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Abstract. The behaviour of the pressure drag generated by trapped lee waves and upward-propagating internal waves in
non-hydrostatic, stratified flow over a mountain ridge is investigated as a function of nonlinearity. A two-layer atmosphere is
adopted, with piecewise-constant static stability and a uniform wind profile. The lower layer, between the surface and z = H,
has stability /N7, and the upper layer extends indefinitely above with stability No, where Ny < IN7. Simulations are performed
with a numerical model suitable for flows ranging from the microscale to the mesoscale, and nonlinearity is varied solely by
increasing the mountain height. Linear reference values are obtained from a previously established linear framework for two-
layer trapped and propagating mountain-wave drag. Two configurations are considered: (i) one in which trapped-lee-wave drag
dominates over the drag due to propagating waves, and (ii) another in which the two components are of comparable magnitude.
A set of diagnostics is introduced to clarify the physical processes associated with increasing nonlinearity. The results show
that, as nonlinearity increases, the evolution of the total drag and its components is controlled not only by the amplitude of the
trapped lee waves, but above all by the waveguide guiding efficiency. This efficiency determines whether the energy extracted
from the incident flow through its interaction with the orography is largely retained and recycled within the trapped mode,
or instead is transferred earlier to propagating components and to processes associated with detuning and saturation. These

findings may have implications for drag parametrisation in global climate and weather-prediction models.

Keywords: propagating gravity waves; trapped lee waves; resonance; non-hydrostatic effects; linear theory.

1 Introduction

Orographic internal gravity waves impose a pressure drag on the terrain that excites them. This terrain exerts an equal and
opposite force on the atmosphere (by Newton’s third law) which, because air is a fluid, may be distributed over considerable
vertical and horizontal distances. In most cases, the ridges that generate these waves have typical widths smaller than the
grid spacing of weather and climate models, so they are rarely resolved. For this reason, the drag must be represented by
parametrisations that specify both its magnitude and its spatial allocation (Stensrud, 2009). Over the past decades, a coherent
framework has been developed for hydrostatic, vertically propagating gravity waves, providing the physical basis for modern
orographic-drag schemes (Phillips, 1984; Shutts and Gadian, 1999). Within this largely linear theory, closed-form expressions
for the total drag can often be derived (Smith, 1979; Phillips, 1984; Teixeira and Miranda, 2006). Most classic studies adopted
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the hydrostatic approximation because mesoscale non-hydrostatic effects are often modest, and the hydrostatic assumption
greatly simplifies the analysis.

However, as wind speeds increase and/or static stability decreases, parts of the response become distinctly non-hydrostatic.
In the hydrostatic limit, all forced components propagate vertically; under non-hydrostatic conditions, high-wavenumber com-
ponents become evanescent and do not transport momentum upward, whereas longer waves can still propagate and contribute
to drag. If an evanescent layer overlies a propagating layer, strong reflection may trap wave energy, leading to resonance
and enhanced drag, alongside partial-reflection effects that may also occur under hydrostatic assumptions (Leutbecher, 2001;
Teixeira and Miranda, 2005).

Most atmospheric flows are nonlinear, so it is essential to understand how gravity-wave-induced drag behaves under such
conditions. In the hydrostatic regime, this question has received considerable attention. Lilly and Klemp 1979 solved Long’s
equation to show how finite amplitude and terrain asymmetry can amplify the wave response and the resulting drag. Smith
1989 reviewed hydrostatic airflow over mountains, proposed drag scalings, and clarified the limits of linear theory for different
topographic profiles. Durran 1990 synthesised key results for drag in linear hydrostatic flow and discussed how atmospheric
structure and finite-amplitude effects modulate it. Olafsson and Bougeault 1996 examined drag enhancement with increasing
nonlinearity and the transition to wave breaking in more realistic profiles. Miranda and James 1992 further showed that, for
nondimensional mountain height Nho /U ~ O(1), a breaking regime can develop and substantially enhance drag relative to its
linear reference, even for constant NV and U.

By contrast, drag behaviour in non-hydrostatic flows under nonlinear conditions has received less attention. Peltier and
Clark 1983 simulated 2D and 3D nonlinear mountain waves, documenting amplification regimes, harmonic generation, and
transitions to breaking, all with direct implications for drag. Lott and Teixeira 2016 analysed how nonlinear intensification
of trapped-lee-wave modes and their interaction with critical levels modify momentum flux and, consequently, the perceived
drag as amplitude increases. Vosper 2004 demonstrated that, in boundary-layer inversions, linear theory underestimates wave
amplitudes when horizontal wavelengths are short relative to the terrain width, and that large amplitudes can trigger separation
and rotor formation, implying enhanced drag and significant regime shifts as nonlinearity grows. Doyle et al. 2011, drawing
on strongly nonlinear T-REX simulations, reported how wave intensification and breaking, including trapped-wave and rotor
patterns, modulate momentum fluxes and drag across a range of forcing strengths. Nevertheless, a comprehensive study that
explicitly maps drag as a function of nonlinearity in non-hydrostatic flows with trapped lee waves remains lacking.

In Teixeira et al. 2013a, a two-layer atmosphere with piecewise-constant parameters of the type originally considered by
Scorer 1949 is used to evaluate the trapped-lee-wave drag and the drag associated with vertically propagating waves, and
to compare the magnitude of these two components. It is shown that, in some circumstances, trapped-lee-wave drag can
be comparable to, or even larger than, the drag due to vertically propagating waves, and substantially larger than the drag
predicted for a hydrostatic atmosphere with a constant Scorer parameter equal to that in the lower layer. These results have
direct implications for gravity-wave drag parametrisations (Lott, 1998). In Teixeira et al. 2013b, the drag associated with lee
waves trapped at an inversion capping a neutrally stratified layer, together with the drag due to waves propagating in the

stably stratified layer aloft, is investigated. As in Teixeira et al. 2013a, trapped-lee-wave drag is found to be comparable to
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the propagating-wave contribution and larger than the one-layer hydrostatic reference drag. However, unlike the configuration
considered in Teixeira et al. 2013a and consistent with the discussion in Vosper 2004, only a single trapped-lee-wave mode
exists in this case, implying that only one drag maximum occurs in parameter space.

