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Abstract. Monitoring Arctic sea ice variability is crucial for maritime safety. Synthetic Aperture Radar (SAR) 

imagery provides an effective means of achieving this through all-weather, day-and-night coverage of the Arctic. 

Navigation in the Canadian Arctic Archipelago currently relies on operational ice information services, including 

analyst-derived ice charts, satellite imagery, and ice routing products provided by national ice services.  However, 15 

the development of machine-learning systems capable of automatically processing large volumes of satellite 

imagery and accurately identifying ice conditions is constrained by the need for extensive manually labelled 

datasets. To address this limitation, we developed a self-supervised learning (SSL) approach, which uses unlabelled 

data to learn general image representations. Specifically, we use Bootstrap Your Own Latent (BYOL), a non-

contrastive SSL framework, to pretrain a UNet encoder on unlabelled dual-polarised Sentinel-1 Extra-Wide mode 20 

(EW) SAR scenes before fine-tuning with a small set of labelled images. We compare the BYOL-pretrained UNet 

(called UNet SSL in this study) to four baselines: a control UNet, a fully supervised UNet, a Random Forest 

classifier, and the Segment Anything Model (SAM). With only three labelled scenes, the BYOL-pretrained UNet 

achieved higher segmentation accuracy than the fully supervised model trained on seven images, more than twice 

the number of labelled scenes. The most significant gains occurred in Marginal Ice Zone (MIZ) scenes, where the 25 

BYOL-pretrained UNet achieved a Matthews Correlation Coefficient  (MCC) of 0.2087, compared with 0.1685 for 

the fully supervised UNet trained on seven labelled scenes and 0.1449 for the control model trained on three 

scenes—representing an MCC increase of approximately 24% and 44%, respectively. These improvements were 

accompanied by a substantial reduction in false negatives and a marked increase in recall, indicating improved 

discrimination under low-contrast, fragmented floe conditions. Our findings demonstrate that SSL reduces 30 

annotation requirements for SAR-based sea ice segmentation, improving model generalisation in both consolidated 
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and fragmented ice conditions. This approach offers a scalable solution to the labelling bottleneck in Arctic 

monitoring and highlights the potential of BYOL as a general pretraining strategy for SAR-based Earth observation 

image segmentation.  

 35 

1. Introduction  

The Arctic is warming 4-6 times faster than the rest of the planet and this has led to a reduction in Arctic sea ice 

extent in both summer and winter (Stroeve and Notz, 2018; Rantanen et al., 2022). This amplified warming is 

closely linked to diminishing sea ice and associated feedbacks between the surface energy balance and the 

atmosphere (Screen and Simmonds, 2010; Serreze and Barry, 2011). The sea ice extent minima, usually occurring 40 

at the start of September, has decreased by nearly 14% per decade since 1979, while the winter extent maxima 

continues to shrink at more than 3 % per decade (Stroeve and Notz, 2018). This loss has been accompanied by a 

dramatic shift in ice age structure: the proportion of Arctic sea ice older than five years has declined from 

approximately 28% of the basin in the mid-1980s to less than 2% by 2018, leaving the Arctic increasingly 

dominated by thin, first-year ice (Stroeve and Notz, 2018). The diminishing size of the sea ice pack is reshaping 45 

human activity in the region as maritime traffic through Arctic waters is expanding, including increasingly 

hazardous winter operations (Müller et al., 2023). At present, navigation through Arctic waters relies on sea ice 

charts that are produced by national ice services through expert analysis of Synthetic Aperture Radar (SAR) 

imagery and other satellite observations (Dierking, 2013). This creates a time lag between satellite data acquisition, 

manual interpretation of the imagery, and the release of the ice charts to an online platform.  Sea ice charts are 50 

crucial for both operational forecasting and climate research, yet they often omit key structural features such as 

leads and deformation zones because current SAR-based products struggle to provide reliable secondary ice 

information (Hebert et al., 2015; Sandven et al., 2023), despite their importance as hot spots of ocean–atmosphere 

interaction (Kortum et al., 2024). Automated methods that reduce manual labelling could accelerate high-resolution 

sea ice mapping useful for navigation, short-term forecasting of ice conditions, and climate research. However, 55 

automating the process of sea-ice mapping is hindered by three linked challenges: the scarcity of labelled SAR data, 

the inability of existing products to resolve fine-scale structural features, and the difficulty of producing timely, 

consistent maps at the pace of modern satellite acquisitions.  

Deep learning techniques offer a potential solution to these issues by utilising the extensive collections of 

unlabelled SAR imagery, enabling models to learn transferable representations without requiring large volumes of 60 

manually labelled data. SAR is particularly suitable for Arctic monitoring because it can acquire data under all 
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weather conditions and during the polar night, unlike optical sensors, which are limited by cloud cover and the 

absence of sunlight (Zakhvatkina et al., 2019; Yuan et al., 2025). Methods based on Convolutional Neural 

Networks (CNNs), such as UNet (Ronneberger et al., 2015), have proven effective for SAR-based sea ice 

segmentation (Park et al., 2020; Huang et al., 2024), but they depend on large, labelled data sets, which are scarce 65 

in the Arctic (Khaleghian et al., 2021; Jiang et al., 2024) and are labour intensive to produce. These challenges have 

prompted the development of architectures specifically tailored to SAR, such as hybrid convolutional-transformer 

models designed to better capture spatial and contextual features in radar backscatter (Ristea et al., 2023). For 

example, Boulze et al. (2020) achieved ~90–92% accuracy in classifying four ice types from Sentinel-1 dual-

polarisation SAR, outperforming a texture-based Random Forest while cutting per-scene processing from ~1 hour 70 

to ~2 minutes. However, both Random Forests and CNNs struggled with young and first-year ice because of coarse 

or inconsistent labels and mixed SAR pixels in regions close to manually drawn ice-chart polygon boundaries, 

where chart generalisation causes a single label to span multiple physical ice types, emphasising that performance is 

fundamentally constrained by label quality and availability. Manual annotation is costly, time-consuming, 

subjective, and geographically limited, creating a bottleneck between the vast archives of unlabelled SAR imagery 75 

and the comparatively small pool of expert-labelled masks.  

Several labelled SAR sea-ice datasets have been developed that complement the present study. The AI4Arctic Sea 

Ice Challenge dataset and the associated AutoICE Challenge (Stokholm et al., 2024) provide large-scale, multi-

class annotations derived primarily from operational ice charts. While highly valuable for regional benchmarking, 

the chart-based approach results in intentionally generalised polygon boundaries, which are less suited to evaluating 80 

pixel-level segmentation accuracy and boundary fidelity. 

Similarly, the MOSAiC-based binary lead dataset (Murashkin, 2023) offers extensive coverage of lead structures in 

the central Arctic Ocean, but the labels are generated using a convolutional neural network rather than manual 

annotation. As such, it is well suited to statistical analyses of lead occurrence, but less appropriate as an 

independent reference for evaluating learning-based segmentation methods. In contrast, the present study uses a 85 

small number of expert-annotated, pixel-wise masks, designed to support controlled, relative comparisons between 

models under limited-label conditions. Future work will extend the BYOL-pretrained framework to these larger 

community datasets. 

Self-supervised learning (SSL) has emerged as a promising way to reduce the dependence of deep learning models 

on labelled data. Instead of relying on human annotations, SSL learns by solving proxy objectives, such as 90 

predicting masked content or enforcing consistency across augmented views, that lead the model to acquire useful 

representations. These tasks typically involve predicting missing information or ensuring that two differently 

augmented versions of the same image produce similar internal representations (Grill et al., 2020). These 
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representations capture structural and semantic patterns that can later be transferred to downstream tasks with only 

minimal supervision, often rivalling or surpassing fully supervised baselines (Grill et al., 2020).  95 

Some SSL methods, such as Bootstrap Your Own Latent (BYOL; Grill et al., 2020), remove the need for negative 

pairs—image patches that are explicitly treated as representing different underlying classes or features during 

training. In contrastive self-supervised learning frameworks, representation learning is driven by simultaneously 

pulling together positive pairs and pushing apart negative pairs, meaning that the definition of what constitutes a 

“negative” sample is central to the training objective. These definitions rely on human design choices. Incorrectly 100 

defining negative pairs can actively harm representation learning by forcing the model to separate samples that are 

physically or semantically related. This is particularly problematic in SAR imagery, where visual dissimilarity 

arising from incidence-angle effects, speckle, or surface roughness does not necessarily correspond to a true 

semantic difference between ice types (Casey et al., 2016). Instead of comparing a given image patch against many 

assumed negatives, BYOL operates using two differently augmented views of the same SAR scene. One network 105 

(the online branch) is trained to predict the representation produced by a second, slowly updated target network. 

Because both views originate from the same underlying ice feature, the model is encouraged to learn stable SAR 

structures—such as floe texture or ridge geometry—that persist across imaging conditions (Lensu et al., 2022), 

rather than scene-dependent variations driven by incidence angle or surface state (Macdonald et al., 2024). By 

eliminating the need to define what constitutes a “dissimilar” SAR sample, BYOL avoids false negatives and 110 

reduces sensitivity to scene-specific noise and speckle, making it particularly well suited to SAR data, where 

complex spatial textures and acquisition-dependent effects can undermine contrastive training schemes that rely on 

explicit similarity–dissimilarity assumptions.  

