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25  Abstract

26 Methane is a powerful greenhouse gas contributing significantly to global warming. South Asia is
27 a major methane emission region, yet source-diagnostic isotopic signatures remain poorly
28  constrained, limiting top-down source attribution. To address this gap, we conducted extensive
29  sampling and isotopic analyses of major methane sources in South Asia. Our results reveal
30 substantial deviations of South Asian methane source fingerprints from global means. Methane
31  from C3 biomass burning is more depleted in 8*3C (—30.9+2.2%0) but more enriched in §°H (-
32 201=18%o), while ruminant methane (C3) is strongly depleted in both §*C (—68.7+0.5%o0) and §°H
33 (~343+6%o). In contrast, rice paddy methane is more enriched in §°C (~53.8+0.8%o) and &°H (—
34 31146%o), with their ratios signaling pre-emission oxidation. \Wastewater methane shows enriched
35  8BC (—45.0+2.4%0) and depleted 8H (—350+£10%o) relative to global means, with minimal
36  oxidation or spatial variation. These pronounced regional differences highlight the importance of
37  using regionally constrained source fingerprints in isotope-based source apportionment. A global
38  synthesis further shows that §'3C signatures of biomass burning and ruminant methane are
39  primarily controlled by C3/C4 feedstocks, whereas 52H is relatively insensitive to substrate type.
40  Methane from rice paddies and wetlands exhibits strong latitudinal gradients worldwide.
41  Combining emission inventories with source-specific isotope fingerprints reveals a mismatch with
42  atmospheric methane in South Asia, suggesting an overestimation of rice paddy emissions and/or
43 anunderestimation of other microbial sources. These findings demonstrate the utility of top-down

44  dual-isotope constraints to refine regional methane budgets and mitigation strategies.
45  Keywords: biomass burning, ruminant, rice paddy, wastewater
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47 1. Introduction

48  Mitigating methane emissions is critical for achieving the Paris Agreement 2°C target (e.g.,
49  (Rogelj et al., 2016)). Methane (CHa) is a potent greenhouse gas (GHG) with a 20-year global
50  warming potential 84 times that of an equal mass of CO., contributing ~20% to total global
51 warming (Naik et al., 2023). Despite its significance, the drivers of recent methane increases
52 remain uncertain (Nisbet et al., 2023; Schaeffer et al., 2025), highlighting the need for precise
53 monitoring and effective mitigation strategies. Anthropogenic emissions are major contributors
54 (Bousquetetal., 2006; Zhang et al., 2022; Saunois et al., 2025) and understanding methane sources
55  and sinks is essential for targeted reduction efforts. The tropics, particularly South Asia, account
56  for an estimated ~60% of global methane emissions (Jackson et al., 2020; Feng et al., 2022;
57  Saunois et al., 2025). South Asia is one of the largest and fastest-growing methane emitters, with
58  contributions believed to be primarily from anthropogenic sources (Stavert et al., 2022). The
59  region experiences extensive biomass burning (Kirschke et al., 2013), hosts the world's largest
60  ruminant population (Ganesan et al., 2017), is a major rice producer (Singh et al., 2021) and has
61  substantial waste emissions from the dense population (Chakraborty et al., 2011). However,
62  methane source apportionment and quantification in this region is limited and remain highly

63  uncertain.

64  Methane sources are broadly classified as microbial, combustion and thermogenic (Whiticar,
65  1999). Microbial sources include e.g., wetlands, rice paddies, ruminants, landfills and wastewater
66  (Masson-Delmotte et al., 2021). Combustion sources of methane is believed to be dominated by
67  biomass burning emissions but also include coal combustion, traffic emissions and other
68  combustion processes (Saunois et al., 2025). Thermogenic methane originates from fugitive

69  emissions during fossil fuel extraction, transport and processing (Sherwood et al., 2017; Menoud
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70  etal., 2022). The spatial and temporal variability of these sources, coupled with the atmosphere’s
71  open system, introduces substantial uncertainties in methane estimates (Saunois et al., 2025).
72  Bottom-up estimates of methane emissions remain uncertain due to varying methodologies and
73 biases across different source sectors (Zavala-Araiza et al., 2015; Hristov et al., 2017). Recent
74  satellite-based top-down observations have helped to improve some estimates (Lauvaux et al.,
75  2022; Shen et al., 2023; Cusworth et al., 2024), yet are challenged by dispersed sources such as

76  from ruminants and waste that are distributed through the landscape.

77  Estimates of methane emissions based on isotopic constraints are promising for fingerprinting the
78  relative source contributions in an intercepted receptor setting, yet remain limited by uncertainties
79  in both source-specific isotopic signatures and in atmospheric sinks. Moreover, large-scale top-
80  down isotopic observations are lacking. Nevertheless, isotopic analysis can be a powerful tool for
81  not only the source attribution but also for quantification of their reaction sinks (Fischer et al.,
82  2008; Bock et al., 2017; Dyonisius et al., 2020; Nisbet et al., 2023). However, methane isotopic
83  studies in South Asia remain highly limited (Rao et al., 2008; Metya et al., 2022), with isotopic
84  source signatures nearly completely lacking (Metya et al., 2022). Establishing regional isotopic
85  source signatures is critical for achieving source apportionment and reducing uncertainties in

86  estimates of methane emissions.

87 In this study, we analyzed §'*C and §H signatures from four key methane emitting sources in
88  South Asia, namely biomass burning, ruminants, rice paddies and wastewater. By evaluating
89  isotopic variability across emission processes, sampling techniques and geographic regions, this
90  work aims to constrain methane isotopic source signatures and thereby facilitate subsequent top-

91  down isotope-based source apportionment to reduce uncertainties in methane emissions. A global
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92  review of methane isotopic values was further conducted to compare with those of these herewith

93  constrained South Asian sources.
94

95 2. Materials and Methods
96  2.1. Gaseous and aqueous methane source sampling

97  Cattle ruminant samples in South Asia were collected using a custom-built sampling instrument.

98  Sample air was passed through magnesium perchlorate (CAS# 10034-81-8, Alfa Aesar) to

99  remove moisture, into an electrically-powered membrane pump (KNF Neuberger N86), and out
100 into two cylindrical 1000 mL borosilicate 3.3 glass flasks (Normag, Germany) with axial inlet and
101  outlet, connected in series. The inlet and outlet of each flask were sealed with a Normag needle
102 valve with high-diffusion-minimized sealing. Tubing was made of PTFE and Synflex(R) and
103 connections were Swagelok(R) and UltraTorr (TM). The flasks were pre-conditioned with clean
104 air to eliminate contaminants. Before sampling, the flasks were conditioned in a 4-step protocol:
105  Evacuated at high vacuum at 50°C for 12h, purged with nitrogen at 50°C for 2h, again evacuated
106  at high vacuum at 50°C, for 3h, and finally filled with pre-conditioned clean air to a pressure of
107 1.3 bar (absolute). Sampling was conducted by positioning a funnel 2-5 cm from the cattle's
108  mouths to capture their breath. The sample air was pumped through the flasks for 5 min, then
109  closing the outlet valve and letting pressure build up to 1.7 bar (absolute), after which the flask
110  valves were closed. Finally, flask in- and outlets were sealed with parafilm to prevent

111  contamination from dust etc.

