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Abstract. Monitoring Arctic sea ice variability is crucial for maritime safety. Synthetic Aperture Radar (SAR)
imagery provides an effective means of achieving this through all-weather, day-and-night coverage of the Arctic.
Navigation in the Canadian Arctic Archipelago currently relies on operational ice information services, including
analyst-derived ice charts, satellite imagery, and ice routing products provided by national ice services. However,
the development of machine-learning systems capable of automatically processing large volumes of satellite
imagery and accurately identifying ice conditions is constrained by the need for extensive manually labelled
datasets. To address this limitation, we developed a self-supervised learning (SSL) approach, which uses unlabelled
data to learn general image representations. Specifically, we use Bootstrap Your Own Latent (BYOL), a non-
contrastive SSL framework, to pretrain a UNet encoder on unlabelled dual-polarised Sentinel-1 Extra-Wide mode
(EW) SAR scenes before fine-tuning with a small set of labelled images. We compare the BYOL-pretrained UNet
(called UNet SSL in this study) to four baselines: a control UNet, a fully supervised UNet, a Random Forest
classifier, and the Segment Anything Model (SAM). With only three labelled scenes, the BYOL-pretrained UNet
achieved higher segmentation accuracy than the fully supervised model trained on seven images, more than twice
the number of labelled scenes. The most significant gains occurred in Marginal Ice Zone (MIZ) scenes, where the
BYOL-pretrained UNet achieved a Matthews Correlation Coefficient (MCC) of 0.2087, compared with 0.1685 for
the fully supervised UNet trained on seven labelled scenes and 0.1449 for the control model trained on three
scenes—representing an MCC increase of approximately 24% and 44%, respectively. These improvements were
accompanied by a substantial reduction in false negatives and a marked increase in recall, indicating improved
discrimination under low-contrast, fragmented floe conditions. Our findings demonstrate that SSL reduces

annotation requirements for SAR-based sea ice segmentation, improving model generalisation in both consolidated
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and fragmented ice conditions. This approach offers a scalable solution to the labelling bottleneck in Arctic
monitoring and highlights the potential of BYOL as a general pretraining strategy for SAR-based Earth observation

image segmentation.

1. Introduction

The Arctic is warming 4-6 times faster than the rest of the planet and this has led to a reduction in Arctic sea ice

extent in both summer and winter (Stroeve and Notz, 2018; Rantanen et al., 2022). This amplified warming is

closely linked to diminishing sea ice and associated feedbacks between the surface energy balance and the

atmosphere (Screen and Simmonds, 2010; Serreze and Barry, 2011). The sea ice extent minima, usually occurring

at the start of September, has decreased by nearly 14% per decade since 1979, while the winter extent maxima

continues to shrink at more than 3 % per decade (Stroeve and Notz, 2018). This loss has been accompanied by a

dramatic shift in ice age structure: the proportion of Arctic sea ice older than five years has declined from
approximately 28% of the basin in the mid-1980s to less than 2% by 2018, leaving the Arctic increasingly

dominated by thin, first-year ice (Stroeve and Notz, 2018). The diminishing size of the sea ice pack is reshaping

human activity in the region as maritime traffic through Arctic waters is expanding, including increasingly

hazardous winter operations (Miiller et al., 2023). At present, navigation through Arctic waters relies on sea ice

charts that are produced by national ice services through expert analysis of Synthetic Aperture Radar (SAR)
imagery and other satellite observations (Dierking, 2013). This creates a time lag between satellite data acquisition,
manual interpretation of the imagery, and the release of the ice charts to an online platform. Sea ice charts are
crucial for both operational forecasting and climate research, yet they often omit key structural features such as
leads and deformation zones because current SAR-based products struggle to provide reliable secondary ice

information (Hebert et al., 2015; Sandven et al., 2023), despite their importance as hot spots of ocean—atmosphere

interaction (Kortum et al., 2024). Automated methods that reduce manual labelling could accelerate high-resolution

sea ice mapping useful for navigation, short-term forecasting of ice conditions, and climate research. However,
automating the process of sea-ice mapping is hindered by three linked challenges: the scarcity of labelled SAR data,
the inability of existing products to resolve fine-scale structural features, and the difficulty of producing timely,
consistent maps at the pace of modern satellite acquisitions.

Deep learning techniques offer a potential solution to these issues by utilising the extensive collections of
unlabelled SAR imagery, enabling models to learn transferable representations without requiring large volumes of

manually labelled data. SAR is particularly suitable for Arctic monitoring because it can acquire data under all
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weather conditions and during the polar night, unlike optical sensors, which are limited by cloud cover and the

absence of sunlight (Zakhvatkina et al., 2019; Yuan et al., 2025). Methods based on Convolutional Neural

Networks (CNNs), such as UNet (Ronneberger et al., 2015), have proven effective for SAR-based sea ice

segmentation (Park et al., 2020; Huang et al., 2024), but they depend on large, labelled data sets, which are scarce

in the Arctic (Khaleghian et al., 2021; Jiang et al., 2024) and are labour intensive to produce. These challenges have

prompted the development of architectures specifically tailored to SAR, such as hybrid convolutional-transformer

models designed to better capture spatial and contextual features in radar backscatter (Ristea et al., 2023). For

example, Boulze et al. (2020) achieved ~90-92% accuracy in classifying four ice types from Sentinel-1 dual-
polarisation SAR, outperforming a texture-based Random Forest while cutting per-scene processing from ~1 hour
to ~2 minutes. However, both Random Forests and CNNs struggled with young and first-year ice because of coarse
or inconsistent labels and mixed SAR pixels in regions close to manually drawn ice-chart polygon boundaries,
where chart generalisation causes a single label to span multiple physical ice types, emphasising that performance is
fundamentally constrained by label quality and availability. Manual annotation is costly, time-consuming,
subjective, and geographically limited, creating a bottleneck between the vast archives of unlabelled SAR imagery
and the comparatively small pool of expert-labelled masks.

Several labelled SAR sea-ice datasets have been developed that complement the present study. The Al4Arctic Sea

Ice Challenge dataset and the associated AutolCE Challenge (Stokholm et al., 2024) provide large-scale, multi-
class annotations derived primarily from operational ice charts. While highly valuable for regional benchmarking,
the chart-based approach results in intentionally generalised polygon boundaries, which are less suited to evaluating
pixel-level segmentation accuracy and boundary fidelity.

Similarly, the MOSAiC-based binary lead dataset (Murashkin, 2023) offers extensive coverage of lead structures in

the central Arctic Ocean, but the labels are generated using a convolutional neural network rather than manual
annotation. As such, it is well suited to statistical analyses of lead occurrence, but less appropriate as an
independent reference for evaluating learning-based segmentation methods. In contrast, the present study uses a
small number of expert-annotated, pixel-wise masks, designed to support controlled, relative comparisons between
models under limited-label conditions. Future work will extend the BYOL-pretrained framework to these larger
community datasets.

Self-supervised learning (SSL) has emerged as a promising way to reduce the dependence of deep learning models
on labelled data. Instead of relying on human annotations, SSL learns by solving proxy objectives, such as
predicting masked content or enforcing consistency across augmented views, that lead the model to acquire useful
representations. These tasks typically involve predicting missing information or ensuring that two differently

augmented versions of the same image produce similar internal representations (Grill et al., 2020). These

3
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representations capture structural and semantic patterns that can later be transferred to downstream tasks with only

95 minimal supervision, often rivalling or surpassing fully supervised baselines (Grill et al., 2020).

Some SSL methods, such as Bootstrap Your Own Latent (BYOL; Grill et al., 2020), remove the need for negative

pairs—image patches that are explicitly treated as representing different underlying classes or features during
training. In contrastive self-supervised learning frameworks, representation learning is driven by simultaneously
pulling together positive pairs and pushing apart negative pairs, meaning that the definition of what constitutes a
100 “negative” sample is central to the training objective. These definitions rely on human design choices. Incorrectly
defining negative pairs can actively harm representation learning by forcing the model to separate samples that are
physically or semantically related. This is particularly problematic in SAR imagery, where visual dissimilarity
arising from incidence-angle effects, speckle, or surface roughness does not necessarily correspond to a true

semantic difference between ice types (Casey et al., 2016). Instead of comparing a given image patch against many

105 assumed negatives, BYOL operates using two differently augmented views of the same SAR scene. One network
(the online branch) is trained to predict the representation produced by a second, slowly updated target network.
Because both views originate from the same underlying ice feature, the model is encouraged to learn stable SAR

structures—such as floe texture or ridge geometry—that persist across imaging conditions (Lensu et al., 2022),

rather than scene-dependent variations driven by incidence angle or surface state (Macdonald et al., 2024). By
110 eliminating the need to define what constitutes a “dissimilar” SAR sample, BYOL avoids false negatives and

reduces sensitivity to scene-specific noise and speckle, making it particularly well suited to SAR data, where

complex spatial textures and acquisition-dependent effects can undermine contrastive training schemes that rely on

explicit similarity—dissimilarity assumptions.

Recent work demonstrates the growing use of SSL for satellite scene analysis, where annotated data are often
115 scarce and expensive to produce. In optical imagery, SSL methods have been used to cluster or classify land-cover

patterns without labels, supporting expert interpretation at regional to national scales (Francis et al., 2023). In

hyperspectral imaging, SSL has enabled efficient spectral super-resolution using compact networks trained on
synthetic degradation pairs, achieving competitive accuracy with minimal compute and without large labelled

corpora (Rajaei et al., 2024). These studies illustrate several advantages of SSL for Earth observation: the ability to

120 exploit abundant unlabelled satellite data, reduced dependence on expert annotation, and the capacity to learn
robust spatial and spectral structure with lightweight models. SSL has also begun to gain traction in optical remote

sensing (Muzeau et al., 2024) and in SAR scene-level classification (Liu et al., 2024); however, its application to

pixel-level segmentation of Arctic sea ice in SAR imagery remains largely unexplored.
While these advances demonstrate the versatility of SSL, SAR-based sea-ice mapping presents additional physical

125 complexities such as speckle, noise, incidence-angle effects, and the sensitivity of backscatter to ice type and

4
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surface roughness (Johansson et al., 2018; Lohse et al., 2020; Karlsen et al., 2024). Sea ice itself is heterogeneous

and highly dynamic, further complicating classification and monitoring, with SAR backscatter signatures varying

seasonally across leads, young ice, first-year ice (FYI), and multi-year ice (MYI) (Guo et al., 2023). Physically,

MYTI is thicker, salt-depleted, and heavily deformed, characterised by hummocks and ridges that produce bright,
130 granular radar returns, whereas FYI tends to be smoother, more saline, and less consolidated, yielding lower

backscatter, except where deformation or surface flooding by seawater increases roughness (Roach et al., 2025).

Leads—narrow fractures of open water within the ice pack—occupy a small fraction of the ice cover but represent
conduits for the exchange of heat and moisture between the ocean and atmosphere, making their detection

particularly useful in studying the energy balance of sea ice (Clemens-Sewall et al., 2023). Their spatial distribution

135 and evolution can be quantified using SAR-derived divergence and deformation metrics (von Albedyll et al., 2024).