Recent work demonstrates the growing use of SSL for satellite scene analysis, where annotated data are often 

scarce and expensive to produce. In optical imagery, SSL methods have been used to cluster or classify land-cover 115 

patterns without labels, supporting expert interpretation at regional to national scales (Francis et al., 2023). In 

hyperspectral imaging, SSL has enabled efficient spectral super-resolution using compact networks trained on 

synthetic degradation pairs, achieving competitive accuracy with minimal compute and without large labelled 

corpora (Rajaei et al., 2024). These studies illustrate several advantages of SSL for Earth observation: the ability to 

exploit abundant unlabelled satellite data, reduced dependence on expert annotation, and the capacity to learn 120 

robust spatial and spectral structure with lightweight models. SSL has also begun to gain traction in optical remote 

sensing (Muzeau et al., 2024) and in SAR scene-level classification (Liu et al., 2024); however, its application to 

pixel-level segmentation of Arctic sea ice in SAR imagery remains largely unexplored.  

While these advances demonstrate the versatility of SSL, SAR-based sea-ice mapping presents additional physical 

complexities such as speckle, noise, incidence-angle effects, and the sensitivity of backscatter to ice type and 125 
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surface roughness (Johansson et al., 2018; Lohse et al., 2020; Karlsen et al., 2024). Sea ice itself is heterogeneous 

and highly dynamic, further complicating classification and monitoring, with SAR backscatter signatures varying 

seasonally across leads, young ice, first-year ice (FYI), and multi-year ice (MYI) (Guo et al., 2023). Physically, 

MYI is thicker, salt-depleted, and heavily deformed, characterised by hummocks and ridges that produce bright, 

granular radar returns, whereas FYI tends to be smoother, more saline, and less consolidated, yielding lower 130 

backscatter, except where deformation or surface flooding by seawater increases roughness (Roach et al., 2025). 

Leads—narrow fractures of open water within the ice pack—occupy a small fraction of the ice cover but represent 

conduits for the exchange of heat and moisture between the ocean and atmosphere, making their detection 

particularly useful in studying the energy balance of sea ice (Clemens-Sewall et al., 2023). Their spatial distribution 

and evolution can be quantified using SAR-derived divergence and deformation metrics (von Albedyll et al., 2024). 135 

The Marginal Ice Zone (MIZ) marks the transition from open ocean to pack ice and exhibits extreme spatial and 

temporal variability, driven by wind, waves, and ocean currents. Its fine-scale fragmentation and overlapping 

backscatter signatures present major operational challenges, making it difficult to develop segmentation methods 

that generalise across scattering conditions (Huang and Li, 2023; Itkin, 2025). These characteristics make SAR 

images of sea ice an ideal but demanding test case for evaluating self-supervised approaches.   140 

Here we introduce, to our knowledge, the first application of non-contrastive self-supervised pretraining (BYOL) to 

SAR- sea-ice segmentation, evaluating whether such pretraining can reduce annotation requirements without 

sacrificing accuracy. We pretrain a UNet encoder on unlabelled Sentinel-1 SAR imagery and fine-tune it with 

limited labelled scenes, which we then compare against widely used models for image segmentation: a fully 

supervised UNet, a Random Forest classifier, and the Segment Anything Model (SAM). Our research questions are:  145 

How does the segmentation performance of a BYOL-pretrained UNet compare to other widely used models for sea 

ice segmentation?   

How do models perform across contrasting Arctic environments — from consolidated multi-year ice to fragmented 

marginal-ice zones — and what does this reveal about each model’s robustness to different radar scattering 

conditions? The objective of this study is not to establish state-of-the-art accuracy of sea-ice segmentation models, 150 

but to assess their relative performance under controlled, low-label conditions. Specifically, we evaluate whether 

self-supervised pretraining using BYOL enables a UNet model to achieve performance comparable to, or 

exceeding, fully supervised baselines while using substantially fewer labelled SAR scenes. All models are therefore 

trained and evaluated on the same fixed test scenes, and performance differences are interpreted in a comparative 

sense, focusing on relative gains in robustness, generalisation, and label efficiency rather than on absolute accuracy 155 

values. 
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2. Study area and data  

2.1 Study area  

Our study area (Fig. 1) encompasses the western side of the Canadian Arctic Archipelago (CAA; ~75°–83° N, 90°–

125° W) and adjacent Arctic Ocean. The region was chosen because it presents a challenging and operationally 160 

important environment for sea-ice segmentation: a dense network of narrow straits and islands where land 

contamination, mixed ice types, and frequent thin ice leads complicate SAR interpretation (Howell et al., 2024). As 

a major pathway for sea-ice export and a key sector of the Northwest Passage (Cook et al., 2024), the CAA also 

provides a scientifically relevant testbed for evaluating model performance in conditions that are both climatically 

and logistically significant.  165 

The climate of the CAA is strongly influenced by the presence and variability of sea ice (Ye et al., 2025), which 

plays a key role in modulating atmospheric circulation and driving regional weather extremes. Sea ice in the CAA 

comprises a mixture of FYI that forms each winter and MYI that survives one or more melt seasons. MYI within 

the CAA is replenished from the Arctic Ocean and the survival of FYI through the melt season, with interannual 

trends suggesting MYI has remained stable between 2016 and 2022 (Howell et al., 2024). The presence of both 170 

MYI and FYI leads to a complex mosaic of sea ice across the CAA: deformed MYI remains concentrated along the 

northern coasts of the CAA, whilst thinner FYI dominates the southern channels and coastal inlets. Leads and 

polynyas – open-water features within the pack ice form and evolve throughout the year, enhancing ocean–

atmosphere heat exchange and often marking the transition between melt and freeze phases (Roach et al., 2025). 

Recent climate warming has led to an earlier breakup of sea ice in summer, a longer melt period, and an increase in 175 

open-water areas as the pack transitions to younger, thinner FYI (Howell & Brady, 2019). In 2024, September 

Arctic sea ice extent was the 6th lowest in the satellite era, continuing the long-term decline in total sea ice extent 

(Meier et al., 2024).   

The CAA has become an increasingly important focus of Arctic shipping, with voyages through Canadian Arctic 

waters more than quadrupling since 1990 as declining sea ice cover improves seasonal navigability along parts of 180 

the Northwest Passage (Cook et al., 2024). However, choke points formed by persistent MYI in narrow channels 

continue to restrict access, reducing the effective length of the shipping season (Cook et al., 2024). While summer 

navigation increasingly favours the shallower southern route of the Northwest Passage, the deep-water northern 

route remains constrained by MYI choke points, with sea-ice area dropping to ~4 × 10³ km² at the end of September 

2024 (Howell et al., 2025). Accurate, high-resolution monitoring of leads and ice conditions in the CAA and 185 

neighbouring Arctic Ocean is vital for safe navigation and planning suitable routes.   
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2.2 Sentinel-1 SAR imagery  

We conduct our evaluation using Sentinel-1 SAR scenes from the CAA. We choose scenes that represent two 

contrasting environments: (1) a consolidated ice pack containing leads (Scene 1), and (2) scenes covering the 

fragmented MIZ (Scene 2). We used dual-polarised Sentinel-1 scenes acquired in Extra Wide (EW) swath mode 190 

and Ground Range Detected (GRD) format. In total, 21 Sentinel-1 scenes were used in this study (Table 1): 12 

unlabelled scenes were used for self-supervised pretraining, whilst a total of 9 scenes were manually labelled for 

training (7 images) and test (2 images). Each pre-processed EW acquisition has an image swath size of 7000 × 7500 

pixels at 80 m resolution (~560x600 km image size), corresponding to roughly 5 × 107 pixels per scene and nearly 

1 × 109 SAR pixels across the dataset. The labelled acquisitions span from June 2022 to November 2023, capturing 195 

seasonal variability across all four Arctic seasons including freeze-up (autumn), maximum extent (winter), melt 

onset (spring), and sea ice minima (summer). The labelled Sentinel-1 SAR scenes are primarily located over the 

Queen Elizabeth Islands (the northernmost Canadian archipelago), including: Prince Patrick, Ellef Ringnes, and 

Mackenzie Islands, with additional coverage extending southward to the waters between Bathurst and Melville 

Islands and northward into the Arctic Ocean. One scene is centred roughly 500 km north of mainland Alaska, 200 

capturing consolidated MYI beyond the island chain. Table 1. Summary of the list of images used in training and 

testing  

File Name Scene ID 

(Fig. 1) 
Date Labelled? Training / Test 

S1A_EW_GRDM_1SDH_20180116T0754

30_20180116T075530_020177_0226B9_9

FE3 

n/a 16.01.2018 Unlabelled SSL Training 

S1B_EW_GRDM_1SDH_20180213T1754

44_20180213T175544_009608_011511_82

66 

n/a 13.02.2018 Unlabelled SSL Training 

 

S1A_EW_GRDM_1SDH_20180313T1812

25_20180313T181325_021000_0240E1_8

163 

n/a 13.03.2018 Unlabelled SSL Training 

S1A_EW_GRDM_1SDH_20180417T0746

06_20180417T074706_021504_0250C3_D

211 

n/a 17.04.2018 Unlabelled SSL Training 

S1B_EW_GRDM_1SDH_20180515T1746

33_20180515T174733_010935_01403A_

A84D 

n/a 15.05.2018 Unlabelled SSL Training 

S1A_EW_GRDM_1SDH_20180612T1804

23_20180612T180523_022327_026AB3_

n/a 12.06.2018 Unlabelled SSL Training 
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AC33 