112 For combustion sources, we collected exhaust samples from agricultural crop residue burning in

113 South Asian fields using the same custom-built instrument. Sampling was performed 3-15 cm
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114  from the burning rice paddies. A 0.45 um inline gas filter was placed between the PTFE tubing
115  and the metal tubing to remove aerosols. Each sampling session lasted 5 minutes, with the final

116  flask pressure reaching 1.2 bar (absolute).

117  Samples were also collected to constrain the isotope fingerprints of aqueous microbial sources in
118  South Asia, including rice paddies and wastewater. Rice paddy sampling involved dividing each
119  paddy into four quadrants and taking one to three replicate samples from the center of each
120  quadrant, totaling 4-12 samples per paddy field. For wastewater, three replicate samples were
121  collected from sewage at each location. Before sampling, glass vials (VMR) were rinsed thrice
122 with 125 mL of either rice paddy water or wastewater. Samples were then collected by submerging
123 the vials to mid-depth for 20 seconds until bubbling ceased, followed by an additional five-second
124 hold. The vials were then sealed with a bromine butyl rubber stopper (Apodan Nordic) attached to
125  astring. After sampling, 0.5 mL of saturated ZnCl> solution was added as a preservative, and the
126  vials were crimp-sealed, labeled, and stored at 4 °C in the dark before and after being shipped to

127 Stockholm University for further analysis.

128  Thus, we collected a substantial number of methane samples from the four sources: ruminants,
129  biomass burning, rice paddies and wastewater (see Supplementary Data S1 for details of each
130  sample). Among them, ruminants and biomass burning represent two major sources of gaseous
131  methane, while rice paddies and wastewater are significant atmospheric sources of aqueous,
132 dissolved methane. The ruminant samples were obtained from 6 farms across South Asia, totaling
133 40 samples. For biomass burning, we conducted 4 sampling campaigns in different regions,
134 collecting a total of 17 samples. Rice paddy samples were collected from 18 different rice-growing
135  areas, amounting to 185 samples. Wastewater samples were gathered from 13 sewage treatment

136  plants, totaling 38 samples. The sample distribution is illustrated in Fig. 1, with gaseous methane



https://doi.org/10.5194/egusphere-2026-411
Preprint. Discussion started: 20 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

137  samples from biomass burning and ruminants primarily collected in Bangladesh, while aqueous
138  methane samples from rice paddies and wastewater are distributed across Bangladesh and several
139  densely populated regions of India. The background color of Fig. 1 represents total methane fluxes
140  in 2023, sourced from EDGAR (Crippa et al., 2021), indicating significant methane emissions in

141  South Asia.
142

143 2.2. Analysis of methane mixing ratios and isotopic composition

144  Methane mixing ratios were measured using gas chromatography with flame ionization detection
145  (GC-FID, Agilent Technologies 7890A). For gaseous source samples, methane was extracted from
146  aglass flask using a syringe and injected directly into the instrument. For aqueous source samples,
147  aportion of the liquid was extracted, and helium (He) was introduced. After equilibration, a syringe
148  was used to collect the headspace mixture of helium, methane and other dissolved gases for
149  analysis. Three methane standards with methane concentrations of 1.6 ppm, 80.3 ppm and 250

150  ppm in synthetic air were used for calibration.

151  The equilibrium between the gaseous and aqueous phases was evaluated using Henry’s Law

152 (equation 1):
153 c=kxP (D

154 where c is the concentration of dissolved methane (nmol L), k is Henry’s law constant, and P is
155  the partial pressure of methane. For the calculations: the water volume was 40 mL, the headspace

156  volume was 10 mL, the headspace pressure was 1 atm, the equilibration temperature was 25°C,
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157  the gas constant R was 0.08025 atm-L mol1-K™%, and Henry’s Law constant k for methane at 25°C

158  was 0.0014 mol L™ atm™.

159  Once the methane mixing ratios were determined, gaseous and aqueous source samples were
160  analyzed for §*C and 8%H using gas chromatography isotope ratio mass spectrometry (GC-IRMS;
161  Delta V Plus, Thermo Fisher). Due to variable methane mixing ratios in source samples, two
162  methods were used: pre-concentration (Precon) for diluted samples (Rice et al., 2001) and direct
163  injection, using the GC injector, for concentrated samples. The Precon system was modified with
164  custom-built components to improve isotopic analysis. In this configuration, only liquid nitrogen
165 was used as the cryogen for all traps. CO. and water vapor were first removed with chemical
166  absorbents, followed by Trap 1 for additional purification. Trap 2 (a 1/8” stainless steel tube, 20
167  cmin length, packed with HayeSep D, mesh size ##) was then employed, with sufficient venting
168  through the Precon six-port valve to remove most of the residual oxygen that could interfere with
169  &°H measurements. The sample was subsequently transferred to Trap 3 (a PoraPLOT capillary,
170  0.32 mm internal diameter), and final separation was performed on a 5 m x 0.32 mm PoraPLOT
171  column at—78 °C (dry ice). This procedure ensured effective resolution of the methane peak from
172 any remaining oxygen before conversion in the high-temperature reactor. Any interference by
173 krypton (Kr) in the 3*3C analysis was eliminated by post-column GC separation from the methane-
174  derived carbon dioxide peak (PoraPLOT 7 m x 0.32 mm; (Schmitt et al., 2013)). To match the
175  relatively narrow detection range of the IRMS, syringe dilutions with He were applied. Isotopic

176  values were corrected for instrumental drift and calibrated using standards.

177  Isotope values are reported in d notation, representing the relative deviation of isotope abundance
178  inasample compared to international standards: Vienna Pee Dee Belemnite (V-PDB) for §3C and

179  Vienna Standard Mean Ocean Water (V-SMOW) for §°H. For diluted samples, the two standards
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180  used were both 1.85 ppm, with §13C values of —48.40.3%o and —68.60.3%o, and 5°H values of
181  —63+5%0 and —240+5%. For concentrated samples, $*3C was measured directly using a 100-ppm
182 standard with a 83C value of —43.8%., while 5°H was measured after pre-dilution and corrected
183  using the same approach as for diluted samples. Analytical uncertainties of the reported isotopic
184  composition are 0.09%o for 8'*C and 2.1%o for 8*H. The here constrained isotopic data of the major

185  methane sources in South Asia are summarized in Supplementary Data S1.
186

187  2.3. Determination of isotopic source signatures

188  To determine the isotopic values of the sources, we analyzed the isotopic data for all samples using
189  the Keeling (Keeling, 1958; Pataki et al., 2003) and Miller-Tans (Miller and Tans, 2003) methods.

190  These approaches follow the equations 2 and 3:

191 513Cobs = Cpg X (513Cbg - 513Csource) X + 613Csource (2)

Cobs
192 513Cobs *Cobs — 613Cbg “Cpg = 613Csouree ' (Cobs - Cbg) 3)

193 where c represents the CH4 mixing ratio, and the subscripts obs, bg, and source denote atmospheric
194  observations, background levels, and source contributions, respectively. The Miller—Tans
195  approach, which yielded narrow uncertainties, was used in the main text, while the Keeling plots

196  are provided as additional information in Supplementary Figs. S1-S4.

