

1 Physical Interpretation and Implications of Convective Impulses in
2 Thunderstorms Based on Lightning and Polarimetric Radar Observations

3 Chuanhong Zhao,^{1,2*} Yijun Zhang,^{2,3*} Dong Zheng,⁴ Liangtao Xu,⁴ Wen Yao,⁴

4 *Affiliations*

5 ¹*Climate Change and Resource Utilization in Complex Terrain Regions Key Laboratory of Sichuan*
6 *Province, School of Atmospheric Sciences, Chengdu University of Information Technology,*
7 *Chengdu, 610225, China.*

8 ²*Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan*
9 *University, Shanghai, 200438, China.*

10 ³*Shanghai Key Laboratory of Ocean-land-atmosphere Boundary Dynamics and Climate Change &*
11 *Shanghai Frontiers Science Center of Atmosphere-Ocean Interaction, Fudan University, Shanghai,*
12 *200438, China.*

13 ⁴*State Key Laboratory of Severe Weather Meteorological Science and Technology & CMA Key*
14 *Laboratory of Lightning, Chinese Academy of Meteorological Sciences, Beijing 100081, China.*

15

16

17

18

19

20

21

22

23 Corresponding authors: Dr. Yijun Zhang & Dr. Chuanhong Zhao are the co-corresponding authors.

24 E-mail: zhangyijun@fudan.edu.cn; zch@cuit.edu.cn

25

26

27

28

29

30 **Abstract**

31 Convective impulses (CIs) occur in thunderstorms and are strongly associated with severe
32 convection, often contributing to hazardous weather events. However, the underlying physical
33 mechanisms governing CIs remain poorly understood. In this study, multiple CI events were
34 identified in two selective isolated thunderstorms and analyzed from the perspective of the cloud
35 life cycle using polarimetric radar and lightning observations. We investigated the roles of
36 environmental conditions and cloud microphysics in CI events. Our results indicate a pronounced
37 increase in supercooled liquid water and graupel content prior to CI occurrence. The breakup of
38 raindrops is closely linked to the observed increase in supercooled raindrops, suggesting that the
39 fragmentation of large raindrops below the melting layer contributes to raindrop multiplication at
40 subfreezing temperatures. These smaller raindrops subsequently freeze into graupel-like particles,
41 releasing latent heat that may enhance convection and/or lightning activity. This hypothesized
42 physical mechanism is further supported by idealized numerical simulations, which demonstrate
43 that the updraft intensity varies with the efficiency of raindrop breakup. Additionally, large raindrops
44 involved in the breakup process originate from the coalescence of raindrops during the initial pre-
45 CI event, whereas graupel melting or shedding plays a role in subsequent pre-CI events. This
46 improves the understanding of CIs following precipitation loading, melting, and evaporation within
47 a near-stationary thunderstorm cell. These findings reveal a likely physical mechanism contributing
48 to CI events and offer new insights into thunderstorm microphysics and dynamics.

49 **Short summary**

50 In contrast to the relatively steady and vigorous convection observed in organized thunderstorms,
51 convective impulses (CIs) within less organized, single-cell storms are inherently more challenging
52 to predict. Here, a conceptual hypothesis is proposed to elucidate the physical mechanisms
53 governing CI formation, supported by polarimetric radar and lightning observations and idealized
54 numerical simulations. The results improve our knowledge of thunderstorm dynamics and
55 microphysics.

56 **Keywords:** thunderstorm; lightning; cloud microphysics; polarimetric radar

57

58 **1. Introduction**

59 Thunderstorms, which are intense convective clouds, play important roles in weather and

60 climate; produce copious amounts of precipitation, lightning, and tornadoes; and affect cloud
61 radiative forcing (MacGorman and Rust, 1998; Williams et al., 2005; Zhang et al., 2009). Explaining
62 how the convective impulse (CI, which is often associated with the convective updraft speed,
63 lightning flash rate, and radar reflectivity) occurs in thunderstorms is always challenging but is key
64 for understanding and simulating thunderstorms (Zipser et al., 2006; Markowski and Richardson,
65 2010; Bruning et al., 2024; Zhao et al., 2025).

66 Unsteady updrafts tied to thermal bubbles generally indicate CI events (Bruning et al., 2024).
67 Three-dimensional thunderstorm modeling studies have clarified thunderstorm development by
68 placing a warm bubble into low levels of a conditionally unstable environment (Markowski and
69 Richardson, 2010). Warm bubbles initiate a sustained updraft, and the subsequent evolution is
70 dependent on the vertical wind shear and the convective available potential energy (CAPE) of the
71 environment (Markowski and Richardson, 2010; Grabowski and Morrison, 2021). Observational
72 studies of the spatial distribution of severe storms have indicated that intense convection strongly
73 preferentially occurs over land and that the frequency of lightning is higher than that over the ocean
74 (Orville and Henderson, 1986; Zipser et al., 2006; Cecil et al., 2014). The thermodynamic difference
75 between land and ocean may account for this difference (Williams and Stanfill, 2002; Thornton et
76 al., 2017; Grabowski and Morrison, 2021; Grabowski, 2023; Qie et al., 2024), although some studies
77 note that aerosol concentrations may also be a factor (Rosenfeld and Lensky, 1998; Koren et al.,
78 2004; Rosenfeld et al., 2008; Fan J. et al., 2018; 2025). Specifically, substantial storm-scale
79 variability in dominant thermodynamic controls on the strength of convective updrafts coupled with
80 substantial updraft and aerosol variability in many given events are poorly quantified by
81 observations and present further challenges for isolating aerosol effects (Varble et al., 2023).

82 Previous studies have investigated environmental features corresponding to severe storms, and
83 the results have indicated that thunderstorm intensity is closely related to strong CAPE and wind
84 shear (Brooks et al., 2003; Liu N. et al., 2020). CAPE is a necessary, albeit insufficient, condition
85 for convection initiation; typical thunderstorms occur in environments with CAPE values higher
86 than 1000 J kg^{-1} (Lucas et al., 1994; Markowski and Richardson, 2010). Wind shear is the principal
87 factor controlling the organization of convective storms (e.g., single-cell vs. multicell vs. supercell
88 storms) (Markowski and Richardson, 2010). Although severe weather tends to be more widespread

89 when high shear accompanies significant CAPE, less organized, single-cell storms with briefly
90 intense updrafts can also produce severe weather (of the pulse variety) in high-CAPE, weak-shear
91 environments (Markowski and Richardson, 2010).

92 The knowledge above essentially clarifies convection development in the real world, as CAPE,
93 wind shear, and/or aerosol concentrations are unlikely to briefly change to dominate these relatively
94 short-lived CI events in isolated thunderstorms. However, CI events in isolated thunderstorms
95 objectively exist; thus, convective cloud development or behavior characteristics during subsequent
96 evolution are unclear, which explains why the CAPE and wind shear cannot be perfect proxies for
97 thunderstorms (Liu N. et al., 2020). The impulses of convective strength in the subsequent evolution
98 of thunderstorms are strongly modulated by cloud microphysical processes, which are generally
99 accepted by cloud physicists, although some mechanisms that are theorized to drive convective
100 invigoration with increased aerosol loading are controversial (Koren et al., 2004; Rosenfeld et al.,
101 2008; Thornton et al., 2017; Fan J. et al., 2018; Dagan et al., 2020; Grabowski and Morrison, 2020,
102 2021; Liu N. et al., 2020; Varble et al., 2023). According to Fan et al. (2025), condensational
103 invigoration is most significant under clean atmospheric conditions when many ultrafine particles
104 are introduced, and freezing-induced invigoration can be significant under similarly clean
105 conditions when many relatively large-sized particles are added, as supported by both modeling and
106 observational evidence.

107 Nevertheless, while the above knowledge can clarify the convective enhancement of
108 thunderstorms that are moving and organized (i.e., the CAPE or aerosol concentration may increase
109 with the variety of environments), it is ineffective for understanding the short-term impulses of
110 convective intensity (i.e., multiple CI events) in isolated thunderstorms or near-stationary
111 thunderstorm cells. Here, the objective of this study is to explore the microphysics and kinematics
112 and the underlying mechanism that are attributed to CI events on the basis of observations of the
113 evolutionary cycle of isolated thunderstorms and numerical simulations.

114

115 **2. Data and methods**

116 We select two special isolated thunderstorm cells during the warm season over southern China
117 on the basis of observations from a lightning location system, dual-polarization radar, and ERA-
118 Interim reanalysis data. One thunderstorm was a near-stationary thunderstorm with high CAPE,

119 weak wind shear, and a clean environment; this thunderstorm is referred to as case A and occurred
120 on 20 June 2016. The other thunderstorm was a moving thunderstorm with significant CAPE, strong
121 wind shear, and a clean environment; this thunderstorm is referred to as case B and occurred on 13
122 June 2016. In this study, the evolutionary cycle of thunderstorms is defined as the duration from the
123 first radar echo (i.e., the radar volume scan in cases where the horizontal reflectivity (Z_H) is ≥ 5 dBZ
124 when clouds are first detected by radar) to cloud collapse. The evolutionary cycles of the two
125 thunderstorms are displayed in Fig. S1 and S2. To ensure the quality of the radar and lightning data,
126 the locations of the centers of the two thunderstorms meet the conditions and are restricted to
127 approximately the analyzed areas, which are the regions of overlapping coverage between the radar
128 radii of 25–100 km and the lightning-location-system network center radius of 70 km.

129 **2.1. Lightning location system**

130 A low-frequency E-field detection array (LFEDA, 10 sensors, as marked by orange dots in Fig.
131 S3) with the ability to describe three-dimensional structures of intracloud lightning and/or cloud-to-
132 ground lightning was utilized to identify lightning events in this analyzed area. The detection
133 efficiency and mean location error of the LFEDA for triggered lightning were approximately 100%
134 and 102 m, respectively (Shi et al., 2017; Fan X. et al., 2018), which is the highest efficiency of
135 lightning location systems in Guangzhou, China (Chen et al., 2012). The LFEDA, operates in the
136 low-frequency range (160 Hz~600 kHz) and locates discharge pulse events (DPEs) via the time-of-
137 arrival method. The quality control method for the DPEs followed that of Liu Z. et al. (2020). The
138 method for grouping DPEs into flashes followed those of Shi et al. (2017) and Zheng et al. (2019);
139 that is, a potential flash DPE must have occurred within 400 ms of the previous DPE and within 4
140 km and 600 ms of any other flash DPE.