S1A_EW_GRDM_1SDH_20180717T0738

09_20180717T073909_022831_0279B9_E

BF1 

n/a 17.07.2018 Unlabelled SSL Training 

S1B_EW_GRDM_1SDH_20180814T0753

44_20180814T075444_012256_016952_B

1DC 

n/a 14.08.2018 Unlabelled SSL Training 

S1A_EW_GRDM_1SDH_20180911T1755

48_20180911T175652_023654_0293F5_7

CA2 

n/a 11.09.2018 Unlabelled SSL Training 

S1A_EW_GRDM_1SDH_20181016T0729

58_20181016T073058_024158_02A460_

DA8F 

n/a 16.10.2018 Unlabelled SSL Training 

S1B_EW_GRDM_1SDH_20181113T0745

29_20181113T074629_013583_019254_D

382 

n/a 13.11.2018 Unlabelled SSL Training 

S1A_EW_GRDM_1SDH_20181218T0754

37_20181218T075537_025077_02C472_1

DB2 

n/a 18.12.2018 Unlabelled SSL Training 

S1A_EW_GRDM_1SDH_20221027T1615

58_20221027T161702_045630_0574C3_1

CD3 

6 27.10.2022 Labelled Test 

S1A_EW_GRDM_1SDH_20230203T1501

50_20230203T150254_047073_05A59D_

A02F 

3 03.02.2023 Labelled SL Training 

S1A_EW_GRDM_1SDH_20230304T1511

08_20230304T151208_047496_05B3E5_1

FD1 

7 04.03.2023 Labelled SL Training 

S1A_EW_GRDM_1SDH_20230305T1553

14_20230305T155414_047511_05B46C_E

347 

8 05.03.2023 Labelled Test 

S1A_EW_GRDM_1SDH_20230503T1510

05_20230503T151109_048371_05D160_B

E0E 

4 03.05.2023 Labelled SL Training 

S1A_EW_GRDM_1SDH_20230602T1420

43_20230602T142147_048808_05DE9A_

F138 

1 02.06.2023 Labelled SL Training 

S1A_EW_GRDM_1SDH_20230805T1348

56_20230805T134956_049741_05FB2E_

E2F3 

2 05.08.2023 Labelled SL Training 
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S1A_EW_GRDM_1SDH_20230925T1551

19_20230925T155224_050486_061495_6

FA5 

5 25.09.2023 Labelled SL Training 

S1A_EW_GRDM_1SDH_20231110T1747

37_20231110T174837_051158_062B90_1

942 

9 10.11.2023 Labelled SL Training 

 

All Sentinel-1 SAR images were processed using the ESA Sentinel Application Platform (SNAP) following a 

standard processing chain (Filipponi, 2019): 205 

1. Remove GRD border noise 

2. Radiometric calibration to sigma-nought (σ⁰) in decibels (dB); 

3. Speckle filtering using the Lee Sigma algorithm with a 3 × 3 window; 

4. Multilooking with two range and two azimuth looks; 

5. Ellipsoid correction using the WGS84 ellipsoid model; 210 

6. Export to GeoTIFF format for integration with machine learning pipelines. 

7. Following preprocessing, the spatial resolution of Sentinel-1 scenes was 80 m. 

 

Sentinel-1 Extra-Wide (EW) mode acquisitions exhibit systematic incidence-angle variation across the swath, 

which affects σ⁰ magnitude and backscatter texture. In this study, Sentinel-1 scenes were processed using the 215 

standard SNAP radiometric workflow, which partially mitigates incidence-angle effects through σ⁰ calibration. No 

additional explicit incidence-angle normalisation or flattening was applied, as the objective of the study is to 

compare relative model performance under identical acquisition conditions rather than to optimise absolute 

accuracy for a single corrected representation. Residual incidence-angle effects are instead handled implicitly 

through the use of dual-polarised HH–HV inputs and SAR-specific data augmentations designed to encourage 220 

invariance to acquisition-related variability. The influence of these effects is further examined through σ⁰-resolved 

performance analysis (Sect. 4.4), which links segmentation skill to physical scattering regimes that partially co-vary 

with incidence angle. 

2.3 Sea ice labels  

We manually annotated 9 Sentinel-1 scenes into two classes: sea ice and open water. All annotations are binary. 225 

Features such as marginal ice zones (MIZ), leads, thin ice, and melt ponds are not treated as separate classes, but 

are handled through explicit labelling rules designed to ensure consistency under ambiguous scattering conditions. 
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 Land areas were masked using the "2020 Land Cover of Canada" dataset from Open Canada (Latifovic, 2022). A 

consistent labelling protocol was applied to allow reproducibility across scenes and seasons (see Figs. 7 and 8 for 

examples of Test labels):   230 

• Sea Ice was defined as any continuous area of elevated σ⁰ in the HH and HV bands, including both thick 

consolidated floes and thinner, newly formed ice. 

• Open Water was characterised by dark, low-return backscatter. Textured water, caused by wind or waves, 

was also classified as open water. 

• Marginal Ice Zones (MIZ) were handled using a consistent labelling convention: within spatially 235 

heterogeneous regions containing mixed ice and water scattering, pixels were assigned to the ice class 

when the dominant contiguous scattering signature corresponded to sea ice, even if intermixed with open-

water returns. 

• Leads narrower than ~200 m (~2–3 pixels at 80 m resolution) were excluded to ensure consistent detection 

thresholds. 240 

 

Where available, Sentinel-2 optical imagery was used for visual cross-reference, particularly to differentiate melt 

ponds, wind-driven open water, and MIZ features. The final labelled dataset covers all four seasons and includes a 

range of ice regimes, from dense winter pack ice to fragmented summer floes.  

The two test scenes were intentionally selected to represent contrasting levels of segmentation difficulty. The first 245 

scene corresponds to relatively consolidated ice conditions and is treated as an easier reference case, whereas the 

second scene encompasses a Marginal Ice Zone (MIZ) characterised by fragmented ice and mixed scattering, and is 

used as a challenging test case to assess model robustness under more complex conditions. 

To contextualise the labelling approach used in this study, Fig. 2 provides a visual comparison between the 

manually annotated, pixel-wise labels developed here and two widely used community datasets: the AI4Arctic Sea 250 

Ice Challenge dataset and the MOSAiC-based binary lead dataset. The comparison highlights differences in label 

provenance and spatial granularity, reflecting the distinct objectives of each dataset. While chart-derived and 

automatically generated labels are well suited to large-scale statistical analyses and benchmarking, the manually 

produced labels used in this study are designed to support controlled, pixel-level evaluation of segmentation 

performance under limited-label conditions. 255 
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3. Model intercomparison  

An overview of the models and training regimes is shown in Fig. 3.  

3.1 Models  

In this study, we evaluate the performance of five approaches to segment sea ice using dual-polarised Sentinel-1 260 

SAR imagery:   

 

• UNet (Control): Supervised UNet trained using three labelled scenes (low-data baseline). UNet is widely 

used in remote sensing and medical imaging as the standard architecture for pixel-wise segmentation.  

 265 

• UNet (Supervised Learning): Supervised UNet trained using seven labelled scenes. This provides a 

stronger supervised benchmark for evaluating how performance scales with more labelled data.  

 

• UNet (Self Supervised Learning): UNet with encoder pretrained using SSL (BYOL) on unlabelled SAR 

imagery, then fine-tuned with 3 labelled scenes. This model tests our central hypothesis that self-270 

supervised pretraining can reduce dependence on labelled data.  

 

• Random Forest (RF): Pixel-wise classifier. Although older, RFs remain widely used for sea ice 

segmentation tasks due to their simplicity and interpretability (e.g. Marbouti et al, 2020). Including this 

model allows us to benchmark deep learning performance gains against a classical, low-complexity, 275 

baseline.  

 

• Segment Anything Model (SAM): A prompt-based zero-shot segmentation method pretrained on large-

scale natural RGB datasets. While SAM was not designed for SAR, it was trained on RGB 11M images 

and provides an important test of whether such generic pretrained models, so called foundation models, 280 

can transfer directly to SAR-based sea ice segmentation without fine-tuning.  

 

 3.1.1 UNet (Control and SL)  

 

UNet++ (Zhou et al., 2018) is an extension of the original UNet architecture developed for biomedical image 285 

segmentation (Ronneberger et al., 2015). Like its predecessor, it follows an encoder–decoder structure, where the 
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encoder progressively downsamples the input to extract hierarchical features and the decoder upsamples them to 

produce a dense, pixel-wise segmentation mask. However, UNet++ introduces nested skip connections – dense 

links between encoder and decoder blocks at multiple depths – that refine feature fusion and improve gradient flow 

during training. These skip pathways enable finer localisation and more robust multiscale representation learning, 290 

which is particularly valuable for segmenting narrow or fragmented features such as sea-ice leads.  

In this study, we use a modified UNet++ tailored to the challenges of SAR-based sea ice segmentation. 

Modifications include Residual convolutional blocks (He et al., 2016) with group normalisation and dropout and 

Channel Attention Module (CAM) (Woo et al., 2018) in the bottleneck layer. The final layer is a 1 × 1 convolution 

that maps to a single-channel probability output. Binary segmentation is achieved by applying a sigmoid activation 295 

and thresholding at inference time. Identical UNets were trained, with differing amounts of labelled data. The first 

was trained on 3 labelled images, called UNet (Control), whilst the second was trained with 7 labelled images, 

called UNet (SL). The modified architecture is illustrated in Fig. 4.  