197  Weemployed Kriging interpolation using the gstat package in R to evaluate the spatial distribution
198  of isotopic values. This geostatistical method estimates values at unsampled locations based on the

199  spatial autocorrelation of observed data, modeled through a fitted variogram. We applied this
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200  approach to interpolate 3°H values of global surface water and representative microbial methane

201  sources (ruminants, wetlands and rice paddies, and waste) for comparative spatial analysis.

202  To calculate methane isotopic source signatures and integrate contributions from multiple sources,
203  we used a combination of statistical approaches. Uncertainty propagation was quantified using
204  Monte Carlo simulations (10,000 iterations), accounting for variability in both isotopic

205 measurements and source fractions.
206

207  2.4. Literature review of isotopic signatures of global methane sources

208 A comprehensive literature review was conducted to compile isotopic source signatures, which
209  were further assessed for major global and regional methane sources (Supplementary Data S2).
210  The review was carefully curated to minimize the influence of individual studies by selecting only
211  a single representative value per region from each publication. Source-specific mathematical

212 approaches were applied, as detailed in the following sections.

213 Inthe final section, we integrated the synthesized isotopic signatures with a range of top-down and
214 bottom-up estimates to evaluate the discrepancies between current emission inventories and
215  isotopic source constraints. Global data were compiled from our extensive literature review (Data
216  S2). Isotopic values for microbial sources were calculated using Monte Carlo simulations,
217  integrating our findings with estimates from Saunois et al. (2025) (Saunois et al., 2025), Ito et al.
218  (2023) (Ito et al., 2023), and the IPCC (Masson-Delmotte et al., 2021) assessment. For South Asia,
219  weincorporated isotopic signatures of rice paddy methane, while for natural wetlands, we retained
220 tropical region values from the global review, as there is no evidence indicating significant

221  methane oxidation in South Asian wetlands. Thermogenic methane isotopic values were sourced

10
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222 from extensive global (Sherwood et al., 2017) and European (Menoud et al., 2022) databases. The
223 South Asian dataset focuses on methane sources across Afghanistan, Bangladesh, India and
224  Pakistan. Thermogenic methane primarily originates from natural gas, coalbed methane, shale gas
225  and other methane emissions associated with fossil fuel extraction, transportation and processing.
226  This thermogenic category also includes minor contributions from biogenic methane present in

227  various mineral deposits, incorporated to facilitate the source analysis of atmospheric methane.
228

229 3. Results and discussion
230  3.1. Methane from agricultural biomass burning

231  The isotopic source signatures of methane from agricultural biomass burning in South Asia was
232 constrained and compared to measurements elsewhere (Fig. 2, Table 1, Supplementary Data S1-
233 S2) to establish robust and representative source end-member values. The §'C and §°H values
234 derived from Miller-Tans plots (Fig. 2A-2B) were —30.9+2.2%0 and —201%18%o, respectively.
235 Keeling plots yielded comparable 8'°C values but slightly more enriched 8°H values
236  (Supplementary Fig. S1). The Keeling plot is mathematically rigorous, whereas the Miller—Tans
237  method is empirical. The Keeling plot requires a more pronounced perturbation against a stable
238  background, while the Miller—Tans method is more sensitive and provides more reliable estimates
239  under weaker perturbations. In this study, we applied the more sensitive Miller—Tans method to
240  account for a wide range of conditions. In these sampling campaigns, methane primarily originated
241  from agricultural crop residue burning of C3 biomass. The linear relationship between &°H versus
242 '3C showed that the isotopic composition was influenced by atmospheric methane, with a gradient

243 reflecting the transition from source to atmospheric background values (Fig. 2C).

11
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244 Tominimize bias from overrepresented datasets in specific regions, our global review consolidated
245  data from each study and region into a single representative value (Fig. 2D and Supplementary
246  Data S2). There appeared to be a significant 5'°C difference between methane emissions from C3
247  and C4 biomass combustion globally, presumably driven by the differing *C content of the
248  feedstocks. By weighting §*3C values according to the global proportions of C3 and C4 vegetation
249 (77% and 23%) (Still et al., 2003), we derived a global biomass-type-weighted mean 5'C value
250  of —25.0+2.1%o. In contrast, the 6°H values of methane from C3 vs C4 biomass burning did not
251  exhibit a clear distinction (Fig. 2E), suggesting that 5°H was not strongly influenced by biomass

252 type. The mean §2H value for global biomass burning methane was —222+39%o.

253 Given that 8'3C variability in methane from biomass burning was influenced by the relative
254  contributions of C3 and C4 biomass, these factors must be carefully considered when
255  characterizing atmospheric-receptor isotopic signatures in specific regions. Based on our previous
256  isotopic source apportionment of elemental carbon (EC) in South Asian atmospheric aerosols, C3
257  and C4 biomass combustion accounted for 90% and 10% of EC, respectively (Dasari et al., 2020).
258  Since EC and methane are co-emitted during combustion, a first approximation is that they have
259  the same proportional contributions. Using the isotopic values measured for C3 combustion in
260  South Asia, the global mean for C4 combustion, and the regional C3/C4 ratio, we derived a C3/C4-
261  weighted 813C value of —29.5+2.0%o for South Asia. In contrast, $*H was not influenced by C3/C4
262  composition and does not require such adjustment. Overall, methane from biomass burning in
263  South Asia was more depleted in 6*C and more enriched in 8°H than the global mean (-

264 25.0+2.1%o).

265  Global wildfire-related methane emissions may be underestimated due to undetected small fires

266  (Zhao et al., 2025), highlighting the need for top-down constraints of biomass burning emissions.

12
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267  Estimate of methane emission from tropical biomass burning spanned a wide range of 14-34 Tg
268  yr ! (Kirschke et al., 2013), making alternative approaches to methane assessments in South Asia
269  particularly important. A recent study reported 5'°C values of CH. from tropical biomass burning,
270  ranging from —12%o to —16%. for grassland fires and —16%o to —28%o for farmland fires (Nisbet et
271  al., 2022), which align with global estimates. In tropical regions, the relative proportions of C3
272 and C4 biomass remain a key determinant of isotopic signatures, while geographic variations have
273 a minor influence. Additionally, combustion conditions and fuel moisture content can influence
274  isotopic signatures, necessitating additional research to refine isotopic source characterization

275  (Vernooij et al., 2022).

276 In South Asia, biomass burning is dominated by agricultural residue combustion and other fire
277  types, such as wildfires and forest fires, and are expected to have similar methane isotopic
278  signatures. Other combustion sources, such as traffic and coal combustion, contribute modestly to
279  methane emissions but exhibit 3'°C signatures of their raw materials similar to C3 biomass (Yao
280 etal., 2022). Improved isotopic characterization of these sources can enhance source attribution.
281  In South Asia, biomass burning emissions displayed more depleted 8*3C and enriched §°H values
282  than global means reported from elsewhere, reflecting regional variations in fuel type and C3/C4
283  biomass composition. Region-specific isotopic endmembers are therefore critical for accurate

284 source apportionment.
285

286  3.2. Methane from ruminants

287  The isotopic source signatures of ruminant methane from South Asia were constrained and

288  compared with such measurements globally (Fig. 3, Table 2, Supplementary Data S1-S2). The

13



https://doi.org/10.5194/egusphere-2026-411
Preprint. Discussion started: 20 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

289  $C and §%H values derived from Miller-Tans plots (Fig. 3A-3B), yielded —68.7+0.5%o (primarily
290  reflecting C3 biomass) and —343+6%o, respectively. Keeling plots yielded comparable §'*C and
291  &%H values (Supplementary Fig. S2). The relationship between §°H and 8'3C showed a clear
292  gradient as the isotopic composition transitions from the source to the atmospheric background

293 (Fig. 3C).

