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Abstract. The behaviour of the pressure drag generated by trapped lee waves and upward-propagating internal waves in

non-hydrostatic, stratified flow over a mountain ridge is investigated as a function of nonlinearity. A two-layer atmosphere is

adopted, with piecewise-constant static stability and a uniform wind profile. The lower layer, between the surface and z = H ,

has stability N1, and the upper layer extends indefinitely above with stability N2, where N2 < N1. Simulations are performed

with a numerical model suitable for flows ranging from the microscale to the mesoscale, and nonlinearity is varied solely by5

increasing the mountain height. Linear reference values are obtained from a previously established linear framework for two-

layer trapped and propagating mountain-wave drag. Two configurations are considered: (i) one in which trapped-lee-wave drag

dominates over the drag due to propagating waves, and (ii) another in which the two components are of comparable magnitude.

A set of diagnostics is introduced to clarify the physical processes associated with increasing nonlinearity. The results show

that, as nonlinearity increases, the evolution of the total drag and its components is controlled not only by the amplitude of the10

trapped lee waves, but above all by the waveguide guiding efficiency. This efficiency determines whether the energy extracted

from the incident flow through its interaction with the orography is largely retained and recycled within the trapped mode,

or instead is transferred earlier to propagating components and to processes associated with detuning and saturation. These

findings may have implications for drag parametrisation in global climate and weather-prediction models.
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1 Introduction

Orographic internal gravity waves impose a pressure drag on the terrain that excites them. This terrain exerts an equal and

opposite force on the atmosphere (by Newton’s third law) which, because air is a fluid, may be distributed over considerable

vertical and horizontal distances. In most cases, the ridges that generate these waves have typical widths smaller than the

grid spacing of weather and climate models, so they are rarely resolved. For this reason, the drag must be represented by20

parametrisations that specify both its magnitude and its spatial allocation (Stensrud, 2009). Over the past decades, a coherent

framework has been developed for hydrostatic, vertically propagating gravity waves, providing the physical basis for modern

orographic-drag schemes (Phillips, 1984; Shutts and Gadian, 1999). Within this largely linear theory, closed-form expressions

for the total drag can often be derived (Smith, 1979; Phillips, 1984; Teixeira and Miranda, 2006). Most classic studies adopted
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the hydrostatic approximation because mesoscale non-hydrostatic effects are often modest, and the hydrostatic assumption25

greatly simplifies the analysis.

However, as wind speeds increase and/or static stability decreases, parts of the response become distinctly non-hydrostatic.

In the hydrostatic limit, all forced components propagate vertically; under non-hydrostatic conditions, high-wavenumber com-

ponents become evanescent and do not transport momentum upward, whereas longer waves can still propagate and contribute

to drag. If an evanescent layer overlies a propagating layer, strong reflection may trap wave energy, leading to resonance30

and enhanced drag, alongside partial-reflection effects that may also occur under hydrostatic assumptions (Leutbecher, 2001;

Teixeira and Miranda, 2005).

Most atmospheric flows are nonlinear, so it is essential to understand how gravity-wave-induced drag behaves under such

conditions. In the hydrostatic regime, this question has received considerable attention. Lilly and Klemp 1979 solved Long’s

equation to show how finite amplitude and terrain asymmetry can amplify the wave response and the resulting drag. Smith35

1989 reviewed hydrostatic airflow over mountains, proposed drag scalings, and clarified the limits of linear theory for different

topographic profiles. Durran 1990 synthesised key results for drag in linear hydrostatic flow and discussed how atmospheric

structure and finite-amplitude effects modulate it. Olafsson and Bougeault 1996 examined drag enhancement with increasing

nonlinearity and the transition to wave breaking in more realistic profiles. Miranda and James 1992 further showed that, for

nondimensional mountain height Nh0/U ∼O(1), a breaking regime can develop and substantially enhance drag relative to its40

linear reference, even for constant N and U .

By contrast, drag behaviour in non-hydrostatic flows under nonlinear conditions has received less attention. Peltier and

Clark 1983 simulated 2D and 3D nonlinear mountain waves, documenting amplification regimes, harmonic generation, and

transitions to breaking, all with direct implications for drag. Lott and Teixeira 2016 analysed how nonlinear intensification

of trapped-lee-wave modes and their interaction with critical levels modify momentum flux and, consequently, the perceived45

drag as amplitude increases. Vosper 2004 demonstrated that, in boundary-layer inversions, linear theory underestimates wave

amplitudes when horizontal wavelengths are short relative to the terrain width, and that large amplitudes can trigger separation

and rotor formation, implying enhanced drag and significant regime shifts as nonlinearity grows. Doyle et al. 2011, drawing

on strongly nonlinear T-REX simulations, reported how wave intensification and breaking, including trapped-wave and rotor

patterns, modulate momentum fluxes and drag across a range of forcing strengths. Nevertheless, a comprehensive study that50

explicitly maps drag as a function of nonlinearity in non-hydrostatic flows with trapped lee waves remains lacking.

In Teixeira et al. 2013a, a two-layer atmosphere with piecewise-constant parameters of the type originally considered by

Scorer 1949 is used to evaluate the trapped-lee-wave drag and the drag associated with vertically propagating waves, and

to compare the magnitude of these two components. It is shown that, in some circumstances, trapped-lee-wave drag can

be comparable to, or even larger than, the drag due to vertically propagating waves, and substantially larger than the drag55

predicted for a hydrostatic atmosphere with a constant Scorer parameter equal to that in the lower layer. These results have

direct implications for gravity-wave drag parametrisations (Lott, 1998). In Teixeira et al. 2013b, the drag associated with lee

waves trapped at an inversion capping a neutrally stratified layer, together with the drag due to waves propagating in the

stably stratified layer aloft, is investigated. As in Teixeira et al. 2013a, trapped-lee-wave drag is found to be comparable to
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the propagating-wave contribution and larger than the one-layer hydrostatic reference drag. However, unlike the configuration60

considered in Teixeira et al. 2013a and consistent with the discussion in Vosper 2004, only a single trapped-lee-wave mode

exists in this case, implying that only one drag maximum occurs in parameter space.