3.1.2 UNet (SSL)  

To reduce reliance on labelled training data, we implemented BYOL (Grill et al., 2020), a SSL framework designed 300 

to learn image representations from unlabelled data. Unlike contrastive SSL methods that compare both positive 

and negative sample pairs, BYOL operates without negative pairs, instead relying on asymmetric prediction 

between two augmented views of the same image. No labels are used during BYOL pretraining; the network learns 

by matching embeddings of two augmented views of the same image. The core idea is to train an online network, 

which is the part of the model updated after each training step, to predict the representation of a target network, a 305 

slowly updated copy of itself, using different augmentations of the same input. In this context, augmentations refer 

to transformations applied to an image that preserve its semantic content (e.g. whether a pixel represents ice or 

water) while modifying its appearance (see Figs. 5 and 6). These transformations encourage the model to learn 

representations that are invariant to such changes. Specifically, each Sentinel-1 SAR image is augmented twice to 

create two views: one is passed through the online encoder and projection head, while the other is passed through 310 

the target encoder and projection head. The online network includes an additional prediction head that outputs a 

vector which is optimised to match the target's latent representation. This architecture is particularly well-suited to 

SAR imagery as it enables learning from large unlabelled SAR archives and is robust to noise, speckle, and 

acquisition variation (Xu et al., 2021).  

We adapted BYOL to operate within our UNet encoder and with SAR imagery as input by replacing the original 315 

ResNet backbone with our modified UNet encoder and using HH-HV SAR pairs as 2-channel inputs. Each SAR 

image was augmented twice to form a positive pair, i.e. two images with different representations of the same 
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scene. The online encoder and projection head generate a latent vector – a compact numerical representation of the 

image in feature space – which was compared to the output of a target encoder (an exponential moving average of 

the online network). The loss function – a measure of how different two outputs are, guiding how the network 320 

updates its weights during training – is based on cosine similarity between the predicted and target representations 

(see sect. 3.3). This was used exclusively during the self-supervised pretraining phase. BYOL’s loss function 

encourages the online network to produce representations that are invariant to augmentation and similar to the 

target’s embeddings. Importantly, since no negative samples are required, BYOL avoids the instability often seen in 

contrastive methods when semantic similarity does not correlate with visual appearance—a common challenge in 325 

SAR data, where different sea ice types may appear visually similar due to backscatter ambiguity.  

To qualitatively track what the encoder was learning during self-supervised pretraining, we generated feature 

visualisations every two epochs. For a single input, we plotted the augmented view alongside the mean and 

standard deviation of the deepest encoder feature maps. The mean highlights stable, view-invariant structures (Fig. 

5b), and the standard deviation reflects variation across channels and sensitivity to textural differences (Fig. 5c). 330 

These visualisations were used solely for training diagnostics. Several limiting cases help in interpreting these 

diagnostics. A high mean with a low standard deviation indicates strong consensus across filters, suggesting that the 

encoder has confidently identified stable structures, such as consolidated ice. Conversely, a low mean with a high 

standard deviation indicates weak overall activations and high disagreement across channels, often associated with 

noisy or ambiguous textures. High mean and standard deviation values indicates strong but varied activations, 335 

typical of fragmented floes, such as that found in the open water channels in Fig. 5. In contrast, low mean and 

standard deviation values implies low information content, typical of uniform open water regions or sea ice floes 

(Fig. 4). Additionally, to illustrate cross-view consistency—the extent to which the encoder produces similar 

feature representations for two differently augmented views of the same underlying SAR scene—we include an 

example with two augmented views of the same patch (Fig. 6) alongside their corresponding encoder mean-feature 340 

maps. Cross-view consistency is indicated by the presence of spatially aligned high-activation (bright) regions in 

both feature maps, showing that the encoder emphasises the same underlying ice structures despite differences in 

the input augmentations.  

We used 12 unlabelled Sentinel-1 scenes (HH and HV) for pretraining. Scenes were selected based on quality and 

geographic diversity. Augmentations were designed with SAR-specific considerations:  345 

 

• Geometric transforms (random crops, flips, rotation) to simulate spatial variability;  

 

• Contrast and brightness variation approximates changes in surface roughness and incidence angle;  
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 350 

• Affine distortion introduces geometric deformation, aiding in feature generalisation.  

Each augmentation had an 85% probability of being applied. The final patch size – a cropped subset of the Sentinel-

1 SAR scene used as a single training sample – was 1024 × 1024 pixels. After pretraining, the encoder weights 

from the online BYOL model were used to initialise a supervised segmentation model with an identical 

architecture. Decoder layers and output heads were reinitialised prior to supervised training, with weights set using 355 

Xavier uniform initialisation (Glorot & Bengio, 2010) and selected biases reset to zero. Xavier initialisation is a 

widely used method that scales the starting weights according to the number of input and output connections in a 

layer, ensuring that activations neither explode nor vanish as they pass through the network. This stabilises early 

training and improves convergence compared to arbitrary random initialisation.  

During the first stage of fine-tuning, the encoder was frozen, meaning its weights were not updated, so that the 360 

pretrained representations learned from unlabelled data were preserved while the decoder adapted to the 

segmentation task. In the second stage, the encoder was gradually unfrozen, allowing its weights to be updated 

alongside the decoder. This two-step strategy stabilises training and prevents the encoder from overfitting to the 

limited labelled data too early. It allows the entire network to adapt jointly to the segmentation objective. In doing 

so, the self-supervised pretraining provides a foundation of generic spatial and textural features of sea ice and open 365 

water, which can then be aligned with class labels during fine-tuning. Because the encoder already encodes relevant 

structure from unlabelled data, effective segmentation can be achieved with substantially fewer labelled examples. 

The target network’s weights are updated using an exponential moving average of the online network, ensuring 

training stability.  

3.1.3 Random Forest (RF) Classifier  370 

To assess a classical machine learning baseline, we implemented an RF classifier, which is a commonly used 

ensemble machine learning method. The RF model was trained on the same set of seven labelled scenes used in the 

UNet (SL) experiments, enabling a fair comparison. The feature set consisted of raw HH and HV backscatter 

values, the HH/HV polarisation ratio, Sobel-derived gradient magnitudes for each channel, global Shannon entropy, 

and GLCM texture measures (contrast and dissimilarity). These metrics are widely used to pretrain RF classifiers 375 

and other machine learning models for SAR-based sea ice classification (Harcourt et al., 2025; Zakhvatkina et al., 

2019).   

The RF model was trained using 200 trees in four stages (warm start of 50 trees per stage), with a maximum 

decision tree depth of 15. Warm start refers to incrementally adding new trees while retaining the previously trained 

ones, improving efficiency and allowing staged evaluation of performance.  The model was trained using stratified 380 
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sampling, so that each subset of data preserves the overall class proportions (ice vs. open water), helping to mitigate 

class imbalance. However, the approach lacks spatial context beyond the immediate pixel, limiting its ability to 

detect elongated features such as leads.   

3.1.4 Segment Anything Model (SAM)  

We also tested version 1 of the SAM foundation model (Kirillov et al., 2023), a prompt-based segmentation 385 

framework pre-trained on a data set of 11 million natural RGB images and 1.1 billion masks. For compatibility with 

the HH-HV dual-channel input, we set HH as red, HV as green, and the ratio HH/HV as blue. Unprompted 

segmentation was evaluated in zero-shot mode. All SAM inferences were generated using the official Python 

implementation executed locally, rather than via the online interactive demonstration interface. This approach 

ensured full control over preprocessing, tiling, and prompt construction for SAR-specific inputs. No fine-tuning 390 

was applied.  

3.2 Conditional Random Field (CRF) post-processing  

To refine the predicted segmentation masks and suppress noise near the image boundary, a dense Conditional 

Random Field (CRF) was applied as a post-processing step (Fig. 4). In this framework, the UNet outputs act as the 

unary potentials (the model’s initial per-pixel log-probabilities), representing the initial pixel-wise probabilities for 395 

each class. The CRF then introduces pairwise potentials that encourage label consistency across the image. Two 

Gaussian kernels are used: a spatial (smoothness) kernel, which promotes uniform labelling of pixels within local 

neighbourhoods, and a bilateral (appearance) kernel, which links pixels that are close in position and have similar 

predicted probabilities. These terms penalise unnecessary label changes between adjacent pixels, reducing noise 

and sharpening boundaries. These components iteratively adjust the label assignment to minimise the CRF energy 400 

function. The result is a refined segmentation that reduces noise in uniform areas, sharpens the delineation of floe 

edges and leads, and restores structural coherence to fragmented predictions. We employed the fully connected 

CRF formulation implemented with the pydensecrf library (Krähenbühl and Koltun, 2011). The CRF was applied to 

the sigmoid probability map produced by the UNet model prior to thresholding.  

3.3 Loss function  405 

To address severe class imbalance between open water and sea-ice pixels in the segmentation masks—typically 

around 90% ice and 10% open water in our labelled scenes— we employed a weighted Focal Loss (Lin et al., 2017) 

with asymmetric class weights, which has been shown to outperform cross-entropy in SAR-based sea-ice 

classification tasks with skewed class distributions (Vahedi et al., 2024). This formulation down-weights easy-to-
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classify background pixels and emphasises learning on the more difficult minority class (water). The Focal Loss 410 

was applied only during the supervised training stage of the UNet models, including the Control, SL, and BYOL-

fine-tuned variants. It was not used in the self-supervised (BYOL) pretraining phase, which relied solely on the 

cosine-similarity objective described in Sect. 3.1.2. The focal loss is defined as:   

𝐿𝐹𝑜𝑐𝑎𝑙  =  −𝛼(1 − 𝑝𝑡)𝛾 𝑙𝑜𝑔(𝑝𝑡)                                                 (1) 

 415 

where α is a class-balancing weight used to address class imbalance,  𝑝𝑡 denotes the model-predicted probability 

assigned to the ground-truth class for a given pixel, and γ is a focusing parameter that controls the rate at which 

easy-to-classify examples are down-weighted. Higher values of γ increase the emphasis on hard-to-classify pixels 

by reducing the contribution of well-classified samples to the loss.Focal Loss was used across all supervised UNet 

training configurations, including models initialised from random weights and those fine-tuned after BYOL 420 

pretraining. This setup provided stable convergence and significantly improved segmentation accuracy in the MIZ 

and thin lead regions (see sect. 4), where backscatter signals are particularly ambiguous.   