141 **2.2. Radar observations and preprocessing**

142 The radar data were provided by the Guangzhou S-band dual-polarization radar (GZ radar, as
143 marked by the white triangle in Fig. S3). The configurations of this radar are as follows: a range
144 resolution of 250 m, a beam width of 1°, and an azimuth resolution of 1°. This radar works in the
145 mode of volume coverage pattern 21, which consists of nine plan position indicator scans with a
146 volumetric update time of 6 minutes. A quality control procedure was carried out to remove ground
147 clutter, anomalous propagation, and biological scatter (Zhao et al., 2021a, b, 2022, 2024a). The

148 differential reflectivity (Z_{DR}) was calibrated during light rainfall periods, and the calibration
149 accuracy ranged from 0.1–0.2 dB (Bringi and Chandrasekar, 2001). The quality-controlled radar
150 data were interpolated onto a Cartesian grid at a horizontal resolution of 250 m and a vertical
151 resolution of 500 m from 0.5 to 20 km above the mean sea level via nearest neighbor and vertical
152 linear interpolation (Zhao et al., 2024a, b).

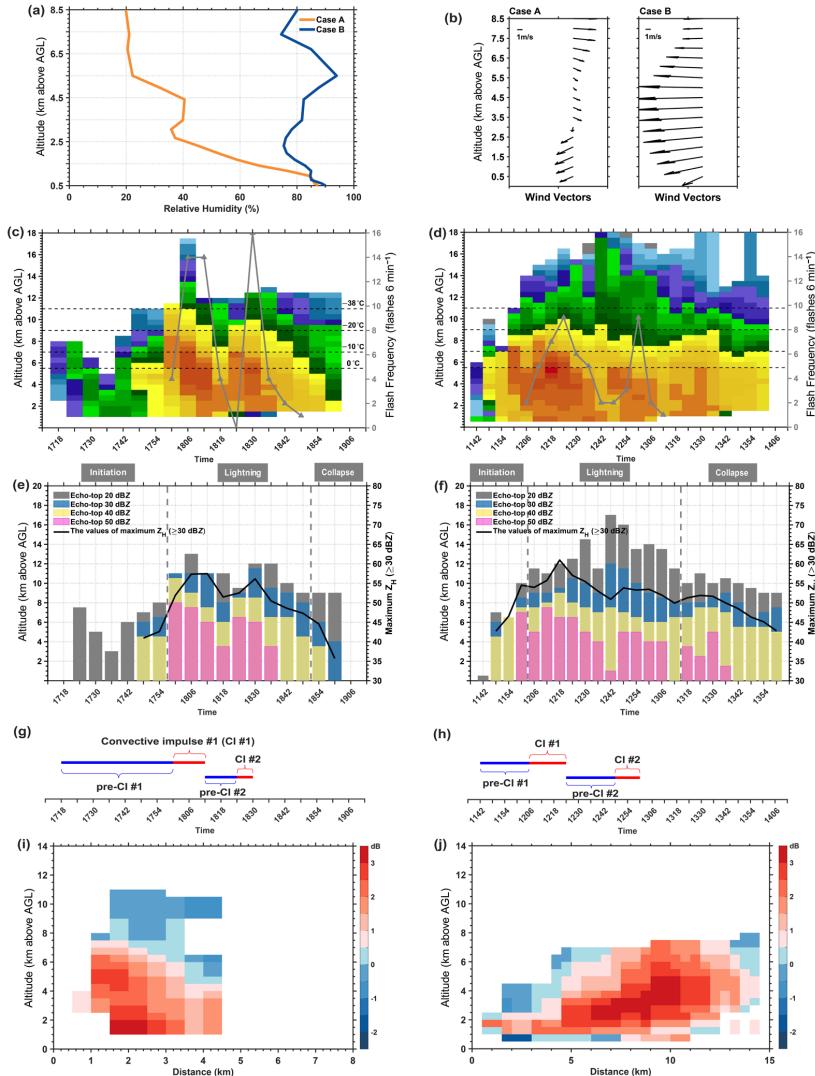
153 **2.3. Environmental observations and ERA-Interim data**

154 The environmental temperature information was provided by sounding data obtained from the
155 Qingyuan meteorological observatory (as marked by blue diamonds in Fig. S3). The hourly
156 observed particulate matter (PM_{2.5}) mass concentration data were provided by the Ministry of
157 Ecology and Environment of the People's Republic of China (Wang and Zhang, 2020), and three
158 ground sites for aerosol concentrations within the analyzed area were used, as marked by blue dots
159 in Fig. S3. Six-hourly ERA-Interim reanalysis data, with a 0.175°×0.175° horizontal resolution,
160 were utilized (Dee et al., 2011).

161 **2.4. Analytical method**

162 Lightning activity and echo-top height provide kinematic variation in the evolutionary cycle of
163 isolated thunderstorms with temporal resolution considerations (Zipser et al., 2006; Carey and
164 Rutledge, 2000). Benefiting from polarimetric radar observations, warm- and mixed-phase
165 microphysics, even the “fingerprint” of microphysical processes, were derived to study how
166 microphysical processes increase convective strength (Carey and Rutledge, 2000; Kumjian and Prat,
167 2014; Hu and Ryzhkov, 2022; Kumjian et al., 2022; Zhao et al., 2025).

168 Specifically, the ice and rain water contents were estimated from the GZ radar measurements
169 via the difference reflectivity (Z_{DP}) method (Golestani et al., 1989; Carey and Rutledge, 2000). The
170 precipitation-sized ice particles were likely more spherically symmetrical or tumble, resulting in a
171 near-zero Z_{DR} (Pruppacher and Klett, 1997). Therefore, ice particles can be regarded as “effective
172 spheres”, and the Z_{DP} is solely influenced by raindrops. The horizontal reflectivity of raindrops can
173 be derived from the relationship between horizontal reflectivity and Z_{DP} (raindrops), where the
174 empirical relationship was derived from 2-year disdrometer data in Guangdong Province (Li et al.,
175 2020), and the residual difference in the observed horizontal reflectivity is associated with ice
176 particles. On the basis of the scattering properties of typical graupel (Zhao et al., 2021b), if $Z_H \geq 35$


177 dBZ, the corresponding ice mass was regarded as a graupel mass, as used in Carey and Rutledge
178 (2000). The standard error for the relationship between the horizontal reflectivity and Z_{DP} is
179 consistently approximately 1 dB (Carey and Rutledge, 2000). The estimated mass is proportional to
180 the actual mass and depends on the variability in the intercept parameter of an assumed inverse
181 exponential distribution for the hydrometeor and its density; thus, the trends of the estimated mass
182 are deemed sufficient for application in this study.

183 Once the ice water content was determined, the total number concentration (N_i) of ice particles
184 larger than 0.1 mm was computed; the relationship follows that of Hu and Ryzhkov (2022). Notably,
185 the radar retrieval techniques were valid mainly in the stratiform parts of storm systems where
186 graupel and hail are usually absent, and the derived ice microphysics were representative of storm
187 areas where the radar reflectivity does not exceed 30 dBZ. The quantified method for the
188 polarimetric “fingerprint” of each warm-rain process follows that of Kumjian and Prat (2014). The
189 mass-weighted mean drop diameter (D_m , mm) was retrieved from Z_H and Z_{DR} , following Tokay et
190 al. (2020); the absolute bias of D_m was 0.31-0.36 mm.

191 **3. Results**

192 **3.1. Overview of two isolated thunderstorms in the environment and their development**

193 CAPEs derived from the 6-hourly averaged ERA-Interim reanalysis data and the averaged 1-
194 hourly concentration observations of particulate matter ($PM_{2.5}$) from three ground sites prior to the
195 occurrences of these two isolated thunderstorms (case A and case B) show lower CAPE and $PM_{2.5}$
196 concentrations in case A (1277 J kg^{-1} and $23 \mu\text{g m}^{-3}$) and higher CAPE and $PM_{2.5}$ concentrations
197 in case B (1504 J kg^{-1} and $47 \mu\text{g m}^{-3}$, respectively). The $PM_{2.5}$ concentrations suggest that the
198 environments prior to the presence of these two isolated thunderstorms were clean, especially for
199 case A. The conditions of relative humidity and wind shear derived from the 6-hourly averaged
200 ERA-Interim reanalysis data indicate more vapor and severe wind shear in case B than in case A
201 (Fig. 1a, b). The environments suggest conditions preferable for thunderstorm development in case
202 B.

203

204 **Figure 1. Overview of two isolated thunderstorms in the environment and their development.** The conditions
 205 of relative humidity and wind shear were derived from 6-hourly averaged ERA-Interim reanalysis data prior to the
 206 occurrence of these two isolated thunderstorms (case A occurred on 20 June 2016; case B occurred on 13 June
 207 2016). (a) Relative humidity; the orange line indicates case A, and the blue line indicates case B. (b) Vertical wind
 208 vectors; the left column represents case A, and the right column represents case B. (c) and (d) show the evolution
 209 of the maximum Z_H values for every height layer (a vertical resolution of 500 m over 0.5 to 20 km of a radar
 210 volume scan), with cloud development. The left column indicates case A, and the right column indicates case B.
 211 The gray lines indicate the flash frequency for a radar volumetric update time of 6 minutes. The black dashed lines
 212 indicate the 0°C , -10°C , -20°C , and -38°C isotherm heights. The echo-top heights of 20 dBZ (gray bars), 30 dBZ
 213 (blue bars), 40 dBZ (yellow bars), and 50 dBZ (pink bars) in every radar volume scan with cloud development are
 214 shown in (e) case A and (f) case B, respectively. The black lines indicate the evolution of the maximum Z_H values

215 of a radar volume scan (neglecting values < 30 dBZ). In addition, the gray dashed lines divide the evolutionary
216 cycle of thunderstorms into three stages (i.e., initiation, lightning, and collapse). The durations of the convective
217 impulse (CI) and pre-CI are shown; each case involves two CI events, and two pre-CI events are shown in (g) case
218 A and (h) case B. The overlapping time between the pre-CI and CI indicates CI initiation, and vice versa. Vertical
219 cross-sections of the radar differential reflectivity (Z_{DR}) (i) at 17:54 in case A and (j) at 12:00 in case B.