The lack of studies addressing how trapped-lee-wave drag and the drag due to vertically propagating waves evolve as

nonlinearity increases provides the main motivation for the present work. Accordingly, this paper investigates in detail how

total drag and its two components depend on nonlinearity in non-hydrostatic flows that generate trapped lee waves, using a65

numerical model (FLEX) suitable for simulating flows from the microscale to the mesoscale. The model has been previously

validated against experimental and field data relevant to engineering and meteorological applications. Two cases are examined,

guided by the linear theoretical results of Teixeira et al. 2013a cited above: (i) a configuration in which trapped-lee-wave drag

dominates over the drag produced by propagating internal waves, and (ii) a configuration in which the two drag components

are of comparable magnitude. The simplicity of the atmospheric set-up adopted in this theoretical model facilitates a clearer70

separation of the complex effects associated with nonlinearity.

This article is organised as follows. Section 2 describes the linear model used to compute trapped-lee-wave drag and the drag

associated with vertically propagating waves in the linear regime. Section 3 introduces the theoretical model, and Section 4

describes the two studied cases based on this model. Section 5 explains the diagnostic parameters employed to investigate how

increasing nonlinearity affects drag. Section 6 describes the non-hydrostatic numerical model. Section 7 presents illustrative75

numerical experiments showing the behaviour of the drag and of the diagnostics as functions of nonlinearity for the two

configurations introduced above, and provides a detailed analysis of the underlying physical mechanisms. Finally, Section 8

offers concluding remarks and discusses the main implications of the results.

2 Theoretical model

The linear theoretical model of Teixeira et al. 2013a was developed for an inviscid, stationary, non-rotating, stratified flow80

over a 2D mountain ridge of relatively small amplitude, aligned in the y direction. The flow is of sufficiently large scale

to be approximately inviscid (i.e. not a boundary-layer flow), but of sufficiently small scale for the rotation of the Earth to

be negligible. If the equations of motion under the Boussinesq approximation are linearised about a reference mean state,

combined appropriately, and the dependent variables are expressed as Fourier integrals in x, it can be shown that the Fourier

transform of the vertical-velocity perturbation, ŵ, satisfies85

∂2 ŵ

∂z2
+

(
l2− k2

)
ŵ = 0, (1)

where

l =
(

N2

U2
− 1

U

d2U

dz2

)1/2

, (2)

is the Scorer parameter of the atmosphere. Here, k is the horizontal wavenumber in the x direction, N2(z) > 0 is the static

stability of the reference state, and U(z) is the incoming wind speed (aligned with x and therefore perpendicular to the ridge).90
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A two-layer atmosphere similar to that prescribed by Scorer 1949 is assumed, with the lower layer between z = 0 and z = H

and the upper layer extending indefinitely above. In each layer, both the static stability N and the wind speed U are taken to

be constant, so the corresponding Scorer parameters are also constant. Although the formulation allows different values of U

in each layer, in this study U is taken to be constant throughout. The Scorer parameter is therefore discontinuous at z = H .

The static stability and Scorer parameter in the lower layer are denoted by N2
1 and l1, respectively, while in the upper layer95

the corresponding quantities are N2
2 and l2. Since trapped lee waves (TLW hereafter) are the main focus of the present study,

l2 < l1 is always assumed, which is a necessary condition for wave trapping.

In this atmospheric structure, three possibilities exist: waves may propagate vertically in both layers, they may propagate

only in the lower layer, or they may be evanescent in both layers. The pressure drag force directed across the ridge, per unit

length in the cross-flow (spanwise) direction, is defined as100

D =

+∞∫

−∞

p1(z = 0)
∂h

∂x
dx, (3)

where p1 is the pressure perturbation in the lower layer and h(x) is the surface elevation. In this study, the orography is assumed

to be symmetric and bell-shaped:

h(x) =
h0

1 + (x/a)2
, (4)

where h0 is the maximum height and a is the half-width. The total drag D can be decomposed as105

D = Dpw + Dtlw, (5)

with Dpw associated with internal waves that propagate in the upper layer (z > H), and Dtlw associated with TLW confined

to the lower layer (z < H). In this framework, Dpw receives contributions from wavenumbers satisfying k2 < l22 (propagating

in the upper layer), whereas Dtlw receives contributions from wavenumbers satisfying k2 > l22 (evanescent in the upper layer).

The dependence of D and of the TLW wavelength λ0 on l1H/π was compared with numerical simulations, showing very good110

agreement.