The lack of studies addressing how trapped-lee-wave drag and the drag due to vertically propagating waves evolve as
nonlinearity increases provides the main motivation for the present work. Accordingly, this paper investigates in detail how
total drag and its two components depend on nonlinearity in non-hydrostatic flows that generate trapped lee waves, using a
numerical model (FLEX) suitable for simulating flows from the microscale to the mesoscale. The model has been previously
validated against experimental and field data relevant to engineering and meteorological applications. Two cases are examined,
guided by the linear theoretical results of Teixeira et al. 2013a cited above: (i) a configuration in which trapped-lee-wave drag
dominates over the drag produced by propagating internal waves, and (ii) a configuration in which the two drag components
are of comparable magnitude. The simplicity of the atmospheric set-up adopted in this theoretical model facilitates a clearer
separation of the complex effects associated with nonlinearity.

This article is organised as follows. Section 2 describes the linear model used to compute trapped-lee-wave drag and the drag
associated with vertically propagating waves in the linear regime. Section 3 introduces the theoretical model, and Section 4
describes the two studied cases based on this model. Section 5 explains the diagnostic parameters employed to investigate how
increasing nonlinearity affects drag. Section 6 describes the non-hydrostatic numerical model. Section 7 presents illustrative
numerical experiments showing the behaviour of the drag and of the diagnostics as functions of nonlinearity for the two
configurations introduced above, and provides a detailed analysis of the underlying physical mechanisms. Finally, Section 8

offers concluding remarks and discusses the main implications of the results.

2 Theoretical model

The linear theoretical model of Teixeira et al. 2013a was developed for an inviscid, stationary, non-rotating, stratified flow
over a 2D mountain ridge of relatively small amplitude, aligned in the y direction. The flow is of sufficiently large scale
to be approximately inviscid (i.e. not a boundary-layer flow), but of sufficiently small scale for the rotation of the Earth to
be negligible. If the equations of motion under the Boussinesq approximation are linearised about a reference mean state,
combined appropriately, and the dependent variables are expressed as Fourier integrals in z, it can be shown that the Fourier
transform of the vertical-velocity perturbation, w, satisfies

%Hl%k?)@:o, (1)

where

= 2

N2 1 @2\ Y2
<UUd> ,

is the Scorer parameter of the atmosphere. Here, k is the horizontal wavenumber in the x direction, N 2(z) > ( is the static

stability of the reference state, and U (z) is the incoming wind speed (aligned with z and therefore perpendicular to the ridge).
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A two-layer atmosphere similar to that prescribed by Scorer 1949 is assumed, with the lower layer between z =0 and z = H
and the upper layer extending indefinitely above. In each layer, both the static stability N and the wind speed U are taken to
be constant, so the corresponding Scorer parameters are also constant. Although the formulation allows different values of U
in each layer, in this study U is taken to be constant throughout. The Scorer parameter is therefore discontinuous at z = H.
The static stability and Scorer parameter in the lower layer are denoted by N? and [y, respectively, while in the upper layer
the corresponding quantities are N3 and 5. Since trapped lee waves (TLW hereafter) are the main focus of the present study,
lo < 1y is always assumed, which is a necessary condition for wave trapping.

In this atmospheric structure, three possibilities exist: waves may propagate vertically in both layers, they may propagate
only in the lower layer, or they may be evanescent in both layers. The pressure drag force directed across the ridge, per unit

length in the cross-flow (spanwise) direction, is defined as
o oh
D= =0)=—d 3
[ =05 s 0
— 00

where p; is the pressure perturbation in the lower layer and h(z) is the surface elevation. In this study, the orography is assumed
to be symmetric and bell-shaped:
ho

h(z) = ————— 4
(z) 1% (2/a)?’ “4)

where h is the maximum height and a is the half-width. The total drag D can be decomposed as

D:Dpw+Dtlw7 (5)

with D,,, associated with internal waves that propagate in the upper layer (z > H), and Dy, associated with TLW confined
to the lower layer (z < H). In this framework, D,,, receives contributions from wavenumbers satisfying k% < I3 (propagating
in the upper layer), whereas Dy, receives contributions from wavenumbers satisfying k2 > [2 (evanescent in the upper layer).
The dependence of D and of the TLW wavelength Aq on 1 H/7 was compared with numerical simulations, showing very good
agreement.

Using this model, Teixeira et al. 2013a investigated the behaviour of the drag D, normalised by its hydrostatic single-
layer reference value Dgy (Do = 0.25mpU N1hZ, where p is the air density), as a function of lo/l; and the corresponding
non-dimensional interface height [; H/m, for selected values of the non-dimensional ridge width [;a and wind-speed ratio
Uy /Us. When I3 /17 — 1, the propagating-wave drag approaches 1 (under approximately hydrostatic conditions) and the TLW
drag vanishes. As l5/l; decreases, the propagating-wave drag develops an oscillatory dependence on Iy H /7, with maxima
of increasing magnitude due to constructive interference of reflected waves in the lower layer. The TLW drag exhibits local
maxima associated with each resonant TLW mode, occurring for small /5/l; and at slightly larger values of /1 H than the
propagating-wave maxima. As [;a decreases (i.e. as the response becomes more non-hydrostatic), the propagating-wave drag
decreases and the region of non-zero TLW drag extends to larger values of 5 /l;. These results were confirmed by numerical
simulations for I/l = 0.2 and Uy /U, = 1, using the FLEX numerical model. This is precisely the configuration considered

