
TOAD v1.0: A Python Framework for Detecting Abrupt Shifts and
Coherent Spatial Domains in Earth-System Data
Jakob Harteg1,2, Lukas Röhrich1, Kobe De Maeyer3, Julius Garbe1, Boris Sakschewski1, Ann
Kristin Klose1,4, Jonathan F. Donges1,4,5, Ricarda Winkelmann1,2,4, and Sina Loriani1

1Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Telegrafenberg A 31, 14473 Potsdam,
Germany
2Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
3Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
4Department Integrative Earth System Science, Max Planck Institute of Geoanthropology, Kahlaische Strasse 10, 07745 Jena,
Germany
5Stockholm Resilience Centre, Stockholm University, Albanovägen 28, SE-106 91 Stockholm, Sweden

Correspondence: Jakob Harteg (jakob.harteg@pik-potsdam.de) and Sina Loriani (sina.loriani@pik-potsdam.de)

Abstract. Large-scale, nonlinear, abrupt, and potentially irreversible transitions in major Earth-system components are becom-

ing increasingly likely under human pressures, with far-reaching consequences for ecosystems, climate stability, and human

societies. Yet detecting and comparing such transitions across Earth System Model ensembles remains fragmented and incon-

sistent, hindering systematic assessment of tipping-point risks.

Here we present the first release of the Tipping and Other Abrupt events Detector (TOAD v1.0), an open-source, user-5

oriented Python framework for detecting abrupt changes in gridded Earth-system data. TOAD implements a modular three-

stage pipeline consisting of 1) grid-level abrupt shift detection, 2) spatio-temporal clustering of co-occurring changes, and 3)

consensus synthesis to identify statistically robust regions across ensemble members, variables, models, or methodological

configurations and quantifies agreement in transition timing. The framework addresses key practical challenges of large-scale

spatio-temporal clustering on geographic grids and provides diagnostic statistics and visualisation tools. Detection, cluster-10

ing, and synthesis algorithms can be flexibly exchanged, supporting systematic method comparison and extensibility. TOAD

functions as a data-introspection tool that reveals potentially tipping-relevant dynamics across spatial and temporal scales for

subsequent, process-based analysis.

We apply TOAD to a synthetic benchmark, domain models of the Antarctic Ice Sheet and the global terrestrial biosphere, and

a global Earth System Model ensemble of the North Atlantic Subpolar Gyre. Together, these demonstrations illustrate TOAD’s15

applicability across diverse systems and establish a structured foundation for investigating where and when potentially tipping-

relevant changes occur and for quantifying associated uncertainties, supporting coordinated assessment efforts such as the

Tipping Points Modelling Intercomparison Project (TIPMIP).

1

https://doi.org/10.5194/egusphere-2026-356
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



1 Introduction

Major Earth-system components—such as the Greenland and Antarctic ice sheets, the Atlantic Meridional Overturning Circu-20

lation, the Amazon rainforest, and boreal forests—can undergo large-scale, often abrupt, and potentially irreversible changes

once critical thresholds are exceeded, often with grave consequences for nature and human societies (Lenton et al., 2008;

Armstrong McKay et al., 2022). Such systems are commonly referred to as tipping elements, and the thresholds at which

they transition as tipping points. These transitions are typically driven by positive feedbacks that amplify initial perturbations

and lead to self-sustained dynamics (Levermann et al., 2012). Together with other destabilising drivers such as deforestation25

(Lovejoy and Nobre, 2018) and pollution (Bollasina et al., 2011), continued global warming increases the risk of crossing such

tipping points (Lee et al., 2021). Current climate and energy policies imply a median warming of approximately 2.7 ◦C above

pre-industrial levels by 2100 (Hausfather, 2025), placing the climate system within the risk range of multiple tipping elements

(Armstrong McKay et al., 2022).

