
for Spatially Localized Suppression of Extremes in Chaotic
Geophysical Flows
Haru Kuroki1, Kazumune Hashimoto1, Yuki Uehara1, Yohei Sawada2, Duc Le2, and Masashi Minamide2

1The University of Osaka
2The University of Tokyo

Correspondence: Kazumune Hashimoto (hashimoto@eei.eng.osaka-u.ac.jp)

Abstract. The possibility of influencing extreme weather phenomena has been discussed for decades; however, it remains far

from operational practice, and there is still no established framework for designing small, spatially localized perturbations that

can reliably steer chaotic geophysical flows. In this study, we propose a hybrid control method, termed ensemble-Kalman-

guided model predictive path integral control (EKG-MPPI), which combines ensemble Kalman control (EnKC) with model

predictive path integral (MPPI) control. Within a control simulation experiment framework, an ensemble Kalman filter is5

first used for state estimation, after which EnKC computes a candidate perturbation by treating the control objective as a

pseudo-observation. An adaptive thresholding procedure then enforces spatial sparsity, so that the EnKC perturbation identifies

candidate actuator locations and their nominal amplitudes. This information is embedded into the mean and covariance of

Gaussian proposal distributions for MPPI, which subsequently refines the perturbation through sampling-based optimization

with nonlinear rollouts, without linearizing the dynamics or computing gradients. Numerical experiments with the Lorenz–9610

model and the surface quasi-geostrophic (SQG) model demonstrate that EKG-MPPI can suppress extremes in state variables

and regional wind speed more effectively than EnKC alone, while using comparable or smaller control inputs. These results

highlight EKG-MPPI as a promising building block for simulation-based assessment of localized intervention strategies in

geophysical flows.

1 Introduction15

The idea of deliberately influencing extreme weather phenomena, such as tropical cyclones (TCs), has been discussed for

decades. However, it remains far from operational practice and there is still no established framework for designing small,

spatially localized interventions with predictable effects. For example, Project STORMFURY attempted to weaken maximum

wind speeds by artificially inducing convection around the TC eyewall, but its lack of effectiveness was reported by Willoughby

et al. (1985). More recently, several studies have explored potential intervention mechanisms primarily in numerical modeling20

settings: based on simulations by Zhang et al. (2006), Cotton et al. (2007) discussed the possibility that mineral dust injection

could suppress TC development, and Saharan dust has been shown to exert a strong influence on TCs. Furthermore, Latham

et al. (2012) investigated TC weakening via sea-surface-temperature reduction, and Jacobson and Kempton (2014) demon-
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strated in simulations that arrays of offshore wind turbines can suppress near-surface wind speeds. A comprehensive review of

these proposed approaches, together with feasibility and governance considerations, is provided by Miller et al. (2023). While25

these studies identify candidate actuators such as aerosols, mineral dust, and wind turbines, achieving concrete objectives (e.g.,

a substantial reduction in maximum wind speed) requires more than selecting an actuator type. It also calls for a mathematical

framework that systematically optimizes where, when, and how strongly perturbations should be applied. This need is par-

ticularly acute because realistic anthropogenic influences are inherently local, weak, and intermittent. Therefore, it is crucial

to devise methods that can efficiently identify “small perturbations” that can nevertheless meaningfully steer the evolution of30

chaotic geophysical flows, at least in simulation-based assessment settings.

An early step in this direction was taken by Henderson, who applied four-dimensional variational data assimilation (4D-

Var), widely used in numerical weather prediction, to derive optimal initial perturbations for mitigating damage from tropical

cyclones. This approach assumes that perturbations are applied only at the initial time. In contrast, Sun et al. (2023) proposed a

framework in which small perturbations are applied continuously and adaptively. This concept, referred to as control simulation35

experiments (CSEs), has subsequently been employed and extended in later studies, including Kawasaki and Kotsuki (2024)

and Ouyang et al. (2023), and has emerged as a practical approach for systematically evaluating the feasibility and potential

side effects of candidate intervention strategies.

More recently, Sawada (2024a) introduced ensemble Kalman control (EnKC), which leverages the EnKF/EnKS framework

to compute control increments by assimilating the control objective as a pseudo–observation, and demonstrated its effectiveness40

in numerical experiments with the Lorenz–63 model. Building on this, Sawada (2024b) proposed a strategy to reduce the

magnitude of EnKC control inputs and to enforce spatial sparsity, with demonstrations in the Lorenz–96 model. While these

studies Sawada (2024a, b) indicate that EnKC can identify effective perturbations, its computation relies on an approximate

linearization of the dynamics over the prediction horizon, motivating strategies that can more fully exploit nonlinear dynamics.

To address the linearization limitation of EnKC while retaining a derivative-free formulation, we combine EnKC with model45

predictive path integral (MPPI) control. Like EnKC, MPPI is derivative-free; however, it evaluates candidate perturbations

through nonlinear forward rollouts rather than linearized dynamics. At the same time, MPPI can be sample-inefficient when

informative prior knowledge about the control distribution is unavailable, particularly in high-dimensional control spaces Power

and Berenson (2022). We therefore introduce EnKC-guided MPPI (EKG-MPPI), which uses the sparse perturbations obtained

from EnKC to construct an informative sampling distribution for MPPI. In this way, EnKC provides ensemble-based candidate50

perturbations that encode where control is likely to be effective and their nominal magnitude, while MPPI refines them via

sampling-based optimization under the full nonlinear model without computing gradients. We demonstrate the effectiveness

of the proposed method through numerical experiments with the Lorenz–96 model and the surface quasi-geostrophic (SQG)

model.