here to study the effect of nonlinearity on TLW.
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3 Studied cases
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Figure 1. Linear-theory results used to select the two TLW configurations analysed in the nonlinear simulations. The results shown corre-
spond to l/l; = 0.2 and U1 /Uz = 1. (a) TLW horizontal wavelength Ao (for the first three trapped modes, labelled by n1vw) normalised
by its maximum attainable value A2 = 27 /I, as a function of the non-dimensional waveguide depth H=0LH /7. (b) Corresponding total
drag D /Dy in a distinctly non-hydrostatic regime (l1a = 2) and its decomposition into trapped-wave and propagating-wave contributions,
Dyi1w/Do and Dy, /Do, versus H, highlighting the resonance peaks associated with each trapped mode. The vertical markers indicate
the two parameter choices adopted in this study, H = 0.54 and 0.70, for which Ao and the relative importance of Dy, and Dy, differ

substantially.

Figures la and 1b are reproduced from the analytical model of Teixeira et al. 2013a. Figure la shows the trapped-lee-
wave (TLW) horizontal wavelength )¢, normalised by its maximum attainable value Ay = 27 /l2, as a function of the non-
dimensional waveguide depth H. Results are shown for the first three TLW modes, n¢,, = 1,2, and 3. Here H= LW H/m.
As H increases, successive trapped modes become available. One TLW mode exists for 0.5 < H < 1.5, two modes for
1.5 < H< 2.5, and three modes for H > 2.5. For each newly available mode, \o/A2 departs from unity; as H increases
further, it asymptotically approaches I3/l (equal to 0.2 in the present set-up). In this model, ny,, and A are independent of
the non-dimensional mountain half-width [y a (here [1a = 2) and of the wind-speed ratio Uy /Us (here Uy = Uy).

Figure 1b shows the theoretical dependence of the normalised total drag D/Dg and its decomposition into trapped-lee-
wave drag Dy, /Dy and propagating-wave drag D,,,/Dy, as functions of H, for I, /l1 = 0.2 and [ya = 2. In this distinctly
non-hydrostatic regime, D,;,, can be comparable to D,,,, and can exceed it over some intervals, so TLW drag may represent a
substantial fraction of the total drag. The maxima of D,,, /Dy associated with each trapped mode occur near H = 0.5+n (with
n an integer), whereas the maxima of Dy, /Dy are shifted to slightly larger values of H. Away from the immediate vicinity of
H=0.5+n, Dy, /Dyg generally exceeds D,,,,/Dy. This highlights the potential importance of TLW drag in non-hydrostatic

two-layer configurations, relative to the classical hydrostatic one-layer reference.
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To examine how D /Dy, Dy, / Do, and Dy, / D evolve with nonlinearity, nonlinearity is parameterised by the non-dimensional

mountain height
140 ho = l1ho. (©)

Thus, nonlinearity is varied exclusively by changing k¢, while N; and U are held fixed.

Two cases are selected from the linear-theory map of Teixeira et al. 2013a: 1) H =0.70 and ii) H = 0.54 (indicated in the
figures). In the case i), trapped-lee-wave drag dominates the total drag (about 95% of D in the linear reference), and the TLW
wavelength is close to its maximum value (Ao = 0.92\5 = 14451 m). In the case ii), the TLW contribution is smaller (about

145 64% of D in the linear reference), and the propagating-wave contribution is correspondingly more significant. In this case,
Ao = 0.46)5 = 7226 m, i.e. approximately half the value obtained for H =0.70. Finally, to isolate the role of nonlinearity as

cleanly as possible, only single-mode TLW configurations are considered in the present study.

4 Numerical model

This study uses the FLEX numerical model, a two-dimensional micro-to-mesoscale model formulated in orthogonal curvilinear
150 coordinates, which has been used previously to investigate resonant mountain-wave flows (Argain et al., 2009; Teixeira and
Miranda, 2005; Teixeira et al., 2008, 2013a, b). All simulations employ a horizontal grid spacing of Az = 200 m and a vertical
grid spacing of Az = 24 m. The background wind is uniform with U = 10 ms~!. Static stability is prescribed as N = 0.02s~*
in the lower layer and No = 0.004 s~ in the upper layer, giving No /N7 = 0.2 and, for uniform U, l5/l; = 0.2.
The mountain has the bell-shaped profile (4) and half-width ¢ = 1000 m, which yields /;a = 2 and therefore a strongly non-
155 hydrostatic response. The mountain height is varied to control nonlinearity, from hy = 10 m (weakly nonlinear; ho = l1ho =
0.02) up to hg = 500 m (strongly nonlinear; fzo =1).
The vertical domain extends up to six hydrostatic vertical wavelengths, Ao = 27 /l;. The mountain is centred at = 0. The
upstream domain length is 15a, and the downstream domain extends to approximately seven TLW wavelengths, \¢, measured
in the linear reference regime. The model time step is At = 15, and simulations are integrated for ~ 500a/U (about 14 h).
160 A sponge layer is applied near the top boundary over a depth of approximately 2.5 \,o. At the downstream boundary, the
radiation condition of Raymond and Kuo (1984) is imposed. In addition, sponge layers spanning 15 and 30 grid points are
applied at the upstream and downstream boundaries, respectively.
For the two studied TLW configurations (ﬁ =0.54 and H = 0.70), ﬁo varies between 0.02 and 1. Larger values are not
considered because, as shown later, TLW effects on the drag variability (the main focus of this work) become unimportant for

165 ho > 1.