The Marginal Ice Zone (MIZ) marks the transition from open ocean to pack ice and exhibits extreme spatial and
temporal variability, driven by wind, waves, and ocean currents. Its fine-scale fragmentation and overlapping
backscatter signatures present major operational challenges, making it difficult to develop segmentation methods

that generalise across scattering conditions (Huang and Li, 2023; Itkin, 2025). These characteristics make SAR

140 images of sea ice an ideal but demanding test case for evaluating self-supervised approaches.
Here we introduce, to our knowledge, the first application of non-contrastive self-supervised pretraining (BYOL) to
SAR- sea-ice segmentation, evaluating whether such pretraining can reduce annotation requirements without
sacrificing accuracy. We pretrain a UNet encoder on unlabelled Sentinel-1 SAR imagery and fine-tune it with
limited labelled scenes, which we then compare against widely used models for image segmentation: a fully
145 supervised UNet, a Random Forest classifier, and the Segment Anything Model (SAM). Our research questions are:
How does the segmentation performance of a BYOL-pretrained UNet compare to other widely used models for sea
ice segmentation?
How do models perform across contrasting Arctic environments — from consolidated multi-year ice to fragmented
marginal-ice zones — and what does this reveal about each model’s robustness to different radar scattering
150  conditions? The objective of this study is not to establish state-of-the-art accuracy of sea-ice segmentation models,
but to assess their relative performance under controlled, low-label conditions. Specifically, we evaluate whether
self-supervised pretraining using BYOL enables a UNet model to achieve performance comparable to, or
exceeding, fully supervised baselines while using substantially fewer labelled SAR scenes. All models are therefore
trained and evaluated on the same fixed test scenes, and performance differences are interpreted in a comparative
155 sense, focusing on relative gains in robustness, generalisation, and label efficiency rather than on absolute accuracy

values.
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2. Study area and data
2.1 Study area

Our study area (Fig. 1) encompasses the western side of the Canadian Arctic Archipelago (CAA; ~75°-83° N, 90°—
160 125° W) and adjacent Arctic Ocean. The region was chosen because it presents a challenging and operationally
important environment for sea-ice segmentation: a dense network of narrow straits and islands where land

contamination, mixed ice types, and frequent thin ice leads complicate SAR interpretation (Howell et al., 2024). As

a major pathway for sea-ice export and a key sector of the Northwest Passage (Cook et al., 2024), the CAA also

provides a scientifically relevant testbed for evaluating model performance in conditions that are both climatically
165 and logistically significant.
The climate of the CAA is strongly influenced by the presence and variability of sea ice (Ye et al., 2025), which

plays a key role in modulating atmospheric circulation and driving regional weather extremes. Sea ice in the CAA
comprises a mixture of FYI that forms each winter and MYTI that survives one or more melt seasons. MYI within
the CAA is replenished from the Arctic Ocean and the survival of FYI through the melt season, with interannual

170 trends suggesting MYI has remained stable between 2016 and 2022 (Howell et al., 2024). The presence of both

MYTI and FYI leads to a complex mosaic of sea ice across the CAA: deformed MYI remains concentrated along the
northern coasts of the CAA, whilst thinner FYI dominates the southern channels and coastal inlets. Leads and
polynyas — open-water features within the pack ice form and evolve throughout the year, enhancing ocean—

atmosphere heat exchange and often marking the transition between melt and freeze phases (Roach et al., 2025).

175 Recent climate warming has led to an earlier breakup of sea ice in summer, a longer melt period, and an increase in

open-water areas as the pack transitions to younger, thinner FYI (Howell & Brady, 2019). In 2024, September

Arctic sea ice extent was the 6th lowest in the satellite era, continuing the long-term decline in total sea ice extent

(Meier et al., 2024).

The CAA has become an increasingly important focus of Arctic shipping, with voyages through Canadian Arctic
180 waters more than quadrupling since 1990 as declining sea ice cover improves seasonal navigability along parts of

the Northwest Passage (Cook et al., 2024). However, choke points formed by persistent MYI in narrow channels

continue to restrict access, reducing the effective length of the shipping season (Cook et al., 2024). While summer

navigation increasingly favours the shallower southern route of the Northwest Passage, the deep-water northern
route remains constrained by MYT choke points, with sea-ice area dropping to ~4 x 10* km? at the end of September

185 2024 (Howell et al., 2025). Accurate, high-resolution monitoring of leads and ice conditions in the CAA and

neighbouring Arctic Ocean is vital for safe navigation and planning suitable routes.
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2.2 Sentinel-1 SAR imagery

We conduct our evaluation using Sentinel-1 SAR scenes from the CAA. We choose scenes that represent two
contrasting environments: (1) a consolidated ice pack containing leads (Scene 1), and (2) scenes covering the

190 fragmented MIZ (Scene 2). We used dual-polarised Sentinel-1 scenes acquired in Extra Wide (EW) swath mode
and Ground Range Detected (GRD) format. In total, 21 Sentinel-1 scenes were used in this study (Table 1): 12
unlabelled scenes were used for self-supervised pretraining, whilst a total of 9 scenes were manually labelled for
training (7 images) and test (2 images). Each pre-processed EW acquisition has an image swath size of 7000 x 7500
pixels at 80 m resolution (~560x600 km image size), corresponding to roughly 5 x 107 pixels per scene and nearly

195 1 x 109 SAR pixels across the dataset. The labelled acquisitions span from June 2022 to November 2023, capturing
seasonal variability across all four Arctic seasons including freeze-up (autumn), maximum extent (winter), melt
onset (spring), and sea ice minima (summer). The labelled Sentinel-1 SAR scenes are primarily located over the
Queen Elizabeth Islands (the northernmost Canadian archipelago), including: Prince Patrick, Ellef Ringnes, and
Mackenzie Islands, with additional coverage extending southward to the waters between Bathurst and Melville

200 Islands and northward into the Arctic Ocean. One scene is centred roughly 500 km north of mainland Alaska,
capturing consolidated MYT beyond the island chain. Table 1. Summary of the list of images used in training and
testing

File Name Scene ID | Date Labelled? Training / Test
(Fig. 1)
S1A_ EW_GRDM 1SDH 20180116T0754 | n/a 16.01.2018 | Unlabelled | SSL Training
30 20180116T075530 020177 _0226B9 9
FE3

S1B_ EW _GRDM 1SDH 20180213T1754 | n/a 13.02.2018 | Unlabelled | SSL Training
44 20180213T175544 009608 011511 82
66

n/a 13.03.2018 | Unlabelled | SSL Training
S1A_ EW_GRDM 1SDH 20180313T1812
25 20180313T181325 021000 _0240E1 8
163

SIA EW_GRDM 1SDH 20180417T0746 | n/a 17.04.2018 | Unlabelled | SSL Training
06_20180417T074706_021504 0250C3_D
211

S1B_EW_GRDM _1SDH_20180515T1746 | n/a 15.05.2018 | Unlabelled | SSL Training
33 20180515T174733 010935 01403A_
A84D

S1A_EW_GRDM_1SDH 20180612T1804 | n/a 12.06.2018 | Unlabelled | SSL Training
23 20180612T180523 022327 026AB3_
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AC33

SIA EW _GRDM _ISDH 20180717T0738
09 20180717T073909_022831 0279B9 E
BF1

17.07.2018

Unlabelled

SSL Training

SIB_ EW_GRDM 1SDH 20180814T0753
44 20180814T075444 012256 016952 B
1DC

14.08.2018

Unlabelled

SSL Training

SIA_ EW _GRDM_1SDH 20180911T1755
48 20180911T175652 023654 0293F5 7
CA2

11.09.2018

Unlabelled

SSL Training

SIA_ EW GRDM_1SDH 20181016T0729
58 20181016T073058_024158 02A460
DASF

n/a

16.10.2018

Unlabelled

SSL Training

SIB_ EW _GRDM_ISDH 20181113T0745
29 20181113T074629 013583 019254 D
382

n/a

13.11.2018

Unlabelled

SSL Training

SIA_ EW_GRDM_I1SDH 20181218T0754
37 20181218T075537_025077_02C472 1
DB2

18.12.2018

Unlabelled

SSL Training

SIA EW _GRDM ISDH 20221027T1615
58_20221027T161702_045630_0574C3_1
CD3

27.10.2022

Labelled

Test

SIA_ EW_GRDM_1SDH 20230203T1501
50 20230203T150254 047073 05A59D
AO2F

03.02.2023

Labelled

SL Training

SIA_ EW_GRDM_1SDH 20230304T1511
08 20230304T151208 047496 05B3ES 1
FD1

04.03.2023

Labelled

SL Training

SIA_ EW GRDM 1SDH 20230305T1553
14 20230305T155414 047511 05B46C E
347

05.03.2023

Labelled

Test

SIA_ EW_GRDM_1SDH 20230503T1510
05 20230503T151109 048371 05D160 B
EOE

03.05.2023

Labelled

SL Training

STIA_EW_GRDM_I1SDH 20230602T1420
43_20230602T142147_048808_05DESA
F138

02.06.2023

Labelled

SL Training

SIA_EW_GRDM_1SDH 20230805T1348
56_20230805T134956 049741 05FB2E_
E2F3

05.08.2023

Labelled

SL Training
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SIA_EW_GRDM_1SDH _20230925T1551 | 5 25.09.2023 | Labelled | SL Training
19 20230925T155224 050486 061495 6
FAS
SIA_EW _GRDM_1SDH 20231110T1747 | 9 10.11.2023 | Labelled | SL Training
37 20231110T174837 051158 062B90 1
942

All Sentinel-1 SAR images were processed using the ESA Sentinel Application Platform (SNAP) following a
205 standard processing chain (Filipponi, 2019):

—_—

Remove GRD border noise
2. Radiometric calibration to sigma-nought (¢°) in decibels (dB);
3. Speckle filtering using the Lee Sigma algorithm with a 3 x 3 window;
4. Multilooking with two range and two azimuth looks;
210 5. Ellipsoid correction using the WGS84 ellipsoid model;
6. Export to GeoTIFF format for integration with machine learning pipelines.
7

Following preprocessing, the spatial resolution of Sentinel-1 scenes was 80 m.

Sentinel-1 Extra-Wide (EW) mode acquisitions exhibit systematic incidence-angle variation across the swath,
215 which affects ¢° magnitude and backscatter texture. In this study, Sentinel-1 scenes were processed using the
standard SNAP radiometric workflow, which partially mitigates incidence-angle effects through o° calibration. No
additional explicit incidence-angle normalisation or flattening was applied, as the objective of the study is to
compare relative model performance under identical acquisition conditions rather than to optimise absolute
accuracy for a single corrected representation. Residual incidence-angle effects are instead handled implicitly
220 through the use of dual-polarised HH-HV inputs and SAR-specific data augmentations designed to encourage
invariance to acquisition-related variability. The influence of these effects is further examined through o°-resolved
performance analysis (Sect. 4.4), which links segmentation skill to physical scattering regimes that partially co-vary

with incidence angle.

2.3 Sea ice labels

225 We manually annotated 9 Sentinel-1 scenes into two classes: sea ice and open water. All annotations are binary.
Features such as marginal ice zones (MIZ), leads, thin ice, and melt ponds are not treated as separate classes, but

are handled through explicit labelling rules designed to ensure consistency under ambiguous scattering conditions.
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Land areas were masked using the "2020 Land Cover of Canada" dataset from Open Canada (Latifovic, 2022). A

consistent labelling protocol was applied to allow reproducibility across scenes and seasons (see Figs. 7 and 8 for

230 examples of Test labels):

e Sea Ice was defined as any continuous area of elevated ¢° in the HH and HV bands, including both thick
consolidated floes and thinner, newly formed ice.

e Open Water was characterised by dark, low-return backscatter. Textured water, caused by wind or waves,
was also classified as open water.

235 e Marginal Ice Zones (MIZ) were handled using a consistent labelling convention: within spatially
heterogeneous regions containing mixed ice and water scattering, pixels were assigned to the ice class
when the dominant contiguous scattering signature corresponded to sea ice, even if intermixed with open-
water returns.

e Leads narrower than ~200 m (~2-3 pixels at 80 m resolution) were excluded to ensure consistent detection

240 thresholds.

Where available, Sentinel-2 optical imagery was used for visual cross-reference, particularly to differentiate melt
ponds, wind-driven open water, and MIZ features. The final labelled dataset covers all four seasons and includes a
range of ice regimes, from dense winter pack ice to fragmented summer floes.

245 The two test scenes were intentionally selected to represent contrasting levels of segmentation difficulty. The first
scene corresponds to relatively consolidated ice conditions and is treated as an easier reference case, whereas the
second scene encompasses a Marginal Ice Zone (MIZ) characterised by fragmented ice and mixed scattering, and is
used as a challenging test case to assess model robustness under more complex conditions.