Using this model, Teixeira et al. 2013a investigated the behaviour of the drag D, normalised by its hydrostatic single-

layer reference value D0 (D0 = 0.25πρUN1h
2
0, where ρ is the air density), as a function of l2/l1 and the corresponding

non-dimensional interface height l1H/π, for selected values of the non-dimensional ridge width l1a and wind-speed ratio

U1/U2. When l2/l1 → 1, the propagating-wave drag approaches 1 (under approximately hydrostatic conditions) and the TLW115

drag vanishes. As l2/l1 decreases, the propagating-wave drag develops an oscillatory dependence on l1H/π, with maxima

of increasing magnitude due to constructive interference of reflected waves in the lower layer. The TLW drag exhibits local

maxima associated with each resonant TLW mode, occurring for small l2/l1 and at slightly larger values of l1H than the

propagating-wave maxima. As l1a decreases (i.e. as the response becomes more non-hydrostatic), the propagating-wave drag

decreases and the region of non-zero TLW drag extends to larger values of l2/l1. These results were confirmed by numerical120

simulations for l2/l1 = 0.2 and U1/U2 = 1, using the FLEX numerical model. This is precisely the configuration considered

here to study the effect of nonlinearity on TLW.
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3 Studied cases
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Figure 1. Linear-theory results used to select the two TLW configurations analysed in the nonlinear simulations. The results shown corre-

spond to l2/l1 = 0.2 and U1/U2 = 1. (a) TLW horizontal wavelength λ0 (for the first three trapped modes, labelled by ntlw) normalised

by its maximum attainable value λ2 = 2π/l2, as a function of the non-dimensional waveguide depth Ĥ = l1H/π. (b) Corresponding total

drag D/D0 in a distinctly non-hydrostatic regime (l1a = 2) and its decomposition into trapped-wave and propagating-wave contributions,

Dtlw/D0 and Dpw/D0, versus Ĥ , highlighting the resonance peaks associated with each trapped mode. The vertical markers indicate

the two parameter choices adopted in this study, Ĥ = 0.54 and 0.70, for which λ0 and the relative importance of Dtlw and Dpw differ

substantially.

Figures 1a and 1b are reproduced from the analytical model of Teixeira et al. 2013a. Figure 1a shows the trapped-lee-

wave (TLW) horizontal wavelength λ0, normalised by its maximum attainable value λ2 = 2π/l2, as a function of the non-125

dimensional waveguide depth Ĥ . Results are shown for the first three TLW modes, ntlw = 1,2, and 3. Here Ĥ = l1H/π.

As Ĥ increases, successive trapped modes become available. One TLW mode exists for 0.5≤ Ĥ < 1.5, two modes for

1.5≤ Ĥ < 2.5, and three modes for Ĥ ≥ 2.5. For each newly available mode, λ0/λ2 departs from unity; as Ĥ increases

further, it asymptotically approaches l2/l1 (equal to 0.2 in the present set-up). In this model, ntlw and λ0 are independent of

the non-dimensional mountain half-width l1a (here l1a = 2) and of the wind-speed ratio U1/U2 (here U2 = U1).130

Figure 1b shows the theoretical dependence of the normalised total drag D/D0 and its decomposition into trapped-lee-

wave drag Dtlw/D0 and propagating-wave drag Dpw/D0, as functions of Ĥ , for l2/l1 = 0.2 and l1a = 2. In this distinctly

non-hydrostatic regime, Dtlw can be comparable to Dpw and can exceed it over some intervals, so TLW drag may represent a

substantial fraction of the total drag. The maxima of Dpw/D0 associated with each trapped mode occur near Ĥ = 0.5+n (with

n an integer), whereas the maxima of Dtlw/D0 are shifted to slightly larger values of Ĥ . Away from the immediate vicinity of135

Ĥ = 0.5+ n, Dtlw/D0 generally exceeds Dpw/D0. This highlights the potential importance of TLW drag in non-hydrostatic

two-layer configurations, relative to the classical hydrostatic one-layer reference.
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To examine how D/D0, Dtlw/D0, and Dpw/D0 evolve with nonlinearity, nonlinearity is parameterised by the non-dimensional

mountain height

ĥ0 = l1h0. (6)140

Thus, nonlinearity is varied exclusively by changing h0, while N1 and U are held fixed.

Two cases are selected from the linear-theory map of Teixeira et al. 2013a: i) Ĥ = 0.70 and ii) Ĥ = 0.54 (indicated in the

figures). In the case i), trapped-lee-wave drag dominates the total drag (about 95% of D in the linear reference), and the TLW

wavelength is close to its maximum value (λ0 = 0.92λ2 = 14451 m). In the case ii), the TLW contribution is smaller (about

64% of D in the linear reference), and the propagating-wave contribution is correspondingly more significant. In this case,145

λ0 = 0.46λ2 = 7226 m, i.e. approximately half the value obtained for Ĥ = 0.70. Finally, to isolate the role of nonlinearity as

cleanly as possible, only single-mode TLW configurations are considered in the present study.

4 Numerical model

This study uses the FLEX numerical model, a two-dimensional micro-to-mesoscale model formulated in orthogonal curvilinear

coordinates, which has been used previously to investigate resonant mountain-wave flows (Argain et al., 2009; Teixeira and150

Miranda, 2005; Teixeira et al., 2008, 2013a, b). All simulations employ a horizontal grid spacing of ∆x = 200 m and a vertical

grid spacing of ∆z = 24 m. The background wind is uniform with U = 10 m s−1. Static stability is prescribed as N1 = 0.02 s−1

in the lower layer and N2 = 0.004 s−1 in the upper layer, giving N2/N1 = 0.2 and, for uniform U , l2/l1 = 0.2.

The mountain has the bell-shaped profile (4) and half-width a = 1000 m, which yields l1a = 2 and therefore a strongly non-

hydrostatic response. The mountain height is varied to control nonlinearity, from h0 = 10 m (weakly nonlinear; ĥ0 = l1h0 =155

0.02) up to h0 = 500 m (strongly nonlinear; ĥ0 = 1).

The vertical domain extends up to six hydrostatic vertical wavelengths, λz0 = 2π/l1. The mountain is centred at x = 0. The

upstream domain length is 15a, and the downstream domain extends to approximately seven TLW wavelengths, λ0, measured

in the linear reference regime. The model time step is ∆t = 1 s, and simulations are integrated for ≈ 500a/U (about 14 h).