5 Diagnostic parameters

To study the behaviour of D and its components as functions of the non-dimensional mountain height ho, a set of diagnostic

parameters is introduced.
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5.1 Displacement amplitude and wavelength

In linear, adiabatic, and reversible flow, the wave field can be visualised using the isentropic vertical displacement 7(x, 2)
inferred from the potential-temperature perturbation 6’ (z, z). In that limit, n(z, z) and w’(x, z) have similar spatial structure,
and the maximum TLW displacement amplitude, 7ax, can be estimated directly from n(z, z). As hy increases, the relationship

between 7 and w’ becomes nonlinear, and 7 no longer represents the actual parcel displacement. For this reason, 7y, is

estimated here from w), . using
/ !
Wi ax A0 . . . Nmax _ WinaxA0
= —2% __ or, in non-dimensional form, = /=== 7
hax 2nU ho 27TUh0 ( )

Here )\ is the TLW wavelength in the linear regime (ho < 1), so that kg = 27 /Ao denotes the corresponding linear horizontal
wavenumber. This estimate follows from the kinematic relation w’ = U dn/0x and remains meaningful for any degree of
nonlinearity because it is based on the directly simulated maximum vertical velocity. To better understand the behaviour of the

TLW field, the location of the maximum of 7 is determined, i.e., (2., . , Zn..... ) In the nonlinear regime, the TLW wavelength

max)

A is estimated as the average wavelength of the primary TLW train. The corresponding nonlinear horizontal wavenumber is
defined as k = 27/ \.

5.2 Energy leakage from the waveguide

The vertical wave energy flux per unit area at height 2 is quantified by the horizontally averaged quantity
Ly

1

Py =1 [V d ®
0

where L, is the horizontal domain length and the overbar denotes a horizontal average. If TLW are well confined within
the waveguide, p’w’(z) above the waveguide should be small; any non-zero value primarily reflects leakage to propagating
components and/or dissipative effects.

At a height z,, sufficiently far above the waveguide, the upward energy leakage is estimated by p’w’(20p). Accordingly,
the fraction of energy that escapes the waveguide is defined as
S = ’W(Zt()p”

B max;c[o,H] ’W(Z” ’

€))

where the denominator is the maximum (in magnitude) of p’w’(z) within the waveguide. To characterise structural changes in

the TLW field, the locations of the maxima of S,,, are also recorded, i.e., (x Smax, 2 Slr]x;‘a’x).
5.3 Momentum leakage from the waveguide

The vertical flux of horizontal momentum carried by the waves at height z is computed as
Ly

u'w'(2) = Li/u'(x,z)w’(x,z) dx. (10)
“0
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The vertical derivative —Ou’w’(z)/0% is the local rate of mean-flow acceleration (or deceleration) due to wave momentum
deposition. Where u/w’ decreases with z, the wave field deposits momentum and the mean flow accelerates, and vice-versa.
The fraction of momentum flux that escapes the waveguide is estimated by

|u’w’(ztop) ’

max_ eo, ] |W(z)‘ '

Suw = (11)

A small S,,,, indicates that the momentum flux has been substantially reduced below z;,,, (by deposition and/or dissipation),
implying strong wave-mean-flow coupling. Conversely, Sy, ~ 1 implies that a significant fraction of the momentum flux
reaches z.,p, consistent with efficient leakage to propagating components. For the same reason as in the case of Sp,,, we also

use the location of the maximum of S, i.€., (T gmax, zgmax ).
5.4 Energy-momentum coupling

To quantify departures from the linear energy—momentum relationship, the diagnostic parameter C|, is introduced as

Co= " / Cul(2) dz, (12)

Zo— 21
z1

where Cy,(z) is the local ratio between energy and momentum fluxes,

p'w'(2)

Cu(z) = —
B = )

13)
In the linear limit, C\, (z) ~ U within the waveguide. Hence, if C,, remains close to U (e. g. deviations < 10%) as fzo increases,
energy and momentum leakage remain approximately proportional and the response retains a predominantly linear structure.

In this study, C',, is evaluated between z; = 0 and 2o = 0.8 H to avoid sharp flux variations near z = H.
5.5 Link between 1),,,.x and linear drag scaling

In the linear regime, an order-of-magnitude relation in the TLW waveguide is w),,. ~ v/ Diw/(pH ). Combining this with (7)

max

yields

A0 Dtlw
max — 5 _ 717 . 14
Thnax = 5% oH (14)
If Dy, follows the quadratic linear scaling Dy, o< pINy Uh% (for fixed N1, U, Ay, p and H), then
Thnax = Cho OF Thmax = Cho, (15)

where C'is a constant. Outside the linear regime, this proportionality need not hold.
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5.6 Retuning induced by mean-flow modification

For fixed H, N1, A\g and U, the lower-layer vertical wavenumber associated with the linear reference mode is

my = /12 — k2, (16)

and the modal condition (through m, H) does not vary with hy in the strictly linear regime.
As hy increases, wave momentum fluxes can generate a non-zero horizontally averaged perturbation wind. Although the
imposed reference profile is U = const., the effective mean wind becomes Ueg(z,ho) = U + AU (z, ho). Assuming a local

stationary-wave dispersion relation, the corresponding effective vertical wavenumber is approximated by

R ) N? )
mieft (2,h0) & || ————— — k?, a7
Ue2H (Z ’ hO)

where k = 27/ is computed from the diagnosed nonlinear TLW wavelength \. The relative change in vertical wavenumber is
then
A - ho) —

mi (2,h0) = mieft (2, ho) ml. (18)

mq my
The mean-flow modification AUz, k) is computed as the horizontal average of u’(z, z) at each z:
L

AU (z,ho) =/ (z,ho) = L—/u'(m,z,ﬁo)dm (19)

0
In nonlinear flow, quadratic terms can produce a non-oscillatory (k = 0) component of u’, so that u/ # 0. It is useful to dis-
tinguish (i) waveform distortion that generates harmonics (2k, 3k, etc.) but may still have u/ = 0, from (ii) an induced mean
component with u/ # 0. Only the latter contributes to U (2, BO).
The diagnostic Amy/m; therefore provides an indirect measure of retuning, quantifying how the effective mode departs
from the linear reference as iLo increases. In the linear limit (ﬁo =0), Amy/m; =0 by construction. In what follows, the

maximum deviation within the waveguide, (Am1 )max/m1, is used as a single summary measure.