To contextualise the labelling approach used in this study, Fig. 2 provides a visual comparison between the

250 manually annotated, pixel-wise labels developed here and two widely used community datasets: the Al4Arctic Sea
Ice Challenge dataset and the MOSAiC-based binary lead dataset. The comparison highlights differences in label
provenance and spatial granularity, reflecting the distinct objectives of each dataset. While chart-derived and
automatically generated labels are well suited to large-scale statistical analyses and benchmarking, the manually
produced labels used in this study are designed to support controlled, pixel-level evaluation of segmentation

255 performance under limited-label conditions.

10



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

3. Model intercomparison

An overview of the models and training regimes is shown in Fig. 3.

3.1 Models

260 In this study, we evaluate the performance of five approaches to segment sea ice using dual-polarised Sentinel-1

SAR imagery:

e UNet (Control): Supervised UNet trained using three labelled scenes (low-data baseline). UNet is widely
used in remote sensing and medical imaging as the standard architecture for pixel-wise segmentation.
265
e UNet (Supervised Learning): Supervised UNet trained using seven labelled scenes. This provides a

stronger supervised benchmark for evaluating how performance scales with more labelled data.

e  UNet (Self Supervised Learning): UNet with encoder pretrained using SSL (BYOL) on unlabelled SAR
270 imagery, then fine-tuned with 3 labelled scenes. This model tests our central hypothesis that self-

supervised pretraining can reduce dependence on labelled data.

e Random Forest (RF): Pixel-wise classifier. Although older, RFs remain widely used for sea ice

segmentation tasks due to their simplicity and interpretability (e.g. Marbouti et al, 2020). Including this

275 model allows us to benchmark deep learning performance gains against a classical, low-complexity,

baseline.

e Segment Anything Model (SAM): A prompt-based zero-shot segmentation method pretrained on large-
scale natural RGB datasets. While SAM was not designed for SAR, it was trained on RGB 11M images
280 and provides an important test of whether such generic pretrained models, so called foundation models,

can transfer directly to SAR-based sea ice segmentation without fine-tuning.

3.1.1 UNet (Control and SL)

285 UNet++ (Zhou et al., 2018) is an extension of the original UNet architecture developed for biomedical image

segmentation (Ronneberger et al., 2015). Like its predecessor, it follows an encoder—decoder structure, where the

11
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encoder progressively downsamples the input to extract hierarchical features and the decoder upsamples them to

produce a dense, pixel-wise segmentation mask. However, UNet++ introduces nested skip connections — dense

links between encoder and decoder blocks at multiple depths — that refine feature fusion and improve gradient flow
290 during training. These skip pathways enable finer localisation and more robust multiscale representation learning,

which is particularly valuable for segmenting narrow or fragmented features such as sea-ice leads.

In this study, we use a modified UNet++ tailored to the challenges of SAR-based sea ice segmentation.

Modifications include Residual convolutional blocks (He et al., 2016) with group normalisation and dropout and

Channel Attention Module (CAM) (Woo et al., 2018) in the bottleneck layer. The final layer is a 1 x 1 convolution

295 that maps to a single-channel probability output. Binary segmentation is achieved by applying a sigmoid activation
and thresholding at inference time. Identical UNets were trained, with differing amounts of labelled data. The first
was trained on 3 labelled images, called UNet (Control), whilst the second was trained with 7 labelled images,

called UNet (SL). The modified architecture is illustrated in Fig. 4.

3.1.2 UNet (SSL)

300 To reduce reliance on labelled training data, we implemented BYOL (Grill et al., 2020), a SSL framework designed

to learn image representations from unlabelled data. Unlike contrastive SSL methods that compare both positive
and negative sample pairs, BYOL operates without negative pairs, instead relying on asymmetric prediction
between two augmented views of the same image. No labels are used during BYOL pretraining; the network learns
by matching embeddings of two augmented views of the same image. The core idea is to train an online network,
305 which is the part of the model updated after each training step, to predict the representation of a target network, a
slowly updated copy of itself, using different augmentations of the same input. In this context, augmentations refer
to transformations applied to an image that preserve its semantic content (e.g. whether a pixel represents ice or
water) while modifying its appearance (see Figs. 5 and 6). These transformations encourage the model to learn
representations that are invariant to such changes. Specifically, each Sentinel-1 SAR image is augmented twice to
310  create two views: one is passed through the online encoder and projection head, while the other is passed through
the target encoder and projection head. The online network includes an additional prediction head that outputs a
vector which is optimised to match the target's latent representation. This architecture is particularly well-suited to
SAR imagery as it enables learning from large unlabelled SAR archives and is robust to noise, speckle, and

acquisition variation (Xu et al., 2021).

315 We adapted BYOL to operate within our UNet encoder and with SAR imagery as input by replacing the original
ResNet backbone with our modified UNet encoder and using HH-HV SAR pairs as 2-channel inputs. Each SAR

image was augmented twice to form a positive pair, i.e. two images with different representations of the same
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scene. The online encoder and projection head generate a latent vector — a compact numerical representation of the
image in feature space — which was compared to the output of a target encoder (an exponential moving average of
320 the online network). The loss function — a measure of how different two outputs are, guiding how the network
updates its weights during training — is based on cosine similarity between the predicted and target representations
(see sect. 3.3). This was used exclusively during the self-supervised pretraining phase. BYOL’s loss function
encourages the online network to produce representations that are invariant to augmentation and similar to the
target’s embeddings. Importantly, since no negative samples are required, BYOL avoids the instability often seen in
325 contrastive methods when semantic similarity does not correlate with visual appearance—a common challenge in
SAR data, where different sea ice types may appear visually similar due to backscatter ambiguity.
To qualitatively track what the encoder was learning during self-supervised pretraining, we generated feature
visualisations every two epochs. For a single input, we plotted the augmented view alongside the mean and
standard deviation of the deepest encoder feature maps. The mean highlights stable, view-invariant structures (Fig.
330 5b), and the standard deviation reflects variation across channels and sensitivity to textural differences (Fig. 5c).
These visualisations were used solely for training diagnostics. Several limiting cases help in interpreting these
diagnostics. A high mean with a low standard deviation indicates strong consensus across filters, suggesting that the
encoder has confidently identified stable structures, such as consolidated ice. Conversely, a low mean with a high
standard deviation indicates weak overall activations and high disagreement across channels, often associated with
335 noisy or ambiguous textures. High mean and standard deviation values indicates strong but varied activations,
typical of fragmented floes, such as that found in the open water channels in Fig. 5. In contrast, low mean and
standard deviation values implies low information content, typical of uniform open water regions or sea ice floes
(Fig. 4). Additionally, to illustrate cross-view consistency—the extent to which the encoder produces similar
feature representations for two differently augmented views of the same underlying SAR scene—we include an
340 example with two augmented views of the same patch (Fig. 6) alongside their corresponding encoder mean-feature
maps. Cross-view consistency is indicated by the presence of spatially aligned high-activation (bright) regions in
both feature maps, showing that the encoder emphasises the same underlying ice structures despite differences in
the input augmentations.
We used 12 unlabelled Sentinel-1 scenes (HH and HV) for pretraining. Scenes were selected based on quality and

345 geographic diversity. Augmentations were designed with SAR-specific considerations:
e  Geometric transforms (random crops, flips, rotation) to simulate spatial variability;

e Contrast and brightness variation approximates changes in surface roughness and incidence angle;
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350
e  Affine distortion introduces geometric deformation, aiding in feature generalisation.
Each augmentation had an 85% probability of being applied. The final patch size — a cropped subset of the Sentinel-
1 SAR scene used as a single training sample — was 1024 x 1024 pixels. After pretraining, the encoder weights
from the online BYOL model were used to initialise a supervised segmentation model with an identical
355 architecture. Decoder layers and output heads were reinitialised prior to supervised training, with weights set using

Xavier uniform initialisation (Glorot & Bengio, 2010) and selected biases reset to zero. Xavier initialisation is a

widely used method that scales the starting weights according to the number of input and output connections in a
layer, ensuring that activations neither explode nor vanish as they pass through the network. This stabilises early
training and improves convergence compared to arbitrary random initialisation.

360 During the first stage of fine-tuning, the encoder was frozen, meaning its weights were not updated, so that the
pretrained representations learned from unlabelled data were preserved while the decoder adapted to the
segmentation task. In the second stage, the encoder was gradually unfrozen, allowing its weights to be updated
alongside the decoder. This two-step strategy stabilises training and prevents the encoder from overfitting to the
limited labelled data too early. It allows the entire network to adapt jointly to the segmentation objective. In doing

365 so, the self-supervised pretraining provides a foundation of generic spatial and textural features of sea ice and open
water, which can then be aligned with class labels during fine-tuning. Because the encoder already encodes relevant
structure from unlabelled data, effective segmentation can be achieved with substantially fewer labelled examples.
The target network’s weights are updated using an exponential moving average of the online network, ensuring

training stability.

370 3.1.3 Random Forest (RF) Classifier

To assess a classical machine learning baseline, we implemented an RF classifier, which is a commonly used
ensemble machine learning method. The RF model was trained on the same set of seven labelled scenes used in the
UNet (SL) experiments, enabling a fair comparison. The feature set consisted of raw HH and HV backscatter
values, the HH/HV polarisation ratio, Sobel-derived gradient magnitudes for each channel, global Shannon entropy,
375 and GLCM texture measures (contrast and dissimilarity). These metrics are widely used to pretrain RF classifiers
and other machine learning models for SAR-based sea ice classification (Harcourt et al., 2025; Zakhvatkina et al.

2019).

The RF model was trained using 200 trees in four stages (warm start of 50 trees per stage), with a maximum
decision tree depth of 15. Warm start refers to incrementally adding new trees while retaining the previously trained

380 ones, improving efficiency and allowing staged evaluation of performance. The model was trained using stratified
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sampling, so that each subset of data preserves the overall class proportions (ice vs. open water), helping to mitigate
class imbalance. However, the approach lacks spatial context beyond the immediate pixel, limiting its ability to

detect elongated features such as leads.

3.1.4 Segment Anything Model (SAM)

385 We also tested version 1 of the SAM foundation model (Kirillov et al., 2023), a prompt-based segmentation

framework pre-trained on a data set of 11 million natural RGB images and 1.1 billion masks. For compatibility with
the HH-HV dual-channel input, we set HH as red, HV as green, and the ratio HH/HV as blue. Unprompted
segmentation was evaluated in zero-shot mode. All SAM inferences were generated using the official Python
implementation executed locally, rather than via the online interactive demonstration interface. This approach
390 ensured full control over preprocessing, tiling, and prompt construction for SAR-specific inputs. No fine-tuning

was applied.

3.2 Conditional Random Field (CRF) post-processing

To refine the predicted segmentation masks and suppress noise near the image boundary, a dense Conditional
Random Field (CRF) was applied as a post-processing step (Fig. 4). In this framework, the UNet outputs act as the
395 unary potentials (the model’s initial per-pixel log-probabilities), representing the initial pixel-wise probabilities for
each class. The CRF then introduces pairwise potentials that encourage label consistency across the image. Two
Gaussian kernels are used: a spatial (smoothness) kernel, which promotes uniform labelling of pixels within local
neighbourhoods, and a bilateral (appearance) kernel, which links pixels that are close in position and have similar
predicted probabilities. These terms penalise unnecessary label changes between adjacent pixels, reducing noise
400 and sharpening boundaries. These components iteratively adjust the label assignment to minimise the CRF energy
function. The result is a refined segmentation that reduces noise in uniform areas, sharpens the delineation of floe
edges and leads, and restores structural coherence to fragmented predictions. We employed the fully connected

CRF formulation implemented with the pydensecrf library (Krdhenbiihl and Koltun, 2011). The CRF was applied to

the sigmoid probability map produced by the UNet model prior to thresholding.