This paper makes three contributions: (i) we propose EKG-MPPI, a hybrid framework that couples EnKC-based sparse ac-55

tuation proposals with MPPI-based nonlinear refinement; (ii) we provide an explicit algorithmic formulation of EKG-MPPI,

including a practical procedure for embedding EnKC-derived actuator locations and amplitudes into Gaussian sampling dis-

2

https://doi.org/10.5194/egusphere-2026-419
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



tributions for MPPI; and (iii) through numerical experiments with the Lorenz–96 and SQG models, we show that EKG-MPPI

suppresses target extremes more strongly than EnKC (and uninformed MPPI) while using comparable or smaller control inputs.

2 Preliminary Knowledge60

This section reviews the Ensemble Kalman filter/control and Model Predictive Path Integral control.

2.1 Ensemble Kalman Filter (EnKF)

Let us first review the EnKF. Consider a discrete-time state–space system

xt =M(xt−1) +qt−1, (1)

yo
t =H(xt) + rt, (2)65

where xt denotes the state vector, M the forecast model, qt the model error or the system noise, yo
t the observation vector, H

the observation operator, and rt the observation error or the measurement noise. At an assimilation time t, the EnKF updates

the model forecast by approximately minimizing the quadratic cost function

J(xt) = 1
2 (xt− x̄b

t)
⊤P−1

b (xt− x̄b
t) + 1

2 (yo
t −H(xt))⊤R−1(yo

t −H(xt)), (3)

where x̄b
t and Pb are the ensemble mean and background error covariance, and R is the observation error covariance matrix.70

The analysis ensemble {xa(i)
t }Ni=1 is obtained by applying the EnKF update

xa(i)
t = xf(i)

t +K
(
yo(i)

t −H(xf(i)
t )

)
, (4)

K = PbH⊤(
HPbH⊤+R

)−1
, (5)

where xf(i)
t and xa(i)

t denote the ith forecast and analysis ensemble members, respectively, and H denotes the matrix represen-

tation of the (possibly linearized) observation operator H . In practice, the products PbH⊤ and HPbH⊤ are computed using75

ensemble statistics, so that the full covariance matrix Pb need not be formed explicitly. This ensemble representation enables

the EnKF to handle high-dimensional systems efficiently. To mitigate sampling errors arising from the use of a finite ensemble,

covariance localization is commonly employed. The localized Kalman gain is written as

K = ρ ◦PbH⊤(
ρ ◦ (HPbH⊤) +R

)−1
, (6)

where ◦ denotes the Schur (element-wise) product and80

ρ= exp[−d(i, j)/L] (7)

is a smooth correlation function defined in terms of the distance d(i, j) between grid points and a localization length scale

L. This localization suppresses spurious long-range correlations, thereby improving the stability and accuracy of the EnKF

updates.
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Closely related to the EnKF is the ensemble Kalman smoother (EnKS), which extends the filter in time by estimating the85

state over an assimilation window using both past and future observations. Operationally, the EnKS can be implemented by

propagating an ensemble forward with EnKF updates at each observation time and then applying a backward smoothing step

that uses ensemble-based cross-covariances between states at different times and the observations. Readers interested in further

details of the EnKF/EnKS family are referred to Houtekamer and Zhang (2016) for a comprehensive review.

2.2 Ensemble Kalman Control (EnKC)90

EnKC builds directly on the EnKF and EnKS framework to formulate and solve an optimal control problem for various state-

space (dynamical) systems. After the EnKF analysis at time t, let {xa(i)
t }Ni=1 denote the analysis ensemble, with mean x̄a

t and

error covariance Pa. Over a prediction horizon TEnKC, EnKC considers the quadratic cost function

Jc(xt) =
1
2
(
xt− x̄a

t

)⊤
P−1

a

(
xt− x̄a

t

)
+

1
2
(
rt+TEnKC −Hc(xt+TEnKC)

)⊤
R−1

c

(
rt+TEnKC −Hc(xt+TEnKC)

)
, (8)

subject to the model dynamics95

xk+1 =M(xk), k = t, . . . , t+TEnKC− 1. (9)

Here, rt+TEnKC is a prescribed reference (target) vector at time t+TEnKC, Hc maps the state variables to the control criteria

(e.g., a regional average or maximum of a physical quantity), and Rc is a user-defined weight (pseudo–observation error

covariance). The first term penalizes the size of the perturbation to the initial analysis state, while the second term penalizes the

mismatch between the predicted future state and the control objective. Assuming that the dynamics over the prediction horizon100

are approximately linear, the minimizer of Jc can be obtained by applying an EnKS. In this formulation, the reference vector

rt+TEnKC is assimilated as a “pseudo–observation” with error covariance Rc. The resulting EnKS analysis at time t,

xc
t = x̄a

t +K
(
rt+TEnKC −Hc(xa

t+TEnKC
)
)
, (10)

yields the optimal perturbation xc
t−x̄a

t to be applied to the system. The Kalman gainK is computed from the cross–covariance

between the analysis ensemble at time t and the ensemble prediction at t+TEnKC, and from the covariance of the projected105

prediction, in direct analogy with standard EnKF/EnKS formulations.

The EnKC algorithm can be summarized as follows:

1. Apply EnKF with real observations to obtain the analysis ensemble at time t.

2. From the analysis ensemble, perform ensemble forecasting up to t+TEnKC and project the predicted states onto the

control criteria via Hc.110

3. Run EnKS, assimilating rt+TEnKC as a pseudo–observation with error covariance Rc, and obtain the perturbation xc
t−x̄a

t .