A sponge layer is applied near the top boundary over a depth of approximately 2.5λz0. At the downstream boundary, the160

radiation condition of Raymond and Kuo (1984) is imposed. In addition, sponge layers spanning 15 and 30 grid points are

applied at the upstream and downstream boundaries, respectively.

For the two studied TLW configurations (Ĥ = 0.54 and Ĥ = 0.70), ĥ0 varies between 0.02 and 1. Larger values are not

considered because, as shown later, TLW effects on the drag variability (the main focus of this work) become unimportant for

ĥ0 > 1.165

5 Diagnostic parameters

To study the behaviour of D and its components as functions of the non-dimensional mountain height ĥ0, a set of diagnostic

parameters is introduced.
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5.1 Displacement amplitude and wavelength

In linear, adiabatic, and reversible flow, the wave field can be visualised using the isentropic vertical displacement η(x,z)170

inferred from the potential-temperature perturbation θ′(x,z). In that limit, η(x,z) and w′(x,z) have similar spatial structure,

and the maximum TLW displacement amplitude, ηmax, can be estimated directly from η(x,z). As ĥ0 increases, the relationship

between η and w′ becomes nonlinear, and η no longer represents the actual parcel displacement. For this reason, ηmax is

estimated here from w′max using

ηmax =
w′maxλ0

2πU
or, in non-dimensional form,

ηmax

h0
=

w′maxλ0

2πUh0
. (7)175

Here λ0 is the TLW wavelength in the linear regime (ĥ0 ≪ 1), so that k0 = 2π/λ0 denotes the corresponding linear horizontal

wavenumber. This estimate follows from the kinematic relation w′ ≈ U ∂η/∂x and remains meaningful for any degree of

nonlinearity because it is based on the directly simulated maximum vertical velocity. To better understand the behaviour of the

TLW field, the location of the maximum of η is determined, i.e., (xηmax ,zηmax). In the nonlinear regime, the TLW wavelength

λ is estimated as the average wavelength of the primary TLW train. The corresponding nonlinear horizontal wavenumber is180

defined as k = 2π/λ.

5.2 Energy leakage from the waveguide

The vertical wave energy flux per unit area at height z is quantified by the horizontally averaged quantity

p′w′(z) =
1

Lx

Lx∫

0

p′(x,z)w′(x,z)dx, (8)

where Lx is the horizontal domain length and the overbar denotes a horizontal average. If TLW are well confined within185

the waveguide, p′w′(z) above the waveguide should be small; any non-zero value primarily reflects leakage to propagating

components and/or dissipative effects.

At a height ztop sufficiently far above the waveguide, the upward energy leakage is estimated by p′w′(ztop). Accordingly,

the fraction of energy that escapes the waveguide is defined as

Spw =

∣∣p′w′(ztop)
∣∣

maxz∈[0,H]

∣∣p′w′(z)
∣∣ , (9)190

where the denominator is the maximum (in magnitude) of p′w′(z) within the waveguide. To characterise structural changes in

the TLW field, the locations of the maxima of Spw are also recorded, i.e., (xSmax
pw

,zSmax
pw

).

5.3 Momentum leakage from the waveguide

The vertical flux of horizontal momentum carried by the waves at height z is computed as

u′w′(z) =
1

Lx

Lx∫

0

u′(x,z)w′(x,z)dx. (10)195
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The vertical derivative −∂u′w′(z)/∂z is the local rate of mean-flow acceleration (or deceleration) due to wave momentum

deposition. Where u′w′ decreases with z, the wave field deposits momentum and the mean flow accelerates, and vice-versa.

The fraction of momentum flux that escapes the waveguide is estimated by

Suw =

∣∣u′w′(ztop)
∣∣

maxz∈[0,H]

∣∣u′w′(z)
∣∣ . (11)

A small Suw indicates that the momentum flux has been substantially reduced below ztop (by deposition and/or dissipation),200

implying strong wave–mean-flow coupling. Conversely, Suw ≈ 1 implies that a significant fraction of the momentum flux

reaches ztop, consistent with efficient leakage to propagating components. For the same reason as in the case of Spw, we also

use the location of the maximum of Suw, i.e., (xSmax
uw

,zSmax
uw

).

5.4 Energy–momentum coupling

To quantify departures from the linear energy–momentum relationship, the diagnostic parameter Cu is introduced as205

Cu =
1

z2− z1

z2∫

z1

Cu(z)dz, (12)

where Cu(z) is the local ratio between energy and momentum fluxes,

Cu(z) =
p′w′(z)

−ρu′w′(z)
. (13)

In the linear limit, Cu(z)≈ U within the waveguide. Hence, if Cu remains close to U (e.g. deviations < 10%) as ĥ0 increases,

energy and momentum leakage remain approximately proportional and the response retains a predominantly linear structure.210

In this study, Cu is evaluated between z1 = 0 and z2 = 0.8H to avoid sharp flux variations near z = H .

5.5 Link between ηmax and linear drag scaling

In the linear regime, an order-of-magnitude relation in the TLW waveguide is w′max ∼
√

Dtlw/(ρH). Combining this with (7)

yields

ηmax =
λ0

2πU

√
Dtlw

ρH
. (14)215

If Dtlw follows the quadratic linear scaling Dtlw ∝ ρN1Uh2
0 (for fixed N1, U , λ0, ρ and H), then

ηmax = Ch0 or ηmax = Cĥ0, (15)

where C is a constant. Outside the linear regime, this proportionality need not hold.
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5.6 Retuning induced by mean-flow modification

For fixed H , N1, λ0 and U , the lower-layer vertical wavenumber associated with the linear reference mode is220

m1 =
√

l21 − k2
0, (16)

and the modal condition (through m1H) does not vary with ĥ0 in the strictly linear regime.