405 3.3 Loss function

To address severe class imbalance between open water and sea-ice pixels in the segmentation masks—typically

around 90% ice and 10% open water in our labelled scenes— we employed a weighted Focal Loss (Lin et al., 2017)
with asymmetric class weights, which has been shown to outperform cross-entropy in SAR-based sea-ice

classification tasks with skewed class distributions (Vahedi et al., 2024). This formulation down-weights easy-to-
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410 classify background pixels and emphasises learning on the more difficult minority class (water). The Focal Loss
was applied only during the supervised training stage of the UNet models, including the Control, SL, and BYOL-
fine-tuned variants. It was not used in the self-supervised (BYOL) pretraining phase, which relied solely on the
cosine-similarity objective described in Sect. 3.1.2. The focal loss is defined as:

Lrocar = —a(1 = p)" log(pe) (1)

415
where a is a class-balancing weight used to address class imbalance, p; denotes the model-predicted probability
assigned to the ground-truth class for a given pixel, and vy is a focusing parameter that controls the rate at which
easy-to-classify examples are down-weighted. Higher values of y increase the emphasis on hard-to-classify pixels
by reducing the contribution of well-classified samples to the loss.Focal Loss was used across all supervised UNet

420 training configurations, including models initialised from random weights and those fine-tuned after BYOL
pretraining. This setup provided stable convergence and significantly improved segmentation accuracy in the MIZ

and thin lead regions (see sect. 4), where backscatter signals are particularly ambiguous.

3.4 Experimental Design

We compared three categories of segmentation models — deep learning (UNet and BYOL-pretrained SSL UNet), a
425 classical machine learning baseline (Random Forest), and a foundation model (SAM) — to evaluate their relative
performance under limited annotated data conditions. From the nine manually labelled Sentinel-1 scenes, two were
reserved as a fixed test set to evaluate all experiments. The remaining seven scenes were used to construct training
sets, with two regimes: a 3-label and a 7-label condition. The test data set was strictly held out for final metric
reporting. For supervised training, i.e. for UNet (Control), UNet (SL), UNet (SSL), samples consisted of a triplet:
430 HH image, HV image, and binary segmentation mask. HH and HV channels were stacked into a 2-channel tensor,
and masks served as ground truth. Samples were cropped to 1024 x 1024 pixels and normalised with z-score
statistics computed per image. To allow direct comparison with the UNet (SSL) model, the supervised UNet (SL)
was trained under both the 3-label and 7-label conditions described above. For the BY OL-pretrained UNet (SSL), a
separate set of 12 unlabelled SAR scenes was utilised for self-supervised pretraining. The encoder was trained
435 using BYOL to generate generalised SAR feature representations. For fine-tuning, the pretrained encoder was
trained on the same 3-label conditions as the supervised UNet.
To ensure a fair comparison, all models were evaluated on the same held-out test scenes, and results are interpreted

in terms of relative differences between models under identical data and evaluation conditions.
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3.5 Evaluation Metrics

440 To assess model performance in binary segmentation of sea ice versus open water, we use two primary metrics. The
first of these is the Matthews Correlation Coefficient (MCC), which is a balanced metric that accounts for True

Positives (TP) and False Positives (FP) (Chicco et al., 2021):

TP X TN — FP X FN
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

McCC = ©)

445
where TP denotes correctly predicted ice pixels, TN denotes correctly predicted water pixels, FP represents water
pixels incorrectly classified as ice, and FN represents ice pixels incorrectly classified as water. MCC values range
from —1 (total disagreement) to +1 (perfect prediction), with 0 indicating random performance.
We also used the F1 Score, which is the harmonic mean of precision and recall, indicating the model’s ability to

450 correctly identify ice pixels without overpredicting:

2XTP

Fl = —
2TP +FP +FN

)

It is sensitive to both FPs and FNs. Both metrics are computed on a held-out fixed test set of 2 scenes. These scenes
were held out from all training to provide an unbiased assessment of generalisation across contrasting ice regimes.
455 Because class balance shifts markedly between scenes and spatial coherence is central to utility, MCC provides the

more reliable summary of performance in our setting.

4. Results
4.1 Model performance: Consolidated ice pack (Scene 1)

In the first test case, we evaluated the performance of all models on a scene depicting a consolidated ice pack with
460  well-defined ice floes and linear leads (Scene 1; Fig. 7). The performance of each model applied to Scene 1 is
summarised in Table 2. UNet (SSL) outperformed both UNet Control and UNet SL in both the F1 Score and MCC
metric. As shown in Fig. 7d, the UNet (SSL) model achieved clear delineation of ice leads and more spatially
coherent segmentation across the scene. By contrast, the UNet (Control) model (Fig. 7c) produced increasingly
noisy predictions toward the right of the image and failed to capture fine-scale features. The fully supervised UNet

465 (SL), shown in Fig. 7e showed improved definition of lead boundaries but still misclassified some ice regions as
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water. These qualitative differences align with quantitative metrics: UNet (SSL) reached an F1 Score of 0.9802 and
MCC of 0.4389 — higher than UNet (SL) (MCC = 0.2525) and far superior to the Control (MCC = 0.1338).

Table 2. Segmentation Results (F1 Score and MCC) — Scene 1 (Consolidated Ice Pack) (Bold denotes best
470 performing model)

Model F1 Score MccC

UNet (Control, 3 scenes) 0.7747 0.1338
UNet (SL, 7 scenes) 0.9283 0.2525
UNet (SSL, 3 scenes) 0.9802 0.4389
Random Forest 0.9767 0.0352
SAM (Zero-shot) 0.9827 0.4137

We also evaluated two non-UNet baselines: SAM and a classical Random Forest classifier. Despite being trained
on natural RGB data, SAM performed surprisingly well in Scene 1 (F1 = 0.9827, MCC = 0.4137; Fig. 7g),
capturing the broad ice-water distribution but failing to detect fine-scale leads. In the consolidated ice pack, SAM
475 successfully recovered large-scale ice structure and lead geometry but systematically overfilled leads and open
water, producing approximately 71.5% false positives compared to BYOL’s approximately 57.1% (Appendix A).
The Random Forest model performed poorly in both scenes (e.g. MCC = 0.0352 in Scene 1; Fig. 7f). It
significantly overpredicted ice, achieving inflated F1 Scores (up to 0.9834) but producing coarse, spatially
incoherent segmentations. The F1 Score is limited in imbalanced settings, especially when high recall is achieved at
480 the cost of accuracy. Across all models evaluated, the Random Forest was the weakest performer by a substantial

margin, offering little discriminatory skill in either scattering regime.

4.2 Model performance: Marginal Ice Zone (MIZ) (Scene 2)

Scene 2 (Fig. 8) captures a fragmented MIZ scene with scattered ice floes and diffuse boundaries, which introduces
greater textural ambiguity. We find similar trends to those in Scene 1. The UNet (SSL) model (Fig. 8d) was more
485 effective at correctly identifying sea ice, particularly in fragmented and ambiguous regions, than the UNet (Control)
and fully supervised UNet (SL) (Fig. 8e), which often misclassified these regions as open water. This resulted in

significantly fewer false negatives and a more complete representation of ice extent in the MIZ. This is reflected in
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the higher MCC achieved by the UNet (SSL) model (0.2087), compared to 0.1685 for the UNet (SL) and 0.1449 for
the UNet (Control), supporting its ability to generalise to structurally varied sea ice regimes.

490 Table 3. Segmentation Results (F1 Score and MCC) — Scene 2 (Marginal Ice Zone) Bold denotes best performing

model

Model F1 Score MCC
UNet (Control, 3 scenes) 0.5981 0.1449
UNet (SL, 7 scenes) 0.6812 0.1685
UNet (SSL, 3 scenes) 0.8449 0.2087
Random Forest 0.9834 0.0201
SAM (Zero-shot) 0.9727 0.0403

While the Random Forest model achieved the highest F1 Score in Scene 2 (Table 3), its segmentation output was
visually poor and spatially incoherent. The confusion matrix (Appendix B) shows that 842,116 water pixels
(99.82%) were classified as ice, with only 1,538 water pixels (0.18%) correctly classified, while 25,088,922 ice
495 pixels (99.984%) were correctly classified as ice. This explains its inflated F1 Score—high recall but very low
precision—and highlights how F1 can be misleading in imbalanced datasets where a model overpredicts the
dominant category. The much lower MCC (0.0201) reflects this imbalance more correctly, reaffirming that
qualitative assessment and multiple metrics are essential in evaluating segmentation quality. SAM produced more
structured and visually accurate segmentations than the Random Forest, particularly in the simpler scene. In this
500 more fragmented setting it misclassified ~94% of water pixels as ice, leaving only ~6% correctly identified as open
water. This caused MCC to collapse to 0.0403, despite a superficially high F1 score (0.9727). UNet (SSL) again
demonstrated better balance, with approximately 20.8% FPs and approximately 79.2% TNs, achieving a higher
MCC of 0.2087 and preserving boundary integrity across mixed floes and textured water. These results indicate that
while SAM’s large-scale RGB pretraining transfers structural priors such as edge continuity and spatial coherence,

505 these features degrade under radar-specific noise and ambiguous backscatter.

4.3 Cross-comparison

Across all models, performance metrics were lower in Scene 2 than in Scene 1. Mean MCC values fell by
approximately 60-70% between the two scenes (e.g., UNet (SSL) declined from 0.4389 in Scene 1 to 0.2087 in
Scene 2; UNet (SL) from 0.2525 to 0.1685; SAM from 0.4137 to 0.0403), and the supervised UNets experienced
510 F1 Score reductions of 20—40%. This reflects the increased difficulty of segmenting fragmented floes and
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ambiguous SAR textures in the MIZ. Performance differences across ice regimes align with known physical
scattering characteristics. In consolidated pack ice (Fig. 7), the smooth backscatter of leads and the high contrast
between ice and water favour models with strong structural priors (e.g., SAM), whereas in the MIZ (Fig. 8) the
diffuse, mixed-pixel textures require models that capture fine-grained statistical variation, consistent with observed

515 seasonal changes in floe size distributions and fragmentation in Arctic marginal ice zones (Buckley et al., 2024). In

practice, speckle and diffuse SAR boundaries trigger these priors to “close” narrow water features, widening ice
regions and eroding lead continuity. These results show that SAM relies on smooth object boundaries and
continuity priors learned from RGB data, which encourage gap filling at the expense of local texture fidelity.
BYOL, in contrast, maintained sharper water—ice delineation and reduced over-segmentation while preserving
520 overall coverage. The improved robustness of UNet (SSL) across these conditions suggests that its pretraining
captured structural invariants in radar backscatter — such as floe continuity and speckle-stable texture — allowing it
to generalise across both MYI- and FYI-dominated environments. In particular, BYOL’s pretraining on unlabelled
SAR scenes allows it to internalise textural cues. These results demonstrate that scene-dependent radar backscatter,
rather than label scarcity alone, underpins the observed performance hierarchy across models.
525 Beyond overall accuracy gains, BYOL pretraining for UNet (SSL) reduces FNs — missed detections of sea ice
pixels — relative to the supervised UNet (SL) models. In the MIZ (Scene 2), the BYOL-pretrained UNet (SSL)
model produced 6.6 million FNs, compared with 12.1 million for the fully supervised UNet (SL) model and 14.4
million for the UNet (Control), representing a reduction of roughly 45% relative to the latter. These values are
summarised in the confusion matrices provided in Appendix A. This improvement is visually evident along the
530 boundaries of fragmented floes and thin newly formed ice (Fig. 8), where the supervised UNet (SL) often
misclassified low-backscatter regions as open water. UNet (SSL), by contrast, retained these marginal ice features
as continuous structures, capturing narrow leads, diffuse floe edges, and partially consolidated ice that the
supervised models failed to detect. Similar trends were observed in the consolidated ice pack, where BYOL
recovered faint linear leads overlooked by both supervised networks. These reductions in FNs suggest that self-
535 supervised pretraining can mitigate some class-specific weaknesses in SAR imagery of sea ice. This improvement
corresponds to an increase in recall from 0.517 for the UNet (SL) to 0.737 for the Unet (SSL) in the MIZ,
confirming its enhanced ability to capture ambiguous or marginal ice.
The improved performance of UNet (SSL) compared to the other models demonstrates that self-supervised
pretraining enables the model to learn generalisable spatial and textural representations from unlabelled SAR
540 imagery, making it significantly more label-efficient. UNet (SSL) using BYOL, trained on just three labelled
images, matched or exceeded the performance of a fully supervised model trained on more than twice as many

labels. This provides evidence that UNet (SSL) using BYOL can be effective in low-label regimes. BYOL’s cross-
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view invariance curbs FPs in textured water and preserves boundary structure, whereas SAM’s RGB-trained
smoothness priors overfill ice in speckled scenes and RF’s pixel-wise decision rule misses spatial context. Most
545 FNs in both UNet (SSL) and UNet (SL) outputs occur in low ¢° regions, typically associated with thin or melting
ice. Conversely, false positives cluster in bright, rough-water patches where wind or incidence angle effects elevate

HH returns.