294  Methane isotopic values from global ruminant sources were summarized from the literature (Fig.
295  3D), revealing a notable 5'3C difference between C3 and C4 diets, driven by the distinct *C
296  content of these feedstocks. By weighting 5'*C values according to the global proportions of C3
297  and C4 diets (70% and 30%) from a recent database study (Chang et al., 2019), we calculated a
298  global C3/C4 biomass-weighted mean 3*3C value of —63.8+2.4%o. In contrast, the 5°H values for
299  methane from ruminants globally showed no clear differentiation between C3 and C4 diets (Fig.
300  3E). The global mean 8*H value was —311+46%o, suggesting that 5°H in methane emissions was

301  not strongly influenced by diet composition or rumination processes.

302  Methane emissions from C3-fed ruminants in South Asia (—68.7+0.5%o, Fig. 3A) were more
303  depleted in 6!3C than the global mean (—67.0+3.0%o, Fig. 3D). However, regional variability in
304 C3/C4 feed composition was an equally important factor that must be considered when
305  determining the representative isotopic signature for South Asian ruminants. Based on a database
306  study (Chang et al., 2019), ruminant diets in South Asia consisted of approximately 65% C3 and
307  35% C4 plants. Using the isotopic values measured for C3 diet ruminants in South Asia, the global
308  mean for C4 diet ruminants, and the regional C3/C4 ratio, we calculated a C3/C4-weighted 5'°C
309  value of —63.3%1.1%o for South Asia. In contrast, §°H was not significantly influenced by C3/C4
310 dietary composition and does not require adjustment. After accounting for the C3/C4 feed ratio,

311  the 8'3C signatures of ruminant methane in South Asia were comparable to the global mean. In

14
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312 contrast, §°H signatures showed a substantial discrepancy, with depletion exceeding by 32%o in
313  South Asia compared to the global mean, underscoring the importance of determining and using

314  regionally-constrained source fingerprints in isotope-based source apportionment studies.

315  Recent studies have indicated that biogenic methane emissions have increased in the tropics, with
316  considerable emissions from agricultural activities such as ruminant livestock farming and rice
317  cultivation (Schaefer et al., 2016). South Asia, home to the world's largest ruminant stock, is
318  potentially one of the major contributors to these emissions (Ganesan et al., 2017). Isotopic source
319  fingerprinting to characterize ruminant methane emissions in the tropics and South Asia offers a
320  promising approach to place quantitative constraints on the importance of ruminant and other
321  sources. Isotopic source signatures must be carefully adjusted based on regional dietary
322 compositions and environmental conditions, as the prevalence of C4 vegetation in tropical regions
323 results in more enriched 5!°C values in some areas, such as —57%o in Kenya (Nisbet et al., 2022),
324 =52 to —57%o in Zimbabwe (Brownlow et al., 2017), —60 to —63%o. in Australia (Lu et al., 2021),
325 and —65%o in sub-Saharan Africa (Chang et al., 2019). Additionally, methane from ruminants is
326 primarily produced in the rumen through enteric fermentation and then exhaled (Hook et al., 2010),
327  but cattle are not the only ruminants contributing to methane emissions. Other species, such as
328 buffalo, sheep, and goats also play a significant role. Incorporating these additional ruminant
329  sources may help develop a more comprehensive isotopic characterization. Ruminant methane
330  showed similar 5'C source signatures globally but displayed distinct °H values in South Asia
331 that deviate from the global mean. Taken together, also for the ruminant releases, isotope-based

332 source apportionment of atmospheric methane should employ region-specific endmember values.

333
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334  3.3. Methane from rice paddies

335  The isotopic signatures of methane from South Asian rice paddies were quantified and compared
336 with global values (Fig. 4, Table 3, Supplementary Data S1-S2). The 5'C and §°H derived from
337  Miller-Tans plots were —53.8+0.8%0 and —311+6%o., respectively (Figs. 4A-B). While Keeling
338 plots exhibited a poor linearity and may be less reliable, they yielded even more enriched *3C and
339 §°H values (Supplementary Fig. S3). Alternative statistical approaches, quantiles, arithmetic
340 means, and concentration-weighted means, also produced more enriched signatures than the
341  Miller-Tans method (Figs. 4D-E). Among them, the concentration-weighted mean (5*C=-
342 45.3£12.3%0, 5°H=-250+71%o) likely reflected methane dissolved in floodwater. A significant
343 linear relationship between 8*3C and §H in rice paddy water (Fig. 4C) was consistent with isotopic
344  enrichment from methane oxidation by methanotrophic bacteria (Schaefer and Whiticar, 2008).
345  However, diffusion through floodwater accounts for only 1-2% of total methane emissions from
346  rice paddies, whereas ~90% is transported via plant-mediated pathways (aerenchyma) and 8-9%
347  through ebullition (Cicerone and Shetter, 1981; Schiitz et al., 1989; Smartt et al., 2016). Emissions
348  via plant-mediated transport and ebullition are minimally affected by pre-emission oxidation,
349  while the diffusion pathway is more susceptible to isotopic enrichment through oxidation.
350  Therefore, the Miller—Tans values likely best represented the unoxidized, source-specific isotopic

351  signature of rice paddy methane.

352 The global compilation of 83C and 8°H values of methane emissions from rice paddies and
353  wetlands revealed similar isotopic signatures of these two aqueous sources (Figs. 4F-4G). The
354  global mean §'3C and 5%H values for rice paddies were —59.8+5.3%o and —324+18%o, respectively,
355  while these for wetlands were —60.0+7.6%0 and —309+49%.. Both sources exhibited clear

356 latitudinal trends, with more enriched isotopic signatures in tropical regions and more depleted
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357  values in boreal zones. These patterns were consistent with previous observations, which attributed
358  the depletion in boreal wetland $*3C to reduced oxidation and the absence of C4 vegetation (France
359 etal.,, 2022; Brownlow et al., 2017; Tyler et al., 1988; Fisher et al., 2017; Ganesan et al., 2018). In
360  tropical and temperate zones, 53C values for rice paddies and wetlands were nearly identical.
361  However, due to the absence of rice paddies in boreal regions, the global mean §*3C value for rice
362  paddy methane appeared slightly more enriched compared to that from wetlands. Conversely,
363  global mean &°H value was slightly more depleted, potentially reflecting data availability biases,
364  as boreal wetlands exhibited the most depleted °H values. Methane from South Asian rice paddies
365  (Miller-Tans values) was notably more enriched in §*3C compared to the global mean, while §°H
366  values slightly enriched than global mean. This enrichment was consistent with previous regional
367 measurements (e.g., 8:°C =—54.3%o0 and —57.2%o; (Rao et al., 2008)) and might reflect enhanced

368  pre-emission oxidation under South Asian field conditions.