4. Add this perturbation to the real system and to all analysis ensemble members, thereby updating the controlled “nature”

and its ensemble representation.
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5. Propagate the updated ensemble to the next data assimilation time. The resulting forecast serves as the new background

for the next EnKF cycle, thus completing the loop and returning to Step 1.115

In this way, EnKC integrates ensemble data assimilation and model predictive control by treating the control objective as

a pseudo–observation within an EnKS framework, and by interpreting the resulting analysis increment as the optimal small

perturbation to steer the system toward the desired future state. The control perturbation estimated by EnKC (Sawada (2024b)),

xc
t − x̄a

t , has the same dimension as the full model state. In practical applications such as weather modification, however, it is

unrealistic to apply perturbations to all state variables at every control step. It is therefore desirable to enforce spatial sparsity120

so that only a limited number of grid points (or regions) are actively perturbed, which naturally aligns with the interpretation

of actuators placed at specific locations. Ideally, such sparsity can be promoted by augmenting the EnKC cost function with an

ℓ0-norm penalty:

Jc(xt) =
1
2
(xt−x̄a

t )⊤P−1
a (xt−x̄a

t )+
1
2
(rt+TEnKC−Hc(xt+TEnKC))⊤R−1

c (rt+TEnKC−Hc(xt+TEnKC))+λs ∥xt−x̄a
t ∥0, (11)

where ∥ · ∥0 counts the number of nonzero elements (i.e., ℓ0-norm) and λs controls the strength of the sparsity constraint.125

However, direct minimization of this objective is computationally demanding for high-dimensional systems, so an empirical

yet effective strategy is adopted.

Following the idea of Schneider et al. (2022), we impose sparsity on the EnKC-estimated perturbation by applying a thresh-

olding operator to its components. Specifically, after computing the standard EnKC update, we apply a thresholding operator

T (θ) to each entry of xc
t − x̄a

t so that small-magnitude components are discarded as noise and only sufficiently large perturba-130

tions are retained:

T (θ) =





0, if |θ|<
√

2λs,

θ, otherwise.
(12)

While Schneider et al. (2022) treated
√

2λs as a fixed hyperparameter, the present study adopts an adaptive formulation in

which the threshold depends on the amplitude of the EnKC-derived perturbation at each control step. More precisely, the

threshold parameter is updated as135

√
2λs = Λ max |xc

t − x̄a
t | . (13)

where Λ is a user-specified coefficient that controls the enforced sparsity. This adaptive thresholding allows the sparsity level

to automatically adjust to the magnitude of the EnKC-derived perturbations, thereby concentrating actuator effort on only the

most influential grid points. In particular, choosing Λ = 1 retains only the grid point with the largest perturbation, which is

consistent with the actuator-placement interpretation in which localized increments indicate candidate actuator locations.140
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2.3 Model Predictive Path Integral Control (MPPI)

We next summarize the MPPI control framework. MPPI is a sample-based model predictive control (MPC) method grounded

in probabilistic inference (Williams et al. (2018)). MPPI considers the following nonlinear dynamical system:

xt+1 =M(xt,ut). (14)

At each time step, MPPI optimizes an open-loop control sequence over a finite horizon of length T . Let U = (u0,u1, . . . ,uT−1)145

denote the mean control sequence. MPPI introduces stochastic exploration by sampling control sequences V = (v0,v1, . . . ,vT−1)

from a Gaussian distribution centered at U:

q(V |U,Σ) =
T−1∏

τ=0

N (vτ ;uτ ,Σ), (15)

where Σ ∈ Rnu×nu is a user-specified positive definite covariance matrix. Equivalently, one may write vτ = uτ + ϵτ with

ϵτ ∼N (0,Σ). Given a sampled control sequence V, the system is rolled out according to xτ+1 =M(xτ ,vτ ) (starting from150

the current state), and we define the total trajectory cost functional as

S(V) = Φ(xT ) +
T−1∑

τ=0

L(xτ ,vτ ). (16)

Under this setup, the stochastic optimal control problem at each time step is

U∗ = arg min
U∈U

EV∼q(V|U,Σ)

[
S(V)

]
. (17)

MPPI can be derived via a variational free-energy bound. Let p(V) denote a base (prior) distribution over control sequences155

(typically chosen as a Gaussian), and define the free energy

F =−λ logEV∼p

[
exp

(
−S(V)

λ

)]
. (18)

Then, for any distribution r(V), the following inequality holds:

F ≤ EV∼r[S(V)]+λDKL(r∥p), (19)

where DKL is the Kullback–Leibler divergence. The minimizer of the right-hand side of (19) is the optimal distribution160

q∗(V) =
1
η

exp
(
−S(V)

λ

)
p(V), (20)

and substituting r(V) = q∗(V) into (19) yields equality (see Williams et al. (2018) for details). In practice, MPPI restricts

r(V) to a Gaussian family with fixed covariance Σ and optimizes only the mean U. This corresponds to the KL projection

Û = arg min
U∈U

DKL

(
q∗∥q(V |U,Σ)

)
, (21)
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whose minimizer satisfies, for fixed Σ,165

Û = EV∼q∗ [V]. (22)

Since direct sampling from q∗ is intractable, we estimate (22) by Monte Carlo sampling with importance weights. When

samples {Vk}Kk=1 are drawn from the base distribution p(V), (22) can be written as a normalized weighted average:

Û≈
K∑

k=1

ω̄(Vk)Vk, (23)

with log-weights and normalized weights170

ω(Vk) =− 1
λ
S(Vk), (24)

ω̄(Vk) =
exp(ω(Vk))

∑K
j=1 exp(ω(Vj))

. (25)

(If samples are drawn from a proposal distribution g(V) ̸= p(V), the weights are modified by the standard importance-

sampling factor p(Vk)/g(Vk).)

Typically, only the first element of the optimized control sequence Û is applied as the control input at each time step,175

after which the horizon is shifted forward and the procedure is repeated. As can be seen from (23)–(25), the weights for all

samples can be computed in parallel, allowing efficient implementation on GPUs. Moreover, MPPI does not require gradient

information of the dynamics or cost function and can be implemented using only forward simulations of the model.