4.4 Model performance across ice types and HH backscatter ranges

Fig. 9 shows model performance (MCC) as a function of HH backscatter (c°), computed by pooling 64 x 64 tiles
550 within 0.5 dB HH bins. This links segmentation accuracy directly to physical scattering regimes and, by extension,
to dominant ice types within each o° interval. In the consolidated ice pack (Scene 1), all models exhibited clear o°-
dependent behaviour. SAM performed best in moderately bright regimes (= —15 to —14 dB) where floe surfaces
were smooth and boundaries well defined. UNet (SSL) maintained consistently high MCC across a broader interval
(= —16 to —12 dB), reflecting robustness to speckle and subtle textural variation. At higher backscatter values,
555 additional trends emerge. Both UNet (Control) and the Random Forest show a marked increase in MCC between
approximately —12 dB and —9 dB, corresponding to very bright scattering regimes typically associated with rough,
consolidated ice. Beyond —9 dB, however, performance declines across all models. This suggests that once
backscatter becomes uniformly high, additional discriminatory information is limited, reducing the effectiveness of
both learned and hand-crafted features. Conversely, all models exhibit a local increase in performance near the ice—
560 water transition, where strong contrast in ¢° provides a clear separability signal. This behaviour is expected given
the dominance of the ice class and the relative ease of identifying ice in high-contrast regimes, reinforcing that
gains at the transition are driven primarily by radiometric contrast rather than nuanced structural understanding.
In the MIZ (Scene 2), where scattering from water, thin ice, and deformed floes overlap, the contrasts between
models widened. UNet (SSL) outperformed other models between -22 dB and -16 dB with a positive MCC. In this
565 region all other models approached random performance (i.e. MCC was around 0) whilst UNet (SSL) performed
consistently better (MCC ~0.2). This reflects the UNet (SSL) encoder’s ability to recognise structural coherence
and textural relationships that are not tied to radar backscatter alone. SAM’s transferability collapsed above -18 dB.
Notably, both UNet (Control) and UNet (SL) showed a marked increase in accuracy from —17 dB to around —11
dB, indicating that bright, high-contrast ice was easier for supervised models to classify, particularly when strong
570 training examples were available. UNet (SSL), by contrast, peaked earlier and declined in the high radar backscatter
regions, suggesting that supervised learning benefits more directly from high-contrast labels, while SSL is more

effective in low-contrast regimes.
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Overall, the o°-binned results reveal distinct performance trends across scattering regimes:
575 e UNet (Control) and UNet (SL) excel in bright, high-contrast scattering regimes, typical of rough multi-
year ice or strong ice—water boundaries.
e UNet (SSL) excels in low to moderate ¢° ranges, where scattering is more ambiguous and structural cues
rather than brightness determine class separability.
This complementarity suggests that future hybrid approaches—e.g., supervised fine-tuning that explicitly leverages
580 SSL-derived representations in high-c° regimes—may further improve performance, particularly in operational

settings that require robustness across the full range of Arctic scattering conditions.

5. Discussion
5.1 Sea ice segmentation with fewer labels

This study demonstrates that self-supervised learning can significantly reduce the reliance on annotated data for
585 accurate SAR-based sea ice segmentation. Among the three UNet variants tested—the baseline UNet (Control), the
fully supervised UNet (SL), and the BYOL-pretrained UNet (SSL)— the BYOL-pretrained encoders i.e. UNet
(SSL) consistently produced the strongest overall segmentation performance, surpassing the fully supervised UNet
(SL), the RF baseline, and SAM. Absolute metric values should therefore be interpreted in the context of this
controlled comparison, as the primary contribution of the study lies in demonstrating relative performance gains
590 under reduced annotation budgets, rather than maximising accuracy on a specific benchmark. However, individual
models still displayed local advantages under certain radiometric conditions. For example, the fully supervised
UNet (SL) performed best in the high c° regions where the contrast between ice and water is strongest.
Furthermore, the improved performance of the BYOL-pretrained UNet (SSL) under limited-label conditions can be
explained by its ability to extract generalisable structural and textural features from unlabelled SAR imagery.
595 Unlike the UNet (Control) and UNet (SL) models, which must learn discriminative features entirely from a small
labelled dataset, the BYOL encoder benefits from pretraining across a wider range of SAR patterns. This enables it
to capture subtle variations in backscatter associated with sea ice characteristics, such as the roughness differences
between thin ice and open water or the texture of fragmented floes, even when only a few labelled examples are
available for fine-tuning. BYOL’s non-contrastive design is also advantageous for SAR imagery, where negative-
600  pair assumptions break down because visual dissimilarity does not reliably indicate class differences, and

overlapping ¢° ranges can make distinct ice types appear similar (Singha et al., 2018). These representational

advantages of SSL are reflected in the higher MCC of the BYOL model, particularly in the marginal ice zone
(MIZ), where scattering is more variable. By encoding a broader feature space during pretraining, the model is
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better able to recognise marginal or low-contrast ice types that the supervised UNet (SL) misses, reducing FNs
605 without substantially compromising precision.

Our findings are consistent with a growing body of work demonstrating the value of self-supervised learning for

satellite image analysis. Ayush et al. (2021) showed that SSL can close almost the entire performance gap with

fully supervised models for land-use classification on the Functional Map of the World dataset, even surpassing the

supervised baseline after fine-tuning. Jain et al. (2022) introduced RS-BYOL, a remote-sensing adaptation of
610 BYOL using teacher—student distillation and reported that it outperformed models pretrained on benchmark data

sets such as ImageNet (Deng et al., 2009) across multispectral and SAR tasks. Complementing these results,

Muzeau et al. (2024) demonstrated that SSL can extract stable structural features from SAR using masked Siamese
Vision Transformers, while Liu et al. (2024) showed that contrastive learning improves SAR scene classification
under limited labels. Together, these studies highlight the broader potential of SSL for Earth Observation across
615 optical, multisensor, and SAR modalities. Our results extend this evidence to the Arctic cryosphere by
demonstrating that non-contrastive pretraining also benefits dense, pixel-level segmentation of sea ice—an
inherently more challenging task than patch-level classification due to speckle, mixed pixels, diffuse boundaries,
and overlapping ¢° ranges. BYOL’s consistent performance across both consolidated and fragmented ice regimes
indicates that it’s learned representations capture structural patterns that generalise across scattering conditions,

620 providing robustness that supervised models struggle to achieve with limited annotated data.

5.2 Improvement on baseline models

The Segment Anything Model (SAM), despite being trained exclusively on natural RGB imagery, achieved
625 surprisingly high performance in the consolidated ice pack, but this apparent strength in structured scenes did not
generalise to the MIZ. This scene-dependent performance is consistent with the findings of Shankar et al. (2024),
who observed similar behaviour when testing SAM across glaciological features and remote sensing modalities.
They reported that while SAM performed well on clear, object-like features such as glacier termini and icebergs in
open water, its accuracy declined markedly in mélange, crevassed terrain, and noisy SAR imagery—particularly
630 without prompt optimisation or domain-specific tuning. Wallace et al. (2025) reached a similar conclusion for
centimetre-resolution UAV imagery of glacier crevasses, showing that off-the-shelf SAM and SAM 2 models
provide only moderate segmentation skill and argued that domain shift and complex ice-fracture patterns require
targeted fine-tuning or few-shot adaptation before such models can be relied on operationally. Their results and

ours highlight that SAM’s transferability to cryospheric imagery depends critically on scene structure, whereas
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635 BYOL’s self-supervised pretraining yields representations inherently adapted to the statistical properties of radar
backscatter.
In contrast, the Random Forest (RF) model performed poorly in both test scenes, with MCC values reaching as low
as 0.0352 in the consolidated ice pack case (Scene 1; Table 2 and Fig. 7). Although the model was trained on a
range of SAR-relevant features, including polarisation ratios, edge filters, and texture measures, it was unable to

640 learn spatial or contextual dependencies beyond the immediate pixel neighbourhood. This limitation is well
documented in the remote sensing literature. Sinha et al. (2019) demonstrated that RF-based models are highly
sensitive to spatial autocorrelation in training data and tend to regress towards the mean in the absence of strong
global spatial patterns. Their findings showed that RF models often underestimate extremes and fail to preserve
boundary integrity when applied to geospatial prediction tasks, particularly when the spatial structure of the input

645 data varies across scales. This behaviour is consistent with our results, where the Random Forest produced over-
smoothed boundaries and in-filled open water, reflecting the same tendency to lose fine-scale spatial structure under
variable scattering conditions. These results show the limitations of classical machine learning methods for dense

prediction tasks on spatially complex, noisy data such as SAR imagery (Sinha et al., 2019). In addition, our RF

predictions over-smooth floe edges and infill water between closely spaced floes, inflating recall and depressing

650 precision; the result is high F1, driven by class dominance, but very low MCC once FPs and TN are accounted for.
The Random Forest's inflated F1 Score, despite its poor visual performance, underscores the limitations of single-
metric evaluation in imbalanced segmentation tasks. Its high recall and class dominance artificially boost F1, yet its
MCC remains low, and its predictions lack spatial coherence. This result reinforces the need to combine visual
inspection, spatial metrics, and balanced indicators like MCC in future remote sensing evaluations.

655

5.3 Comparison to other self-supervised approaches

Alternative contrastive self-supervised methods such as SimCLR (Chen et al., 2020) and MoCo (He et al., 2020)

learn by maximising agreement between augmented views of the same image (positive pairs) while pushing apart
views from different images (negative pairs). SImCLR relies on very large batch sizes to ensure many negatives are
660  available at once, whereas MoCo uses a dynamic memory queue to provide a larger, more consistent set of
negatives across batches. However, these approaches are challenging to scale to remote-sensing imagery, where
large spatial dimensions (typically 512—1024 pixels rather than the 224 pixels used in ImageNet) and multi-channel
inputs (e.g. HH, HV, V'V, or optical stacks) inflate memory requirements and constrain batch size. This limitation is
well recognised in the literature. For example, Alosaimi et al. (2023) showed that high-resolution remote-sensing

665 scenes make contrastive training inefficient under few-shot regimes, and Piao et al. (2023) identified GPU memory
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as a fundamental bottleneck for large-batch contrastive learning. Consequently, frameworks like SimCLR, which
depend on large negative pools, are less suitable for SAR, whereas non-contrastive approaches such as BYOL are
naturally more efficient and stable under limited-memory conditions.
In the context of remote sensing, Jain et al. (2022) demonstrated that a BYOL-based distillation model (RS-BYOL),
670 trained on VV—VH polarised SAR and multispectral imagery, outperformed ImageNet-pretrained baselines on land-
cover classification and segmentation tasks. Their results confirm that non-contrastive self-supervised methods can
learn invariant features from remote-sensing data without labelled supervision. Our findings extend this principle to
Arctic sea ice imagery, showing that similar invariance mechanisms improve segmentation where brightness
overlap and texture ambiguity are common. Whereas Jain et al. (2022) used cross-modal information to enrich their
675 representations, the present work demonstrates that comparable robustness can be achieved through SAR-only
pretraining when paired with physically consistent augmentations and dual-polarised inputs. Recent theoretical
work further supports this interpretation. Garrido et al. (2023) showed that contrastive and non-contrastive
frameworks share similar underlying mathematical foundations, suggesting that the specific loss formulation—that
is, the mathematical objective used to measure and minimise the difference between representations—may be less
680 critical than the overall network architecture and training dynamics. Furthermore, Nguyen et al. (2023) proposed
Dimensional Contrastive Learning (DimCL), which enhances feature diversity within learned embeddings; when
applied to BYOL, it improved representation robustness under limited supervision. These findings align with our
results, where feature diversity learned through augmentation and spatial invariance translated directly into stronger

segmentation consistency across distinct ice regimes.