369  Methane formation in rice paddies and wetlands primarily occurs via acetoclastic (acetate
370  fermentation) and hydrogenotrophic (CO- reduction with H,) pathways. The hydrogenotrophic
371  pathway typically yields methane with more depleted 5'°C values, whereas acetoclastic
372 methanogenesis produces methane with relatively enriched 5'°C values (Whiticar et al., 1986).
373  The dominant pathway varies with substrate availability, temperature, and redox conditions across
374  wetland and lake types. In wetlands, methane is also emitted through plant-mediated transport
375  (~30%-90%; more than 90% in some studies), ebullition (up to ~60%; more than 90% in non-
376  plant systems), and diffusion (up to ~30%) (Van Der Nat and Middelburg, 1998; Ding et al., 2002;
377  Jeffrey et al., 2019; Villa et al., 2020; Ma et al., 2017), similar to rice paddies but with varying
378  pathway contributions. Both methane source pathways and oxidation processes influence the

379  isotopic composition of these aquatic emissions, although the extent of these effects remains
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380 uncertain and requires further study. Given the broad spatial coverage of our dataset, the Miller—
381  Tans values for rice paddy methane reflected minimally oxidized isotopic signatures and were
382  considered regionally representative. In contrast, isotopic values for wetland methane require
383  further evaluation; currently, literature-based values from tropical regions are recommended.
384  Given that approximately half of global methane emissions originate from aquatic ecosystems
385  (Rosentreter et al., 2021) and South Asia accounts for ~20% of global rice production (Ganesan et
386 al., 2017), applying region-specific isotopic source signatures is essential for accurately

387  constraining methane emissions in South Asia.
388

389  3.4. Methane from wastewater

390  The isotopic source signatures of methane were constrained from South Asian wastewater and
391  compared with global wastewater sources (Fig. 5, Table 4, Supplementary Data S1-S2). The §*3C
392 and &°H values derived from Miller-Tans plots (Figs. 5A-5B), yielded —46.4+1.2%0 and
393 —355+5%, respectively. Although Keeling plots exhibited poor linearity and may be less reliable,
394 they yielded similar 5!3C and enriched §°H values (Supplementary Fig. S4). There was no clear
395  relationship between §'°C and &°H for methane in wastewater (Fig. 5C). The concentration
396  gradient suggested minimal oxidation, indicating that degradation processes prior to release were
397 limited for wastewater methane. The methane isotopic signatures were compared for isotopic
398 quantiles, arithmetic means and concentration-weighted means (Figs 5D-5E). The median- and
399  concentration-weighted means aligned closely with the values obtained from Miller-Tans plots,

400  further supporting their reliability.
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401 A global review of 83C and §%H values was conducted for methane emissions from waste sources
402  (Fig.5F-5Q), i.e., wastewater, landfills and other sources. The results indicated minor differences,
403  suggesting that 83C and 8°H signatures were not significantly distinct among various waste
404  sources. Methane from global waste sources had mean 5'C and §°H values of —54.0+5.4%o and —
405  295+18%., respectively. Slight differences existed between methane emissions from wastewater
406  and landfills, with wastewater showing more enriched §*3C and slightly more depleted 6H values.
407  Other sources, such as composting, biogas fermentation and other organic waste decomposition
408  (Lu et al., 2021; Bakkaloglu et al., 2022), exhibited more dispersed and irregular patterns.
409  Nonetheless, our findings showed that methane isotopic signatures from waste sources were
410  consistent globally, which facilitated isotopic source apportionment. This similarity may be
411  attributed to similar methane production mechanisms across these sources. Additionally, the
412 narrow range of 5'°C values for global waste methane suggested minimal latitudinal variation,
413 making further differentiation unnecessary. However, in South Asia, methane from wastewater

414  was more enriched in 8*C and depleted in 5°H compared to the global mean values.

415  Methane emissions from waste sources were estimated to contribute approximately 12% of global
416  anthropogenic emissions (Saunois et al., 2025). In South Asia, landfill methane emissions were
417  particularly significant (Chakraborty et al., 2011), and atmospheric data also suggested that the
418  waste sector played a key role in regional methane emissions, as supported by 5*C constraints
419  (Metya et al., 2022). Emissions from waste sources were also influenced by a range of factors,
420  including microbial communities, temperature, pH, the CH4/Oz ratio, nutrient levels and inhibitory
421  chemicals (Polag et al., 2015). Additionally, studies indicated that the operational status of landfills
422 (active or closed) can influence the carbon isotopic signature (Bakkaloglu et al., 2022). However,

423 our global review showed only minor distinctions among various waste sources, suggesting that
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424  the isotopic signatures we measured in South Asia should be representative for the region. Further
425  exploring various factors may improve our understanding of methane emissions from the waste
426  sector. Although isotopic signatures of methane from waste sources showed limited variability
427  globally, values in South Asia deviated significantly from the global mean. This highlights the
428 need for region-specific isotopic endmembers also for wastewater in methane source

429  apportionment studies.
430

431  3.5. Geographical distribution

432 There are geographic variations in methane isotopic compositions across the globe for any source
433  class due to a combination of environmental factors and source materials. The isotopic signatures
434  of microbial methane vary across regions due to multiple factors, including differences in raw
435  materials, methanogenic pathways (Whiticar et al., 1986; Conrad, 2005), and the methane
436  oxidation by methanotrophic bacteria. These factors are essential to consider and suggests that
437  region-specific and sometimes system-specific isotope source fingerprinting are necessary to
438 facilitate accurate isotope-based source apportionment. Previous studies identified correlations
439  between methane isotopic values and regional environmental factors (Sherwood et al., 2017;
440  Douglas et al., 2021). Building on our isotopic data and a comprehensive literature review, we
441  investigated the geographic distribution of the isotopic signals of microbial methane in South Asia

442  and worldwide.

443 The geographical distribution of methane isotopic signatures in South Asia was assessed for two
444 microbial sources: rice paddies and wastewater (Fig. 6). Regional Miller—Tans-derived values for

445  rice paddy methane showed substantial variability (Fig. 6A), with similar signatures in western
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446 India, the Indo-Gangetic Plain (IGP), and Bangladesh, but more depleted values in southern and
447  eastern India. The enrichment in both 8*3C and §2H (Fig. 4C) suggested that pre-emission oxidation
448  was the dominant driver of this spatial variation. Given that rice cultivation was concentrated in
449  the IGP and Bangladesh (Gumma, 2011), the production-weighted means of Miller-Tans values
450  (88C=-45.5+2.5%0 and 8°H=—266+17%0) represented pre-oxidation signatures of floodwater
451  methane, though partial oxidation and associated fractionation may still be present. More enriched
452 production-weighted concentration-weighted means (8*C=-41.747.5%0 and §*H=-236+45%o)
453  reflected the general oxidation level. Although diffusion contributes only ~1-2% of rice paddy
454  methane emissions, these fractionation patterns may offer insights for wetlands, where diffusion
455  accounts for a larger share (5-30%). Nevertheless, the overall Miller—Tans values (8*C=—
456  53.840.8%0 and 8°H=-311+6%0; Fig. 4A) were minimally influenced by oxidation and best

457  represented the unaltered, source-specific isotopic signature of rice paddy methane.