Despite broad agreement that tipping risks are increasing under anthropogenic forcing, large uncertainties remain regarding30

the critical thresholds, timescales, interactions, and impacts of these dynamics, largely due to observational gaps, incomplete

process understanding, and structural differences among models (Lee et al., 2021). Addressing these uncertainties has been

identified as a key research priority for the upcoming generation of coordinated climate model experiments, including within

the Coupled Model Intercomparison Project (CMIP), and has motivated the Tipping Points Model Intercomparison Project

(TIPMIP)—the first multi-model intercomparison effort explicitly focused on tipping dynamics through targeted experiments35

across Earth-system components and model classes (Dunne et al., 2024; Winkelmann et al., 2025). This creates a clear need

for dedicated analysis tools capable of detecting and comparing abrupt changes across heterogeneous model ensembles.

Here, we present the first public release of the Tipping and Other Abrupt events Detector (TOAD v1.0): a modular, open-

source Python framework for systematic detection and analysis of abrupt changes in gridded Earth-system data. TOAD provides

a unified, reproducible pipeline for grid-level abrupt shift detection, spatio-temporal clustering, and ensemble synthesis. While40

developed in the context of TIPMIP, it is generally applicable to any multi-model efforts such as CMIP or on individual,

gridded datasets. The framework features a fully modular, plug-and-play architecture for both shift detection and clustering,

allowing users to flexibly select or substitute methods at each stage of the pipeline. It incorporates equal-area regridding to

reduce polar bias, a unified (x,y,z, t) Euclidean embedding for consistent spatiotemporal distance calculations across different

grid types, and consensus clustering based on sparse co-association matrices to identify robust spatial regions of agreement45

across models, variables, ensemble members, and parameter choices. For each consensus cluster, TOAD offers statistics such

as the mean time (or forcing level) at which the shift occurs, and its spread across ensemble members or models. By tuning

timescales, sensitivities, or clustering settings, users can investigate complementary perspectives on their data.

TOAD is designed to support a set of core scientific questions central to tipping-point research. It identifies where abrupt

changes emerge by delineating spatially coherent domains of co-occurring shifts, and when these transitions occur along a50

forcing trajectory. When the independent axis represents, or can be mapped to, an external forcing variable (e.g. global mean

temperature), the spread in shift timing across ensemble members provides a first-order estimate of the forcing range over
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which such transitions manifest, thereby enabling a first quantification of uncertainty. TOAD can also be extended to detect

reversibility under reversed forcing phases, thereby supporting systematic hysteresis assessments. More broadly, TOAD outputs

provide a structured basis for downstream analyses: cluster masks supply spatial constraints for testing early-warning indicators55

(Dakos et al., 2024) and diagnosing feedback processes in other variables, help reveal tipping dynamics at both large and small

scales, facilitate transparent comparison of tipping behaviour across models and scenarios, and can inform impact-focused

studies by linking identified tipping regions with socio-ecological or sectoral datasets. By enabling the systematic detection

of abrupt shifts across different variables and regions, TOAD outputs also provide a foundation for analysing interactions and

potential cascade pathways between tipping elements (e.g. Högner et al., 2025). In this way, TOAD aims to provide not only a60

detection tool, but a foundation for a broader, integrated assessment of tipping dynamics and their consequences.

To avoid ambiguity, we clarify TOAD’s scope. TOAD is a data-driven framework for detecting abrupt shifts, not a diagnostic

tool for identifying tipping points in the dynamical-systems sense (i.e., analysis of bifurcations, loss of stability, or irreversibil-

ity). “Abrupt shifts” are operationally defined by the chosen detection algorithm—the default method in TOAD v1.0 being

ASDETECT (Boulton and Lenton, 2019), which identifies anomalously large gradients in time or forcing space. Throughout65

this paper, “abrupt” therefore refers to changes that are rapid compared to background variability at the grid-cell scale, and

abrupt shifts may occur on very different timescales depending on the system under consideration. Although tipping points

motivate TOAD’s development, determining whether a detected shift constitutes a genuine tipping process requires additional

system-specific analysis.