685 5.4 Implications for sea ice monitoring

Our results show that comparable sea ice segmentation performance can be achieved using only three labelled
Sentinel-1 scenes, offering a scalable route toward automated sea ice monitoring. Self-supervised pretraining
enables models to learn directly from the vast archives of unlabelled SAR imagery collected by satellites such as

Sentinel-1 ERS-1/2, RADARSAT and more, reducing dependence on manual annotation and improving temporal

690  coverage. Compared with traditional supervised approaches (Park et al., 2020; Khaleghian et al., 2021; Huang et
al., 2024), this allows encoders to be trained once on generic SAR patterns and then adapted to tasks such as lead
detection, ice-edge tracking, or floe-size mapping with minimal supervision. The demonstrated advances in label-
efficient segmentation and self-supervised SAR pretraining could aid operational ice services and forecasting
centres by providing more consistent, high-resolution inputs for data assimilation and climate analysis. Maritime

695 users would also benefit by receiving finer delineation of leads and detailed mapping of marginal ice zones, which

can support route planning, optimise navigation windows, and reduce risk in hazardous ice conditions.

25



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Although the findings are robust across both test scenes, they reflect the scope of the present data set and
experimental design. First, the pretraining dataset is modest and geographically concentrated in the CAA,
potentially biasing the learned representations toward regional scattering regimes and incidence-angle distributions.
700 Second, we treat segmentation as binary (ice vs. water), applying a conservative MIZ rule and excluding sub-pixel
and very narrow leads (<~200 m at 80 m resolution); this simplifies evaluation but suppresses ice-type variability
that is operationally relevant. Third, the 80 m ground-range resolution of the Sentinel-1 EW product limits the
retrieval of fine-scale ice structures such as narrow leads, brash ice, and melt ponds. These features are often
smaller than a pixel, meaning that backscatter values represent mixed scattering from both ice and water. Such
705 mixed pixels introduce ambiguity and reduce the apparent sharpness of boundaries, which likely constrains
maximum segmentation accuracy even for well-trained models.
Future work should look to extend the framework developed in this paper beyond binary segmentation to multi-
class ice mapping, distinguishing between thin ice, first-year ice, multi-year ice, melt ponds, and open water.
Furthermore, expanding SSL pretraining to multi-year, multi-sensor archives and incorporating temporal coherence
710 would move this approach closer to near-real-time, large-scale Arctic sea ice monitoring — linking research-grade
segmentation to practical, operational decision-making. Importantly, modern UNet-based frameworks, such as the
one used here, can process complete Sentinel-1 scenes in only a few seconds once trained, meaning that improving
label efficiency upstream directly translates into faster, more consistent downstream mapping over vast Arctic
regions. Integrating such SSL-based segmentation within data-driven forecasting systems (e.g. ICENet; Andersson
715 et al., 2021) or as enhanced observational inputs for physical sea-ice and coupled ocean—ice models would bridge
representation learning and process understanding, including data-driven surrogate models of sea-ice state variables

such as thickness (Durand et al., 2024), supporting both scientific analysis and operational Arctic sea ice

monitoring. UNet-based segmentation produces spatially complete, gridded ice—water fields from SAR imagery
that can be used directly as sea ice concentration or ice-state inputs in forecasting systems, meaning that improved
720 segmentation quality translates into more accurate initial ice fields for prediction, consistent with evidence that

assimilating satellite-derived sea ice concentration improves seasonal forecast skill (Zhang et al., 2021)

6. Conclusion

This study demonstrates that self-supervised learning, specifically Bootstrap Your Own Latent (BYOL), can
substantially reduce reliance on labelled data for sea-ice segmentation from Sentinel-1 SAR imagery. A UNet
725 encoder pretrained with BYOL achieved superior performance to fully supervised and classical approaches while

using less than half the annotated data. In a consolidated ice pack scene, the BYOL-pretrained model reached an F1

26



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

score of 0.9802 and MCC of 0.4389, exceeding both the fully supervised UNet trained on seven labelled scenes (F1
= 0.9283, MCC = 0.2525) and the control model trained on three (F1 = 0.7747, MCC = 0.1338). In the more
challenging marginal ice zone, BYOL again performed best, achieving F1 = 0.8449 and MCC = 0.2087, compared
730 with 0.6812/0.1685 for the supervised UNet and 0.5981/0.1449 for the control. These results confirm that BYOL
pretraining substantially enhances segmentation accuracy and generalisation under limited-label conditions,
outperforming both conventional deep learning and classical machine-learning models such as Random Forest
(MCC < 0.035) and the SAM foundation model in the marginal-ice scene (MCC = 0.040). In contrast, SAM
performed strongly in the consolidated-ice scene (MCC = 0.414) but failed to generalise to more complex radar
735 environments. These results show that self-supervised representation learning can perform well even with limited
annotated data.
By pretraining directly on SAR imagery without negative pairs, the BYOL framework mitigates many of the
limitations of contrastive methods for radar data, such as the difficulty of defining semantically meaningful
dissimilarities. The performance differences observed across scenes can be interpreted in terms of the physical
740 properties of radar backscatter in sea ice. In the consolidated ice pack, strong c° contrast between bright, deformed
MYT and the darker open-water background provides clear discriminatory cues, enabling all deep-learning
models—including SAM—to perform relatively well. By contrast, the marginal ice zone contains thin ice, slush,
brash, and small floes whose c° values frequently overlap with rough water, producing ambiguous or low-contrast
signatures. These mixed scattering mechanisms reduce brightness separability and create diffuse boundaries,
745 leading the supervised UNet and SAM to fragment continuous ice or misclassify rough water as thin ice. The
BYOL-pretrained encoder, however, leverages structural invariants learned from unlabelled SAR scenes—such as
floe continuity, lead geometry, and speckle-stable texture—to maintain segmentation coherence even when
intensity-based cues are unreliable. In practical terms, this allowed BYOL to correctly identify thin, low-backscatter
ice and preserve floe boundaries in regions where o° differences alone were insufficient for supervised or classical
750 methods. The use of SAR-specific augmentations and CRF post-processing further improved spatial coherence,
helping to recover fine-scale ice features while suppressing speckle and noise.
Overall, this work contributes to the growing body of label-efficient deep learning applied in remote sensing and
demonstrates that self-supervised pretraining offers a practical, scalable solution to the annotation bottleneck in
Arctic sea ice monitoring. While promising, our approach remains limited by the size and diversity of the
755 pretraining data set, and future work should explore scaling BYOL to larger, geographically and temporally varied
SAR archives. Extension to multi-class ice type segmentation and the incorporation of domain adaptation strategies

may further enhance generalisation to new sensors and conditions. As SAR data volumes continue to grow,
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approaches like BYOL hold considerable promise for improving the accessibility and robustness of sea ice mapping
in support of climate research and safe navigation in polar regions.
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Figure 1. Spatial distribution of labelled Sentinel-1 SAR scenes used in this study.
The main panel shows the extent of manually labelled segmentation overlays across the Canadian Arctic Archipelago
765 (CAA) and adjacent Arctic Ocean. The background represents daily sea-ice concentration on 1 February 2025 from the
EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) Northern Hemisphere product (OSI SAF,

2025). The inset map provides Arctic-wide context, showing the location of the main panel as a red footprint outline.
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Figure 2. Compartson 0f Sentinel-1 SAR imagery and corresponding sea-ice labels across three datasets. Panels (a—c) show
Sentinel-1 SAR backscatter for (a) this study, (b) the AI4Arctic Sea Ice Challenge dataset, and (c) the MOSAiC-based
dataset. Panels (d—f) show the corresponding labels for (d) this study, (e) Al4Arctic, and (f) MOSAIC. Labels in this
study (d) are manually annotated at pixel level for a binary ice—water classification. AI4Arctic labels (e) are derived from
775 operational ice charts and exhibit spatial generalisation consistent with regional mapping objectives, while the MOSAiC
labels (f) are generated using a convolutional neural network and focus on lead structures within the central Arctic
Ocean. The figure highlights differences in label provenance and spatial granularity that reflect the distinct objectives of
each dataset and motivate the use of manually annotated pixel-wise labels for controlled model comparison under
limited-label conditions.
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Figure 3. Overview of the Model Comparisons.
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785 Figure 4. Simplified schematic of the modified UNet++ architecture used for SAR sea-ice segmentation. Blue boxes
represent encoder blocks that progressively reduce spatial resolution, orange boxes represent decoder blocks. Blue
arrows indicate skip connections, orange arrows denote the main feed-forward path through convolution and
upsampling operations. The bottleneck (64 x 64) includes a Channel Attention Module (green box). Numbers indicate
spatial resolution at each stage. Intermediate nested decoder layers of the UNet++ structure are omitted for clarity. Grey

790 boxes denote the locations of intermediate nested decoder pathways in the full UNet++ architecture, which are not shown

explicitly for clarity.
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Figure 5. Example BYOL encoder feature visualisation. (a) An augmented HH input with (b) the corresponding encoder
feature mean, and (c) standard deviation from the deepest UNet encoder layer (64 x 64). This 1024 x 1024 patch

represents approximately 82 x 82 km of the sea-ice surface.
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Figure 6. Example of BYOL encoder feature consistency across augmented views.

(a) Augmented View 1 (HH channel) and (b) its corresponding encoder mean-feature map.
(c) Augmented View 2 (HH channel) and (d) its corresponding encoder mean-feature map. Higher mean values in (b)
825 and (d) indicate stable, high-activation features shared across both views, showing that the encoder has learnt invariant

spatial structures such as floe continuity and lead geometry despite differing augmentations.
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Figure 7. Scene 1 (Consolidated Ice Pack). Comparison of ice-water segmentation across models for the test scene. Panels
show: (a) Sentinel-1 HH o° image, (b) ground-truth binary mask, (c) UNet (Control; 3 labelled scenes), (d) UNet
(SSL)with BYOL pretraining (3 labelled scenes), (¢) UNet (SL; 7 labelled scenes), (f) Random Forest, and (g) SAM (zero-

shot). White denotes sea ice and black denotes open water.
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Figure 8. Scene 2 (Marginal Ice Zone). Comparison of ice—water segmentation across models for the test scene. Panels
show: (a) Sentinel-1 HH backscatter ¢° (b) ground-truth binary mask, (¢) UNet (Control; 3 labelled scenes), (d) UNet
835 (SSL) with BYOL pretraining (3 labelled scenes), (¢) UNet (Supervised; 7 labelled scenes). White denotes sea ice and

black denotes open water.
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Figure 9. Model performance as a function of HH backscatter (¢°, dB) for (a) Scene 1 (consolidated-ice scene) and b) Scene 2 (MIZ
840  scene).
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Appendices
Appendix A

Confusion matrices for Scene 1.