220 The evolutionary cycles of these two thunderstorms are derived from radar and lightning
221 observations. Specifically, the evolution of the maximum Z_H values for every height layer (a vertical
222 resolution of 500 m over 0.5 to 20 km of a radar volume scan) is displayed in Fig. 1c and d; the
223 evolutions of the echo-top height and the maximum Z_H value in a radar volume scan are displayed
224 in Fig. 1e and f; and the lightning frequency in a radar volumetric update time of 6 minutes is
225 displayed in Fig. 1c and d. These two thunderstorms are deep convective clouds (Fig. 1c, d). We
226 divided the evolution cycles of these two thunderstorms into three stages according to the lightning
227 activity and echo intensity: initiation, lightning and collapse. For the initiation stage (Fig. 1e, f), the
228 mean values of the echo-top heights (reflectivity thresholds: 30 dBZ and 40 dBZ) in case B are
229 clearly greater than those in case A; in addition, the average maximum Z_H value in case B (48 dBZ)
230 is greater than that in case A (42 dBZ). An echo-top height of 50 dBZ occurs in case B but is absent
231 in case A. These characteristics indicate that the convective strength is greater in case B during the
232 initiation stage. This confirms the above suggestion provided by environmental characteristics.

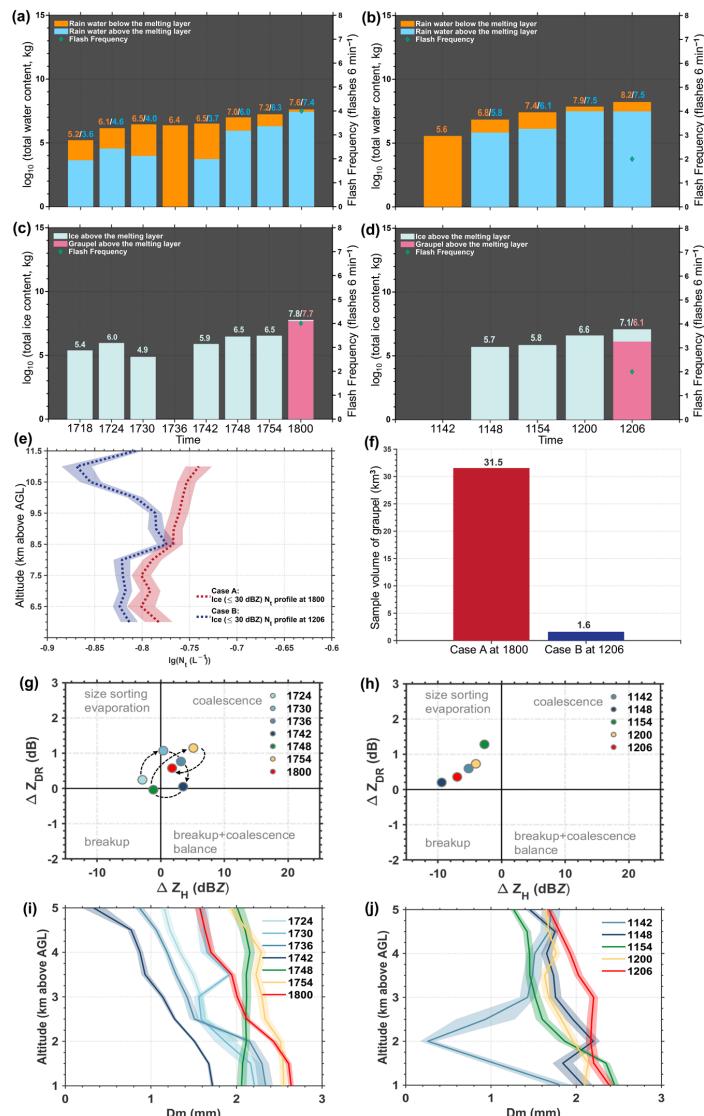
233 While environmental characteristics and radar observations during the initiation stage suggest
234 that the thunderstorm in case B is more intense, the convective intensity during the lightning stage
235 is confusing between cases A and B (the average maximum Z_H values are 53 dBZ and 54 dBZ,
236 respectively; the average echo-top heights of 30 dBZ and 40 dBZ in case A are 0.1~0.2 km greater
237 than those in case B, and the average echo-top height of 50 dBZ in case A is 1 km greater than that
238 in case B). Moreover, the lightning frequency also has a higher peak value in case A than in case B.
239 Finally, in case A, the thunderstorm rapidly collapsed, but in case B, it slowly dissipated. These
240 characteristics indicate that the convective intensity of the thunderstorm rapidly changed.

241 **3.2 Convective impulse events**

242 The convective intensity indicated by the lightning frequency, echo-top height of 50 dBZ, and
243 maximum Z_H value clearly displays short-term impulses (Fig. 1c, d, e, and f). We utilized the
244 variation in the lightning frequency to define the duration times of the convective impulse (CI) and

245 pre-CI. There are two CI events and two corresponding pre-CI events in each thunderstorm (Fig. 1g,
246 h). The overlapping time between the pre-CI and CI indicates CI initiation, and vice versa.

247 In case A (Fig. 1g), the duration of the first CI event ranged from 18:00 to 18:12 (local time),
248 and that of the second CI event ranged from 18:24 to 18:30; the duration of the first pre-CI event
249 ranged from 17:18 to 18:00, and that of the second pre-CI event ranged from 18:12 to 18:24. In case
250 B (Fig. 1h), the duration of the first CI event ranged from 12:06 to 12:24, and that of the second CI
251 event ranged from 12:48 to 13:00; the duration of the first pre-CI event ranged from 11:42 to 12:06,
252 and that of the second pre-CI event ranged from 12:24 to 12:48. The CI event essentially
253 corresponds to the convective enhancement revealed by the lightning activity, echo-top height and
254 maximum Z_H . Thus, to study how cloud microphysics modulate convective intensity, we focus on
255 cloud microphysics during the corresponding pre-CI event.


256 **3.3. Cloud microphysics in the first pre-CI**

257 Latent heat release can be regarded as the energy source for increasing buoyancy (Rosenfeld
258 et al., 2008; Varble et al., 2023), but some debates still exist (e.g., Grabowski and Morrison, 2020).
259 More specifically, observational studies indicate that the nucleation process from abundant
260 supercooled liquid water to graupel is closely related to lightning (Bringi et al., 1997; Smith et al.,
261 1999; Carey and Rutledge, 2000). Graupel is rimed ice precipitation. The “coalescence–freezing”
262 mechanism is often regarded as the most important pathway to the first graupel/hail formation, the
263 first significant electrification and the first lightning flash in warm-based clouds (Braham, 1986;
264 Beard, 1992; Herzegh and Jameson 1992; Bringi et al., 1997; Smith et al., 1999; Carey and Rutledge,
265 2000; Stolzenburg et al., 2015; Mattos et al., 2017). This mechanism depends on the development
266 of rain drops in warm rain collision–coalescence processes, followed by lofting of the rain drop in
267 the updraft to areas of subfreezing temperatures (which are frequently observed by polarimetric
268 radar, called Z_{DR} column), followed by drop freezing and finally the formation of graupel or small
269 hail.

270 The logarithmic total water content in cases A and B during the first pre-CI period are shown
271 in Fig. 2a and b. The logarithmic total ice contents in cases A and B during the first pre-CI period
272 are shown in Fig. 2c and d. When the first CI initiates at 18:00 (case A) or 12:06 (case B), graupel
273 sharply occurs, and the contents of warm-phase rainwater and supercooled rainwater reach peak

274 values. The graupel content in case A ($10^{7.7}$ kg) is clearly greater than that in case B ($10^{6.1}$ kg).
 275 However, in case B, more liquid water accumulates in less time (corresponding to more favorable
 276 moisture and CAPE). In addition, the amount of supercooled rainwater clearly increases beginning
 277 at 17:48 in case A, which is approximately 10^3 times greater than that at 17:42.

278
 279 **Figure 2. Cloud microphysics in the first pre-CI and comparisons between these thunderstorms.** The
 280 histogram plots display the logarithmic total water content and the logarithmic total ice content in case A (a, e) and
 281 case B (b, d). The orange (blue) bars indicate the rainwater content below (above) the melting layer. The cyan and
 282 pink bars indicate the contents of ice and graupel above the melting layer, respectively. The numerical values in

283 different colors correspond to the total contents of different hydrometeors (unit, kg). The green diamond indicates
284 the flash frequency. (e) The number concentration ($\log_{10}N_t, L^{-1}$) of ice (≤ 30 dBZ) particles when CI initiates. The
285 red and blue dashed lines indicate cases A and B, respectively. (f) The radar sample volume of graupel
286 corresponding to the beginning of the CI (unit, km^3). The red histogram indicates case A, and the blue histogram
287 indicates case B. The change in Z_{DR} vs. the change in Z_H over an approximate 3-km rain shaft and the
288 microphysical processes represented by each quadrant or “fingerprint” are annotated: (g) case A and (h) case B.
289 Each colored dot indicates the changed Z_{DR} and Z_H values over an approximate 3-km rain shaft from one radar
290 volume scan at different times. The retrieved mass-weighted mean drop diameter (D_m) is shown in (i) (case A) and
291 (j) (case B), the lines indicate the mean values and the shaded area indicates the 95% confidence interval.