3.4 Experimental Design  

We compared three categories of segmentation models – deep learning (UNet and BYOL-pretrained SSL UNet), a 

classical machine learning baseline (Random Forest), and a foundation model (SAM) – to evaluate their relative 425 

performance under limited annotated data conditions. From the nine manually labelled Sentinel-1 scenes, two were 

reserved as a fixed test set to evaluate all experiments. The remaining seven scenes were used to construct training 

sets, with two regimes: a 3-label and a 7-label condition. The test data set was strictly held out for final metric 

reporting. For supervised training, i.e. for UNet (Control), UNet (SL), UNet (SSL), samples consisted of a triplet: 

HH image, HV image, and binary segmentation mask. HH and HV channels were stacked into a 2-channel tensor, 430 

and masks served as ground truth. Samples were cropped to 1024 × 1024 pixels and normalised with z-score 

statistics computed per image. To allow direct comparison with the UNet (SSL) model, the supervised UNet (SL) 

was trained under both the 3-label and 7-label conditions described above. For the BYOL-pretrained UNet (SSL), a 

separate set of 12 unlabelled SAR scenes was utilised for self-supervised pretraining. The encoder was trained 

using BYOL to generate generalised SAR feature representations. For fine-tuning, the pretrained encoder was 435 

trained on the same 3-label conditions as the supervised UNet.  

To ensure a fair comparison, all models were evaluated on the same held-out test scenes, and results are interpreted 

in terms of relative differences between models under identical data and evaluation conditions. 
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3.5 Evaluation Metrics  

To assess model performance in binary segmentation of sea ice versus open water, we use two primary metrics. The 440 

first of these is the Matthews Correlation Coefficient (MCC), which is a balanced metric that accounts for True 

Positives (TP) and False Positives (FP) (Chicco et al., 2021): 

 𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                          (2) 

 

 445 

where TP denotes correctly predicted ice pixels, TN denotes correctly predicted water pixels, FP represents water 

pixels incorrectly classified as ice, and FN represents ice pixels incorrectly classified as water. MCC values range 

from −1 (total disagreement) to +1 (perfect prediction), with 0 indicating random performance.  

We also used the F1 Score, which is the harmonic mean of precision and recall, indicating the model’s ability to 

correctly identify ice pixels without overpredicting:  450 

                                                      𝐹1  =  
2× 𝑇𝑃

2 𝑇𝑃 +𝐹𝑃 + 𝐹𝑁
                                                                            (3) 

 

It is sensitive to both FPs and FNs. Both metrics are computed on a held-out fixed test set of 2 scenes. These scenes 

were held out from all training to provide an unbiased assessment of generalisation across contrasting ice regimes. 

Because class balance shifts markedly between scenes and spatial coherence is central to utility, MCC provides the 455 

more reliable summary of performance in our setting.  

4. Results  

4.1 Model performance: Consolidated ice pack (Scene 1)  

In the first test case, we evaluated the performance of all models on a scene depicting a consolidated ice pack with 

well-defined ice floes and linear leads (Scene 1; Fig. 7). The performance of each model applied to Scene 1 is 460 

summarised in Table 2. UNet (SSL) outperformed both UNet Control and UNet SL in both the F1 Score and MCC 

metric. As shown in Fig. 7d, the UNet (SSL) model achieved clear delineation of ice leads and more spatially 

coherent segmentation across the scene. By contrast, the UNet (Control) model (Fig. 7c) produced increasingly 

noisy predictions toward the right of the image and failed to capture fine-scale features. The fully supervised UNet 

(SL), shown in Fig. 7e showed improved definition of lead boundaries but still misclassified some ice regions as 465 
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water. These qualitative differences align with quantitative metrics: UNet (SSL) reached an F1 Score of 0.9802 and 

MCC of 0.4389 – higher than UNet (SL) (MCC = 0.2525) and far superior to the Control (MCC = 0.1338).  

 

Table 2. Segmentation Results (F1 Score and MCC) – Scene 1 (Consolidated Ice Pack) (Bold denotes best 

performing model)  470 

Model F1 Score MCC 

UNet (Control, 3 scenes) 0.7747 0.1338 

UNet (SL, 7 scenes) 0.9283 0.2525 

UNet (SSL, 3 scenes) 0.9802 0.4389 

Random Forest 0.9767 0.0352 

SAM (Zero-shot) 0.9827 0.4137 

 

We also evaluated two non-UNet baselines: SAM and a classical Random Forest classifier. Despite being trained 

on natural RGB data, SAM performed surprisingly well in Scene 1 (F1 = 0.9827, MCC = 0.4137; Fig. 7g), 

capturing the broad ice-water distribution but failing to detect fine-scale leads. In the consolidated ice pack, SAM 

successfully recovered large-scale ice structure and lead geometry but systematically overfilled leads and open 475 

water, producing approximately 71.5% false positives compared to BYOL’s approximately 57.1% (Appendix A). 

The Random Forest model performed poorly in both scenes (e.g. MCC = 0.0352 in Scene 1; Fig. 7f). It 

significantly overpredicted ice, achieving inflated F1 Scores (up to 0.9834) but producing coarse, spatially 

incoherent segmentations. The F1 Score is limited in imbalanced settings, especially when high recall is achieved at 

the cost of accuracy. Across all models evaluated, the Random Forest was the weakest performer by a substantial 480 

margin, offering little discriminatory skill in either scattering regime.  

4.2 Model performance: Marginal Ice Zone (MIZ) (Scene 2) 

Scene 2 (Fig. 8) captures a fragmented MIZ scene with scattered ice floes and diffuse boundaries, which introduces 

greater textural ambiguity. We find similar trends to those in Scene 1. The UNet (SSL) model (Fig. 8d) was more 

effective at correctly identifying sea ice, particularly in fragmented and ambiguous regions, than the UNet (Control) 485 

and fully supervised UNet (SL) (Fig. 8e), which often misclassified these regions as open water. This resulted in 

significantly fewer false negatives and a more complete representation of ice extent in the MIZ. This is reflected in 
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the higher MCC achieved by the UNet (SSL) model (0.2087), compared to 0.1685 for the UNet (SL) and 0.1449 for 

the UNet (Control), supporting its ability to generalise to structurally varied sea ice regimes.  

Table 3. Segmentation Results (F1 Score and MCC) – Scene 2 (Marginal Ice Zone) Bold denotes best performing 490 

model  

Model F1 Score MCC 

UNet (Control, 3 scenes) 0.5981 0.1449 

UNet (SL, 7 scenes) 0.6812 0.1685 

UNet (SSL, 3 scenes) 0.8449 0.2087 

Random Forest 0.9834 0.0201 

SAM (Zero-shot) 0.9727 0.0403 

While the Random Forest model achieved the highest F1 Score in Scene 2 (Table 3), its segmentation output was 

visually poor and spatially incoherent. The confusion matrix (Appendix B) shows that 842,116 water pixels 

(99.82%) were classified as ice, with only 1,538 water pixels (0.18%) correctly classified, while 25,088,922 ice 

pixels (99.984%) were correctly classified as ice. This explains its inflated F1 Score—high recall but very low 495 

precision—and highlights how F1 can be misleading in imbalanced datasets where a model overpredicts the 

dominant category. The much lower MCC (0.0201) reflects this imbalance more correctly, reaffirming that 

qualitative assessment and multiple metrics are essential in evaluating segmentation quality. SAM produced more 

structured and visually accurate segmentations than the Random Forest, particularly in the simpler scene. In this 

more fragmented setting it misclassified ~94% of water pixels as ice, leaving only ~6% correctly identified as open 500 

water. This caused MCC to collapse to 0.0403, despite a superficially high F1 score (0.9727). UNet (SSL) again 

demonstrated better balance, with approximately 20.8% FPs and approximately 79.2% TNs, achieving a higher 

MCC of 0.2087 and preserving boundary integrity across mixed floes and textured water. These results indicate that 

while SAM’s large-scale RGB pretraining transfers structural priors such as edge continuity and spatial coherence, 

these features degrade under radar-specific noise and ambiguous backscatter.  505 

 4.3 Cross-comparison  

Across all models, performance metrics were lower in Scene 2 than in Scene 1. Mean MCC values fell by 

approximately 60–70% between the two scenes (e.g., UNet (SSL) declined from 0.4389 in Scene 1 to 0.2087 in 

Scene 2; UNet (SL) from 0.2525 to 0.1685; SAM from 0.4137 to 0.0403), and the supervised UNets experienced 

F1 Score reductions of 20–40%. This reflects the increased difficulty of segmenting fragmented floes and 510 
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ambiguous SAR textures in the MIZ. Performance differences across ice regimes align with known physical 

scattering characteristics. In consolidated pack ice (Fig. 7), the smooth backscatter of leads and the high contrast 

between ice and water favour models with strong structural priors (e.g., SAM), whereas in the MIZ (Fig. 8) the 

diffuse, mixed-pixel textures require models that capture fine-grained statistical variation, consistent with observed 

seasonal changes in floe size distributions and fragmentation in Arctic marginal ice zones (Buckley et al., 2024). In 515 

practice, speckle and diffuse SAR boundaries trigger these priors to “close” narrow water features, widening ice 

regions and eroding lead continuity. These results show that SAM relies on smooth object boundaries and 

continuity priors learned from RGB data, which encourage gap filling at the expense of local texture fidelity. 