As ĥ0 increases, wave momentum fluxes can generate a non-zero horizontally averaged perturbation wind. Although the

imposed reference profile is U = const., the effective mean wind becomes Ueff(z, ĥ0) = U + ∆U(z, ĥ0). Assuming a local

stationary-wave dispersion relation, the corresponding effective vertical wavenumber is approximated by225

m1eff(z, ĥ0)≈
√

N2
1

U2
eff(z, ĥ0)

− k2, (17)

where k = 2π/λ is computed from the diagnosed nonlinear TLW wavelength λ. The relative change in vertical wavenumber is

then

∆m1

m1
(z, ĥ0) =

m1eff(z, ĥ0)−m1

m1
. (18)

The mean-flow modification ∆U(z, ĥ0) is computed as the horizontal average of u′(x,z) at each z:230

∆U(z, ĥ0) = u′(z, ĥ0) =
1

Lx

Lx∫

0

u′(x,z, ĥ0)dx. (19)

In nonlinear flow, quadratic terms can produce a non-oscillatory (k = 0) component of u′, so that u′ ̸= 0. It is useful to dis-

tinguish (i) waveform distortion that generates harmonics (2k, 3k, etc.) but may still have u′ = 0, from (ii) an induced mean

component with u′ ̸= 0. Only the latter contributes to Ueff(z, ĥ0).

The diagnostic ∆m1/m1 therefore provides an indirect measure of retuning, quantifying how the effective mode departs235

from the linear reference as ĥ0 increases. In the linear limit (ĥ0 = 0), ∆m1/m1 = 0 by construction. In what follows, the

maximum deviation within the waveguide, (∆m1)max/m1, is used as a single summary measure.

5.7 Flux-based drag decomposition

The drag Dpw is diagnosed from the vertical momentum flux at the top of the domain, which primarily represents propagating-

wave (PW) contributions reaching ztop:240

Dpw ≈−ρu′w′(ztop). (20)

The residual contribution associated with TLW (and, more generally, processes confined below ztop) is then estimated as

Dtlw ≈D−Dpw. (21)

This flux-based decomposition is less direct than a spectral separation based on the Scorer parameter, but it provides a simple

and physically interpretable estimate of how Dpw and Dtlw evolve with ĥ0 and how their contrast differs between the two245

studied cases, Ĥ = 0.70 and Ĥ = 0.54.
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6 Results and discussion
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Figure 2. Variation of the pressure drag with nonlinearity (ĥ0 = N1h0/U ) for the two TLW waveguide configurations Ĥ = 0.54 and Ĥ =

0.70. (a) Absolute drag D together with ideal linear extrapolations (shown as D = 2.28D0 for Ĥ = 0.54 and D = 1.56D0 for Ĥ = 0.70).

(b) Same curves normalised by the hydrostatic drag D0. (c–d) Flux-based partition into propagating-wave drag Dpw and trapped-wave

contribution Dtlw = D−Dpw.

Because H , N1, λ0 and U are fixed, variations in the diagnostics discussed below primarily reflect finite-amplitude effects

associated with increasing ĥ0 relative to the linear regime (phase shifts, saturation, harmonic generation and mean-flow modi-

fication).250

Figure 2(a) shows the numerically diagnosed pressure drag D as a function of ĥ0 for Ĥ = 0.54 (dotted line) and Ĥ = 0.7

(solid line), together with ideal linear extrapolations D = 2.28D0 and D = 1.56D0, respectively, obtained by assuming linear

conditions over the full range of ĥ0. Since D0 ∝ ĥ2
0 and the linear forcing scales with h0, D is expected to be approximately

quadratic at sufficiently small amplitude; accordingly, D ∝ ĥ2
0 for very small ĥ0, but it departs rapidly from D = cD0. For
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Ĥ = 0.54, D remains below its linear extrapolation throughout, indicating a progressive loss of waveguide efficiency as ĥ0255

increases. For Ĥ = 0.7, D initially falls below 1.56D0, but it recovers at larger amplitudes and exceeds the linear prediction,

suggesting a nonlinear reorganisation that enhances the drag. Overall, the Ĥ = 0.7 case, where Dtlw dominates in the linear

limit, is less sensitive to increasing ĥ0 than the Ĥ = 0.54 case, indicating that Dpw is more sensitive to nonlinearity.

Figure 2(b) presents the same curves normalised by D0. For Ĥ = 0.7, D/D0 reaches a maximum near ĥ0 ≈ 0.1, consistent

with a modest-amplitude regime in which TLW amplitude benefits from enhanced resonance. For ĥ0 > 0.1, D/D0 decreases260

and forms a broad minimum (D/D0 ≈ 1.44) over ĥ0 ≈ 0.55–0.65, implying a substantial reduction in TLW coherence and/or

guiding efficiency; ηmax versus ĥ0 provides a complementary indicator of this change. For ĥ0 > 0.65, D/D0 increases again,

before a second collapse near ĥ0 ≈ 0.85. The predominance of Dtlw over Dpw in Figure 2(d) shows that TLWs recover up to

ĥ0 ≈ 0.85 and then collapse again, after which the drag decreases monotonically, confirming the central role of TLWs in this

behaviour.265

For Ĥ = 0.54, D/D0 collapses rapidly and remains below the linear extrapolation. This is consistent with Figure 2(c), which

shows that, outside the near-linear regime, Dpw dominates over Dtlw. These results motivate the central hypothesis tested be-

low: in the low-efficiency waveguide (Ĥ = 0.54), Dtlw peaks in the near-linear regime and then collapses, being progressively

replaced by PWs, whereas in the high-efficiency waveguide (Ĥ = 0.7) strong TLWs persist over a broader range of ĥ0, under-

going detuning and saturation but recovering at larger amplitudes while coexisting with an increasing PW contribution.270

Figures 3–8 test these hypotheses by linking wave morphology, geometric diagnostics and energy / momentum fluxes to the

drag behaviour in Figure 2.