5.7 Flux-based drag decomposition

The drag D,,, is diagnosed from the vertical momentum flux at the top of the domain, which primarily represents propagating-
wave (PW) contributions reaching 2op:

Dy = —pu/w (Z0p)- (20)
The residual contribution associated with TLW (and, more generally, processes confined below z;,,,) is then estimated as
Dy = D — Dpy,. 21)

This flux-based decomposition is less direct than a spectral separation based on the Scorer parameter, but it provides a simple
and physically interpretable estimate of how D,,, and Dy, evolve with ho and how their contrast differs between the two

studied cases, H =0.70 and H = 0.54.
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6 Results and discussion
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Figure 2. Variation of the pressure drag with nonlinearity (ho = Niho /U) for the two TLW waveguide configurations H=054and H =
0.70. (a) Absolute drag D together with ideal linear extrapolations (shown as D = 2.28 Dy for H=0.54and D=1.56D, for H = 0.70).
(b) Same curves normalised by the hydrostatic drag Dy. (c—d) Flux-based partition into propagating-wave drag D)., and trapped-wave

contribution Dy, = D — Dpy.

Because H, N1, A\g and U are fixed, variations in the diagnostics discussed below primarily reflect finite-amplitude effects
associated with increasing hy relative to the linear regime (phase shifts, saturation, harmonic generation and mean-flow modi-
fication).

Figure 2(a) shows the numerically diagnosed pressure drag D as a function of ho for H = 0.54 (dotted line) and H = 0.7
(solid line), together with ideal linear extrapolations D = 2.28 Dy and D = 1.56 Dy, respectively, obtained by assuming linear
conditions over the full range of hy. Since Dy iLg and the linear forcing scales with hg, D is expected to be approximately

quadratic at sufficiently small amplitude; accordingly, D ﬁg for very small ho, but it departs rapidly from D = cDy. For
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H = 0.54, D remains below its linear extrapolation throughout, indicating a progressive loss of waveguide efficiency as ho
increases. For H = 0.7, D initially falls below 1.56 Dy, but it recovers at larger amplitudes and exceeds the linear prediction,
suggesting a nonlinear reorganisation that enhances the drag. Overall, the H = 0.7 case, where Dy;,, dominates in the linear
limit, is less sensitive to increasing ho than the H = 0.54 case, indicating that D, is more sensitive to nonlinearity.

Figure 2(b) presents the same curves normalised by Dy. For H=07,D /Dy reaches a maximum near ho ~ 0.1, consistent
with a modest-amplitude regime in which TLW amplitude benefits from enhanced resonance. For ho > 0.1, D /Dg decreases
and forms a broad minimum (D /Dg & 1.44) over ho ~ 0.55-0.65, implying a substantial reduction in TLW coherence and/or
guiding efficiency; 1y,ax versus ho provides a complementary indicator of this change. For ho > 0.65, D /Dy increases again,
before a second collapse near fLo ~ 0.85. The predominance of D,;,, over D,,, in Figure 2(d) shows that TLWs recover up to
ho ~ 0.85 and then collapse again, after which the drag decreases monotonically, confirming the central role of TLWs in this
behaviour.

For H = 0.54, D / Dy collapses rapidly and remains below the linear extrapolation. This is consistent with Figure 2(c), which
shows that, outside the near-linear regime, D,,, dominates over Dy;,,. These results motivate the central hypothesis tested be-
low: in the low-efficiency waveguide (H = 0.54), Dy, peaks in the near-linear regime and then collapses, being progressively
replaced by PWs, whereas in the high-efficiency waveguide (H=0.7) strong TLWs persist over a broader range of ﬁo, under-
going detuning and saturation but recovering at larger amplitudes while coexisting with an increasing PW contribution.

Figures 3-8 test these hypotheses by linking wave morphology, geometric diagnostics and energy / momentum fluxes to the
drag behaviour in Figure 2.

In Figure 3 (H=0.7), n(z, z) is near-linear at izo = 0.02: monochromatic sinusoidal waves are coherent across the waveg-
uide, with 7(x, z) maximised near z ~ H and the main crest aligned with the ridge. At ho = 0.3, crest steepening and a slight
downstream shift indicate harmonic generation (2k, 3k, ...) and weak modal detuning linked to mean-flow modification.

By ho = 0.5-0.55, the primary train remains identifiable but becomes strongly modulated: a low-frequency jump/jet de-
velops near the lee slope and a second, relatively clean TLW train emerges downstream. For iLo = 0.6-0.8, the first train
collapses into large-scale jump-like structures that act as an effective mountain for a well-organised secondary TLW train with
smaller A, displaced several wavelengths downstream. This indicates that the high-efficiency waveguide can reconvert part of
the finite-amplitude response into coherent trapped waves, maintaining a significant trapped contribution to the drag even at
large amplitude.

In Figure 4 (H = 0.54), the near-linear case (hg = 0.02) is already less clean than in Figure 3: amplitudes are smaller, decay

with height is stronger, and interference with PWs above the waveguide appears earlier. As h increases (0.2-0.4), steepening
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and harmonics develop, but energy leaks upward and downstre
rather than reorganising into a coherent secondary train.
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Figure 3. Wave-field evolution in the high-efficiency TLW waveg-

uvide case H = 0.70 as nonlinearity (ﬁo = N1ho/U) increases.
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Figure 4. Wave-field evolution in the low-efficiency TLW waveguide

case H = 0.54 as nonlinearity increases.