292 *a. The microphysical characteristics of ice in the first pre-CI*

293 The latent heat released from supercooled liquid water that freezes and/or rimes into graupel
294 is likely the kinematic source corresponding to the first CI event. From the perspective of the
295 supercooled water content, more abundant supercooled rainwater is present in case B during the last
296 three moments, which seems to suggest that if the number concentrations of graupel embryos in the
297 two cases are similar, the accreted graupel content from the riming process in case A should not be
298 greater than that in case B during short-term variation (the duration of graupel content variation
299 does not exceed 6 minutes). However, the content is related to both the particle size and the number
300 concentration. We retrieve the content from the echo intensity corresponding to the radar sample
301 volume, and the determination of the nature of the radar sample volume depends mainly on the large
302 particles (e.g., graupel). Thus, if there are more graupel particles distributed in more space, a greater
303 sample volume of graupel in the radar corresponds to a greater graupel content.

304 The number concentration ($\log_{10}N_t, L^{-1}$) of ice particles (≤ 30 dBZ) when the first CI initiates
305 at 18:00 (case A) or 12:06 (case B) is shown in Fig. 2e. Ice particles are potential sources of graupel
306 embryos (Bringi et al., 1997; Carey and Rutledge, 2000). Moreover, the radar sample volume of the
307 graupel particles clearly corresponds to a larger volume in case A (Fig. 2f). Thus, the observational
308 characteristics support the above hypothesis; namely, the number concentration of graupel particles
309 in case A is greater than that in case B, resulting in a clearly greater graupel content derived from
310 radar in case A.

311 A greater number concentration of graupel depends on the increasing number concentration of
312 graupel embryos. However, why are there more graupel embryos? Ice crystals and supercooled
313 raindrops are the main sources of graupel embryos (Bringi et al., 1997; Carey and Rutledge, 2000).
314 While the mechanism through which secondary ice production occurs increases the number

315 concentration of ice crystals, we do not agree that these secondary ice crystals grow into graupel-
316 sized particles within a few minutes. In light of the previous hypothesis and observations, we believe
317 that the raindrops freeze into graupel particles should dominate the graupel formation during the
318 initial phase of warm-based thunderstorms. The phase transition can be completed in a few minutes.
319 Therefore, increasing the number concentration of supercooled raindrop-sized particles can increase
320 the number concentration of graupel within 6 minutes.

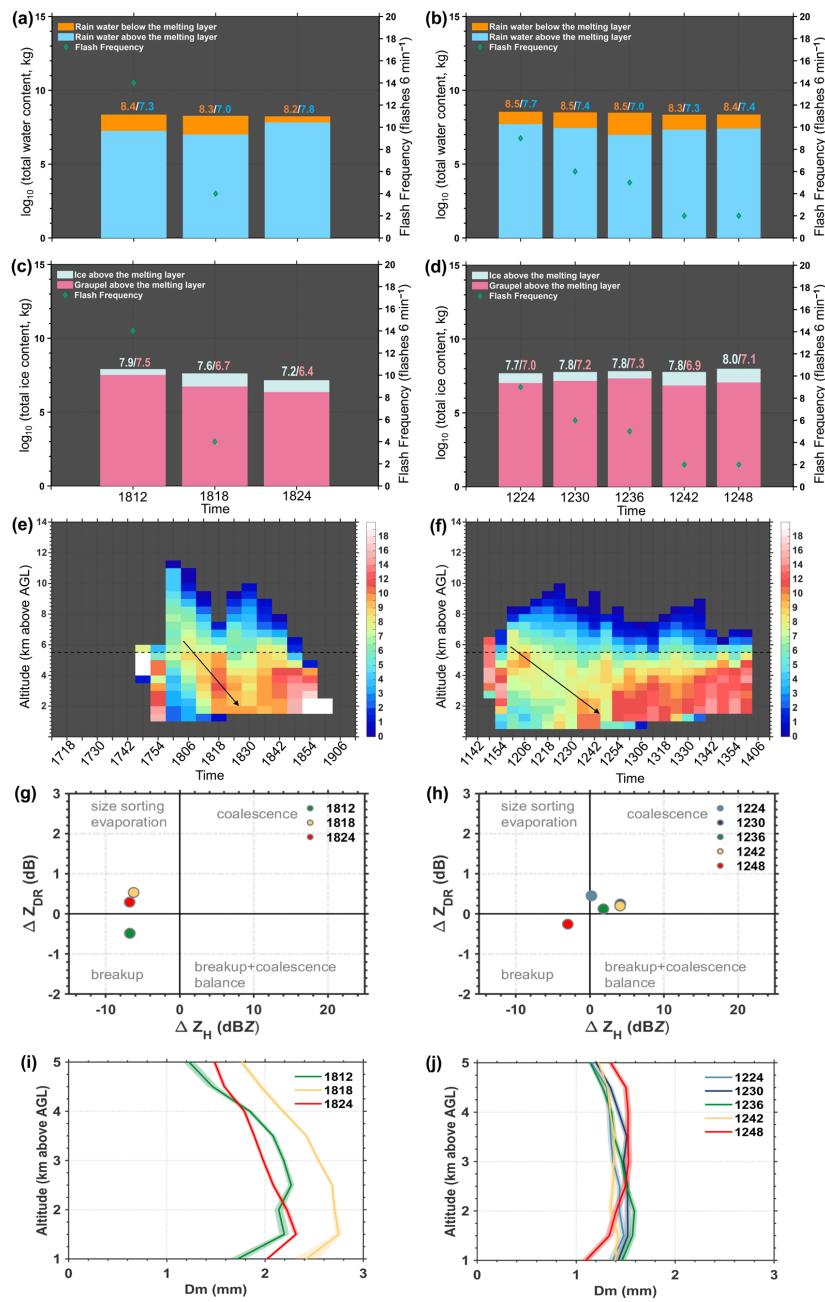
321 *b. How do supercooled raindrops increase in the first pre-CI?*

322 Naturally, we seek to determine how the number of supercooled raindrops increases during the
323 first pre-CI. The polarimetric “fingerprint” of warm-rain processes is quantified in Fig. 2g, h. Each
324 colored dot indicates the changed Z_{DR} and Z_H values over an approximate 3-km rain shaft from one
325 radar volume scan at different times. Warm-rain processes clearly differ between cases A and B. In
326 case B (Fig. 2h), raindrops continuously undergo size sorting or evaporating processes; the stronger
327 CAPE (1504 J kg^{-1}) and wind shear account for this difference (Williams et al., 2005; Carey and
328 Buffalo, 2007; Fuchs et al., 2018; Stough et al., 2021). Not only does the ERA-Interim reanalysis
329 data indicate greater wind shear in case B than in case A (Fig. 1b), but the positive Z_{DR} column from
330 the cloud base to the mixed-phase layer in case B is also more tilted than that in case A (Fig. 1i, j).

331 In case A (Fig. 2g, i), the raindrops undergo size sorting or evaporation first, and then, the
332 liquid drops are more likely to experience cyclic growth by coalescence under upright airflows
333 and/or possibly weaker updrafts (smaller CAPE, 1277 J kg^{-1}) (Mather et al., 1986; Kumjian et al.,
334 2014; Stough et al., 2021); thus, these raindrops coalesce at two subsequent moments, and large
335 raindrops form (exceeding 2 mm). However, aerodynamic deformation causes these raindrops to
336 break into many raindrops at 17:42 and/or 17:48, after which these raindrops can be easily lofted
337 and/or participate in the coalescence process (i.e., 17:54 and 18:00). The breakup of raindrops at
338 17:42 and/or 17:48 accounts for the sharply increasing amount of supercooled rainwater, which is
339 noted above in Fig. 2a, b.

340 Therefore, the weaker environmental wind shear and CAPE promote raindrop breakup in case
341 A, and more raindrops are lofted to areas of subfreezing temperatures and freeze into graupel with
342 higher number concentrations but fewer riming processes. We call this underlying mechanism
343 “breakup–freezing”, which is a hypothesis and is likely an important way to clarify the formation

344 of thunderstorms with less significant CAPE and weak wind shear. In contrast, the stronger the
345 environmental wind shear and CAPE are, the more likely it is that more droplets are lifted to areas
346 of subfreezing temperatures and feed less graupel but moderately or heavily riming; this mechanism
347 is similar to those of previous hypotheses (Carey and Buffalo, 2007; Fuchs et al., 2018; Stough et
348 al., 2021). Naturally, we focus on the following question: after the first CI event (i.e., when
349 convective clouds have developed into maturity and produced lightning or precipitation), does the
350 “breakup–freezing” mechanism dominate the subsequent CI events, especially for thunderstorms
351 that are near stationary (i.e., when surface sensible heating is suppressed by rainfall and radiation
352 heating of the surface is weakened by thunderclouds)?


353 **3.4. Why do subsequent CI events occur?**

354 The logarithmic total water and ice contents and the lightning frequency in cases A and B
355 during the second pre-CI event are displayed in Fig. 3a, b, c and d. In general, the contents of liquid
356 water and ice decrease first with decreasing lightning frequency, indicating that the convection
357 intensity is weakening and that rainfall is occurring. However, when the second CI initiates at 18:24
358 in case A, the supercooled raindrop content increases (Fig. 3a), whereas the graupel content does
359 not increase at 18:24 (Fig. 3c); it obviously increases to $10^{7.3}$ kg at the next radar volume scan
360 (18:30). Similarly, the supercooled raindrop content and graupel content increase when the second
361 CI initiates at 12:48 in case B (Fig. 3b, d).