BYOL, in contrast, maintained sharper water–ice delineation and reduced over-segmentation while preserving 

overall coverage. The improved robustness of UNet (SSL) across these conditions suggests that its pretraining 520 

captured structural invariants in radar backscatter – such as floe continuity and speckle-stable texture – allowing it 

to generalise across both MYI- and FYI-dominated environments. In particular, BYOL’s pretraining on unlabelled 

SAR scenes allows it to internalise textural cues. These results demonstrate that scene-dependent radar backscatter, 

rather than label scarcity alone, underpins the observed performance hierarchy across models.  

Beyond overall accuracy gains, BYOL pretraining for UNet (SSL) reduces FNs – missed detections of sea ice 525 

pixels – relative to the supervised UNet (SL) models. In the MIZ (Scene 2), the BYOL-pretrained UNet (SSL) 

model produced 6.6 million FNs, compared with 12.1 million for the fully supervised UNet (SL) model and 14.4 

million for the UNet (Control), representing a reduction of roughly 45% relative to the latter. These values are 

summarised in the confusion matrices provided in Appendix A. This improvement is visually evident along the 

boundaries of fragmented floes and thin newly formed ice (Fig. 8), where the supervised UNet (SL) often 530 

misclassified low-backscatter regions as open water. UNet (SSL), by contrast, retained these marginal ice features 

as continuous structures, capturing narrow leads, diffuse floe edges, and partially consolidated ice that the 

supervised models failed to detect. Similar trends were observed in the consolidated ice pack, where BYOL 

recovered faint linear leads overlooked by both supervised networks. These reductions in FNs suggest that self-

supervised pretraining can mitigate some class-specific weaknesses in SAR imagery of sea ice. This improvement 535 

corresponds to an increase in recall from 0.517 for the UNet (SL) to 0.737 for the Unet (SSL) in the MIZ, 

confirming its enhanced ability to capture ambiguous or marginal ice.   

The improved performance of UNet (SSL) compared to the other models demonstrates that self-supervised 

pretraining enables the model to learn generalisable spatial and textural representations from unlabelled SAR 

imagery, making it significantly more label-efficient. UNet (SSL) using BYOL, trained on just three labelled 540 

images, matched or exceeded the performance of a fully supervised model trained on more than twice as many 

labels. This provides evidence that UNet (SSL) using BYOL can be effective in low-label regimes. BYOL’s cross-
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view invariance curbs FPs in textured water and preserves boundary structure, whereas SAM’s RGB-trained 

smoothness priors overfill ice in speckled scenes and RF’s pixel-wise decision rule misses spatial context. Most 

FNs in both UNet (SSL) and UNet (SL) outputs occur in low σ⁰ regions, typically associated with thin or melting 545 

ice. Conversely, false positives cluster in bright, rough-water patches where wind or incidence angle effects elevate 

HH returns.   

4.4 Model performance across ice types and HH backscatter ranges  

Fig. 9 shows model performance (MCC) as a function of HH backscatter (σ⁰), computed by pooling 64 × 64 tiles 

within 0.5 dB HH bins. This links segmentation accuracy directly to physical scattering regimes and, by extension, 550 

to dominant ice types within each σ⁰ interval. In the consolidated ice pack (Scene 1), all models exhibited clear σ⁰-

dependent behaviour. SAM performed best in moderately bright regimes (≈ −15 to −14 dB) where floe surfaces 

were smooth and boundaries well defined. UNet (SSL) maintained consistently high MCC across a broader interval 

(≈ −16 to −12 dB), reflecting robustness to speckle and subtle textural variation. At higher backscatter values, 

additional trends emerge. Both UNet (Control) and the Random Forest show a marked increase in MCC between 555 

approximately −12 dB and −9 dB, corresponding to very bright scattering regimes typically associated with rough, 

consolidated ice. Beyond −9 dB, however, performance declines across all models. This suggests that once 

backscatter becomes uniformly high, additional discriminatory information is limited, reducing the effectiveness of 

both learned and hand-crafted features. Conversely, all models exhibit a local increase in performance near the ice–

water transition, where strong contrast in σ⁰ provides a clear separability signal. This behaviour is expected given 560 

the dominance of the ice class and the relative ease of identifying ice in high-contrast regimes, reinforcing that 

gains at the transition are driven primarily by radiometric contrast rather than nuanced structural understanding.  

In the MIZ (Scene 2), where scattering from water, thin ice, and deformed floes overlap, the contrasts between 

models widened. UNet (SSL) outperformed other models between -22 dB and -16 dB with a positive MCC. In this 

region all other models approached random performance (i.e. MCC was around 0) whilst UNet (SSL) performed 565 

consistently better (MCC ~0.2). This reflects the UNet (SSL) encoder’s ability to recognise structural coherence 

and textural relationships that are not tied to radar backscatter alone. SAM’s transferability collapsed above -18 dB. 

Notably, both UNet (Control) and UNet (SL) showed a marked increase in accuracy from −17 dB to around −11 

dB, indicating that bright, high-contrast ice was easier for supervised models to classify, particularly when strong 

training examples were available. UNet (SSL), by contrast, peaked earlier and declined in the high radar backscatter 570 

regions, suggesting that supervised learning benefits more directly from high-contrast labels, while SSL is more 

effective in low-contrast regimes.  
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Overall, the σ⁰-binned results reveal distinct performance trends across scattering regimes:  

• UNet (Control) and UNet (SL) excel in bright, high-contrast scattering regimes, typical of rough multi-575 

year ice or strong ice–water boundaries.  

• UNet (SSL) excels in low to moderate σ⁰ ranges, where scattering is more ambiguous and structural cues 

rather than brightness determine class separability.  

This complementarity suggests that future hybrid approaches—e.g., supervised fine-tuning that explicitly leverages 

SSL-derived representations in high-σ⁰ regimes—may further improve performance, particularly in operational 580 

settings that require robustness across the full range of Arctic scattering conditions.  

5. Discussion  

5.1 Sea ice segmentation with fewer labels  

This study demonstrates that self-supervised learning can significantly reduce the reliance on annotated data for 

accurate SAR-based sea ice segmentation. Among the three UNet variants tested—the baseline UNet (Control), the 585 

fully supervised UNet (SL), and the BYOL-pretrained UNet (SSL)— the BYOL-pretrained encoders i.e. UNet 

(SSL) consistently produced the strongest overall segmentation performance, surpassing the fully supervised UNet 

(SL), the RF baseline, and SAM. Absolute metric values should therefore be interpreted in the context of this 

controlled comparison, as the primary contribution of the study lies in demonstrating relative performance gains 

under reduced annotation budgets, rather than maximising accuracy on a specific benchmark. However, individual 590 

models still displayed local advantages under certain radiometric conditions. For example, the fully supervised 

UNet (SL) performed best in the high σ⁰ regions where the contrast between ice and water is strongest. 

Furthermore, the improved performance of the BYOL-pretrained UNet (SSL) under limited-label conditions can be 

explained by its ability to extract generalisable structural and textural features from unlabelled SAR imagery. 

Unlike the UNet (Control) and UNet (SL) models, which must learn discriminative features entirely from a small 595 

labelled dataset, the BYOL encoder benefits from pretraining across a wider range of SAR patterns. This enables it 

to capture subtle variations in backscatter associated with sea ice characteristics, such as the roughness differences 

between thin ice and open water or the texture of fragmented floes, even when only a few labelled examples are 

available for fine-tuning. BYOL’s non-contrastive design is also advantageous for SAR imagery, where negative-

pair assumptions break down because visual dissimilarity does not reliably indicate class differences, and 600 

overlapping σ⁰ ranges can make distinct ice types appear similar (Singha et al., 2018). These representational 

advantages of SSL are reflected in the higher MCC of the BYOL model, particularly in the marginal ice zone 

(MIZ), where scattering is more variable. By encoding a broader feature space during pretraining, the model is 
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better able to recognise marginal or low-contrast ice types that the supervised UNet (SL) misses, reducing FNs 

without substantially compromising precision.  605 

Our findings are consistent with a growing body of work demonstrating the value of self-supervised learning for 

satellite image analysis. Ayush et al. (2021) showed that SSL can close almost the entire performance gap with 

fully supervised models for land-use classification on the Functional Map of the World dataset, even surpassing the 

supervised baseline after fine-tuning. Jain et al. (2022) introduced RS-BYOL, a remote-sensing adaptation of 

BYOL using teacher–student distillation and reported that it outperformed models pretrained on benchmark data 610 

sets such as ImageNet (Deng et al., 2009) across multispectral and SAR tasks. Complementing these results, 

Muzeau et al. (2024) demonstrated that SSL can extract stable structural features from SAR using masked Siamese 

Vision Transformers, while Liu et al. (2024) showed that contrastive learning improves SAR scene classification 

under limited labels. Together, these studies highlight the broader potential of SSL for Earth Observation across 

optical, multisensor, and SAR modalities. Our results extend this evidence to the Arctic cryosphere by 615 

demonstrating that non-contrastive pretraining also benefits dense, pixel-level segmentation of sea ice—an 

inherently more challenging task than patch-level classification due to speckle, mixed pixels, diffuse boundaries, 

and overlapping σ⁰ ranges. BYOL’s consistent performance across both consolidated and fragmented ice regimes 

indicates that it’s learned representations capture structural patterns that generalise across scattering conditions, 

providing robustness that supervised models struggle to achieve with limited annotated data.  620 

 

5.2 Improvement on baseline models  

 

The Segment Anything Model (SAM), despite being trained exclusively on natural RGB imagery, achieved 

surprisingly high performance in the consolidated ice pack, but this apparent strength in structured scenes did not 625 

generalise to the MIZ. This scene-dependent performance is consistent with the findings of Shankar et al. (2024), 

who observed similar behaviour when testing SAM across glaciological features and remote sensing modalities. 