3 EKG-MPPI: Proposed hybrid control method

3.1 Overall framework180

EnKC provides a principled framework for determining small yet effective perturbations at each control step. However, EnKC

computes the control increment by (approximately) linearizing the system dynamics over a finite prediction horizon, and its

performance may therefore deteriorate when the dynamics are strongly nonlinear. To overcome this limitation, we propose a

hybrid control scheme, termed EnKC-guided MPPI (EKG-MPPI), which combines EnKC with MPPI. In contrast to EnKC,

MPPI evaluates candidate perturbations via nonlinear forward rollouts and thus can handle nonlinear dynamics without lin-185

earization. Nevertheless, as pointed out by Power and Berenson (2022), MPPI may suffer from poor sampling efficiency when

applied without informative prior knowledge of the control distribution. This issue is particularly severe in high-dimensional

geophysical systems, where the control space is large and naive sampling may fail to discover effective perturbations under a

realistic computational budget.

EKG-MPPI addresses this issue by using the EnKC perturbation as prior information for MPPI. Intuitively, EnKC provides190

a sparse and physically informed guess of (i) where the system is most sensitive and (ii) how strongly it should be perturbed.

We embed this information into the mean and variance (or covariance) of Gaussian sampling distributions, from which MPPI
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0

EnKC
(Step2)

MPPI 
(Step3,4)

Nature 
run

Forecast 
model

EnKF
(Step1)

Control part : EKG-MPPI

Estimation part: EnKF

Figure 1. Block diagram of the proposed EKG-MPPI.

draws candidate actuator locations and magnitudes. MPPI then refines the perturbation through sampling-based optimization

based on nonlinear rollouts, without any linearization or gradient computation.

The proposed EKG-MPPI scheme is implemented within the CSE framework, and the overall workflow is summarized in195

Fig. 1. At each data-assimilation time, we first apply the EnKF to assimilate observations and estimate the current state (Step 1).

We then run EnKC using the analysis ensemble to obtain a sparse perturbation (Step 2). This perturbation is interpreted as a

candidate actuator configuration and mapped to the parameters of Gaussian sampling distributions for actuator location and

control magnitude. MPPI samples multiple candidate control inputs from these distributions, evaluates their performance over

a prediction horizon, and computes a weighted average to obtain the final control input (Steps 3–4). In the CSE framework, the200

model trajectory obtained by integrating the forecast model without any control perturbation is referred to as the nature run,

which serves as a proxy for the true atmosphere. The computed control is applied both to the nature run and to the analysis

ensemble, after which the forecast–assimilation–control loop continues to the next time step.

3.2 Algorithmic steps (Step 1–5)

In this subsection we describe the EKG-MPPI procedure at a single control time t. We denote the ensemble size by N and the205

current analysis ensemble by {xa(i)
t }Ni=1.

Step 1: EnKF state estimation

As in standard CSE studies, accurate estimation of the system state is a prerequisite for effective control. At each assimilation

time t, we apply the EnKF to assimilate the available observations yo
t and update the forecast ensemble. The EnKF update is

8

https://doi.org/10.5194/egusphere-2026-419
Preprint. Discussion started: 3 February 2026
c© Author(s) 2026. CC BY 4.0 License.



given in Sect. 2.1 and yields the analysis ensemble {xa(i)
t }Ni=1. We then compute the analysis ensemble mean210

x̄a
t =

1
N

N∑

i=1

x
a(i)
t , (26)

which serves as the current state estimate used to initialize the subsequent control computation.

Step 2: EnKC-based control perturbation

In the second step, we apply EnKC (Sect. 2.2) to compute a control perturbation that will serve as prior information for MPPI.

EnKC minimizes the quadratic cost function in (8) via an EnKS, interpreting the control objective as a pseudo–observation. The215

resulting control perturbation xc
t − x̄a

t is then sparsified by the adaptive thresholding procedure described in Sect. 2.2. Among

the information contained in the sparsified control vector, the key components for localized intervention are (i) the indices of its

nonzero entries, which indicate candidate actuator locations, and (ii) the corresponding magnitudes, which represent nominal

control amplitudes at those locations. To simplify the presentation, we set Λ = 1 in (13), so that only the grid point with the

largest perturbation remains nonzero. The resulting sparse control vector is denoted by uEnKC
t , and encodes both the actuator220

location and its nominal control magnitude to be exploited by MPPI.

Step 3: EnKC-informed sampling of actuator location and magnitude

The third step embeds the information contained in uEnKC
t into the sampling distributions from which MPPI draws candidate

control inputs. In this study, we parameterize each candidate actuator configuration by its location and magnitude. Let µloc,t

and Σloc,t denote the mean and variance (scalar in the single-actuator case) that determine the sampling distribution of actuator225

locations, and let µmag,t and Σmag,t denote the corresponding quantities for the control magnitude. We define

µloc,t = floc

(
uEnKC

t

)
, Σloc,t = gloc

(
uEnKC

t

)
,

µmag,t = fmag

(
uEnKC

t

)
, Σmag,t = gmag

(
uEnKC

t

)
, (27)

where floc, gloc, fmag, and gmag are embedding functions that map the EnKC output to the parameters of the MPPI sampling

distributions. Using the parameters in (27), we draw KMPPI samples of actuator locations and magnitudes,230

lt,i ∼ G(l | µloc,t,Σloc,t) , mt,i ∼ G(m | µmag,t,Σmag,t) , i= 1,2, . . . ,KMPPI, (28)

where G(· | µ,Σ) denotes a Gaussian distribution. Because actuator locations correspond to discrete grid indices, we round lt,i

to the nearest integer and clip it to the valid index range; with a slight abuse of notation, we denote the resulting index again

by lt,i. Each pair (lt,i,mt,i) specifies one candidate actuator configuration for MPPI.

Step 4: MPPI rollout and importance weighting235

In the fourth step, we evaluate the sampled actuator configurations via MPPI rollouts and compute their importance weights.