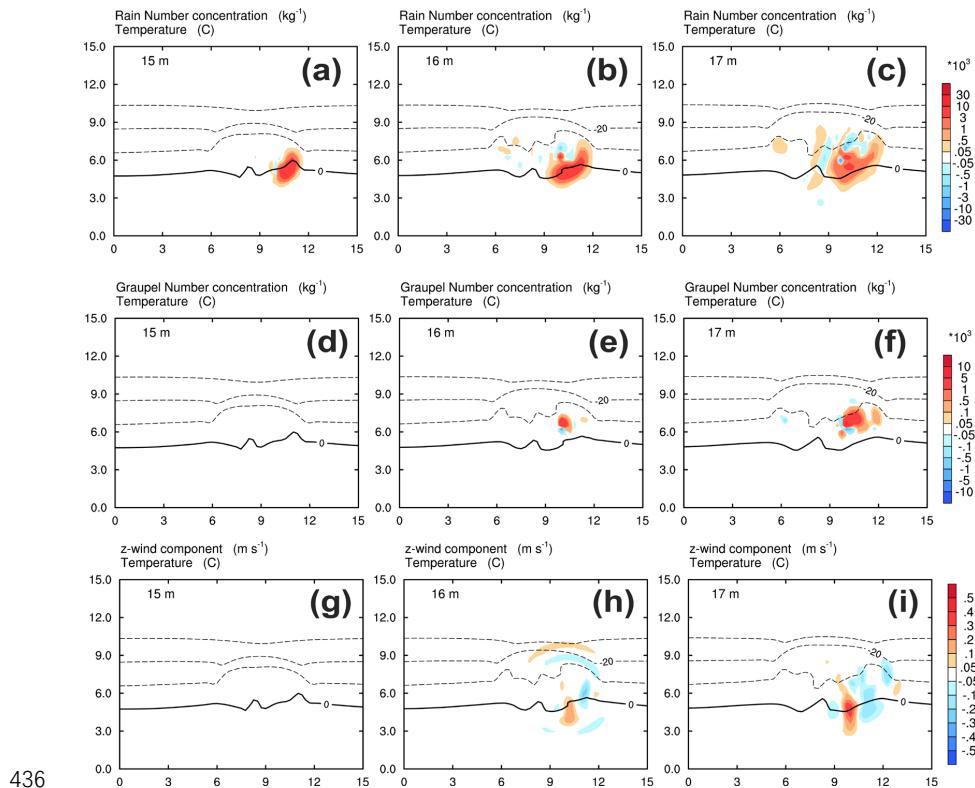
362 The frequency of the Z_H values (>35 dBZ) in every height layer (a vertical resolution of 500 m
363 over 0.5 to 20 km of a radar volume scan) is shown in Fig. 3e and f, the height of the Z_H values (>35
364 dBZ) tends to decrease during the second pre-CI period, and the height is lower than the 0°C
365 isotherm height. These characteristics indicate that the graupel particles fall into the warm-phase
366 layer and melt, which can lead to the formation of large raindrops by melting and/or small raindrops
367 by shedding in a short time (Wisner et al., 1972; Rasmussen and Heymsfield, 1987a, b, c). The
368 melting and shedding behavior of graupel is significantly affected by its initial size (Rasmussen and
369 Heymsfield, 1987b). Smaller graupel particles preferentially melt faster than large particles do
370 (Rasmussen and Heymsfield, 1987b). The shedding of graupel can be an important source of new
371 raindrops (Wisner et al., 1972); the rate of shedding depends on the graupel size, and larger graupel

372 produces more shedding (Rasmussen and Heymsfield, 1987b). These findings indicate that the
 373 behaviors of melting and shedding with respect to graupel size are inversely related.

375 **Figure 3. Cloud microphysics during the second pre-CI period.** The left column indicates that case A occurred
376 on 20 June 2016. The right column indicates that case B occurred on 13 June 2016. (a) and (b) Histogram plots for
377 the logarithmic total water content. The orange (blue) bars indicate the rainwater content below (above) the
378 melting layer. (c) and (d) Histogram plots for the logarithmic total ice content. The cyan and pink bars indicate the
379 contents of ice and graupel above the melting layer, respectively. The numerical values in different colors
380 correspond to the total contents of different hydrometeors (unit, kg). The green diamond indicates the flash
381 frequency. (e) and (f) The frequency in every height layer (a vertical resolution of 500 m over 0.5 to 20 km of a
382 radar volume scan) of $Z_H > 35$ dBZ, and the black arrows indicate the approximate direction of movement of high-
383 frequency areas with cloud development during the second pre-CI period. The dashed black line indicates the 0°C
384 isotherm height. The change in Z_{DR} vs. the change in Z_H over an approximately 3-km rain shaft and the
385 microphysical processes represented by each quadrant or “fingerprint” are annotated: (g) case A and (h) case B.
386 Each colored dot indicates the changed values of Z_{DR} and Z_H over an approximately 3-km rain shaft from one radar
387 volume scan at different times. The retrieved mass-weighted mean drop diameter (D_m) is shown in (i) (case A) and
388 (j) (case B), the lines indicate the mean values and the shaded area indicates the 95% confidence interval.

389 The data in Fig. 3g and h show that raindrop breakup occurred during the second pre-CI period;
390 however, the occurrence time in case A differed from that in case B. Specifically, the occurrence
391 time of raindrop breakup in case A was earlier than that in case B. The coalescence process was
392 absent in case A, but raindrop breakup occurred, corresponding to graupel melting. This suggests
393 that the large raindrops that break may have formed by the complete melting of smaller graupel in
394 a shorter time. In addition, the coalescence process occurred before raindrop breakup in case B, and
395 the small raindrops involved in the coalescence process may have resulted from shedding (Wisner
396 et al., 1972; Rasmussen and Heymsfield, 1987a). This opinion is validated via retrieved raindrops
397 D_m (Fig. 3i, j). In case B, the graupel size would be larger than that in case A (larger maximum Z_H
398 values and a lower concentration of graupel in case B (Fig. 1 and Fig. 2e, f)). Thus, the larger graupel
399 in case B preferentially produces small raindrops from shedding when the particles fall below the
400 0°C isotherm height; the rate of melting is lower than that in case A.

401 On the basis of the above characteristics and analysis, we suggest that the smaller graupel in
402 case A easily melted into large raindrops (> 2 mm, Fig. 3i) in a shorter time, after which the upright
403 airflow promoted raindrop breakup. The precipitation loading, melting, evaporation and upright
404 behavior of the storm affected the updraft intensity, resulting in a delay of broken raindrops from
405 the warm phase lifting to areas of subfreezing temperatures. The larger graupel in case B
406 preferentially produces small raindrops from shedding (< 2 mm, Fig. 3j) in tilted downdrafts, and
407 small raindrops may undergo coalescence to form large raindrops in tilted downdrafts (these large
408 raindrops may reduce the evaporation rate (Pruppacher and Klett, 1997)), followed by breaking into


409 many raindrops and reentering into low-level updrafts. Finally, the stronger updrafts at a low level
410 in case B (likely resulting from moving and organizing air flow, and less consumption by
411 evaporation) lifts raindrops to subfreezing temperatures in a shorter time than those in case A do.

412 Therefore, abundant raindrops produced by raindrop breakup and lifting to subfreezing
413 temperatures account for the increased supercooled rainwater and graupel contents and the latent
414 heat released to increase the convective intensity within clouds. Notably, while the “breakup–
415 freezing” mechanism likely provided the kinematic source for the second CI, the methods of
416 producing large raindrops to break differed between the second pre-CI period and the first pre-CI
417 period. Moreover, the loading, melting and evaporation of precipitation likely reduced the net
418 kinematic intensity for the second CI, resulting in the echo-top heights gradually decreasing during
419 such CI events (Fig. 1c, d, e, f).

420 **3.5. Physical basis for the “breakup–freezing” hypothesis in model simulations**

421 To support our hypothesis, a sensitivity experiment is conducted with the Weather Research
422 and Forecasting (WRF) model to investigate the effects of raindrop breakup (parameterization
423 follows that of Verlinde and Cotton (1993)) on the number concentration of graupel and on the
424 convective intensity (updraft velocity) within clouds. This is an ideal simulation. The physical
425 options include only microphysical parameterization (Morrison two-moment) (Morrison et al.,
426 2009).

427 In the first experiment, raindrop breakup is considered (hereafter RB); in the second
428 experiment, no raindrop breakup parameterization is used (hereafter noRB). The WRF output
429 information shows the difference between the RB and noRB experiments (Fig. 4); the evolution of
430 the reflectivity and z-wind component in the RB experiment are shown in Figs. S4 and S5. The
431 modeled convection starts at the 13th minute, and compared with the noRB experiment, the RB
432 experiment clearly has a greater raindrop number concentration at the 15th, 16th, and 17th minutes
433 (Fig. 4a, b, and c). Similarly, a higher graupel number concentration (Fig. 4e, f) and a stronger z-
434 wind component (Fig. 4h, i) occurred during the 16th and 17th minutes of the RB experiment. Thus,
435 the “breakup–freezing” mechanism has a physical basis for explaining the formation of CI events.

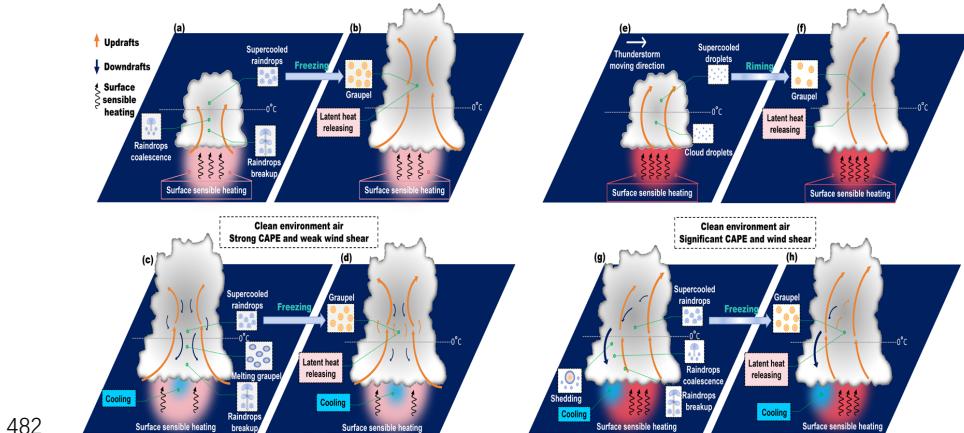
436
 437 **Figure 4. Output of the Weather Research and Forecasting (WRF) model.** Two sensitivity experiments are
 438 conducted to investigate the effects of raindrop breakup on the number concentration of graupel and on the
 439 convective intensity (updraft velocity) within clouds. In the first experiment, raindrop breakup is considered
 440 (hereafter RB); in the second experiment, none of the raindrop breakup parameterizations are used (hereafter
 441 noRB). This figure shows the differences between the RB and noRB experiments. Rain number concentrations at
 442 (a) 15th minute, (b) 16th minute, and (c) 17th minute. Graupel number concentration at (d) the 15th minute, (e)
 443 16th minute, and (f) 17th minute. (g), (h) and (i) indicate the z-wind components at the 15th minute, 16th minute
 444 and 17th minute, respectively. The black lines indicate the 0°C, -10°C, -20°C, and -30°C isotherm heights.