EGUsphere\

Table Al. Confusion Matrix for Scene 1 Supervised learning model
Predicted Water Predicted Ice

True 584780 (57.3%) 436037 (42.7%)

Water

True Ice | 3291105 (12.9%) 22202629 (87.1%)

Table A2. Confusion Matrix for Scene 1 BYOL model

Predicted Water Predicted Ice
True 438342 (42.9%) 582475 (57.1%)
Water
True Ice | 589753 (2.3%) 24903981 (97.7%)

Table A3. Confusion Matrix for Scene 1 Random Forest model

Predicted Water Predicted Ice
True 25989 (2.5%) 994828 (97.5%)
Water
True Ice | 210615 (0.83%) 25283119 (99.17%)

Table A4. Confusion Matrix for Scene 1 Control model

Predicted Water Predicted Ice
True 852732 (83.5%) 168085 (16.5%)
Water
True Ice | 12623265 (49.5%) 12870469 (50.5%)
Table AS. Confusion Matrix for Scene 1 SAM model

Predicted Water Predicted Ice
True 291147 (28.5%) 729670 (71.5%)
Water
True Ice | 162581 (0.64%) 25331153 (99.36%)
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Appendix B

Table B1. Confusion Matrix for Scene 2 Supervised learning model

EGUsphere\

Predicted Water

Predicted Ice

True

Water

808007 (95.8%)

35647 (4.2%)

12114113 (48.3%)

12978850 (51.7%)

Table B2. Confusion Matrix for Scene 2 BYOL model

Predicted Water Predicted Ice
True 668162 (79.2%) 175492 (20.8%)
Water
True Ice | 6609154 (26.3%) 18483809 (73.7%)

Table B3. Confusion Matrix for Scene 2 Random Forest model

Predicted Water Predicted Ice
True 1538 (0.18%) 842116 (99.82%)
Water
True Ice | 4041 (0.016%) 25088922 (99.984%)
Table B4. Confusion Matrix for Scene 2 Control model
Predicted Water Predicted Ice
True 822784 (97.5%) 20870 (2.5%)
Water
True Ice | 14379484 (57.3%) 10713479 (42.7%)

Table B5. Confusion Matrix for Scene 2 SAM model

Predicted Water Predicted Ice
True 49091 (5.8%) 794563 (94.2%)
Water
True Ice | 581740 (2.3%) 24511223 (97.7%)

38



865

870

875

880

885

https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Acknowledgements
This research was financially supported by the Natural Environment Research Council (NERC) and the University of
Aberdeen through QUADRAT DTP. We also acknowledge the generous support of alumni and friends in establishing the

University of Aberdeen’s Interdisciplinary Institute, which enabled this research.

Code Availability Statement

The model training and evaluation code used in this study has been archived in a FAIR-aligned Zenodo repository:

Seston, J. (2026). BYOL UNet SAR. Zenodo. https://doi.org/10.5281/zenodo.18339243

The archived version corresponds to the experiments and results presented in this manuscript. The repository is
currently private for the review process and will be made publicly accessible upon publication.Data Availability
Statement

The manually labelled Sentinel-1 SAR sea-ice masks used in this study are openly available at “Manually Labelled Sea Ice
Masks for Sentinel-1 SAR Imagery in the Canadian Arctic (2022-2023)”. Zenodo, December 1,
2025. https://doi.org/10.5281/zenodo.17780145.

Author Contributions

JS led the study and was responsible for methodology development, software implementation, data curation, formal analysis,
visualisation, and preparation of the original manuscript draft. WDH contributed to study conceptualisation, methodology
development, supervision, funding acquisition, and manuscript review and editing. GL, BRR, MS, and LM contributed to
study conceptualisation and supervision, and reviewed and edited the manuscript. All authors approved the final version of

the manuscript.

Competing Interests

The authors declare that they have no competing interests.

39



890

895

900

905

910

915

https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

References

von Albedyll, L., Hendricks, S., Hutter, N., Murashkin, D., Kaleschke, L., Willmes, S., Thielke, L., Tian-Kunze, X.,
Spreen, G., and Haas, C.: Lead fractions from SAR-derived sea ice divergence during MOSAiC, The Cryosphere, 18,
1259-1285, https://doi.org/10.5194/tc-18-1259-2024, 2024.

Alosaimi, N., Alhichri, H., Bazi, Y., Ammour, N., and Melgani, F.: Self-supervised learning for remote sensing scene

classification under the few shot scenario, Sci. Rep., 13, 433, https://doi.org/10.1038/s41598-022-27313-5, 2023.

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Bowyer, J., Holland, P. R., Pritchard, H. D., and Suckling,
E. B.: Seasonal Arctic sea ice forecasting with probabilistic deep learning, Nat. Commun., 12, 5124,

https://doi.org/10.1038/s41467-021-25257-4, 2021.

Ayush, K., Uzkent, B., Meng, C., Tanmay, M., Burke, M., Lobell, D., and Ermon, S.: Geography-aware self-supervised
learning, in: Proc. IEEE/CVF Int. Conf. Comput. Vis. acev), 10115-10125,
https://doi.org/10.48550/arXiv.2011.09980, 2021.

Boulze, H., Korosov, A., and Brajard, J.: Classification of sea ice types in Sentinel-1 SAR data using convolutional

neural networks, Remote Sens., 12, 2165, https://doi.org/10.3390/rs12132165, 2020.

Buckley, E. M., Cafuelas, L., Timmermans, M.-L., and Wilhelmus, M. M.: Seasonal evolution of the sea ice floe size
distribution in the Beaufort Sea from two decades of MODIS data, The Cryosphere, 18, 5031-5043,
https://doi.org/10.5194/tc-18-5031-2024, 2024.

Casey, J. A., Howell, S. E. L., Tivy, A., and Haas, C.: Separability of sea ice types from wide-swath C- and L-band
synthetic aperture radar imagery acquired during the melt season, Remote Sens. Environ., 174, 314-328,

https://doi.org/10.1016/j.rse.2015.12.021, 2016.
Chen, T., Kornblith, S., Norouzi, M., and Hinton, G.: A simple framework for contrastive learning of visual

representations, in: Proc. 37th Int. Conf. Mach. Learn. (ICML), 1597-1607, https://doi.org/10.48550/arXiv.2002.05709,
2020.

40



920

925

930

935

940

945

950

https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Chicco, D., Totsch, N., and Jurman, G.: The Matthews correlation coefficient (MCC) is more reliable than balanced
accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation, BioData Min., 14, 13,

https://doi.org/10.1186/s13040-021-00244-z, 2021.

Clemens-Sewall, D., Polashenski, C., Frey, M. M., Cox, C. J., Granskog, M. A., Macfarlane, A. R., Fons, S. W_,
Schmale, J., Hutchings, J. K., von Albedyll, L., Arndt, S., Schneebeli, M., and Perovich, D.: Snow loss into leads in
Arctic sea ice: minimal in typical wintertime conditions, but high during a warm and windy snowfall event, Geophys.

Res. Lett., 50, https://doi.org/10.1029/2023GL102816, 2023.

Cook, A. J., Dawson, J., Howell, S. E. L., Holloway, J. E., and Brady, M.: Sea ice choke points reduce the length of the
shipping season in the Northwest Passage, Commun. Earth Environ., 5, 362, https://doi.org/10.1038/s43247-024-01477-
6,2024.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.: ImageNet: A large-scale hierarchical image database,
in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 248-255, https://doi.org/10.1109/CVPR.2009.5206848,
2009.

Dierking, W.: Sea ice monitoring by synthetic aperture radar, Oceanography, 26(2), 100-111,
https://doi.org/10.5670/oceanog.2013.33, 2013.

Durand, C., Finn, T. S., Farchi, A., Bocquet, M., Boutin, G., and Olason, E.: Data-driven surrogate modeling of high-
resolution sea-ice thickness in the Arctic, The Cryosphere, 18, 1791-1815, https://doi.org/10.5194/tc-18-1791-2024,
2024.

Filipponi, F.: Sentinel-1 GRD preprocessing workflow, Proc., 18, 11, https://doi.org/10.3390/ECRS-3-06201, 2019.
Francis, J., Bright, J., Esnaashari, S., Hashem, Y., Morgan, D., and Straub, V. J.: Unsupervised feature extraction of
acrial 1images for clustering and wunderstanding hazardous road segments, Sci. Rep., 13, 10922,
https://doi.org/10.1038/s41598-023-38100-1, 2023.

Garrido, Q., Chen, Y., Bardes, A., Najman, L., and LeCun, Y.: On the duality between contrastive and non-contrastive

self-supervised learning, in: Proc. Int. Conf. Learn. Represent. (ICLR), https://doi.org/10.48550/arXiv.2206.02574,
2023.

41



955

960

965

970

975

980

https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

Glorot, X. and Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks, in: Proc. 13th Int.
Conf. Artif. Intell. Stat. (AISTATYS), Proc. Mach. Learn. Res., 9, 249-256,
https://proceedings.mlr.press/v9/glorot10a.html, 2010.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z.
D., Gheshlaghi Azar, M., Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M.: Bootstrap your own latent: a new
approach to self-supervised learning, arXiv [preprint], arXiv:2006.07733, https://doi.org/10.48550/arXiv.2006.07733,
2020.

Guo, W, Itkin, P., Singha, S., Doulgeris, A. P., Johansson, M., and Spreen, G.: Sea ice classification of TerraSAR-X
ScanSAR images for the MOSAIC expedition incorporating per-class incidence angle dependency of image texture, The

Cryosphere, 17, 1279-1297, https://doi.org/10.5194/tc-17-1279-2023, 2023.

Harcourt, W. D., Shahin, M., Stearns, L. A., and Shankar, S.: Structural weaknesses in ice mélange revealed by high-
resolution ICEYE SAR imagery, J. Glaciol., 71, e108, https://doi.org/10.1017/jog.2025.10085, 2025.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R.: Momentum contrast for unsupervised visual representation learning,
in: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), 9726-9735,
https://doi.org/10.1109/CVPR42600.2020.00975, 2020.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image recognition, in: Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 770-778, https://doi.org/10.1109/CVPR.2016.90, 2016.

Hebert, D. A., Allard, R. A., Metzger, E. J., Posey, P. G., Preller, R. H., Wallcraft, A. J., Phelps, M. W., and Smedstad,
O. M.: Short-term sea ice forecasting: an assessment of ice concentration and ice drift forecasts using the U.S. Navy’s
Arctic Cap Nowcast/Forecast System, J. Geophys. Res.-Oceans, 120, 8327-8345,
https://doi.org/10.1002/2015JC011283, 2015.

Howell, S. E. L. and Brady, M.: The dynamic response of sea ice to warming in the Canadian Arctic Archipelago,

Geophys. Res. Lett., 46, 13119—-13125, https://doi.org/10.1029/2019GL085116, 2019.

Howell, S. E. L., Cabaj, A., Babb, D. G., Landy, J. C., Dawson, J., Mahmud, M., and Brady, M.: Near sea ice-free
conditions in the northern route of the Northwest Passage at the end of the 2024 melt season, EGUsphere [preprint],
EGUsphere-2025-2029, https://doi.org/10.5194/tc-19-6711-2025, 2025.

42



985

990

995

1000

1005

1010

1015

https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Howell, S. E. L., Babb, D. G., Landy, J. C., Glissenaar, I. A., McNeil, K., Montpetit, B., and Brady, M.: Sea ice
transport and replenishment across and within the Canadian Arctic Archipelago, 2016-2022, The Cryosphere, 18, 2321—
2333, https://doi.org/10.5194/tc-18-2321-2024, 2024.

Huang, B. Q. and Li, X.-M.: Wave attenuation by sea ice in the Arctic marginal ice zone observed by spaceborne SAR,

Geophys. Res. Lett., 50, €2023GL105059, https://doi.org/10.1029/2023GL105059, 2023.

Huang, Y., Ren, Y., and Li, X.: Deep learning techniques for enhanced sea-ice types classification in the Beaufort Sea

via SAR imagery, Remote Sens. Environ., 308, 114204, https://doi.org/10.1016/j.rse.2024.114204, 2024.

Itkin, P.: Novel methods to study sea ice deformation, linear kinematic features, and coherent dynamic clusters from

imaging remote sensing data, The Cryosphere, 19, 11351156, https://doi.org/10.5194/tc-19-1135-2025, 2025.

Jain, P., Schoen-Phelan, B., and Ross, R.: Self-supervised learning for invariant representations from multi-spectral and
SAR images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 15,  7797-7808,
https://doi.org/10.1109/JSTARS.2022.3204888, 2022.

Jiang, M., Chen, X., Xu, L., and Clausi, D. A.: IceGCN: an interactive sea ice classification pipeline for SAR imagery
based on graph convolutional networks, Remote Sens., 16, 2301, https://doi.org/10.3390/rs16132301, 2024.

Johansson, A. M., Brekke, C., Spreen, G., and King, J. A.: X-, C-, and L-band SAR signatures of newly formed sea ice
in Arctic leads during winter and spring, Remote Sens. Environ., 204, 162-180,

https://doi.org/10.1016/j.rse.2017.10.032, 2018.