In Figure 5, the variation of several geometric diagnostic pa-
rameters with ﬁo is shown. In Figure 5a, the normalised wave-
length, A/\g, increases with izo while the response remains
approximately monochromatic. This lengthening persists up
to the loss of monochromaticity, which is clearly illustrated in

Figures 3d and 4c.

This loss occurs much earlier for H = 0.54 (iLO =~ (0.3 with A =1.23)\) than for H=07 (iLO ~ 0.55 with A = 1.38)),
consistent with the more rapid collapse of TLW resonance in the low-efficiency waveguide. As can be seen in Figures 3e and 3f

(for H= 0.7), the secondary trapped train that forms after the jump (ﬁo > 0.6) has a smaller A than that diagnosed at izo =0.55,
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when the primary train collapses (1.38 ). This value remains nearly constant (A = 1.06\¢) until the train disappears at ho~1

(not shown here).

In Figure 5b the maximum relative deviation (e L
(Am1)max/m1 is shown; as noted above, this §O 12: -0.54 :
quantity directly measures the nonlinear retuning 1:1_' —|H/=0.70
of the mode relative to the linear reference solu- 1,0-:. ~-----o----o oo oo m oo TSR :
tion and is used only in regimes where the mode 000 =~ 00 e | Hin=054 7
remains identifiable (i.e. the spectrum exhibits a £ 007 070

~ -0,10 Linear conditions .
dominant peak). As expected, (Amq)max/m1 ~ g 0,15 ]
0 in the linear regime; it becomes negative and o N N N
increases in magnitude for both cases, reaching o] Hinear conditions N
about 10% at hg ~ 0.3 for H = 0.54 and about z zzg: ) :
20% at ho = 0.55 for H = 0.7 (values of hg at ; 200 _::;2834 _:
which the primary wave train collapses in each 100 ' ' ' ' ' ' ' ' 1 ' ]
configuration). This progresAsive increase in the 21:_' l : l l l L"l‘ear°°”‘;m°ns e |l-|/ =0.54 ]
negativity of Am; /m; with hq implies a lengthen- ,si ] d) _|1H /2;0:70 i
ing of A, (the effective hydrostatic vertical wave- :‘g - Tiriiiiirrrebinearconditions e et T T i et
length), consistent with the increase in A diagnosed T e N
in Figure 5a for both cases. The waveguide se- Z)(:’:' ' ' _______ ' T gy e = : _-_:I: H/T:=054 E
lects resonant modes on the basis of the modal L 60 = ©) —I:H/rt=0.70 '_=
condition myH =nn together with the Scorer- N’g 1,5 ]
parameter constraint; if m; decreases (because 1,070 ’ ]
AUgg > 0), the system tends to readjust by select- 60;'; — .r“'."‘:-—::=
ing quasi-resonant modes that approximately sat- L 301 _d)_ ............. \ T
isfy both the modal condition and the dispersion < 1 _:ﬂ;::g% i
relation, given the modified Ueg and A. This in- 10-. “““““““““““““““““ e S
dicates that waveguide modification (via U.g and 0ofo 01 02 03 04 05 06 07 08 09 10
A) promotes a predominantly one-way adjustment N,h/U

that shifts the initially dominant trapped compo- o . . N
Figure 5. Geometric diagnostics versus nonlinearity (ho) for H = 0.54 and
nent in (k,m) space; accordingly, the m; diagnos- H = 0.70. (a) Normalised trapped wavelength \/Xo. (b) Maximum relative
tic provides the vertical signature of this readjust- retuning (Am )max/m. (c) Maximum displacement amplitude 7max. (d)
ment, whereas A provides the observable horizon- TImax Normalised by ho, compared with the linear reference. (e) Vertical po-

tal signature. sition of Nmax (Znmax /H)- (f) Downstream position of Nmax (Tnax /@)-
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Figure 5¢ (Mmax Vs. EO) shows that, for BO < 0.15, Nmax closely follows the linear predictions derived from w!, o

\/W and Nmax X hg (equation (15)), confirming a single-mode TLW regime. For larger amplitudes (ﬁo), Nmax CON-
tinues to increase but tends to saturate, owing to the exhaustion of resonant amplification (primarily through vertical leakage
of energy and momentum and transfer to harmonics, as discussed later); this saturation occurs much earlier and at substan-
tially lower levels for H=0.54 (Mmax ~ 170 m at iLO ~ 0.25) than for H=07 (Mmax ~ 400m at iLO =~ 0.55). Note that for
H= 0.7, over the interval ﬁo = 0.1-0.55, expression (15) must be modified in order for 1, to match the plateau associated

with saturation of the amplitude growth (i.e. exhaustion of resonant gain). In that case, a curve of the form
s = Cho (1 ahd) (22)

is suggested, where « is a constant to be fitted.

2,0 — - T T T ; T T T T T T

[ ——Nhju=002 N,h,/U=0.02

TR N1h0/U=0.3 i L

_____ hy 0.6 ‘(PU'W')X/(U Do)
— (p'w),/D,

~(pu'w') /(U D)
(pP'w")/D,

b) c) d)

'x,max
1

(pP'w)

0,0

O,OIOO O,OIOS O,OI1O O,OIOO O,OIOS O,OI10 O,OIOO O,OIOS 0,0I10 O,OIOO 0,(;05 0,0I10
(PW)/(UD,) -(pu'w') /D, (PW)/(UD,) & -(puw)/D,  (PW)/(UD,)&-(puw)/D,

Figure 6. (a) Energy flux p’w’ () for different values of ho (case H = 0.7). (b) As in panel (a) but for the momentum flux —p, vw/w’5(2).
(c) Comparison of p’w’ (z) and —p,uw/w’;(z) under linear conditions. (d) As in panel (c) but under nonlinear conditions. As an illustration,
panel (d) shows both the maximum value of Sp,, and its value at z;op (see expression (9)). The profiles p’w’,(z) and —pu/w’;(z) are

normalised by U Do and Dy, respectively.