458  Wastewater methane isotopic signatures exhibited minimal regional variation, with India and
459  Bangladesh showing similar 5!C values (Fig. 6B). Pre-emission oxidation of wastewater methane
460  was negligible (Fig. 5C). To better represent regional emissions, we applied population-weighted
461  averaging, assuming similar per capita methane production across areas, yielding §3C=-

462 45.0+2.4%o0 and 5°H=-35010%o.

463  Our global synthesis revealed pronounced latitudinal variations in the isotopic signatures of
464  methane from wetlands and rice paddies (Figs. 4F—4G). Beyond the effects of oxidation and
465  vegetation type, regional water conditions may also influence the hydrogen isotopic composition
466  of microbial methane. To investigate this, we compared the global distributions of 5°H in surface
467  water (H20) and microbial methane (Fig. 7). Surface water isotopic data were sourced from the

468 literature (Nan et al., 2019; Global Network of Isotopes in Precipitation (GNIP); Halder et al.,
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469  2015), and microbial methane 6°H values were derived from our dataset and the global review.
470  Global microbial methane 3°H exhibited a moderate correlation with surface water 8°H (Fig. 7),
471  reflecting similar regional patterns. This correlation was particularly pronounced in North America.
472 Hydrogen atoms in surface water likely served as a source for microbial methane, contributing to
473  the observed spatial similarities in isotopic signatures. Among microbial sources, §°H values
474  varied by source category: ruminants exhibited the most depleted isotopic values, followed by
475  waste, while rice paddies and wetlands were relatively more enriched in isotopic composition. In
476  tropical regions, microbial methane 3°H values were more depleted than global mean values,
477  potentially indicating unique microbial and/or environmental processes that require further
478  investigation. Variations across microbial sources mainly stem from differences in

479  methanogenesis, with each source maintaining internal consistency.

480  Latitudinal variations in aquatic methane 6?H (from rice paddies and wetlands) appeared to be
481 influenced by both water isotopic composition and pre-emission oxidation. In South Asia, 5'°C
482 and &%H enrichment in rice paddies methane (Fig. 4C) provided clear evidence of oxidation.
483  Additionally, the latitudinal patterns of aquatic methane 8°H closely mirrored those of surface
484  water 8°H (Fig. 7C; Figs. 4F—-G), suggesting both factors may contribute. Similarly, ruminant
485  methane exhibited parallel 3°H trends with surface water across latitudes but showed minimal
486  oxidation, as reflected by depleted 5°H values (Fig. 7B) and a narrow 82H range globally (Fig. 4G),
487 likely due to direct atmospheric release. In contrast, waste sources showed minimal §°H
488  enrichment (Fig. 7D) and narrow 8*3C and 82H distributions globally (Figs. 5F-5G), suggesting
489  limited impacts from water sources and oxidation. In comparison, biomass burning methane
490  exhibited a consistently narrow global ?H range (Fig. 2E), as it was minimally influenced by

491  surface water and was emitted directly into the atmosphere without oxidation.
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492  Data scarcity in many regions limited the development of a comprehensive global distribution map
493  (Fig. 7). Some studies supposed that 5°H values provided weaker constraints on methane isotopic
494  sources compared to 3*3C values (Nisbet et al., 2023), resulting in fewer studies focusing on 52H.
495  Nevertheless, other research indicated correlations between the 3?H of surface water (and
496  precipitation) and the °H of aquatic methane sources in certain regions (Douglas et al., 2021). Our
497  results indicated that 5°H followed predictable trends shaped by surface water isotopic composition
498  and microbial processes. The correlation remained valid on a global scale (Fig. 7), though it was
499  weaker, as numerous factors collectively influenced the isotopic signatures of each microbial
500 source. Therefore, incorporating 3?H into isotopic source apportionment can enhance our
501 understanding of the factors driving the rapid rise in global methane concentrations. Despite
502  progress, studies on methane isotopic source signatures remain incomplete, with significant data
503  gaps across many regions. This study alleviated some of these gaps for South Asia, contributing
504  to the required source fingerprint data for isotope-based source apportionment of airshed-receptor

505  methane.
506

507 4. Summary of methane isotopic signatures in South Asia and globally

508  The extensive new source-isotope datasets were combined with earlier studies to yield updated
509 dual-isotope endmember databases for South Asia and the globe (Fig. 8 and Table 5). Methane
510 isotopic signatures for several sources differed in South Asia relative to their global means.
511  Biomass burning and ruminant emissions in South Asia, both primarily associated with C3
512 biomass, exhibited more depleted 5*3C values than global means (Fig. 8A). Conversely, methane
513 from rice paddies and wastewater displayed more enriched 83C values than global means. For

514  &°H, methane from biomass burning and thermogenic sources in South Asia was more enriched
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515 than global means (Fig. 8B). Among microbial sources, ruminants and wastewater were more
516  depleted in 8°H, while rice paddies were more enriched than global values. The 3°H versus °C
517  comparisons between South Asian and global methane sources provided a two-dimensional
518  perspective (Fig. 9). While South Asian sources generally aligned with global categories, they
519  exhibited distinct deviations. South Asian isotopic signatures showed a narrower distribution,
520  whereas global isotopic signatures displayed greater variability. Among microbial sources, South

521  Asian isotopic signatures appeared tighter constrained than their global counterparts.

522  Based on previous bottom-up and top-down studies, emissions-weighted microbial methane
523 isotopic signatures in South Asia ranged from §3C=-54.6+1.2%0 and §*?H=-323+8%o (Ito et al.,
524 2023) to 83C=-57.1+1.8%o0 and 5*°H=-329+11%, (Saunois et al., 2025). These 5'°C values are
525  notably more enriched than the global compiled one (8*C=-60.2+4.8 and §*H=-308+32)
526  (Masson-Delmotte et al., 2021; Saunois et al., 2025), largely due to substantial rice paddy and
527  waste contributions. Considering the 8C of atmospheric methane in South Asia (e.g.,
528  —47.41+0.94%o in India (Metya et al., 2022)) and accounting for isotopic fractionation during OH
529  oxidation (approximately 6-7%. in 6**C (Whiticar and Schaefer, 2007; Fischer et al., 2008;
530  Schwietzke et al., 2016)), the inferred isotopic values of the total source approach or even fall
531  below the microbial estimates. This discrepancy suggests biases in current emission inventories,
532 likely overestimating rice paddy emissions and underrepresenting other microbial sources. These
533 uncertainties highlight the need for dual-isotope measurements at receptor sites to better constrain

534 methane budgets in South Asia.