They reported that while SAM performed well on clear, object-like features such as glacier termini and icebergs in 

open water, its accuracy declined markedly in mélange, crevassed terrain, and noisy SAR imagery—particularly 

without prompt optimisation or domain-specific tuning. Wallace et al. (2025) reached a similar conclusion for 630 

centimetre-resolution UAV imagery of glacier crevasses, showing that off-the-shelf SAM and SAM 2 models 

provide only moderate segmentation skill and argued that domain shift and complex ice-fracture patterns require 

targeted fine-tuning or few-shot adaptation before such models can be relied on operationally. Their results and 

ours highlight that SAM’s transferability to cryospheric imagery depends critically on scene structure, whereas 
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BYOL’s self-supervised pretraining yields representations inherently adapted to the statistical properties of radar 635 

backscatter.  

In contrast, the Random Forest (RF) model performed poorly in both test scenes, with MCC values reaching as low 

as 0.0352 in the consolidated ice pack case (Scene 1; Table 2 and Fig. 7). Although the model was trained on a 

range of SAR-relevant features, including polarisation ratios, edge filters, and texture measures, it was unable to 

learn spatial or contextual dependencies beyond the immediate pixel neighbourhood. This limitation is well 640 

documented in the remote sensing literature. Sinha et al. (2019) demonstrated that RF-based models are highly 

sensitive to spatial autocorrelation in training data and tend to regress towards the mean in the absence of strong 

global spatial patterns. Their findings showed that RF models often underestimate extremes and fail to preserve 

boundary integrity when applied to geospatial prediction tasks, particularly when the spatial structure of the input 

data varies across scales. This behaviour is consistent with our results, where the Random Forest produced over-645 

smoothed boundaries and in-filled open water, reflecting the same tendency to lose fine-scale spatial structure under 

variable scattering conditions. These results show the limitations of classical machine learning methods for dense 

prediction tasks on spatially complex, noisy data such as SAR imagery (Sinha et al., 2019). In addition, our RF 

predictions over-smooth floe edges and infill water between closely spaced floes, inflating recall and depressing 

precision; the result is high F1, driven by class dominance, but very low MCC once FPs and TNs are accounted for.  650 

The Random Forest's inflated F1 Score, despite its poor visual performance, underscores the limitations of single-

metric evaluation in imbalanced segmentation tasks. Its high recall and class dominance artificially boost F1, yet its 

MCC remains low, and its predictions lack spatial coherence. This result reinforces the need to combine visual 

inspection, spatial metrics, and balanced indicators like MCC in future remote sensing evaluations.  

 655 

5.3 Comparison to other self-supervised approaches  

Alternative contrastive self-supervised methods such as SimCLR (Chen et al., 2020) and MoCo (He et al., 2020) 

learn by maximising agreement between augmented views of the same image (positive pairs) while pushing apart 

views from different images (negative pairs). SimCLR relies on very large batch sizes to ensure many negatives are 

available at once, whereas MoCo uses a dynamic memory queue to provide a larger, more consistent set of 660 

negatives across batches. However, these approaches are challenging to scale to remote-sensing imagery, where 

large spatial dimensions (typically 512–1024 pixels rather than the 224 pixels used in ImageNet) and multi-channel 

inputs (e.g. HH, HV, VV, or optical stacks) inflate memory requirements and constrain batch size. This limitation is 

well recognised in the literature. For example, Alosaimi et al. (2023) showed that high-resolution remote-sensing 

scenes make contrastive training inefficient under few-shot regimes, and Piao et al. (2023) identified GPU memory 665 
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as a fundamental bottleneck for large-batch contrastive learning. Consequently, frameworks like SimCLR, which 

depend on large negative pools, are less suitable for SAR, whereas non-contrastive approaches such as BYOL are 

naturally more efficient and stable under limited-memory conditions.  

In the context of remote sensing, Jain et al. (2022) demonstrated that a BYOL-based distillation model (RS-BYOL), 

trained on VV–VH polarised SAR and multispectral imagery, outperformed ImageNet-pretrained baselines on land-670 

cover classification and segmentation tasks. Their results confirm that non-contrastive self-supervised methods can 

learn invariant features from remote-sensing data without labelled supervision. Our findings extend this principle to 

Arctic sea ice imagery, showing that similar invariance mechanisms improve segmentation where brightness 

overlap and texture ambiguity are common. Whereas Jain et al. (2022) used cross-modal information to enrich their 

representations, the present work demonstrates that comparable robustness can be achieved through SAR-only 675 

pretraining when paired with physically consistent augmentations and dual-polarised inputs. Recent theoretical 

work further supports this interpretation. Garrido et al. (2023) showed that contrastive and non-contrastive 

frameworks share similar underlying mathematical foundations, suggesting that the specific loss formulation—that 

is, the mathematical objective used to measure and minimise the difference between representations—may be less 

critical than the overall network architecture and training dynamics. Furthermore, Nguyen et al. (2023) proposed 680 

Dimensional Contrastive Learning (DimCL), which enhances feature diversity within learned embeddings; when 

applied to BYOL, it improved representation robustness under limited supervision. These findings align with our 

results, where feature diversity learned through augmentation and spatial invariance translated directly into stronger 

segmentation consistency across distinct ice regimes.  

5.4 Implications for sea ice monitoring  685 

Our results show that comparable sea ice segmentation performance can be achieved using only three labelled 

Sentinel-1 scenes, offering a scalable route toward automated sea ice monitoring. Self-supervised pretraining 

enables models to learn directly from the vast archives of unlabelled SAR imagery collected by satellites such as 

Sentinel-1 ERS-1/2, RADARSAT and more, reducing dependence on manual annotation and improving temporal 

coverage. Compared with traditional supervised approaches (Park et al., 2020; Khaleghian et al., 2021; Huang et 690 

al., 2024), this allows encoders to be trained once on generic SAR patterns and then adapted to tasks such as lead 

detection, ice-edge tracking, or floe-size mapping with minimal supervision. The demonstrated advances in label-

efficient segmentation and self-supervised SAR pretraining could aid operational ice services and forecasting 

centres by providing more consistent, high-resolution inputs for data assimilation and climate analysis. Maritime 

users would also benefit by receiving finer delineation of leads and detailed mapping of marginal ice zones, which 695 

can support route planning, optimise navigation windows, and reduce risk in hazardous ice conditions.  
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Although the findings are robust across both test scenes, they reflect the scope of the present data set and 

experimental design. First, the pretraining dataset is modest and geographically concentrated in the CAA, 

potentially biasing the learned representations toward regional scattering regimes and incidence-angle distributions. 

Second, we treat segmentation as binary (ice vs. water), applying a conservative MIZ rule and excluding sub-pixel 700 

and very narrow leads (<~200 m at 80 m resolution); this simplifies evaluation but suppresses ice-type variability 

that is operationally relevant. Third, the 80 m ground-range resolution of the Sentinel-1 EW product limits the 

retrieval of fine-scale ice structures such as narrow leads, brash ice, and melt ponds. These features are often 

smaller than a pixel, meaning that backscatter values represent mixed scattering from both ice and water. Such 

mixed pixels introduce ambiguity and reduce the apparent sharpness of boundaries, which likely constrains 705 

maximum segmentation accuracy even for well-trained models.  

Future work should look to extend the framework developed in this paper beyond binary segmentation to multi-

class ice mapping, distinguishing between thin ice, first-year ice, multi-year ice, melt ponds, and open water. 

Furthermore, expanding SSL pretraining to multi-year, multi-sensor archives and incorporating temporal coherence 

would move this approach closer to near-real-time, large-scale Arctic sea ice monitoring – linking research-grade 710 

segmentation to practical, operational decision-making. Importantly, modern UNet-based frameworks, such as the 

one used here, can process complete Sentinel-1 scenes in only a few seconds once trained, meaning that improving 

label efficiency upstream directly translates into faster, more consistent downstream mapping over vast Arctic 

regions. Integrating such SSL-based segmentation within data-driven forecasting systems (e.g. ICENet; Andersson 

et al., 2021) or as enhanced observational inputs for physical sea-ice and coupled ocean–ice models would bridge 715 

representation learning and process understanding, including data-driven surrogate models of sea-ice state variables 

such as thickness (Durand et al., 2024), supporting both scientific analysis and operational Arctic sea ice 

monitoring. UNet-based segmentation produces spatially complete, gridded ice–water fields from SAR imagery 

that can be used directly as sea ice concentration or ice-state inputs in forecasting systems, meaning that improved 

segmentation quality translates into more accurate initial ice fields for prediction, consistent with evidence that 720 

assimilating satellite-derived sea ice concentration improves seasonal forecast skill (Zhang et al., 2021)  

6. Conclusion  

This study demonstrates that self-supervised learning, specifically Bootstrap Your Own Latent (BYOL), can 

substantially reduce reliance on labelled data for sea-ice segmentation from Sentinel-1 SAR imagery. A UNet 

encoder pretrained with BYOL achieved superior performance to fully supervised and classical approaches while 725 

using less than half the annotated data. In a consolidated ice pack scene, the BYOL-pretrained model reached an F1 
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score of 0.9802 and MCC of 0.4389, exceeding both the fully supervised UNet trained on seven labelled scenes (F1 

= 0.9283, MCC = 0.2525) and the control model trained on three (F1 = 0.7747, MCC = 0.1338). In the more 

challenging marginal ice zone, BYOL again performed best, achieving F1 = 0.8449 and MCC = 0.2087, compared 

with 0.6812/0.1685 for the supervised UNet and 0.5981/0.1449 for the control. These results confirm that BYOL 730 

pretraining substantially enhances segmentation accuracy and generalisation under limited-label conditions, 

outperforming both conventional deep learning and classical machine-learning models such as Random Forest 

(MCC ≤ 0.035) and the SAM foundation model in the marginal-ice scene (MCC ≈ 0.040). In contrast, SAM 

performed strongly in the consolidated-ice scene (MCC ≈ 0.414) but failed to generalise to more complex radar 

environments. These results show that self-supervised representation learning can perform well even with limited 735 

annotated data.  