445 **4. Conclusion and discussion**

446 In this study, we collected multiple CI events within two isolated thunderstorms on the basis
 447 of observations from a polarimetric radar and lightning location system. The convective intensity
 448 indicated by the lightning frequency, echo-top height of 50 dBZ, and maximum Z_H value clearly
 449 displayed short-term impulses during the evolutionary cycles of two isolated thunderstorms (case
 450 A: 20 June 2016; case B: 13 June 2016) over southern China. Two CI events and two corresponding
 451 pre-CI events in each thunderstorm were defined.

452 By comparing the microphysical characteristics between the thunderstorms in cases A and B
453 from the first pre-CI event to the initial moment of the first CI event, we propose a hypothesis
454 “breakup-freezing” mechanism to potentially explain the convective enhancement in the first CI
455 event with a less significant CAPE, weak wind shear, and clean environment. For significant CAPE,
456 strong wind shear and a clean environment, which followed the previous hypothesis for convective
457 enhancement based on faster updrafts in the environment, resulted from the stronger CAPE, as
458 described in Stough et al. (2021).

459 This “breakup-freezing” mechanism dominated the subsequent CI events in these two
460 thunderstorms, although the methods for forming large raindrop breakup differed from those
461 dominated by droplet cyclic growth coalescence in the first pre-CI. Large raindrops are formed by
462 the complete melting of smaller graupel or by the coalescence of small raindrops from the shedding
463 of larger graupel. This is important for understanding the enhancement of convection after
464 precipitation loading, melting, and evaporation with a near-stationary thunderstorm cell.


465 Finally, a sensitivity experiment was conducted with the WRF model to investigate the effects
466 of raindrop breakup on the number concentration of graupel and on the convective intensity within
467 clouds. The simulation results confirmed that the “breakup-freezing” mechanism provided a
468 physical basis for explaining the formation of CI events. The conceptual model in Fig. 5 illustrates
469 the “breakup-freezing” mechanism for the enhancement of convection.

470 CAPE and wind shear are stronger in case B than in case A. Notably, the thunderstorm in case
471 A is nearly stationary (indicating that surface sensible heating is suppressed by rainfall and that
472 radiation heating of the surface is weakened by thunderclouds), but that in case B is moving
473 frequently.

474 For the first CI event, two mechanisms account for the convective enhancement: 1) the less
475 significant CAPE and weak wind shear promote large raindrop (>2 mm) formation by coalescence,
476 and then, the large raindrops are transferred into many smaller raindrops by breakup in vertical air
477 flow. These raindrops can be easily lifted to subfreezing temperatures and freeze into graupel with
478 a higher number concentration. The latent heat released from raindrop freezing triggered the first
479 CI event (Fig. 5a, b). 2) The significant CAPE and strong wind shear preferentially lift more cloud

480 droplets to subfreezing temperatures and feed less graupel but with moderate or heavy riming,
481 releasing latent heat to increase convection intensity (Fig. 5e, f).

482
483 **Figure 5. A conceptual model of the breakup–freezing mechanism for convective impulses.** Convective
484 impulses (CIs) are identified on the basis of radar and lightning observations in this study. CI events in the
485 evolutionary cycle of isolated thunderstorm cells (case A: 20 June 2016; case B: 13 June 2016) over southern
486 China are studied. The transitions from the first pre-CI stage to the first CI stage are shown in (a) and (b) (case A)
487 and (e) and (f) (case B). In case A, the strong CAPE and weak wind shear promote the formation of large raindrops
488 via coalescence, and many raindrops produced by large raindrop breakup are lifted to subfreezing temperatures
489 and then freeze, and abundant graupel forms and releases latent heat. However, in case B, the significant CAPE
490 and strong wind shear suppress the warm rain processes. More cloud droplets are lifted to subfreezing
491 temperatures, promoting the riming process, the formation of graupel and the release of latent heat. The transitions
492 from the second pre-CI stage to the second CI stage are shown in (c) and (d) (case A) and in (g) and (h) (case B).
493 The smaller graupel in case A easily melts into large raindrops, after which the raindrops break up in the vertical
494 air flow. The many raindrops produced by large-sized raindrop breakup are lifted to subfreezing temperatures and
495 then freeze, leading to the formation of abundant graupel and the release of latent heat. In case B, the larger
496 graupel particles preferentially become small raindrops from shedding in tilted downdrafts, and large raindrops
497 form through small raindrop coalescence in tilted downdrafts, followed by breaking to many raindrops and
498 reentering into updrafts. Finally, the stronger updrafts lift these smaller raindrops into areas of subfreezing
499 temperatures, where they turn into graupel and release latent heat.

500 During the second pre-CI period, negative buoyancy is produced by latent heat cooling and
501 precipitation loading. The surface sensible heating is suppressed, and the energy for triggering the
502 second CI event is unlikely to be sourced from increasing surface energy, especially for that in the
503 near-stationary case A. However, the smaller graupel in case A easily melts into large raindrops and
504 then breaks up in the vertical air flow. These raindrops produced by large raindrop breakup are lifted
505 to subfreezing temperatures and then freeze, leading to the formation of abundant graupel and the
506 release of latent heat, thus triggering the second CI event (Fig. 5c, d).

507 However, the larger maximum Z_H values and lower concentration of graupel indicate greater
508 graupel in case B. These large graupel particles preferentially produce small raindrops from
509 shedding in tilted downdrafts instead of rapid melting into large raindrops (Wisner et al., 1972;
510 Rasmussen and Heymsfield, 1987a, b, c). Small raindrops are transformed into large raindrops by
511 coalescence in tilted downdrafts. Large raindrops subsequently break into many raindrops and
512 reenter low-level updrafts. Finally, the updrafts lift these smaller raindrops into areas of subfreezing
513 temperatures, where they turn into graupel and release latent heat (Fig. 5g, h). Notably, the period
514 between large raindrop breakup and the second CI event initiated in case B is shorter than that in
515 case A, which is due to the stronger updrafts at a low level in case B (the construction of tilted air
516 flows and moving behavior and less consumption by evaporation may be beneficial to the updrafts).
517 Notably, the net kinematic intensity for the second CI is weaker than that for the first CI via latent
518 heat cooling and precipitation loading.

519 Although this study provides the hypothesis “breakup–freezing” mechanism for trying to
520 explain the formation of CI events, there is estimated error in the inferred cloud microphysics.
521 Fortunately, our results are drawn from the analysis of the comparison, which minimizes the effects
522 of estimated errors. However, how to quantitatively estimate microphysics more accurately is the
523 key to parameterizing the “breakup–freezing” mechanism into weather or climate numerical
524 simulation models. This will improve the results of simulations of severe storms.

525

526 **Acknowledgments**

527 The authors acknowledge the Guangzhou Institute of Tropical and Marine Meteorology for
528 collecting and archiving the radar and surface observations. And authors also acknowledge the State
529 Key Laboratory of Severe Weather Meteorological Science and Technology & CMA Key
530 Laboratory of Lightning for three-dimensional lightning location data.

531 **Financial support**

532 This research has been supported by the National Natural Science Foundation of China (grant nos.
533 42175090, 42305079 and 42075088), the Open Research Fund Project of the Joint Laboratory for
534 Phased-Array Weather Radar Applications in the East China Region (grant no. EPJL_JF2025001),
535 and the China Postdoctoral Science Foundation (grant no. 2023M730619).

536

537 **Author contributions:**

538 Conceptualization: CZ and YZ. Data curation: CZ, YZ, DZ and WY. Formal analysis: CZ, YZ and
539 LX. Funding acquisition: YZ, CZ and LX. Investigation: CZ, YZ and LX. Methodology: CZ, YZ,
540 DZ and LX. Project administration: YZ. Resources: CZ and YZ. Software: CZ and DZ. Supervision:
541 YZ and CZ. Validation: CZ and YZ. Visualization: CZ and YZ. Writing (original draft): CZ, YZ
542 and LX.

543 **Competing interests:**

544 The contact author has declared that none of the authors has any competing interests.

545

546 **Data and materials availability:** All data in this study can be obtained from an open repository
547 Figshare (Zhao, 2024).

548

549 **References**

550 Beard, K. V.: Ice initiation in warm-base convective clouds: An assessment of microphysical
551 mechanisms. *Atmospheric Research*, 28(2): 125–152, [https://doi.org/10.1016/0169-8095\(92\)90024-5](https://doi.org/10.1016/0169-8095(92)90024-5), 1992.

553 Braham, R. R. Jr.: The cloud physics of weather modification. Part 1: Scientific basis. *WMO*
554 *Bulletin*, 35, 215–221, 1986.

555 Bringi, V. N., Knupp, K., Detwiler, A., Liu, L., Caylor, I. J. and Black, R. A.: Evolution of a Florida
556 Thunderstorm during the Convection and Precipitation/Electrification Experiment: The Case
557 of 9 August 1991. *Monthly Weather Review*, 125(9): 2131–2160, [https://doi.org/10.1175/1520-0493\(1997\)125<2131:EOAFTD>2.0.CO;2](https://doi.org/10.1175/1520-0493(1997)125<2131:EOAFTD>2.0.CO;2), 1997.

559 Bringi, V. N. and Chandrasekar, V.: *Polarimetric Doppler Weather Radar: Principles and*
560 *Applications*. Cambridge University Press, Cambridge, ISBN 978-0-521-62384-1, 2001.

561 Bruning, E. C., Brunner, K. N., van Lier-Walqui, M., Logan, T. and Matsui, T.: Lightning and Radar
562 Measures of Mixed-Phase Updraft Variability in Tracked Storms during the TRACER Field
563 Campaign in Houston, Texas. *Monthly Weather Review*, 152, 2753–2769,
564 <https://doi.org/10.1175/MWR-D-24-0060.1>, 2024.