Let xt = x̄a
t denote the current state estimate (i.e., the state from which MPPI rolls out). Let nu denote the dimension of the

9
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control input, and let eℓ ∈ Rnu be the ℓ-th standard basis vector. For each sample (lt,i,mt,i), we construct a sparse control

vector

ut,i =mt,i elt,i
. (29)240

Starting from x
(i)
t,0 = xt, we propagate the system over the MPPI prediction horizon TMPPI as

x
(i)
t,1 =M

(
x

(i)
t,0,ut,i

)
, (30)

x
(i)
t,τ+1 =M

(
x

(i)
t,τ ,0

)
, τ = 1,2, . . . ,TMPPI− 1, (31)

where 0 denotes the zero control input. That is, the perturbation is applied only at the first rollout step, and no further input

is provided during the remaining rollout. This reflects the single-step actuation setting used in our CSEs and also reduces the245

effective dimension of the control space, thereby improving sampling efficiency.

Let S(ut,i,xt,M) be a state-dependent cost functional that quantifies the performance of the i-th control sample. In our

implementation, the EnKC-informed Gaussian distribution in Step 3 is used as the base distribution of MPPI, and therefore no

importance-sampling correction term is required. The (unnormalized) log-weight is computed as

ω(ut,i) =− 1
λ
S(ut,i,xt,M) , (32)250

where λ is the temperature parameter in MPPI. The normalized weight is then computed as

w̄t,i =
exp

(
ω(ut,i)

)

KMPPI∑

k=1

exp
(
ω(ut,k)

)
. (33)

Finally, we first compute the weighted-average control vector

ũt =
KMPPI∑

i=1

w̄t,iut,i, (34)

and then project it to a single-actuator (1-sparse) control by keeping only the largest-magnitude component:255

l∗t = argmax
ℓ
|ũt(ℓ)| , (35)

u∗t = ũt(l∗t )el∗t . (36)

Step 5: Feedback

In the final step, the optimal control u∗t computed in (36) is applied both to the nature run and to each member of the analysis260

ensemble, i.e.

x
a(i)
t ← x

a(i)
t +u∗t , i= 1,2, . . . ,N. (37)

The updated ensemble is then advanced by the forecast model until the next assimilation time, at which point the procedure

returns to Step 1.
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Algorithm 1 EKG-MPPI algorithm

Require: initial analysis ensemble {xa(i)
0 }Ni=1; localization scale L; observation-error covariance matrix R; forecast model M ; observation

operator H; control-weight matrix Rc; EnKC prediction horizon TEnKC; MPPI prediction horizon TMPPI; sparsity coefficient Λ; state-

cost functional S; embedding functions floc,gloc,fmag,gmag; number of MPPI samples KMPPI; temperature parameter λ; total number

of assimilation steps Tsim.

1: for t = 1,2, . . . ,Tsim do

2: Obtain observation yo
t .

3: {xa(i)
t }Ni=1←EnKF

(
{xa(i)

t−1}Ni=1,y
o
t ,L,R,M,H

)
.

4: Compute the analysis ensemble mean x̄a
t ← 1

N

∑N
i=1 x

a(i)
t .

5: uEnKC
t ←EnKC

(
{xa(i)

t }Ni=1,TEnKC,Λ,Rc,M,Hc

)
.

6: Compute µloc,t, Σloc,t, µmag,t, Σmag,t according to (27).

7: for i = 1,2, . . . ,KMPPI do

8: Sample lt,i ∼ G(l | µloc,t,Σloc,t), mt,i ∼ G(m | µmag,t,Σmag,t).

9: Construct a sparse control vector ut,i←mt,i elt,i , where eℓ denotes the ℓ-th standard basis vector.

10: Evaluate the cost S(ut,i, x̄
a
t ,M) and compute the (unnormalized) log-weight ω(ut,i) using (32).

11: end for

12: Normalize the weights w̄t,i using (33).

13: Compute the weighted-average control vector ũt←
∑KMPPI

i=1 w̄t,i ut,i.

14: Select the actuator location l∗t ← argmaxℓ |ũt(ℓ)|.
15: Set the single-actuator control u∗t ← ũt(l

∗
t )el∗t .

16: Apply u∗t to the nature run and update each analysis ensemble member via x
a(i)
t ← x

a(i)
t + u∗t , i = 1, . . . ,N .

17: Advance the forecast model M to the next assimilation time.

18: end for

3.3 Pseudocode of EKG-MPPI265

The EKG-MPPI procedure described above can be summarized by Algorithm 1, where EnKF (line 3) denotes the ensemble

Kalman filter used for state estimation and EnKC (line 5) denotes the ensemble Kalman control scheme that computes sparse

optimal perturbations as described in Sect. 2.2.

4 Numerical Experiments

The effectiveness of EKG-MPPI is demonstrated through numerical experiments using the Lorenz–96 model and the SQG270

model.
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4.1 Lorenz–96 model

Following the methodology of Sun et al. (2023); Sawada (2024b), we conduct a control simulation experiment (CSE) aimed at

mitigating extreme values in the Lorenz–96 system (Lorenz (1995)). The Lorenz–96 system is governed by

dXk

dt
= (Xk+1−Xk−2)Xk−1−Xk +F, k ∈ {1,2, . . . ,K}, (38)275

where K = 40 in this study, and the external forcing parameter is set to F = 8.0. Cyclic boundary conditions are imposed

such that the indices are taken modulo K, i.e. Xk+K =Xk. Equation (38) is numerically integrated using the fourth-order

Runge–Kutta method with a time step of ∆t= 0.05.