In Figure 3 (Ĥ = 0.7), η(x,z) is near-linear at ĥ0 = 0.02: monochromatic sinusoidal waves are coherent across the waveg-

uide, with η(x,z) maximised near z ≈H and the main crest aligned with the ridge. At ĥ0 = 0.3, crest steepening and a slight

downstream shift indicate harmonic generation (2k,3k, . . .) and weak modal detuning linked to mean-flow modification.275

By ĥ0 = 0.5–0.55, the primary train remains identifiable but becomes strongly modulated: a low-frequency jump/jet de-

velops near the lee slope and a second, relatively clean TLW train emerges downstream. For ĥ0 = 0.6–0.8, the first train

collapses into large-scale jump-like structures that act as an effective mountain for a well-organised secondary TLW train with

smaller λ, displaced several wavelengths downstream. This indicates that the high-efficiency waveguide can reconvert part of

the finite-amplitude response into coherent trapped waves, maintaining a significant trapped contribution to the drag even at280

large amplitude.

In Figure 4 (Ĥ = 0.54), the near-linear case (ĥ0 = 0.02) is already less clean than in Figure 3: amplitudes are smaller, decay

with height is stronger, and interference with PWs above the waveguide appears earlier. As ĥ0 increases (0.2–0.4), steepening
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and harmonics develop, but energy leaks upward and downstream more efficiently; the trapped train is damped and disorganised

rather than reorganising into a coherent secondary train.285
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Figure 3. Wave-field evolution in the high-efficiency TLW waveg-

uide case Ĥ = 0.70 as nonlinearity (ĥ0 = N1h0/U ) increases.
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Figure 4. Wave-field evolution in the low-efficiency TLW waveguide

case Ĥ = 0.54 as nonlinearity increases.

In Figure 5, the variation of several geometric diagnostic pa-

rameters with ĥ0 is shown. In Figure 5a, the normalised wave-

length, λ/λ0, increases with ĥ0 while the response remains

approximately monochromatic. This lengthening persists up

to the loss of monochromaticity, which is clearly illustrated in

Figures 3d and 4c.

This loss occurs much earlier for Ĥ = 0.54 (ĥ0 ≈ 0.3 with λ = 1.23λ0) than for Ĥ = 0.7 (ĥ0 ≈ 0.55 with λ = 1.38λ0),

consistent with the more rapid collapse of TLW resonance in the low-efficiency waveguide. As can be seen in Figures 3e and 3f

(for Ĥ = 0.7), the secondary trapped train that forms after the jump (ĥ0 > 0.6) has a smaller λ than that diagnosed at ĥ0 = 0.55,290
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when the primary train collapses (1.38λ0). This value remains nearly constant (λ≈ 1.06λ0) until the train disappears at ĥ0 ≈ 1

(not shown here).

In Figure 5b the maximum relative deviation

(∆m1)max/m1 is shown; as noted above, this

quantity directly measures the nonlinear retuning

of the mode relative to the linear reference solu-

tion and is used only in regimes where the mode

remains identifiable (i.e. the spectrum exhibits a

dominant peak). As expected, (∆m1)max/m1 ≈
0 in the linear regime; it becomes negative and

increases in magnitude for both cases, reaching

about 10% at ĥ0 ≈ 0.3 for Ĥ = 0.54 and about

20% at ĥ0 ≈ 0.55 for Ĥ = 0.7 (values of ĥ0 at

which the primary wave train collapses in each

configuration). This progressive increase in the

negativity of ∆m1/m1 with ĥ0 implies a lengthen-

ing of λz (the effective hydrostatic vertical wave-

length), consistent with the increase in λ diagnosed

in Figure 5a for both cases. The waveguide se-

lects resonant modes on the basis of the modal

condition m1H = nπ together with the Scorer-

parameter constraint; if m1 decreases (because

∆Ueff > 0), the system tends to readjust by select-

ing quasi-resonant modes that approximately sat-

isfy both the modal condition and the dispersion

relation, given the modified Ueff and λ. This in-

dicates that waveguide modification (via Ueff and

λ) promotes a predominantly one-way adjustment

that shifts the initially dominant trapped compo-

nent in (k,m) space; accordingly, the m1 diagnos-

tic provides the vertical signature of this readjust-

ment, whereas λ provides the observable horizon-

tal signature.
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Figure 5c (ηmax vs. ĥ0) shows that, for ĥ0 ≤ 0.15, ηmax closely follows the linear predictions derived from w′max ∝295
√

Dtlw/(ρH) and ηmax ∝ h0 (equation (15)), confirming a single-mode TLW regime. For larger amplitudes (ĥ0), ηmax con-

tinues to increase but tends to saturate, owing to the exhaustion of resonant amplification (primarily through vertical leakage

of energy and momentum and transfer to harmonics, as discussed later); this saturation occurs much earlier and at substan-

tially lower levels for Ĥ = 0.54 (ηmax ≈ 170 m at ĥ0 ≈ 0.25) than for Ĥ = 0.7 (ηmax ≈ 400 m at ĥ0 ≈ 0.55). Note that for

Ĥ = 0.7, over the interval ĥ0 = 0.1–0.55, expression (15) must be modified in order for ηmax to match the plateau associated300

with saturation of the amplitude growth (i.e. exhaustion of resonant gain). In that case, a curve of the form

ηmax = Cĥ0

(
1−αĥ2

0

)
, (22)

is suggested, where α is a constant to be fitted.
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Figure 6. (a) Energy flux p′w′
x(z) for different values of ĥ0 (case Ĥ = 0.7). (b) As in panel (a) but for the momentum flux −ρ,u′w′

x(z).