565 Carey, L. D. and Buffalo, K. M.: Environmental Control of Cloud-to-Ground Lightning Polarity in
566 Severe Storms. *Monthly Weather Review*, 135, 1327–1353,
567 <https://doi.org/10.1175/MWR3361.1>, 2007.

568 Carey, L. D. and Rutledge, S. A.: The Relationship between Precipitation and Lightning in Tropical
569 Island Convection: A C-Band Polarimetric Radar Study. *Monthly Weather Review*, 128(8):
570 2687–2710, [10.1175/1520-0493\(2000\)128<2687:TRBPAL>2.0.CO;2](https://doi.org/10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2), 2000.

571 Cecil, D. J., Buechler, D. and Blakeslee, R. J.: Gridded lightning climatology from TRMM-LIS and
572 OTD: dataset description. *Atmospheric Research*, 135–136: 404–414,

573 https://doi.org/10.1016/j.atmosres.2012.06.028, 2014.

574 Chen, L., Zhang, Y. J., Lyu, W., Zheng, D., Zhang, Y., Chen, S. and Huang, Z.: Performance
575 evaluation for a lightning location system based on observations of artificially triggered
576 lightning and natural lightning flashes. *Journal of Atmospheric and Oceanic Technology*, 29:
577 1835–1844, <https://doi.org/10.1175/JTECH-D-12-00028.1>, 2012.

578 Dagan, G., Stier, P., Christensen, M., Cioni, G., Klocke, D. and Seifert, A.: Atmospheric energy
579 budget response to idealized aerosol perturbation in tropical cloud systems. *Atmospheric
580 Chemistry and Physics*, 20: 4523–4544, <https://doi.org/10.5194/acp-20-4523-2020>, 2020.

581 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
582 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
583 Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
584 S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Källberg, P., Köhler, M., Matricardi, M., McNally,
585 A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C.,
586 Thépaut, J. N. and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
587 the data assimilation system. *Quarterly Journal of the Royal Meteorological Society*, 137: 553–
588 597, <https://doi.org/10.1002/qj.828>, 2011.

589 Fan, J. W., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., Martin, S. T.,
590 Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao,
591 W., Gomes, H. B., Mei, F., Pöhlker, C., Pöhlker, M. L., Pöschl, U. and de Souza, R. A. F.:
592 Substantial convection and precipitation enhancements by ultrafine aerosol particles. *Science*,
593 359: 411–418, [10.1126/science.aan8461](https://doi.org/10.1126/science.aan8461), 2018.

594 Fan, J. W., Zhang, Y., Li, Z., Yan, H., Prabhakaran, T., Rosenfeld, D. and Khain, A.: Unveiling
595 aerosol impacts on deep convective clouds: Scientific concept, modeling, observational
596 analysis, and future direction. *Journal of Geophysical Research: Atmospheres*, 130:
597 e2024JD041931, <https://doi.org/10.1029/2024JD041931>, 2025.

598 Fan, X. P., Zhang, Y. J., Zheng, D., Zhang, Y., Lyu, W. T., Liu, H. Y. and Xu, L. T.: A New Method
599 of Three-Dimensional Location for Low-Frequency Electric Field Detection Array. *Journal of
600 Geophysical Research: Atmospheres*, 123(16): 8792–8812, [10.1029/2017jd028249](https://doi.org/10.1029/2017jd028249), 2018.

601 Fuchs, B. R., Rutledge, S. A., Dolan, B., Carey, L. D. and Schultz, C.: Microphysical and kinematic
602 processes associated with anomalous charge structures in isolated convection. *Journal of
603 Geophysical Research: Atmospheres*, 123: 6505–6528, <https://doi.org/10.1029/2017JD027540>,
604 2018.

605 Grabowski, W. W.: Daytime convective development over land: The role of surface forcing.
606 *Quarterly Journal of the Royal Meteorological Society*, 149: 2800–2819,
607 <https://doi.org/10.1002/qj.4532>, 2023.

608 Grabowski, W. W. and Morrison, H.: Do Ultrafine Cloud Condensation Nuclei Invigorate Deep
609 Convection? *Journal of the Atmospheric Sciences*, 77: 2567–2583,
610 <https://doi.org/10.1175/JAS-D-20-0012.1>, 2020.

611 Grabowski, W. W. and Morrison, H.: Supersaturation, buoyancy, and deep convection dynamics.
612 *Atmospheric Chemistry and Physics*, 21: 13997–14018, <https://doi.org/10.5194/acp-21-13997-2021>, 2021.

613 Golestani, Y., Chandrasekar, V. and Bringi, V. N.: paper presented at the 24th Conference on Radar
614 Meteorology, Tallahassee, FL, American Meteorological Society, 1989.

615 Herzegh, P. H. and Jameson, A. R.: Observing Precipitation through Dual-Polarization Radar

617 Measurements. *Bulletin American Meteorological Society*, 73(9): 1365-1376, 10.1175/1520-
618 0477(1992)073<1365:OPTDPR>2.0.CO;2, 1992.

619 Hu, J. and Ryzhkov, A.: Climatology of the Vertical Profiles of Polarimetric Radar Variables and
620 Retrieved Microphysical Parameters in Continental/Tropical MCSs and Landfalling
621 Hurricanes. *Journal of Geophysical Research: Atmospheres*, 127(5), 10.1029/2021jd035498,
622 2022.

623 Koren, I., Kaufman, Y. J., Remer, L. A. and Martins, J. V.: Measurement of the effect of Amazon
624 smoke on inhibition of cloud formation. *Science*, 303: 1342–1345, 10.1126/science.1089424,
625 2004.

626 Kumjian, M. R., Khain, A. P., Benmoshe, N., Ilotoviz, E., Ryzhkov, A. V. and Phillips, V. T. J.: The
627 Anatomy and Physics of ZDR Columns: Investigating a Polarimetric Radar Signature with a
628 Spectral Bin Microphysical Model. *Journal of Applied Meteorology and Climatology*, 53(7):
629 1820-1843, 10.1175/jamc-d-13-0354.1, 2014.

630 Kumjian, M. R., Prat, O. P., Reimel, K. J., van Lier-Walqui, M. and Morrison, H. C.: Dual-
631 Polarization Radar Fingerprints of Precipitation Physics: A Review. *Remote Sensing*, 14, 3706,
632 <https://doi.org/10.3390/rs14153706>, 2022.

633 Kumjian, M. R. and Prat, O. P.: The Impact of Raindrop Collisional Processes on the Polarimetric
634 Radar Variables. *Journal of the Atmospheric Sciences*, 71: 3052–3067,
635 <https://doi.org/10.1175/JAS-D-13-0357.1>, 2014.

636 Li, H. Q., Wan, Q., Peng, D., Liu, X. and Xiao, H.: Multiscale analysis of a record-breaking heavy
637 rainfall event in Guangdong, China. *Atmospheric Research*, 232: 104703.
638 <https://doi.org/10.1016/j.atmosres.2019.104703>, 2019.

639 Liu, N., Liu, C., Chen, B. and Zipser, E.: What Are the Favorable Large-Scale Environments for the
640 Highest-Flash-Rate Thunderstorms on Earth? *Journal of the Atmospheric Sciences*, 77: 1583–
641 1612, <https://doi.org/10.1175/JAS-D-19-0235.1>, 2020.

642 Liu, Z., Zheng, D., Guo, F., Zhang, Y., Zhang, Y., Wu, C., Chen, H. and Han, S.: Lightning activity
643 and its associations with cloud structures in a rainstorm dominated by warm precipitation.
644 *Atmospheric Research*, 246, 10.1016/j.atmosres.2020.105120, 2020.

645 Lucas, C., Zipser, E. J. and Lemone, M. A.: Vertical Velocity in Oceanic Convection off Tropical
646 Australia. *Journal of the Atmospheric Sciences*, 51: 3183–3193, [https://doi.org/10.1175/1520-0469\(1994\)051<3183:VVIOCO>2.0.CO;2](https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2), 1994.

647 MacGorman, D. R. and Rust, W. D.: *The Electrical Nature of Storms*. Oxford University Press,
648 ISBN 10: 0195073371, 1998.

649 Markowski, P. and Richardson, Y.: *Mesoscale Meteorology in Midlatitudes*. John Wiley and Sons
650 Press, ISBN 9780470742136, 2010.

651 Mather, G. K., Morrison, B. J. and Morgan, G. M. Jr.: A Preliminary Assessment of the Importance
652 of Coalescence in Convective Clouds of the Eastern Transvaal. *Journal of Applied
653 Meteorology and Climatology*, 25: 1780–1784, [https://doi.org/10.1175/1520-0450\(1986\)025<1780:APAOTI>2.0.CO;2](https://doi.org/10.1175/1520-0450(1986)025<1780:APAOTI>2.0.CO;2), 1986.

654 Mattos, E. V., Machado, L. A. T., Williams, E. R., Goodman, S. J., Blakeslee, R. J. and Bailey, J. C.:
655 Electrification life cycle of incipient thunderstorms. *Journal of Geophysical Research: Atmospheres*, 122: 4670–4697, <https://doi.org/10.1002/2016JD025772>, 2017.

656 Morrison, H., Thompson, G. and Tatarki, V.: Impact of cloud microphysics on the development of
657 trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment
658
659 Morrison, H., Thompson, G. and Tatarki, V.: Impact of cloud microphysics on the development of
660 trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment

661 schemes. *Monthly Weather Review*, 137: 991–1007, <https://doi.org/10.1175/2008MWR2556.1>,
662 2009.

663 Orville, R. E. and Henderson, R. W.: Global Distribution of Midnight Lightning: September 1977
664 to August 1978. *Monthly Weather Review*, 114: 2640–2653, [https://doi.org/10.1175/1520-0493\(1986\)114<2640:GDOMLS>2.0.CO;2](https://doi.org/10.1175/1520-0493(1986)114<2640:GDOMLS>2.0.CO;2), 1986.

666 Pruppacher, H. R. and Klett, J. D.: *Microphysics of Clouds and Precipitation*. Kluwer Academic, ed.
667 2, ISBN 079234409X, 1997.