Observations are available only at grid points with even indices (20 state variables) and are generated by adding Gaussian

white noise with mean 0 and variance 1.0 to the nature run. The observation interval is set to 0.05, i.e., observations are280

taken at every model time step. The ensemble size is N = 40, and the observation-error covariance matrix is R = I with unit

variance. The EnKF is applied at each observation time with a localization length of L= 2.0 (see (7)). The control objective is

to suppress extremely large positive anomalies in the system. At each EnKF analysis time t, an additional forecast is integrated

over a prediction horizon of Tc = 0.2, corresponding to four model time steps. EnKC is activated only when the ensemble-

mean forecast at t+Tc indicatesXk > 12 at one or more grid points. Following Sun et al. (2023); Sawada (2024b), we interpret285

Tc = 0.2 time units (four model steps) as a short lead time and use Xk = 12 as a high-percentile threshold for extremes in the

Lorenz–96 system. Since the control goal is to prevent further growth beyond this threshold, the target pseudo-observation is

set to rt+Tc = 12. In the EnKC procedure, this pseudo-observation is assimilated using the EnKS, but only at grid points where

Xk > 12. The diagonal entries of the control-weight matrix Rc are set to 10−4. The sparse control perturbation computed

by EnKC, denoted by uEnKC
t , is then used to construct the MPPI prior in EKG-MPPI. The embedding functions in (27) are290

specified as

floc

(
uEnKC

t

)
= argnz

(
uEnKC

t

)
, gloc

(
uEnKC

t

)
= 5.0,

fmag

(
uEnKC

t

)
= uEnKC

t (floc

(
uEnKC

t

)
), gmag

(
uEnKC

t

)
=

∥∥uEnKC
t

∥∥
1

2
,

(39)

where argnz(·) returns the index of the nonzero entry of its argument. For the initial solution of MPPI, we adopt the pertur-

bations obtained by EnKC, as represented by floc and fmag. The variance of the Gaussian distribution used for sampling is

adaptively adjusted according to gmag. Furthermore, control samples whose magnitude exceeds the maximum absolute com-295

ponent of uEnKC
t are rejected, ensuring that the applied control remains sufficiently small. For MPPI, the prediction horizon is

set to TMPPI = 5, and the running state-cost function is defined as

S(xt) = ∥max(xt− 12, 0)∥1 , (40)

which penalizes the state only when it exceeds the threshold value of 12. We perform numerical simulations over 160,600 model

time steps. During the first 14,600 time steps, neither EnKC nor EKG-MPPI is applied; only EnKF is used to synchronize the300

estimated state with the uncontrolled nature run (spin-up period). Control is activated for the remaining 146,000 time steps,
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during which EnKF, EnKC, and EKG-MPPI are all executed. All diagnostics reported below are computed over this controlled

period.

4.1.1 Simulation Results

To demonstrate the effectiveness of the proposed method, we compare four cases—no control (uncontrolled), EnKC, vanilla305

MPPI, and EKG-MPPI—in terms of the state distribution during the simulation and the control effort required to suppress

extremes. For EKG-MPPI, we set the temperature parameter to λ= 0.1 and the number of control-input samples to KMPPI =

40. For vanilla MPPI, we set λ= 0.7 and KMPPI = 40; the perturbation magnitude is sampled from a Gaussian distribution

N (0,0.5), and the perturbation location is sampled from N (0,20.0).

The simulation results are summarized in Figure 2 and Table 1. Figure 2a shows that the percentile curves over the full range310

remain close to the uncontrolled case for all controllers, indicating that the interventions primarily affect the upper tail while

leaving the bulk distribution nearly unchanged in this experiment. The effect of control is concentrated in the far upper tail

(Figure 2b), where all controllers reduce the most extreme values relative to the uncontrolled run.

Table 1 quantifies extreme-event suppression and control effort. EKG-MPPI reduces the number of exceedances atX ≥ 12.5

and X ≥ 13.0 compared with both EnKC (3293 → 3215 and 1308 → 1176) and vanilla MPPI (3528 → 3215 and 1284 →315

1176). At the same time, EKG-MPPI achieves these reductions with smaller control inputs: the maximum input decreases from

1.311 (EnKC) and 1.780 (MPPI) to 1.037, and the mean input decreases from 1.638×10−4 (EnKC) and 1.547×10−4 (MPPI)

to 1.187× 10−4. Here the mean input is computed as a time- and grid-averaged absolute input (including time steps with no

control where ut,k = 0). We attribute the improvement over EnKC to the nonlinear evaluation in the MPPI refinement stage,

and the improvement over vanilla MPPI to the EnKC-informed proposal distribution, which concentrates samples on effective320

actuator locations and magnitudes under a fixed sampling budget.

Table 1. Comparison of EKG-MPPI, EnKC, and MPPI in the Lorenz–96 control simulation experiment. Columns 2–3 quantify the control

effort: Max Input = maxt,k |ut,k| and Mean Input = 1
TK

∑T
t=1

∑K
k=1 |ut,k| (time- and grid-averaged absolute input, including time steps

with no control where ut,k = 0). Columns 4–5 report extreme-event counts, defined as #{(t,k) : Xt,k ≥ θ} for thresholds θ ∈ {12.5, 13.0},
where #{·} denotes set cardinality.