Corresponding profiles used to compare the vertical structure of energy and momentum transports and to assess the persis-
tence of their coupling as nonlinearity increases. As an illustration, panel (d) shows both the maximum value of S, and its

value at z;,, (see expression (9)).
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The dependence of 7),ax /o On fzo (Figure 5d) shows that, relative to the linear extrapolation, TLWs lose amplitude over the
entire range of ho in both cases. As expected, this occurs much earlier and more abruptly for H =0.54, except for H=0.7
over fzo =0.02-0.25 (very weak nonlinearity), where 7ax/ho exhibits a maximum at fzo =~ 0.1, about 10% above the linear
reference value. This interval and the position of the maximum coincide exactly with those of the Dy, /Dg curve in Figure 2d,
so the association between 1.y /ho and Dy, / Dy is evident. Moreover, comparing Figures 2d and 5d shows that the monotonic
decrease of Nmax/ho and Dy, /Dy is very similar up to BO ~ 0.55. Therefore, fLo = 0.02-0.25 is an interval in which resonant

gain is particularly relevant for H=07.

2,0

T T T T

—— Np/U=0.02 —— N,h/U=0.02 N h,/U=0.02 N h,/U=0.3
18 N.h/U=0.3 L NhU=03 I
N v ~(puw)/D, ~(puw)/D,
— (pW)/(UD) — (p'W")/(UD,)
164 I
144 I
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z/\
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(PW)/(UD,) ~(puw)/D, (PW)/(U D,) & (puw)/D, (PW)/(U D,) & (pu'w') /D,

X 0

Figure 7. As in Figure 6, but for H = 0.54.

The position diagnostics in Figures 5(e,f) complete the modal picture by distinguishing a displacement maximum, anchored
within the TLW waveguide, from a maximum dominated by downstream PWs. For H=0.7, Znae /H remains close to unity
up to ho ~ 0.5, indicating that the maximum remains waveguide-anchored prior to the jump + secondary-train reorganisation,
while =, /aincreases smoothly with step-like changes associated with that reorganisation. For H=0.54, Znoax / H InCreases
much earlier and x,, /a is large from the outset and varies little, suggesting a maximum associated primarily with downstream
PWs rather than with a well-defined trapped waveguide; this helps explain why D, dominates already from ho~0.1in Figure
2(c).

A key feature of Figures 6 and 7 is the strong oscillation of p/w’,(z) and —pu/w’,(z) near z = H in the near-linear
case (ho = 0.02). This reflects standing vertical trapped modes within the waveguide formed by superposition of upward and
downward propagating components reflected at z = H and at the ground; under partial resonance, the profiles exhibit nodes,

antinodes and sign reversals, as predicted by linear theory.
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For H = 0.7 (Fi gure 6(a,b)), the near-linear profiles exhibit well-defined maxima within the waveguide and an approximately
exponential decay above H, as expected from linear theory. As hg increases (0.3-0.6), the maxima shift slightly upward and
broaden, and the decay above H becomes more gradual, indicating a redistribution of flux into harmonic structures and/or
partially propagating, upward-radiating components above the waveguide. Even so, most of the energy and momentum flux

remains concentrated within the waveguide, consistent with D,;,, remaining dominant (Figure 2(d)).

For H =054 (Figure 7(ab)), similar

~ I I I I I I v I I I I I
changes occur at smaller hg, consistent with o 804 L0 -0- 0-0-0 .
. > 0--0--0-° O e e e o
a low-efficiency waveguide. By hy = 0.3, 2 604 a) LTl
) ) ) w ] R Yo Suw, |H/r=0.54"""""" e o
the internal maxima lie closer to H and the = 40 —0—Suw, |H/=0.7 O/O\O\ / \
o~ o o 0—0
profiles exhibit a markedly more gradual 3 1° Spw, |H/z=0.54
v ®1 —spw, | H/n—O 7
decay above H than in the near-linear o 1, . . . . .
regime and than in the H = 0.7 case, indi- I 084 zSpw, |H/n=0.7 R0 0L, ]
; g 1----- Spw, | H/x=0.54 1
cating stronger leakage to levels above the S 064 Zspw, L JUPREE T N T O
. . . . & 1P .0 -0 Z8uw, | HI=0.54
waveguide and helping to explain the rapid = 0,4 50T o ssuw, | H/z=0.7 .
degradation of Dy;,, and the inability of the \é 0‘2-. 0 g_ ':’O__O__O_o_o—o—o—o—o7§<:/\o—o\?
total drag to approach its linear reference Ng 0,0 -
13 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i 1 i
(see Figure 2c).
Figures 6(c—d) and 7(c—d) show that, even
at finite amplitude, the appropriately nor- o
malised energy and momentum flux pro-
files retain a surprisingly similar structure, .
R— v I v I v I v I v I v I v I v I
which motivates the use of C,(z) and C,, 0,0 0.1 02 03 0.4 05 06 07 08
(equations 12 and 13). In the linear limit, N1h0/ U

p'w ,(2)/(UDg) and —pu/w',(2)/Dy are

o Figure 8. (a) Fractional leakage for energy and momentum, Sp., and Sy, versus ho
nearly indistinguishable throughout the

for H = 0.54 and H = 0.70. (b) Location of maxima of Sy, and Sy, for H=054

waveguide, implying Cy(2) » U where the and H = 0.70. (c) Mean energy—momentum coupling measure C,,.

mode is well trapped.