Against this background, several approaches have been developed to detect abrupt or nonlinear changes in spatio-temporal70

climate data. Early efforts involved manual classification of abrupt changes in CMIP5 output by Drijfhout et al. (2015), which

provided foundational evidence for broader synthesis studies such as Armstrong McKay et al. (2022). More recently, semi-

automatic methods based on Canny edge-detection adapted to climate data have been applied to CMIP5 (Bathiany et al., 2020)

and CMIP6 (Terpstra et al., 2025) ensembles. Additionally, system-specific criteria-based procedures have been introduced,

for example, statistical catalogues of abrupt shifts in CMIP6 (Angevaare and Drijfhout, 2025).75

TOAD complements these efforts by providing an integrated, modular pipeline that seamlessly incorporates existing methods

for detecting (e.g. ASDETECT (Boulton and Lenton, 2019)) and clustering (e.g. DBSCAN (Campello et al., 2013)) abrupt

changes, enabling reproducible synthesis of abrupt shifts across model ensembles. TOAD is designed from the ground up

with ease of use and extensibility in mind, offering an end-user-focused framework that is both intuitive to apply and flexible

to extend. In this way, TOAD aims to provide a reusable foundation for abrupt shift detection and multi-model synthesis,80

empowering users to tackle emerging research questions efficiently and transparently.

The remainder of the paper is organised as follows: Sect. 2 outlines the TOAD pipeline and its core algorithms; Sect. 3

demonstrates TOAD on a synthetic dataset with known abrupt shifts, and then on three different systems: the Antarctic Ice

Sheet, global vegetation carbon dynamics, and ocean mixed-layer depth in a multi-member Earth system model ensemble;

Sect. 4 discusses limitations and provides an outlook on future developments; and Sect. 5 summarises TOAD and its role in85

the context of TIPMIP and other ensemble-based assessments of abrupt and nonlinear Earth-system dynamics.
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2 Methods

2.1 Architecture

TOAD implements a three-stage analysis pipeline that (1) detects abrupt shifts at the grid-cell level, (2) performs spatio-

temporal clustering to identify regions of dynamically coherent change, and (3) aggregates these across models, variables,90

ensemble members, or method parameters. The main parts of the pipeline are illustrated in Figure 1, while a full flowchart is

provided in Supplementary Figure B2.

TOAD is built on xarray (Hoyer and Hamman, 2017) for seamless integration with standard Earth-system data formats and

supports both regular and irregular latitude–longitude grids, as well as Cartesian grids. TOAD automatically detects grid type

and adapts preprocessing and clustering routines accordingly (more details in Sect. 2.3). It accepts either xarray.Dataset95

objects or paths to NetCDF files, with input data structured as a 3D array with two spatial dimensions and one temporal

dimension (future work may include support for three spatial dimensions). Importantly, the temporal dimension can also be

used to represent a forcing variable or bifurcation parameter, allowing TOAD to be applied to a wide range of systems.

The framework follows an object-oriented design centred on the main TOAD class, which serves as the user interface for

all operations. Each analysis stage automatically adds new variables to the dataset and preserves metadata through xarray100

attributes. Custom shift detection and clustering methods can be integrated by subclassing the corresponding module, enabling

domain-specific extensions and method comparison within a consistent workflow.

These design choices make TOAD a flexible and reproducible platform for detecting and clustering abrupt changes in the

Earth system. In the following, we describe each stage of the pipeline.

2.2 Shift detection105

The first stage of TOAD’s workflow identifies abrupt changes independently at each grid cell. For each one-dimensional time

series, TOAD applies a detection method to produce a detection time series: a signal in [−1,+1] whose sign indicates the

direction of change (positive or negative) and whose magnitude reflects its relative abruptness. Grid cells with constant or all-

NaN values are skipped automatically. This per-grid-cell approach means each time series is analysed in isolation, producing

localised “pings” that indicate if and when an abrupt shift might occur within that individual time series, without knowledge110

of the other time series. Users can supply their own detection method by subclassing the ShiftsMethod base class (any

method that produces a detection time series in the required format may be used), or use a built-in method.