Approach Max Input Mean Input X ≥ 12.5 X ≥ 13.0

EKG-MPPI 1.037 1.187× 10−4 3215 1176

EnKC 1.311 1.638× 10−4 3293 1308

MPPI 1.780 1.547× 10−4 3528 1284

Next, we investigate how changes in the hyperparameters of EKG-MPPI affect control performance. The temperature pa-

rameter λ is varied over {10,1,0.1,0.01,0.001}, and the number of samples is varied over {5,10,20,40,80}. For each config-

uration, we record the number of threshold exceedances, the average magnitude of the applied control input, and the number

of control applications. The results are shown in Figure 3. As shown in Figure 3, decreasing λ generally increases the av-325

erage control magnitude while decreasing the control frequency. In MPPI, λ controls how strongly the importance weights
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(a) overall percentile (b) detailed percentile

Figure 2. The percentile of state variables of the Lorenz 96 system in the control simulation experiments. While (a) shows the whole

percentile ranges from 0 to 100, (b) shows the zoom-in of the range from 99.9 percentile to the maximum.

concentrate on low-cost samples: smaller λ yields more peaked weights and thus drives the update toward more aggressive

perturbations found in the sampled rollouts. In our EKG-MPPI setting, the proposal distribution is EnKC-informed (with mean

and variance depending on uEnKC
t ), so a smaller λ corresponds to a stronger deviation from this EnKC-guided proposal toward

the best-performing samples. When λ is very small (e.g., 0.01 or 0.001), increasing the sample size tends to further increase330

the average control magnitude and reduce the control frequency. A likely explanation is that, with more samples, the algorithm

more often discovers rare, highly effective perturbations; when λ is small, the update places disproportionately large weight

on these samples, amplifying the resulting control magnitude. Consistently, Figure 3 also shows that larger sample sizes and

smaller λ tend to suppress extreme events more strongly. An interesting non-monotonic behavior is observed for the average

input: the smallest average input occurs around λ= 1 in this experiment. Although one might expect λ= 10 to yield smaller335

inputs, a too-large λ produces overly diffuse weights and thus overly conservative updates, which may allow extremes to persist

and require larger (or more sustained) inputs later to suppress them.

Finally, we compare the computational time required to compute the control input at each control step. Table 2 summarizes

the mean and standard deviation of the wall-clock time for calculating u∗t over the simulation. As shown in the table, EKG-

MPPI has the largest computational cost, followed by MPPI, while EnKC is the fastest. This ordering is expected: EKG-MPPI340

combines the EnKC computation (ensemble forecasts and an EnKS-based update) with the MPPI refinement stage (multiple

nonlinear rollouts), and is therefore more expensive than either component alone. The relatively high cost of MPPI in our

implementation is mainly due to the repeated forward simulations required for each sample over the prediction horizon (i.e.,

O(KMPPITMPPI) model evaluations in a straightforward implementation). On the other hand, MPPI rollouts and weight

computations are embarrassingly parallel across samples, and can be accelerated substantially using multi-core CPUs and/or345
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(a) Number of Extreme Values (b) Average Input (c) Frequency Input

Figure 3. Hyperparameter configuration map displaying the effects of varying λ and sample size on control outcomes.

GPUs. Such acceleration directly benefits the MPPI stage within EKG-MPPI as well, and is therefore a promising route to

reduce the overall wall-clock cost of the proposed method.

Table 2. Mean and Standard Deviation of the Control Input Computation Time (in sec) During Simulation

Approach Mean Std

EKG-MPPI 9.21× 10−4 1.12× 10−3

EnKC 3.34× 10−4 1.14× 10−4

MPPI 7.77× 10−4 1.96× 10−4

4.2 Surface quasi-geostrophic model

The quasi-geostrophic (QG) model is a standard framework for describing mesoscale barotropic and baroclinic dynamics; for

a comprehensive review, see Vallis (2017). The surface quasi-geostrophic (SQG) model is derived from the QG model under350

the assumption of uniform interior potential vorticity. A key feature of the SQG model is that the surface buoyancy acts as an

active tracer from which the horizontal velocity field is diagnosed. All numerical experiments follow the setup and parameter

values in Resseguier et al. (2017).

4.2.1 SQG dynamics and diagnostic velocity

Let b(x,t) denote the surface buoyancy on a doubly periodic domain x= (x,y) ∈ T2. In the SQG model, b evolves as an active355

tracer and the velocity is diagnosed from b via a streamfunction ψ:

∂tb+ v ·∇b=D(b)+ f, (41)

v =∇⊥ψ = (−∂yψ, ∂xψ) , (42)

b= (−∆)1/2ψ. (43)
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Here D(b) denotes a dissipation operator and f is an external forcing term. Equivalently, in Fourier space, ψ̂(k) = |k|−1b̂(k)360

for k ̸= 0, with the mean mode set to zero; see Resseguier et al. (2017) for numerical implementation details. We discretize b

on a 128×128 grid and denote the vectorized buoyancy field at discrete time t by xt ∈ Rn with n= 1282. Let M0 : Rn→ Rn

be the one-step forecast model corresponding to the numerical time integrator of (41) (including the SQG inversion (43)):

xt+1 =M0(xt). (44)

It is assumed that the surface buoyancy can be controlled via a small, spatially localized increment. Accordingly, we model the365

actuation as an additive perturbation applied at the control time t:

x+
t = xt +ut, (45)

followed by the uncontrolled model integration. Thus, the controlled forecast model M used in Step 4 (Sect. 3.2) is defined by

M(xt,ut) =M0(xt +ut), M(xt,0) =M0(xt). (46)

This is consistent with the single-step actuation setting assumed in Step 4 (Sect. 3.2), where the perturbation is applied only370

at the first rollout step and no further input is provided during the remaining rollout. We consider a single localized actuator at

each control time. Let lt = (it, jt) denote the actuator location on the 128× 128 grid and mt ∈ R its magnitude. Let elt ∈ Rn

be the standard basis vector corresponding to grid point lt (i.e., a Kronecker delta on the vectorized grid). The control input is

then

ut =mt elt . (47)375

In the EKG-MPPI/MPPI sampling step, lt is sampled in R2 and then rounded to the nearest integer grid index and clipped to

the valid range in each coordinate, following the same discretization convention as in Sect. 3.2. Given a buoyancy state xt, we

diagnose the streamfunction and velocity using (42)–(43), and define the wind-speed magnitude field as

w(xt)(x) = ∥v(xt)(x)∥2. (48)

Let Ωtar denote a prescribed target region (a set of grid points). Our control objective is to suppress wind speed within Ωtar,380

and we define the running state-cost function as

S(xt) = target(w(xt)) , (49)

where target(·) aggregates wind speed within Ωtar (e.g., regional mean or maximum). See Resseguier et al. (2017) for numer-

ical details of the SQG inversion and the diagnostic computation of w(·).