 By pretraining directly on SAR imagery without negative pairs, the BYOL framework mitigates many of the 

limitations of contrastive methods for radar data, such as the difficulty of defining semantically meaningful 

dissimilarities. The performance differences observed across scenes can be interpreted in terms of the physical 

properties of radar backscatter in sea ice. In the consolidated ice pack, strong σ⁰ contrast between bright, deformed 740 

MYI and the darker open-water background provides clear discriminatory cues, enabling all deep-learning 

models—including SAM—to perform relatively well. By contrast, the marginal ice zone contains thin ice, slush, 

brash, and small floes whose σ⁰ values frequently overlap with rough water, producing ambiguous or low-contrast 

signatures. These mixed scattering mechanisms reduce brightness separability and create diffuse boundaries, 

leading the supervised UNet and SAM to fragment continuous ice or misclassify rough water as thin ice. The 745 

BYOL-pretrained encoder, however, leverages structural invariants learned from unlabelled SAR scenes—such as 

floe continuity, lead geometry, and speckle-stable texture—to maintain segmentation coherence even when 

intensity-based cues are unreliable. In practical terms, this allowed BYOL to correctly identify thin, low-backscatter 

ice and preserve floe boundaries in regions where σ⁰ differences alone were insufficient for supervised or classical 

methods. The use of SAR-specific augmentations and CRF post-processing further improved spatial coherence, 750 

helping to recover fine-scale ice features while suppressing speckle and noise.  

Overall, this work contributes to the growing body of label-efficient deep learning applied in remote sensing and 

demonstrates that self-supervised pretraining offers a practical, scalable solution to the annotation bottleneck in 

Arctic sea ice monitoring. While promising, our approach remains limited by the size and diversity of the 

pretraining data set, and future work should explore scaling BYOL to larger, geographically and temporally varied 755 

SAR archives. Extension to multi-class ice type segmentation and the incorporation of domain adaptation strategies 

may further enhance generalisation to new sensors and conditions. As SAR data volumes continue to grow, 
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approaches like BYOL hold considerable promise for improving the accessibility and robustness of sea ice mapping 

in support of climate research and safe navigation in polar regions.  

 760 

Figures 

Figure 1. Spatial distribution of labelled Sentinel-1 SAR scenes used in this study. 

The main panel shows the extent of manually labelled segmentation overlays across the Canadian Arctic Archipelago 

(CAA) and adjacent Arctic Ocean. The background represents daily sea-ice concentration on 1 February 2025 from the 765 

EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) Northern Hemisphere product (OSI SAF, 

2025). The inset map provides Arctic-wide context, showing the location of the main panel as a red footprint outline.  
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770 
Figure 2. Comparison of Sentinel-1 SAR imagery and corresponding sea-ice labels across three datasets. Panels (a–c) show 

Sentinel-1 SAR backscatter for (a) this study, (b) the AI4Arctic Sea Ice Challenge dataset, and (c) the MOSAiC-based 

dataset. Panels (d–f) show the corresponding labels for (d) this study, (e) AI4Arctic, and (f) MOSAiC. Labels in this 

study (d) are manually annotated at pixel level for a binary ice–water classification. AI4Arctic labels (e) are derived from 

operational ice charts and exhibit spatial generalisation consistent with regional mapping objectives, while the MOSAiC 775 
labels (f) are generated using a convolutional neural network and focus on lead structures within the central Arctic 

Ocean. The figure highlights differences in label provenance and spatial granularity that reflect the distinct objectives of 

each dataset and motivate the use of manually annotated pixel-wise labels for controlled model comparison under 

limited-label conditions. 
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Figure 3. Overview of the Model Comparisons.  
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Figure 4. Simplified schematic of the modified UNet++ architecture used for SAR sea-ice segmentation. Blue boxes 785 

represent encoder blocks that progressively reduce spatial resolution, orange boxes represent decoder blocks. Blue 

arrows indicate skip connections, orange arrows denote the main feed-forward path through convolution and 

upsampling operations. The bottleneck (64 × 64) includes a Channel Attention Module (green box). Numbers indicate 

spatial resolution at each stage. Intermediate nested decoder layers of the UNet++ structure are omitted for clarity. Grey 

boxes denote the locations of intermediate nested decoder pathways in the full UNet++ architecture, which are not shown 790 

explicitly for clarity. 
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Figure 5. Example BYOL encoder feature visualisation. (a) An augmented HH input with (b) the corresponding encoder 

feature mean, and (c) standard deviation from the deepest UNet encoder layer (64 × 64). This 1024 × 1024 patch 

represents approximately 82 × 82 km of the sea-ice surface. 
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Figure 6. Example of BYOL encoder feature consistency across augmented views. 

(a) Augmented View 1 (HH channel) and (b) its corresponding encoder mean-feature map. 

(c) Augmented View 2 (HH channel) and (d) its corresponding encoder mean-feature map. Higher mean values in (b) 

and (d) indicate stable, high-activation features shared across both views, showing that the encoder has learnt invariant 825 

spatial structures such as floe continuity and lead geometry despite differing augmentations. 
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Figure 7. Scene 1 (Consolidated Ice Pack). Comparison of ice-water segmentation across models for the test scene. Panels 

show: (a) Sentinel-1 HH σ⁰ image, (b) ground-truth binary mask, (c) UNet (Control; 3 labelled scenes), (d) UNet 

(SSL)with BYOL pretraining (3 labelled scenes), (e) UNet (SL; 7 labelled scenes), (f) Random Forest, and (g) SAM (zero-830 

shot). White denotes sea ice and black denotes open water.  
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Figure 8. Scene 2 (Marginal Ice Zone). Comparison of ice–water segmentation across models for the test scene. Panels 

show: (a) Sentinel-1 HH backscatter σ⁰ (b) ground-truth binary mask, (c) UNet (Control; 3 labelled scenes), (d) UNet 

(SSL) with BYOL pretraining (3 labelled scenes), (e) UNet (Supervised; 7 labelled scenes). White denotes sea ice and 835 

black denotes open water. 
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Figure 9. Model performance as a function of HH backscatter (σ⁰, dB) for (a) Scene 1 (consolidated-ice scene) and b) Scene 2 (MIZ 

scene). 840 
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Appendices 

Appendix A 

Confusion matrices for Scene 1. 

Table A1. Confusion Matrix for Scene 1 Supervised learning model 845 

 Predicted Water Predicted Ice 

True 

Water 

584780 (57.3%) 436037 (42.7%) 

True Ice 3291105 (12.9%) 22202629 (87.1%) 

Table A2. Confusion Matrix for Scene 1 BYOL model 

 Predicted Water Predicted Ice 

True 

Water 

438342 (42.9%) 582475 (57.1%) 

True Ice 589753 (2.3%) 24903981 (97.7%) 

Table A3. Confusion Matrix for Scene 1 Random Forest model 

 Predicted Water Predicted Ice 

True 

Water 

25989 (2.5%) 994828 (97.5%) 

True Ice 210615 (0.83%) 25283119 (99.17%) 

Table A4. Confusion Matrix for Scene 1 Control model 

 Predicted Water Predicted Ice 

True 

Water 

852732 (83.5%) 168085 (16.5%) 

True Ice 12623265 (49.5%) 12870469 (50.5%) 

Table A5. Confusion Matrix for Scene 1 SAM model 

 Predicted Water Predicted Ice 

True 

Water 

291147 (28.5%) 729670 (71.5%) 

True Ice 162581 (0.64%) 25331153 (99.36%) 

 850 
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 855 

Appendix B 

Table B1. Confusion Matrix for Scene 2 Supervised learning model 

 Predicted Water Predicted Ice 

True 

Water 

808007 (95.8%) 35647 (4.2%) 

 12114113 (48.3%) 12978850 (51.7%) 

Table B2. Confusion Matrix for Scene 2 BYOL model 

 Predicted Water Predicted Ice 

True 

Water 

668162 (79.2%) 175492 (20.8%) 

True Ice 6609154 (26.3%) 18483809 (73.7%) 

Table B3. Confusion Matrix for Scene 2 Random Forest model 
 

Predicted Water Predicted Ice 

True 

Water 

1538 (0.18%) 842116 (99.82%) 

True Ice 4041 (0.016%) 25088922 (99.984%) 

Table B4. Confusion Matrix for Scene 2 Control model 860 
 

Predicted Water Predicted Ice 

True 

Water 

822784 (97.5%) 20870 (2.5%) 

True Ice 14379484 (57.3%) 10713479 (42.7%) 

Table B5. Confusion Matrix for Scene 2 SAM model 

 Predicted Water Predicted Ice 

True 

Water 

49091 (5.8%) 794563 (94.2%) 

True Ice 581740 (2.3%) 24511223 (97.7%) 
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