TOAD v1.0 includes one built-in detection method, namely a modified version of ASDETECT (Boulton and Lenton, 2019):

a general gradient-based approach for identifying anomalous rates of change without making assumptions about the underly-

ing mechanism. We selected ASDETECT among many existing change point detection algorithms (see Reeves et al., 2007;115

Aminikhanghahi and Cook, 2017, for reviews) because it is fast, robust to noise, and doesn’t require a reference time series

for calibration. An overview of the original method is provided in Box 1. The modification in our implementation addresses a

positional bias in the original centred segmentation scheme, which caused both a discontinuity near the centre of the detection
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Repeat TOAD pipeline for N  models / variables / realisations / methods

Gridded data as  netCDF  e.g. 

ice-thickness, temperature. 

Cluster masks/map

Input data Detect shifts Cluster shifts Output

Consensus clusters

Aggregation 

over N cluster maps
time 
/forcing

time 
/forcing

TOAD Pipeline

Cluster time series

Dataset #2

Dataset #3

Dataset N

Method

Sensitivity

Method

Space/time scaling

Time series

Detection

#0

#1

#n

id

Consensus statistics

Figure 1. Overview of the TOAD analysis pipeline. (A) The input consists of gridded datasets (e.g. temperature, ice thickness) provided as

NetCDF/xarray fields. (B) Each grid cell is analysed independently to detect abrupt shifts in its time series. Shift events are identified as local

peaks in segments of the detection time series that exceed a user-defined threshold. (C) These events are clustered in a unified space–time

embedding, with configurable settings that control space–time scaling, yielding (D) 3D cluster masks for each cluster, which can be collapsed

to a 2D cluster map (shown here), as well as associated time series. (E) Cluster maps from multiple TOAD runs—across models, variables,

ensemble members, or method configurations—are aggregated to produce ensemble-level consensus clusters and summary statistics such as

mean shift time and its spread. The data used for illustration are from Antarctic Ice Sheet simulations by Garbe et al. (2020), further treated

in Sect. 3.

signal and systematic differences in apparent shift magnitude depending on where in the record a shift occurs. This is described

in more detail in Appendix A. We also accelerated the performance of the implementation with numba (Lam et al., 2015).120

TOAD also introduces a timescale parameter for ASDETECT, allowing users to specify the minimum and maximum

segmentation lengths directly in the physical units of the dataset (τmin, τmax). A larger τmin suppresses short-lived noise

without affecting the detection of genuinely fast transitions, while a smaller τmax increases sensitivity and enables the method

to resolve multiple shifts occurring in the same grid cell. In most applications, the default ASDETECT segmentation lengths

provide a reasonable balance, but the timescale parameter offers finer control when needed.125

This stage produces a detection time series for each grid cell. In the subsequent clustering step, abrupt shift events are

extracted as peaks in the detection signal and grouped into spatio-temporal clusters.
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How ASDETECT works

ASDETECT scans across multiple temporal scales to identify points where gradients in the time series deviate significantly from the

background variability. The algorithm proceeds as follows:

1. Divide the time series into non-overlapping, centred segments of length l.

2. Perform linear regression within each segment to estimate gradients.

3. Mark gradients exceeding ±3 median absolute deviations from the median gradient as significant.

4. Repeat steps 1–3 iteratively across segment lengths lmin . . . lmax and normalise the cumulative detection signal by the number of

segment lengths used.

The resulting detection time series yields values in the interval [−1,+1], capturing both the direction and the relative strength of abrupt

changes at each time step. By default, the algorithm uses lmin = 5 time steps and lmax = N/3, where N is the total length of the series.

Setting the minimum segment length to five time steps helps filter out noise-induced artefacts, while limiting the maximum segment length

to one-third of the series ensures sufficient data remains on both sides of any candidate change point for robust detection.