535
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536 5. Concluding discussion

537  Methane emission estimates remain considerably uncertain. Some studies attributed recent
538  atmospheric methane increases primarily to microbial sources, including tropical wetlands
539  (Saunois et al., 2025), waste and agriculture (Peng et al., 2022; Michel et al., 2024), while others
540 highlighted contributions from thermogenic and ruminant sources (Chandra et al., 2021). Biomass
541  burning was also proposed as a significant contributor (Zhao et al., 2025). Bottom-up inventories
542  showed large discrepancies, with estimates differing by severalfold (Stavert et al., 2022). In South
543  Asia, reported emissions varied substantially in both magnitude and source composition, from
544  37+3.7 Tg C yr* in the 2000s (Patra et al., 2013) to more recent values of 50.3 Tg C yr* (lto et
545 al., 2023), and 52 Tg C yr ! for top-down (n=6) and 58 Tg C yr* for bottom-up (n=27) (Saunois
546 et al., 2025). Methane emissions in South Asia exhibited pronounced seasonal variations in both
547  mixing ratios and isotopic composition (Rao et al., 2008; Tiwari et al., 2020; Metya et al., 2022;
548  Guha et al., 2018), reflecting dynamic shifts in source activity that are difficult to capture using
549  conventional models. Given these uncertainties, dual-isotope top-down approaches offer an

550 independent and valuable tool for constraining regional methane budgets.

551  Comparisons of methane isotopic signatures between South Asian and global means revealed
552 significant distinction (Figs. 8-9), underscoring the need for region-specific isotopic data to ensure
553 accurate source apportionment. 3'3C signatures reflected feedstock characteristics, distinguishing
554 sources such as biomass burning and ruminants based on C3/C4 biomass ratios. Similarly, aquatic
555  methane §*3C was influenced by organic precursors, with South Asian sources showing enriched
556  values compared to other regions. Globally, 2H in methane appeared linked to surface water and
557  organic interactions, but highly depleted ?H observed in South Asia suggests different microbial

558  processes requiring further investigation. Additionally, pre-emission oxidation significantly

25



https://doi.org/10.5194/egusphere-2026-411
Preprint. Discussion started: 20 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

559  affected methane from rice paddy water in South Asia, warranting more research to better

560  understand this process and similar processes in other aqueous sources.

561  The availability and accuracy of isotopic source signatures was critical for constraining methane
562  sources (Schwietzke et al., 2016). At present, isotopic measurements of tropical methane sources
563  remain scarce, particularly for &2H, still limiting their use in atmospheric top-down source
564  constraints. While 8*C-based constraints are growing in applications globally (Nisbet et al., 2023),
565  &°H constraints have been underutilized due to data limitations and unclear geographical
566  distribution. Our study enhances the isotopic source fingerprint database, especially by adding 5°H

567  data for sources in South Asia.

568  While isotopic source signatures of major methane sources in South Asia are now improved,
569  estimating the isotopic composition of well-mixed atmospheric methane remains challenging due
570  to potential fractionation during oxidation (e.g., OH and Cl radicals). Existing models applied fixed
571  isotopic fractionation factors, yet these vary considerably across studies (Whiticar and Schaefer,
572 2007; Fischer et al., 2008; Rice et al., 2016; Schwietzke et al., 2016; Schaefer et al., 2016; Bock
573  etal., 2017; Sherwood et al., 2017; Douglas et al., 2021; Nisbet et al., 2023; Michel et al., 2024;
574  Thanwerdas et al., 2024; Fujita et al., 2025). Despite these uncertainties, background methane
575  mixing ratios and isotopic compositions in South Asia and globally remain relatively stable,
576  indicating that a steady-state approach, incorporating region-specific isotopic fingerprints, may

577  help reconcile inconsistencies in current methane budget estimates.

578
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Fig. 1. Map of collected methane source samples for (A) entire South Asia and (B) a close-up

for Bangladesh. The background color represents total methane fluxes in 2023, sourced from

EDGAR (Crippa et al., 2021).
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Fig. 2. Isotopic characteristics of methane from biomass burning in South Asia and globally.
(A) Miller-Tans plot of 3*3C-CHa for South Asia crop residue burning. (B) Miller-Tans plot of
82H-CHy for South Asia crop residue burning. (C) Coupled variation in §*C and §°H. (D) Global
5'3C values of biomass burning methane (C3 vs. C4 biomass, WM=weighted mean of C3 and C4
biomass). (E) Global 5°H values of biomass burning methane. Biomass burning in South Asia

primarily here refer to agricultural wheat crop residue burning. Global review in Supplementary
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Table 1. Isotopic signatures of CHs from biomass burning in South Asia and globally, as

determined by various analytical and statistical methods.

Region Type 313C (%o) 82H (%o) Data/Ref.
Keeling South Asia C3 -31.6£2.7 -186+19 Data S1
Miller-Tans South Asia C3 -30.9£2.2 -201+18 Data S1
South Asia WM of C3/C4*  -29.5+2.0 Data S1
Review Global C3 -27.8+2.7 Data S2
Global C4 -15.7+2.4 Data S2
Global C3&C4 -21.7+2.1 Data S2
Global WM of C3/C4 -25.0+2.2 Data S2
Global Mean —222+39 Data S2

*The weighted mean (WM) 6-values for biomass burning methane in South Asia are based on a

C3:C4 ratio of 0.9:0.1, derived from an EC isotopic source apportionment study (Dasari et al.,

2020). For the global biomass burning methane, the WM is calculated using a C3:C4 ratio of

0.77:0.23, based on the global distribution of C3 and C4 vegetation (Still et al., 2003).
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Fig. 3. Isotopic characteristics of methane from ruminants in South Asia and globally. (A)
Miller-Tans plot of 5:*C-CHa for South Asia ruminants. (B) Miller-Tans plot of §?H-CHa for South
Asia ruminants. (C) Coupled variation in 5'*C and §°H. (D) Global 3C values of ruminant

methane (C3 vs. C4 diets; WM=weighted mean of C3 and C4 diets). (E) Global §°H values of
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607 Table 2. Isotopic signatures of CH4 from ruminants in South Asia and globally, as

608  determined by various analytical and statistical methods.

Region Type 313C (%o) 52H (%o) Data/Ref.
Keeling South Asia C3 —71.0£3.8 -342+13 Data S1
Miller-Tans South Asia C3 —68.7+0.5 —343t6 Data S1
South Asia WM of C3/C4* —-63.3+1.1 Data S1
Review Global C3 —67.0+£3.0 Data S2
Global C4 -53.2+3.1 Data S2
Global C3&C4 -61.3+6.4 Data S2
Global WM of C3/C4 —-63.8+2.4 Data S2
Global Mean -311+46 Data S2

609  *The weighted mean (WM) &-values for ruminant methane in South Asia are based on a C3:C4
610 dietary of 0.65:0.35, reflecting the regional distribution of ruminant feed (Chang et al., 2019). For
611  the global ruminant methane, the WM is calculated using a C3:C4 ratio of 0.7:0.3, based on the

612  global mean feed composition (Chang et al., 2019).

613
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615  Fig. 4. Isotopic characteristics of methane from rice paddies South Asia and globally. (A)

616  Miller-Tans plot of 5*C-CH, for South Asia rice paddies. (B) Miller-Tans plot of §?H-CHs for

617  South Asia rice paddies. (C) Coupled variation in §*3C and §°H. (D) Quantiles, arithmetic mean,

618 and concentration-weighted mean of §*C-CH4 for South Asia rice paddies. (E) Quantiles,
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619  arithmetic mean, and concentration-weighted mean of §?H-CH, for South Asia rice paddies. (F)
620  Global 8*3C values of methane from rice paddies and for comparison also from wetlands. (G)
621  Global 5°H values of methane from rice paddies and for comparison also from wetlands. Global

622  review in Supplementary Data S2.