Karlsen, T., Johansson, M., Lohse, J., and Doulgeris, A. P.: Incidence angle dependency and seasonal evolution of L-
and C-band SAR backscatter over landfast sea ice, Ann. Glaciol., 65, €29, 1-14, https://doi.org/10.1017/a0g.2024.30,
2024.

Khaleghian, S., Ullah, H., Kreemer, T., Eltoft, T., and Marinoni, A.: Deep semi-supervised teacher—student model based
on label propagation for sea ice classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 10761-10772,
https://doi.org/10.1109/JSTARS.2021.3119485, 2021.

43



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C., Lo, W.-Y.,
Dollar, P., and Girshick, R.: Segment Anything, Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Paris, France, 3992—
1020 4003, https://doi.org/10.1109/ICCV51070.2023.00371, 2023.

Kortum, K., Singha, S., Spreen, G., Hutter, N., Jutila, A., and Haas, C.: SAR deep learning sea ice retrieval trained with
airborne laser scanner measurements from the MOSAIC expedition, The Cryosphere, 18, 2207-2222,
https://doi.org/10.5194/tc-18-2207-2024, 2024.

1025
Krahenbiihl, P. and Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials, Adv. Neural
Inf. Process. Syst., 24, 1-9, https://doi.org/10.48550/arXiv.1210.5644, 2011.

Latifovic, R., Canada Centre for Remote Sensing (CCRS), Canada Centre for Mapping and Earth Observation

1030 (CCMEO), and Natural Resources Canada (NRCan): 2020 land cover of Canada, Government of Canada, Ottawa [data
set], https://open.canada.ca/data/en/dataset/ee1580ab-a23d-4f86-a09b-79763677¢b47, last access: 3 September 2025,
2022.

Lensu, M., Simil4, M., Haapala, J., and Karvonen, J.: Ice ridge density signatures in high-resolution SAR imagery of the

1035 Baltic Sea, The Cryosphere, 16, 4363—4384, https://doi.org/10.5194/tc-16-4363-2022, 2022.

Lohse, J., Doulgeris, A. P., and Dierking, W.: Mapping sea-ice types from Sentinel-1 considering the surface-type-
dependent effect of incidence angle, Ann. Glaciol., 61, 260—-270, https://doi.org/10.1017/a0g.2020.45, 2020.

1040 Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollér, P.: Focal loss for dense object detection, Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), 29802988, https://doi.org/10.1109/ICCV.2017.324, 2017.

Liu, F., Qian, X, Jiao, L., Zhang, X., Li, L., and Cui, Y.: Contrastive learning-based dual dynamic graph convolutional
network for SAR image scene classification, IEEE Trans. Neural Netw. Learn. Syst., 35, 390404,
1045 https://doi.org/10.1109/TNNLS.2022.3174873, 2024.

Macdonald, G. J., Scharien, R. K., Duncan, K., Farrell, S. L., Rezania, P., and Tavri, A.: Arctic sea ice topography
information from RADARSAT Constellation Mission (RCM) synthetic aperture radar (SAR) backscatter, Geophys. Res.
Lett., 51, €2023GL107261, https://doi.org/10.1029/2023GL107261, 2024

1050

44



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Marbouti, M., Antropov, O., Praks, J., Eriksson, P. B., Arabzadeh, V., Rinne, E., and Leppéranta, M.: TanDEM-X
multiparametric data features in sea ice classification over the Baltic Sea, Geo-Spat. Inf. Sci., 24, 313-332,

https://doi.org/10.1080/10095020.2020.1845574, 2020.

1055 Meier, W. N., Petty, A., Hendricks, S., Bliss, A., Kaleschke, L., Divine, D., Farrell, S., Gerland, S., Perovich, D.,
Ricker, R., Tian-Kunze, X., and Webster, M.: NOAA Arctic Report Card 2024: Sea ice, NOAA Tech. Rep. OAR ARC
24-06, U.S. National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research,
https://doi.org/10.25923/aksk-7p66, 2024.

1060 Miiller, M., Knol-Kauffman, M., Jeuring, J., and Palerme, C.: Arctic shipping trends during hazardous weather and sea-
ice conditions and the Polar Code’s effectiveness, npj Ocean Sustain., 2, 12, https://doi.org/10.1038/s44183-023-00021-
X, 2023.

Murashkin, D.: Binary sea-ice lead maps derived from Sentinel-1 SAR images during the MOSAIC expedition,
1065 PANGAEA, https://doi.org/10.1594/PANGAEA.962904 , 2023.

Muzeau, M., Frontera-Pons, J., Ren, C., and Ovarlez, J.-P.: SAFE: a SAR feature extractor based on self-supervised

learning and masked Siamese ViTs, arXiv [preprint], https://doi.org/10.48550/arXiv.2407.00851, 2024.

1070 Nguyen, T., Pham, T. X., Zhang, C., Luu, T. M., Vu, T., and Yoo, C. D.: Dimensional contrastive learning for
improving self-supervised learning, IEEE Access, 11, 21534-21544, https://doi.org/10.1109/ACCESS.2023.3236087,
2023.

OSI SAF: Sea ice concentration climate data record, release 3.1 (multimission), EUMETSAT Ocean and Sea Ice

1075 Satellite Application Facility [data set], https://doi.org/10.15770/EUM_SAF _OSI 0023, 2025.

Park, J.-W., Korosov, A. A., Babiker, M., Won, J.-S., Hansen, M. W., and Kim, H.-C.: Classification of sea ice types in
Sentinel-1 synthetic aperture radar images, The Cryosphere, 14, 2629-2645, https://doi.org/10.5194/tc-14-2629-2020,
2020.

1080
Piao, X., Synn, D., Park, J., and Kim, J.-K.: Enabling large batch size training for DNN models beyond the memory
limit while maintaining performance, IEEE Access, 11, 98571-98582, https://doi.org/10.1109/ACCESS.2023.3312572,
2023.

45



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

1085 Rajaei, A., Abiri, E., and Helfroush, M. S.: Self-supervised spectral super-resolution for fast hyperspectral and
multispectral image fusion, Sci. Rep., 14, 29820, https://doi.org/10.1038/s41598-024-81031-8, 2024.

Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvérinen, O., Ruosteenoja, K., Vihma, T., and
Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ., 3,

1090 168, https://doi.org/10.1038/s43247-022-00498-3, 2022.

Ristea, N.-C., Anghel, A., and Datcu, M.: Sea ice segmentation from SAR data by convolutional transformer networks,

arXiv [preprint], arXiv:2306.07649, https://doi.org/10.48550/arXiv.2306.07649, 2023.

1095 Roach, L. A., Smith, M. M., Herman, A., and Ringeisen, D.: Physics of the seasonal sea ice zone, Annu. Rev. Mar. Sci.,
17,355-379, https://doi.org/10.1146/annurev-marine-121422-015323, 2025.

Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional networks for biomedical image segmentation, in:
Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Cham, 234-241,
1100 https://doi.org/10.1007/978-3-319-24574-4 28, 2015.

Sandven, S., Spreen, G., Heygster, G., Girard-Ardhuin, F., Farrell, S. L., Dierking, W., and Allard, R. A.: Sea ice remote
sensing—recent developments in methods and climate data sets, Surv. Geophys., 44, 1653-1689,

https://doi.org/10.1007/s10712-023-09781-0, 2023.

1105
Screen, J., and Simmonds, I.: The central role of diminishing sea ice in recent Arctic temperature amplification, Nature,
464, 1334-1337, https://doi.org/10.1038/nature09051, 2010.
Serreze, M. C., and Barry, R. G.: Processes and impacts of Arctic amplification: a research synthesis, Glob. Planet.
1110 Change, 77, 85-96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.
Shankar, S., Stearns, L. A., and van der Veen, C. J.: Semantic segmentation of glaciological features across multiple
remote sensing platforms with the Segment Anything Model (SAM), J. Glaciol, 70, e4,
https://doi.org/10.1017/jog.2023.95, 2024.
1115

Sinha, P., Gaughan, A., Stevens, F., Nieves, J., Sorichetta, A., and Tatem, A.: Assessing the spatial sensitivity of a
random forest model: application in gridded population modeling, Comput. Environ. Urban Syst., 75, 132-143,
https://doi.org/10.1016/j.compenvurbsys.2019.01.006, 2019.

46



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

1120 Singha, S., Johansson, M., Hughes, N., Hvidegaard, S. M., and Skourup, H.: Arctic sea ice characterization using
spaceborne fully polarimetric L-, C-, and X-band SAR with validation by airborne measurements, IEEE Trans. Geosci.

Remote Sens., 56, 3715-3734, https://doi.org/10.1109/TGRS.2018.2809504, 2018.

Stokholm, A., Heyer, J. L., Pedersen, L. T., Karvonen, J., Kreiner, M. B., and Longépé, N.:
1125 The AutoICE Challenge: automated sea-ice classification from Sentinel-1 SAR using operational ice chart labels, The
Cryosphere, 18, 3471-3494, https://doi.org/10.5194/tc-18-3471-2024

Stroeve, J., and Notz, D.: Changing state of Arctic sea ice across all seasons, Environ. Res. Lett., 13, 103001,
https://doi.org/10.1088/1748-9326/aade56, 2018.

1130
Vahedi, B., Lucas, B., Banaei-Kashani, F., Barrett, A. P., Meier, W. N., Khalsa, S. J. S., and Karimzadeh, M.: Partial
label learning with focal loss for sea ice classification based on ice charts, IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens., 17, 13616—13633, https://doi.org/10.1109/JSTARS.2024.3413003, 2024.

1135 Wallace, S., Durrant, A., Harcourt, W. D., Hann, R., and Leontidis, G.: Exploring Segment Anything foundation models
for out-of-domain crevasse drone image segmentation, Proc. 6th Northern Lights Deep Learning Conf. (NLDL), Proc.

Mach. Learn. Res., 265, 255-268, https://proceedings.mlr.press/v265/wallace25a.html, 2025.

Woo, S., Park, J., Lee, J.-Y., and Kweon, 1. S.: CBAM: Convolutional block attention module, in: Proc. Eur. Conf.
1140 Comput. Vis. (ECCV), 3—19, https://doi.org/10.1007/978-3-030-01234-2 1, 2018.

Xu, Y., Sun, H., Chen, J., Lei, L., Ji, K., and Kuang, G.: Adversarial self-supervised learning for robust SAR target
recognition, Remote Sens., 13, 4158, https://doi.org/10.3390/rs13204158, 2021.

1145 Ye, K., Cohen, J., Chen, H. W., Zhang, S., Luo, D., and Hamouda, M. E.: Attributing climate and weather extremes to
Northern Hemisphere sea ice and terrestrial snow: progress, challenges and ways forward, npj Clim. Atmos. Sci., 8, 166,

https://doi.org/10.1038/s41612-025-01012-0, 2025.

Yuan, H., Guo, Q., Ren, Y., Fu, H., and Li, X.-M.: Long-term Pan-Arctic evaluation of a Sentinel-1 SAR sea ice extent
1150 product and insights into model integration, Remote Sens., 17, 3166, https://doi.org/10.3390/rs17183166, 2025.

47



https://doi.org/10.5194/egusphere-2026-376
Preprint. Discussion started: 4 February 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Zhang, Y., Bushuk, M., Winton, M., Hurlin, B., Yang, X., Delworth, T., and Jia, L.: Assimilation of satellite-retrieved
sea ice concentration and prospects for September predictions of Arctic sea ice, J. Clim., 34, 2107-2126,

https://doi.org/10.1175/JCLI-D-20-0469.1, 2021.

1155
Zakhvatkina, N., Smirnov, V., and Bychkova, I.: Satellite SAR data-based sea ice classification: an overview,
Geosciences, 9, 152, https://doi.org/10.3390/geosciences9040152, 2019.
Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J.: UNet++: a nested U-Net architecture for medical image
1160 segmentation, in: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support

(DLMIA/ML-CDS 2018), Lect. Notes Comput. Sci., 11045, 3—11, Springer, Cham, https://doi.org/10.1007/978-3-030-
00889-5 1, 2018.

48