4.2.2 Simulation Results385

To compare the control performance of EKG-MPPI and EnKC, we conduct control simulations on a 128× 128 grid map

under eight different target regions: [85,95]× [85,95], [85,95]× [90,100], [85,95]× [95,105], [90,100]× [85,95], [90,100]×
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[90,100], [90,100]× [95,105], [95,105]× [85,95] and [95,105]× [90,100]. Hereafter, these experiments are referred to as exp1

through exp8. One simulation is performed for each target region, resulting in a total of eight simulations. The total number

of simulation steps is set to 10118, which corresponds to approximately 10 days of real time. For EnKC, the ensemble size390

is set to N = 40, the prediction horizon is set to TEnKC = 500 steps (approximately 12 hours), and the control weight is set

to 10. For EKG-MPPI, the number of samples is set to KMPPI = 40, and the prediction horizon is also set to 500 steps. The

embedding function into the prior distribution is defined as follows:

floc

(
uEnKC

t

)
= argnz

(
uEnKC

t

)
, gloc

(
uEnKC

t

)
= 10.0,

fmag

(
uEnKC

t

)
= uEnKC

t (floc

(
uEnKC

t

)
), gmag

(
uEnKC

t

)
= ∥uEnKC

t ∥1,
(50)

The state cost function for EKG-MPPI is defined as follows:395

S(xt) = max(target(w(xt))−wth,0) (51)

where w(·) is a function that converts the buoyancy state xt into the corresponding wind speed, and target(·) is a function that

computes the magnitude of the wind speed within the target region. Here wth denotes the wind speed threshold, and in this

study we set wth = 2. For details of the function w(·), the reader is referred to Resseguier et al. (2017). The results are shown

in Figure 4. EKG-MPPI achieves lower maximum wind speeds in the target region than EnKC (Figures 4a), while requiring400

smaller mean control magnitudes (Figures 4b). One reason why EKG-MPPI demonstrates superior control performance com-

pared to EnKC is that EKG-MPPI leverages prior information provided by EnKC to perform MPPI with high sample efficiency,

enabling the computation of control inputs that explicitly account for the nonlinear dynamics of the atmospheric system. In

Scenario 7, EKG-MPPI results in larger control inputs than EnKC. A possible explanation is that the difficulty of the control

task varies across target regions. In particular, the target region in Scenario 7, [85,95]× [95,105], is characterized by strong405

wind speeds from the beginning of the simulation. In such regions, achieving the desired control performance is challenging

even for EKG-MPPI, which may obscure the performance difference between EKG-MPPI and EnKC. As potential improve-

ments, developing control methods that operate more robustly than EKG-MPPI in complex environments, or initiating control

actions before wind speeds intensify, could be considered.

For clarity, Figure 5 shows visualizations of the no-control, EKG-MPPI, and EnKC simulations for the target region [85,95]×410

[90,100]. From Figures 5a, 5b and 5c, it can be observed that strong winds occur in the target region in the absence of control.

From 5d, 5e and 5f, EnKC suppresses the wind speed in the target region compared to the no-control case; however, localized

regions of strong wind still remain. From 5g, 5h and 5i, EKG-MPPI achieves stronger wind-speed suppression in the target

region than EnKC.

4.3 Conclusions415

We developed EnKC-guided MPPI (EKG-MPPI), a hybrid control scheme that uses EnKC to obtain a sparse candidate pertur-

bation and then refines it by MPPI using nonlinear forward rollouts. The EnKC output is used to shape the sampling distribution

in MPPI, so that exploration is concentrated around plausible actuator locations and magnitudes instead of relying on unin-

formed sampling.
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Figure 4. For each experiment, we compare the maximum wind speed and the mean input magnitude obtained by EKG-MPPI and EnKC. As

an evaluation metric, we use the percentage difference defined as (EKG−EnKC)/EnKC× 100. A negative value of this metric indicates

that EKG-MPPI achieves a smaller maximum wind speed and mean input magnitude than EnKC, whereas a positive value indicates that

EnKC yields smaller values.

In the Lorenz–96 control simulation experiment, EKG-MPPI reduced extreme-event counts compared with EnKC and420

vanilla MPPI, while requiring no larger (and often smaller) inputs. For example, the number of exceedances decreased from

3293 to 3215 at X ≥ 12.5 and from 1308 to 1176 at X ≥ 13.0 relative to EnKC, and the maximum input decreased from

1.311 to 1.037 (with the mean input decreasing from 1.638×10−4 to 1.187×10−4). In the SQG experiments over eight target

regions, EKG-MPPI also achieved lower maximum wind speeds in the target region than EnKC, while using smaller mean

control magnitudes.425

The current implementation assumes localized actuation (a single or very sparse actuator) and applies the perturbation as

a one-step input within each MPPI rollout, and it does not yet impose hard physical constraints. Future work will address

multi-actuator and multi-step actuation, constraint-aware formulations, and evaluation metrics that explicitly quantify non-

target impacts and robustness to model/observation uncertainty, in addition to improving computational efficiency for higher-

dimensional models.430
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(a) day 1 (b) day 2 (c) day 3

(d) day 1 (e) day 2 (f) day 3

(g) day 1 (h) day 2 (i) day 3

Figure 5. The first, second, and third rows show the time evolution of the wind-speed field for the no-control, EnKC, and EKG-MPPI cases,

respectively. The white rectangle denotes the target region for wind-speed suppression.
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