(c) Comparison of p′w′
x(z) and−ρ,u′w′

x(z) under linear conditions. (d) As in panel (c) but under nonlinear conditions. As an illustration,

panel (d) shows both the maximum value of Spw and its value at ztop (see expression (9)). The profiles p′w′
x(z) and −ρu′w′

x(z) are

normalised by UD0 and D0, respectively.

Corresponding profiles used to compare the vertical structure of energy and momentum transports and to assess the persis-

tence of their coupling as nonlinearity increases. As an illustration, panel (d) shows both the maximum value of Spw and its305

value at ztop (see expression (9)).
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The dependence of ηmax/h0 on ĥ0 (Figure 5d) shows that, relative to the linear extrapolation, TLWs lose amplitude over the

entire range of ĥ0 in both cases. As expected, this occurs much earlier and more abruptly for Ĥ = 0.54, except for Ĥ = 0.7

over ĥ0 = 0.02–0.25 (very weak nonlinearity), where ηmax/h0 exhibits a maximum at ĥ0 ≈ 0.1, about 10% above the linear

reference value. This interval and the position of the maximum coincide exactly with those of the Dtlw/D0 curve in Figure 2d,310

so the association between ηmax/h0 and Dtlw/D0 is evident. Moreover, comparing Figures 2d and 5d shows that the monotonic

decrease of ηmax/h0 and Dtlw/D0 is very similar up to ĥ0 ≈ 0.55. Therefore, ĥ0 = 0.02–0.25 is an interval in which resonant

gain is particularly relevant for Ĥ = 0.7.
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Figure 7. As in Figure 6, but for Ĥ = 0.54.

The position diagnostics in Figures 5(e,f) complete the modal picture by distinguishing a displacement maximum, anchored

within the TLW waveguide, from a maximum dominated by downstream PWs. For Ĥ = 0.7, zηmax/H remains close to unity315

up to ĥ0 ≈ 0.5, indicating that the maximum remains waveguide-anchored prior to the jump + secondary-train reorganisation,

while xηmax/a increases smoothly with step-like changes associated with that reorganisation. For Ĥ = 0.54, zηmax/H increases

much earlier and xηmax/a is large from the outset and varies little, suggesting a maximum associated primarily with downstream

PWs rather than with a well-defined trapped waveguide; this helps explain why Dpw dominates already from ĥ0 ≈ 0.1 in Figure

2(c).320

A key feature of Figures 6 and 7 is the strong oscillation of p′w′x(z) and −ρu′w′x(z) near z = H in the near-linear

case (ĥ0 = 0.02). This reflects standing vertical trapped modes within the waveguide formed by superposition of upward and

downward propagating components reflected at z = H and at the ground; under partial resonance, the profiles exhibit nodes,

antinodes and sign reversals, as predicted by linear theory.
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For Ĥ = 0.7 (Figure 6(a,b)), the near-linear profiles exhibit well-defined maxima within the waveguide and an approximately325

exponential decay above H , as expected from linear theory. As ĥ0 increases (0.3–0.6), the maxima shift slightly upward and

broaden, and the decay above H becomes more gradual, indicating a redistribution of flux into harmonic structures and/or

partially propagating, upward-radiating components above the waveguide. Even so, most of the energy and momentum flux

remains concentrated within the waveguide, consistent with Dtlw remaining dominant (Figure 2(d)).

For Ĥ = 0.54 (Figure 7(a,b)), similar

changes occur at smaller ĥ0, consistent with

a low-efficiency waveguide. By ĥ0 = 0.3,

the internal maxima lie closer to H and the

profiles exhibit a markedly more gradual

decay above H than in the near-linear

regime and than in the Ĥ = 0.7 case, indi-

cating stronger leakage to levels above the

waveguide and helping to explain the rapid

degradation of Dtlw and the inability of the

total drag to approach its linear reference

(see Figure 2c).

Figures 6(c–d) and 7(c–d) show that, even

at finite amplitude, the appropriately nor-

malised energy and momentum flux pro-

files retain a surprisingly similar structure,

which motivates the use of Cu(z) and Cu

(equations 12 and 13). In the linear limit,

p′w′x(z)/(UD0) and −ρu′w′x(z)/D0 are

nearly indistinguishable throughout the

waveguide, implying Cu(z)≈ U where the

mode is well trapped.
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and Ĥ = 0.70. (c) Mean energy–momentum coupling measure Cu.

330

At larger amplitude (e.g. ĥ0 = 0.6 for Ĥ = 0.7 and ĥ0 = 0.3 for Ĥ = 0.54), modest offsets and differences in decay rates

appear, but the global similarity persists, so Cu remains close to U (mean deviations < 10%), indicating that energy and

momentum transports remain strongly coupled on average even as confinement degrades.