At larger amplitude (e.g. ho = 0.6 for H = 0.7 and ho = 0.3 for H = 0.54), modest offsets and differences in decay rates
appear, but the global similarity persists, so C,, remains close to U (mean deviations < 10%), indicating that energy and
momentum transports remain strongly coupled on average even as confinement degrades.

Figures 8(a-b) quantify the contrast using .S},,, Sy and the vertical locations of their maxima: for H=0.54 leakage
increases early and the maxima rise above the waveguide, whereas for H=0.7 leakage increases later and the maxima remain
anchored near H until iLo ~ 0.5. Figure 8(c) shows that C,, remains close to U (mean deviations < 10%), so the mean energy—

momentum relationship largely retains its linear character even when confinement and TLW/PW partition change markedly.
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Together, Sy, Suw and C,, show that energy and momentum leak in comparable proportions across most of the range: Sy,
and S,,,, remain of similar magnitude without a significant offset.

These mechanisms explain the drag behaviour in Figure 2. For H=0.7, the waveguide remains highly efficient: despite
increasing ho (and the associated growth of dissipation and vertical radiation), a substantial fraction of the response remains
trapped.

At weak amplitude, near-linear TLWs maximise Dy,,; at intermediate amplitude, detuning and saturation reduce the trapped
contribution and produce the intermediate minimum in D/Dy; at larger amplitude, a jump-like reorganisation and the emer-
gence of a coherent secondary trapped train (Figures 3 and 5) together with a moderate increase in the PW contribution (Figures
6 and 8) allow more efficient conversion of increased h( into momentum flux, so that D/ D, exceeds the linear reference, with
Dy, still dominant but accompanied by a non-negligible D,,,.

For H = 0.54, the waveguide is inefficient and does not sustain robust trapped resonance as hy increases. TLWs are effec-
tive only in the near-linear limit (hence the early maximum in Dy;,,), after which the train loses coherence: 7imax/ho saturates
early, A becomes ill-defined, and the flux profiles extend higher above H, consistent with stronger PW contributions. Conse-
quently, Dy, /Dy decreases almost monotonically, D,,, /Dy becomes dominant, and the total drag remains below the linear
extrapolation.

In summary, the central message is that the evolution of the total drag and its components with increasing hy is controlled not
only by TLW amplitude, but above all by waveguide guiding efficiency, which determines whether energy extracted from the
incident flow is largely retained and recycled within the trapped mode—allowing jump-driven reorganisation and a secondary
trapped train, or whether it is transferred earlier to propagating components and/or to processes associated with detuning,
saturation and eventual turbulent dissipation.

Finally, it is important to mention that the present study aims to isolate free-atmosphere internal-wave dynamics, in particular
trapped lee waves (TLWs), rather than boundary-layer processes near the surface. We therefore adopt an idealised external-
flow framework, treating the flow aloft as approximately inviscid and imposing a free-slip lower boundary to avoid introducing
frictional stresses and boundary-layer parameterisation effects that are not central to the mechanisms of interest. This is con-
sistent with the classical boundary-layer perspective in which a thin near-surface region is frictionally controlled, whereas the
outer flow above can be approximated as inviscid to leading order. Under this idealisation, rotors and flow separation are not
expected, since they depend critically on frictional vorticity generation within a realistic boundary layer; the drag response is
thus interpreted mainly in terms of wave-internal processes (detuning, harmonic generation, reorganisation and leakage). A
no-slip (or stress-imposing) lower boundary would only be required if the focus were on rotor/separation dynamics or strongly

dissipative breaking governed by surface stress, which lies beyond the scope of the present set-up.

7 Conclusion

This study investigated how pressure drag in non-hydrostatic, stably stratified flow over a bell-shaped ridge evolves with

nonlinearity in a two-layer atmosphere. Nonlinearity was varied exclusively through the mountain height hg (equivalently
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fzo =l hg), while N1, Ny, H, and U were held fixed. The simplicity of the atmospheric configuration used in this theoretical
model allows a clearer isolation of the complex effects linked to nonlinearity.

Two configurations were considered, guided by the linear framework of Teixeira et al. 2013a: (i) a case in which trapped-
lee-wave drag dominates in the linear reference, and (ii) a case in which trapped-lee-wave and propagating-wave contributions
are of comparable magnitude. Diagnostics based on wave amplitude, wavelength, leakage of energy and momentum fluxes,
and retuning were used to interpret the nonlinear response.

For the high-efficiency waveguide configuration (H = 0.70), a substantial fraction of the response remains trapped over a
broad range of ho. At small amplitudes, modest nonlinear effects can enhance resonance and increase Dy;,,. With increasing ho,
detuning, harmonic generation, and leakage reduce trapped-wave coherence and produce an intermediate minimum in D/ Dy.
At larger amplitudes, the flow reorganises and a secondary trapped-wave train can re-emerge downstream, while a growing
propagating-wave contribution coexists with still-dominant TLW drag.

For the low-efficiency waveguide configuration (H = 0.54), trapped waves are robust only in the near-linear regime. As ho
increases, trapped-wave coherence degrades rapidly, leakage to propagating components increases, and Dy;,, collapses while
D,,, becomes dominant. Consequently, the total drag remains below the linear extrapolation across the explored range.

Despite these pronounced differences in TLW/PW partition, the mean energy - momentum coupling within the waveguide
remains close to its linear character, with C, typically remaining near U. The results therefore indicate that the evolution
of total drag with nonlinearity is controlled not only by TLW amplitude, but also and primarily by the waveguide guiding
efficiency, which determines whether the energy extracted from the incident flow is retained and recycled within trapped
modes or transferred early to propagating components and saturation processes.

These findings may be relevant for improving orographic-drag parametrisation in weather and climate models by highlight-
ing regimes in which trapped-wave drag can be significant and by clarifying how nonlinear effects alter the partition between

trapped and propagating contributions.
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