623
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624  Table 3. Isotopic signatures of CH4 from rice paddies and wetlands in South Asia and

625  globally, as determined by various analytical and statistical methods.

Region Type S13C (%o) 52H (%o0) Data/Ref.
Keeling South Asia -39.7£1.7 —212+14 Data S1
Miller-Tans  South Asia -53.8+£0.8 -311+6 Data S1
Data analysis  South Asia Median -41.4 -221 Data S1
Rice paddies ~ South Asia Mean —40.4+8.0 —215+58 Data S1
South Asia WM of conc* —45.3+12.3 —250£71 Data S1
South Asia WM of geoconc  —41.7£7.5 —236+45 Data S1
South Asia WM of geo MT —45.5+2.5 —266+17 Data S1
Review Global Mean -59.845.3 -324+18 Data S2
Rice paddies  Tropical Mean —-58.0£5.2 -313£1 Data S2
Temperate  Mean —63.5+3.4 —329+21 Data S2
Review Global Mean —60.0+7.6 —309+49 Data S2
Wetlands Tropical Mean -57.1+7.0 —295+52 Data S2
Temperate  Mean —60.516.9 -302+15 Data S2
Boreal Mean —66.6+5.4 -342+83 Data S2
Review Global Mean -60.0+7.2 -314+42 Data S2
All Tropical Mean —57.316.6 (m=47) —-301+41 (m=4) Data S2
Temperate  Mean —-61.1+6.4 —314+22 Data S2
Boreal Mean —66.6+5.4 —342+83 Data S2

626  **“WM of conc” refers to the concentration-weighted mean d-values of rice paddy methane in
627  South Asia. “WM of geo conc” represents the geographically weighted mean, where each region's
628  contribution is based on its concentration-weighted mean. “WM of geo MT” denotes the

629  geographically weighted mean derived from Miller—Tans method results for each region.

630
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Fig. 5. Isotopic characteristics of methane from South Asian wastewater and global waste
sources. (A) Miller-Tans plot of 8*C-CH. for South Asia wastewater. (B) Miller-Tans plot of

82H-CHy for South Asia wastewater. (C) Coupled variation in 8*C and §°H. (D) Quantiles,
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635  arithmetic mean, and concentration-weighted mean of 5*3C-CH, for South Asia wastewater. (E)
636  Quantiles, arithmetic mean, and concentration-weighted mean of §°H-CHs4 for South Asia
637  wastewater. (F) Global 8!°C values of methane from waste sources. (G) Global 3°H values of

638  methane from waste sources. Global review in Supplementary Data S2.

639
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Table 4. Isotopic signatures of CH4 from waste sources in South Asia and globally, as

determined by various analytical and statistical methods.

Region Type d313C (%o) 8°H (%o) Data/Ref.
Keeling South Asia C3 -46.3+1.1 -338+29 Data S1
Miller-Tans South Asia C3 —46.4£1.2 -355+5 Data S1
Data analysis ~ South Asia Median -46.0 -353 Data S1
Wastewater South Asia Mean -45.6+3.1 -316+87 Data S1
South Asia WM of conc* -46.3+11.8 —349+89 Data S1
South Asia WM of pop MT —45.0+2.4 -350£10 Data S1
Review Global Mean -54.045.4 —295+18 Data S2
Wastewater Mean -51.5+£3.8 -300£22 Data S2
Landfills Mean -55.7+4.3 —286+22 Data S2
Others Mean -53.7+6.3 —299+13 Data S2

*WM of conc” refers to the concentration-weighted mean 6-values of wastewater methane in

South Asia. “WM of pop MT” denotes the population-weighted mean (weighted with the

population of each province), calculated from the Miller—Tans method results for each region.
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weighted means, while those for wastewater are population-weighted means.
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Fig. 6. Geographical distribution of methane isotopic signatures from two microbial sources
in South Asia. (A) Rice paddies. (B) Wastewater. Rice cultivation data is derived from MODIS

multitemporal data (Gumma, 2011). The isotopic signatures for rice paddies represent cultivation-
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Fig. 7. Global distribution of 82H in surface water and in microbial methane. (A) &°H
distribution in surface water systems, based on isotopic data from the literature (Nan et al., 2019;
Global Network of Isotopes in Precipitation (GNIP); Halder et al., 2015). (B) &°H distribution in
microbial methane from ruminants. (C) 5°H distribution in microbial methane from rice paddies
and wetlands. (D) §%H distribution in microbial methane from waste. The isotopic and geographic
data of microbial methane are compiled from this study (South Asia) and the literature - global
(Sherwood et al., 2017) and European (Menoud et al., 2022). Grid cells without any observation

are marked with diagonal lines to indicate interpolation-only areas.
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663  Fig. 8. Isotopic signatures of major methane sources in South Asia and globally. (A) §**C

664  signatures. (B) 8°H signatures.

665

40



https://doi.org/10.5194/egusphere-2026-411
Preprint. Discussion started: 20 February 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere\

666  Table. 5. Isotopic signatures of major methane sources in South Asia and globally. n
667  represents to the number of samples analyzed in this study, while m indicates the number of
668 literature sources summarized, where isotopic data from a specific region in a single study are
669  compiled as a single entry. x refers to the number of isotopic data from the literature. Raw data,

670 literature review and corresponding references are provided in Supplementary Data S1-S2.

Category Source Region SBC (%o) 8?H (%o)
Combustion Biomass burning  South Asia -30.9+2.2 (n=17; 100% C3) —-201+18 (n=15)
—29.5+2.0 (90% C3)
Biomass burning  Global —25.0+£2.2 (m=19; 77% C3)  —222+39 (m=6)
Microbial Ruminants South Asia  —68.7+0.5 (n=37; 100% C3)  —343+6 (n=11)
—-63.3£1.1 (65% C3)
Ruminants Global —63.8+2.4 (m=36; 70% C3)  —311+46 (m=11)
Rice paddies South Asia  -53.8+0.8 (n=90) -311+6 (n=90)
Rice paddies Global —59.845.3 (m=20) —324+18 (m=6)
Wetlands Tropical —57.3+6.6 (m=47) -301+41 (m=4)
Wetlands Global —60.0£7.6 (m=94) -309+49 (m=12)
Wastewater South Asia —45.0+2.4 (n=27) —350+10 (n=27)
Waste Global —54.0+5.4 (m=69) —295+18 (m=29)
Compiled South Asia -57.1+1.8 -328+11
Compiled Global —60.2+4.8 —308+32
Thermogenic  Fossil fuels South Asia  —45.1+10.9 (x=83) —179+19 (x=28)
(mainly) Fossil fuels Global —-44.8+10.6 (x=8128) —196+50 (x=2878)
671
672
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678  Data availability

679  The dataset will be hosted and maintained by a database management at the Bolin Centre for
680  Climate Research at Stockholm University. The dataset is accessible at the Bolin Centre Database

681  (https://bolin.su.se/data/draft?id=14278&token=f0770bfd-210f-4a51-a9bd-a355467058a4).

682
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