Figures 8(a–b) quantify the contrast using Spw, Suw and the vertical locations of their maxima: for Ĥ = 0.54 leakage

increases early and the maxima rise above the waveguide, whereas for Ĥ = 0.7 leakage increases later and the maxima remain335

anchored near H until ĥ0 ≈ 0.5. Figure 8(c) shows that Cu remains close to U (mean deviations < 10%), so the mean energy–

momentum relationship largely retains its linear character even when confinement and TLW/PW partition change markedly.
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Together, Spw, Suw and Cu show that energy and momentum leak in comparable proportions across most of the range: Spw

and Suw remain of similar magnitude without a significant offset.

These mechanisms explain the drag behaviour in Figure 2. For Ĥ = 0.7, the waveguide remains highly efficient: despite340

increasing ĥ0 (and the associated growth of dissipation and vertical radiation), a substantial fraction of the response remains

trapped.

At weak amplitude, near-linear TLWs maximise Dtlw; at intermediate amplitude, detuning and saturation reduce the trapped

contribution and produce the intermediate minimum in D/D0; at larger amplitude, a jump-like reorganisation and the emer-

gence of a coherent secondary trapped train (Figures 3 and 5) together with a moderate increase in the PW contribution (Figures345

6 and 8) allow more efficient conversion of increased h0 into momentum flux, so that D/D0 exceeds the linear reference, with

Dtlw still dominant but accompanied by a non-negligible Dpw.

For Ĥ = 0.54, the waveguide is inefficient and does not sustain robust trapped resonance as ĥ0 increases. TLWs are effec-

tive only in the near-linear limit (hence the early maximum in Dtlw), after which the train loses coherence: ηmax/h0 saturates

early, λ becomes ill-defined, and the flux profiles extend higher above H , consistent with stronger PW contributions. Conse-350

quently, Dtlw/D0 decreases almost monotonically, Dpw/D0 becomes dominant, and the total drag remains below the linear

extrapolation.

In summary, the central message is that the evolution of the total drag and its components with increasing ĥ0 is controlled not

only by TLW amplitude, but above all by waveguide guiding efficiency, which determines whether energy extracted from the

incident flow is largely retained and recycled within the trapped mode—allowing jump-driven reorganisation and a secondary355

trapped train, or whether it is transferred earlier to propagating components and/or to processes associated with detuning,

saturation and eventual turbulent dissipation.

Finally, it is important to mention that the present study aims to isolate free-atmosphere internal-wave dynamics, in particular

trapped lee waves (TLWs), rather than boundary-layer processes near the surface. We therefore adopt an idealised external-

flow framework, treating the flow aloft as approximately inviscid and imposing a free-slip lower boundary to avoid introducing360

frictional stresses and boundary-layer parameterisation effects that are not central to the mechanisms of interest. This is con-

sistent with the classical boundary-layer perspective in which a thin near-surface region is frictionally controlled, whereas the

outer flow above can be approximated as inviscid to leading order. Under this idealisation, rotors and flow separation are not

expected, since they depend critically on frictional vorticity generation within a realistic boundary layer; the drag response is

thus interpreted mainly in terms of wave-internal processes (detuning, harmonic generation, reorganisation and leakage). A365

no-slip (or stress-imposing) lower boundary would only be required if the focus were on rotor/separation dynamics or strongly

dissipative breaking governed by surface stress, which lies beyond the scope of the present set-up.

7 Conclusion

This study investigated how pressure drag in non-hydrostatic, stably stratified flow over a bell-shaped ridge evolves with

nonlinearity in a two-layer atmosphere. Nonlinearity was varied exclusively through the mountain height h0 (equivalently370

17

https://doi.org/10.5194/egusphere-2026-40
Preprint. Discussion started: 15 January 2026
c© Author(s) 2026. CC BY 4.0 License.



ĥ0 = l1h0), while N1, N2, H , and U were held fixed. The simplicity of the atmospheric configuration used in this theoretical

model allows a clearer isolation of the complex effects linked to nonlinearity.

Two configurations were considered, guided by the linear framework of Teixeira et al. 2013a: (i) a case in which trapped-

lee-wave drag dominates in the linear reference, and (ii) a case in which trapped-lee-wave and propagating-wave contributions

are of comparable magnitude. Diagnostics based on wave amplitude, wavelength, leakage of energy and momentum fluxes,375

and retuning were used to interpret the nonlinear response.

For the high-efficiency waveguide configuration (Ĥ = 0.70), a substantial fraction of the response remains trapped over a

broad range of ĥ0. At small amplitudes, modest nonlinear effects can enhance resonance and increase Dtlw. With increasing ĥ0,

detuning, harmonic generation, and leakage reduce trapped-wave coherence and produce an intermediate minimum in D/D0.

At larger amplitudes, the flow reorganises and a secondary trapped-wave train can re-emerge downstream, while a growing380

propagating-wave contribution coexists with still-dominant TLW drag.

For the low-efficiency waveguide configuration (Ĥ = 0.54), trapped waves are robust only in the near-linear regime. As ĥ0

increases, trapped-wave coherence degrades rapidly, leakage to propagating components increases, and Dtlw collapses while

Dpw becomes dominant. Consequently, the total drag remains below the linear extrapolation across the explored range.

Despite these pronounced differences in TLW/PW partition, the mean energy - momentum coupling within the waveguide385

remains close to its linear character, with Cu typically remaining near U . The results therefore indicate that the evolution

of total drag with nonlinearity is controlled not only by TLW amplitude, but also and primarily by the waveguide guiding

efficiency, which determines whether the energy extracted from the incident flow is retained and recycled within trapped

modes or transferred early to propagating components and saturation processes.

These findings may be relevant for improving orographic-drag parametrisation in weather and climate models by highlight-390

ing regimes in which trapped-wave drag can be significant and by clarifying how nonlinear effects alter the partition between

trapped and propagating contributions.
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