668 Qie, X., Yair, Y., Di, S., Huang, Z. and Jiang, R.: Lightning response to temperature and aerosols.
669 *Environmental Research Letters*, 19: 083003, 10.1088/1748-9326/ad63bf, 2024.

670 Rasmussen, R. M. and Heymsfield, A. J.: Melting and Shedding of Graupel and Hail. Part I: Model
671 Physics. *Journal of the Atmospheric Sciences*, 44: 2754–2763, [https://doi.org/10.1175/1520-0469\(1987\)044<2754:MASOGA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2), 1987a.

673 Rasmussen, R. M. and Heymsfield, A. J.: Melting and Shedding of Graupel and Hail. Part II:
674 Sensitivity Study. *Journal of the Atmospheric Sciences*, 44: 2764–2782,
675 [https://doi.org/10.1175/1520-0469\(1987\)044<2764:MASOGA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<2764:MASOGA>2.0.CO;2), 1987b.

676 Rasmussen, R. M. and Heymsfield, A. J.: Melting and Shedding of Graupel and Hail. Part III:
677 Investigation of the Role of Shed Drops as Hail Embryos in the 1 August CCOPE Severe Storm.
678 *Journal of the Atmospheric Sciences*, 44: 2783–2803, [https://doi.org/10.1175/1520-0469\(1987\)044<2783:MASOGA>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<2783:MASOGA>2.0.CO;2), 1987c.

680 Rosenfeld, D. and Lensky, I. M.: Satellite-Based Insights into Precipitation Formation Processes in
681 Continental and Maritime Convective Clouds. *Bulletin of the American Meteorological
682 Society*, 79: 2457–2476, [https://doi.org/10.1175/1520-0477\(1998\)079<2457:SBIIPF>2.0.CO;2](https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2), 1998.

684 Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A. and
685 Andreae, M. O.: Flood or Drought: How Do Aerosols Affect Precipitation? *Science*, 321(5894):
686 1309–1313, doi:10.1126/science.1160606, 2008.

687 Shi, D., Zheng, D., Zhang, Y., Zhang, Y., Huang, Z., Lu, W., Chen, S. and Yan, X.: Low-frequency
688 E-field Detection Array (LFEDA)—Construction and preliminary results. *Science China Earth
689 Sciences*, 60(10): 1896–1908, 10.1007/s11430-016-9093-9, 2017.

690 Smith, P. L., Musil, D. J., Detwiler, A. G. and Ramachandran, R.: Observations of Mixed-Phase
691 Precipitation within a CaPE Thunderstorm. *Journal of Applied Meteorology and Climatology*,
692 38: 145–155, [https://doi.org/10.1175/1520-0450\(1999\)038<0145:OOMPW>2.0.CO;2](https://doi.org/10.1175/1520-0450(1999)038<0145:OOMPW>2.0.CO;2), 1999.

693 Stolzenburg, M., Marshall, T. C. and Krehbiel, P. R.: Initial electrification to the first lightning flash
694 in New Mexico thunderstorms. *Journal of Geophysical Research: Atmospheres*, 120: 11253–
695 11276, <https://doi.org/10.1002/2015JD023988>, 2015.

696 Stough, S. M., Carey, L. D., Schultz, C. J. and Cecil, D. J.: Examining conditions supporting the
697 development of anomalous charge structures in supercell thunderstorms in the Southeastern
698 United States. *Journal of Geophysical Research: Atmospheres*, 126: e2021JD034582,
699 <https://doi.org/10.1029/2021JD034582>, 2021.

700 Thornton, J. A., Virt, K. S., Holzworth, R. H. and Mitchell, T. P.: Lightning enhancement over
701 major oceanic shipping lanes. *Geophysical Research Letters*, 44: 9102–9111,
702 <https://doi.org/10.1002/2017GL074982>, 2017.

703 Tokay, A., D'Adderio, L. P., Marks, D. A., Pippitt, J. L., Wolff, D. B. and Petersen, W. A.:
704 Comparison of Raindrop Size Distribution between NASA's S-Band Polarimetric Radar and

705 Two-Dimensional Video Disdrometers. *Journal of Applied Meteorology and Climatology*, 59: 517–533, <https://doi.org/10.1175/JAMC-D-18-0339.1>, 2020.

706 Varble, A. C., Igel, A. L., Morrison, H., Grabowski, W. W. and Lebo, Z. J.: Opinion: A critical
707 evaluation of the evidence for aerosol invigoration of deep convection. *Atmospheric Chemistry
708 and Physics*, 23: 13791–13808, <https://doi.org/10.5194/acp-23-13791-2023>, 2023.

710 Verlinde, J. and Cotton, W. R.: Fitting Microphysical Observations of Nonsteady Convective Clouds
711 to a Numerical Model: An Application of the Adjoint Technique of Data Assimilation to a
712 Kinematic Model. *Monthly Weather Review*, 121: 2776–2793, [https://doi.org/10.1175/1520-0493\(1993\)121<2776:FMOONC>2.0.CO;2](https://doi.org/10.1175/1520-0493(1993)121<2776:FMOONC>2.0.CO;2), 1993.

713 Wang, X. and Zhang, R.: Effects of atmospheric circulations on the interannual variation in PM2.5
714 concentrations over the Beijing–Tianjin–Hebei region in 2013–2018. *Atmospheric Chemistry
715 and Physics*, 20: 7667–7682, <https://doi.org/10.5194/acp-20-7667-2020>, 2020.

716 Williams, E. R. and Stanfill, S.: The physical origin of the land-ocean contrast in lightning activity.
717 *Comptes Rendus Physique*, 3: 1277–1292, [https://doi.org/10.1016/S1631-0705\(02\)01407-X](https://doi.org/10.1016/S1631-0705(02)01407-X),
718 2002.

719 Williams, E. R., Mushtak, V., Rosenfeld, D., Goodman, S. and Boccippio, D.: Thermodynamic
720 conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and
721 lightning flash rate. *Atmospheric Research*, 76: 288–306,
722 <https://doi.org/10.1016/j.atmosres.2004.11.009>, 2005.

723 Wisner, C., Orville, H. D. and Myers, C.: A Numerical Model of a Hail-Bearing Cloud. *Journal of
724 the Atmospheric Sciences*, 29: 1160–1181, [https://doi.org/10.1175/1520-0469\(1972\)029<1160:ANMOAH>2.0.CO;2](https://doi.org/10.1175/1520-0469(1972)029<1160:ANMOAH>2.0.CO;2), 1972.

725 Zhang, Y., Yan, M., Sun, A. and Guo, F.: *Thunderstorm Electricity*, China Meteorology Press,
726 Beijing, 384 pp., ISBN 9787502947682, 2009.

727 Zhao, C.: Data for “Physical Interpretation and Implications of Convective Impulses in
728 Thunderstorms Based on Lightning and Polarimetric Radar Observations”. figshare. [Dataset].
729 <https://doi.org/10.6084/m9.figshare.26779426.v4>, 2024.

730 Zhao, C., Zhang, Y., Zhai, H., Li, Z., Zheng, D., Peng, X., Yao, W., Du, S. and Du, Y.: Bridging the
731 polarimetric structure and lightning activity of isolated thunderstorm cells during the cloud life
732 cycle. *Atmospheric Chemistry and Physics*, 25: 13453–13473, <https://doi.org/10.5194/acp-25-13453-2025>, 2025.

733 Zhao, C., Zhang, Y., Zheng, D., Li, H., Du, S., Peng, X., Liu, X., Zhao, P., Zheng, J. and Shi, J.:
734 Technical note: On the ice microphysics of isolated thunderstorms and non-thunderstorms in
735 southern China – a radar polarimetric perspective. *Atmospheric Chemistry and Physics*, 24(20):
736 11637–11651, <https://doi.org/10.5194/acp-24-11637-2024>, 2024a.

737 Zhao, C., Zhang, Y., Zheng, D., Liu, X., Zhang, Y., Fan, X., Yao, W. and Zhang, W.: Using
738 Polarimetric Radar Observations to Characterize First Echoes of Thunderstorms and
739 Nonthunderstorms: A Comparative Study. *Journal of Geophysical Research: Atmospheres*,
740 127(23): e2022JD036671, <https://doi.org/10.1029/2022JD036671>, 2022.

741 Zhao, C., Zhang, Y. J., Zheng, D., Yao, W. and Du, S.: Potential Method for Warning the First
742 Lightning Flash of Isolated Thunderstorm Cells over South China. *Weather and Forecasting*
743 40: 105–115, <https://doi.org/10.1175/WAF-D-23-0189.1>, 2024b.

744 Zhao, C., Zheng, D., Zhang, Y. J., Liu, X., Zhang, Y., Yao, W. and Zhang, W.: Characteristics of
745 cloud microphysics at positions with flash initiations and channels in convection and stratiform
746 747 748

749 areas of two squall lines, *Journal of Tropical Meteorology*, 37: 358–369,
750 doi:10.16032/j.issn.1004-4965.2021.035, 2021a.

751 Zhao, C., Zheng, D., Zhang, Y. J., Liu, X., Zhang, Y., Yao, W. and Zhang, W.: Turbulence
752 Characteristics of Thunderstorms Before the First Flash in Comparison to Non-Thunderstorms.
753 *Geophysical Research Letters*, 48(18): e2021GL094821,
754 <https://doi.org/10.1029/2021GL094821>, 2021b.

755 Zheng, D., Shi, D., Zhang, Y., Zhang, Y. J., Lyu, W. and Meng, Q.: Initial leader properties during
756 the preliminary breakdown processes of lightning flashes and their associations with initiation
757 positions. *Journal of Geophysical Research: Atmospheres*, 124: 8025–8042,
758 <https://doi.org/10.1029/2019JD030300>, 2019.

759 Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W. and Yorty, D. P.: WHERE ARE THE MOST
760 INTENSE THUNDERSTORMS ON EARTH? *Bulletin of the American Meteorological
761 Society*, 87: 1057–1072, <https://doi.org/10.1175/BAMS-87-8-1057>, 2006.