Box 1. Overview of the ASDETECT algorithm (Boulton and Lenton, 2019), the default shift detection method in TOAD v1.0.

2.3 Spatio-temporal clustering

The second stage of TOAD’s workflow groups detected shifts into dynamically coherent regions of change by connecting

individual shift events across space and time. In practice, each shift event is represented as a point in a combined space–time130

coordinate system: for geographic data, this is (x,y,z, t), where (x,y,z) is the Cartesian position on Earth and t is the time

of the shift. Clustering then groups points that are close in both space and time. A resulting cluster therefore represents a set

of grid cells that underwent abrupt change at similar times (or forcing levels) and in spatial proximity. The subsections below

describe (i) how different grids are mapped to a common coordinate system, (ii) how shift events are selected and scaled, (iii)

which clustering algorithms are supported and why HDBSCAN is the default, and (iv) how results and metadata are stored.135

See Figure B2 for a detailed flowchart of the clustering stage.

2.3.1 Coordinate standardisation

TOAD v1.0 supports 2D data fields defined on a variety of grid types, including Cartesian grids, regular geographic grids (lat,

lon), and irregular geographic grids (lat(i, j), lon(i, j)).

For regular latitude–longitude grids, TOAD automatically applies regridding to a Hierarchical Equal Area isoLatitude Pix-140

elation (HEALPix) grid (Gorski et al., 2005), implemented via the Python package healpix (Tessore, 2025), unless the user

disables this step or supplies a custom regridder. HEALPix removes the polar oversampling inherent to regular geographic

grids and produces nearly uniform spatial sampling, improving the consistency of distance-based clustering. Although origi-

nally developed for astronomy, it is increasingly used in Earth system applications (Chang et al., 2023; Karlbauer et al., 2024;

Doblas-Reyes et al., 2025).145
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Since irregular geographic grids are often used specifically for polar regions, HEALPix regridding is not applied automati-

cally for these grids but can be enabled if desired. Purely Cartesian grids are not regridded.

After regridding (when applied), all geographic coordinates are converted to three-dimensional Cartesian positions using

the WGS84 ellipsoid with time appended as a fourth dimension, forming the space (x,y,z, t). Transforming coordinates into

a Cartesian representation enables a unified Euclidean metric that naturally incorporates the temporal dimension and allows150

for fast nearest-neighbour clustering methods. Alternatives such as haversine distances cannot include time, while full spatio–

temporal distance matrices scale quadratically with grid size, making them prohibitively slow or memory-intensive.

Euclidean distances closely approximate great-circle distances at the spatial scales relevant for clustering. The deviation

remains below 3 percent even at 5000 km and is therefore negligible for identifying connected grid-cell neighbourhoods, where

only local spatial relationships determine cluster formation. For datasets already expressed in Cartesian coordinates, no spatial155

transformation is performed; only the time coordinate is appended to form (x,y, t) vectors.

These coordinate transformations affect only the internal point cloud used for clustering; the original dataset stored in the

TOAD object remains unchanged.

2.3.2 Shift selection and scaling

Clustering is performed on a point cloud in the space (x,y,z, t), so we must first select the data points to cluster. A threshold is160

applied to the detection time series to filter out only significant shifts, and then the maxima within each above-threshold interval

are identified and taken as abrupt shift events. This approach captures recurring abrupt events without over-representing closely

spaced detections. How should the threshold value be chosen? This depends on the detection algorithm. For ASDETECT,

synthetic tests on Gaussian white-noise time series (Figure B1 in the appendix) show that small thresholds (|dts|≲ 0.2) label

a large fraction of purely noisy points as shifts, whereas thresholds |dts|≳ 0.5 reduce the false-shift rate to well below 10−4.165

For ASDETECT, we therefore recommend a threshold of no less than 0.5. In applications where only the most pronounced

events are of interest, the threshold can be increased further to remove weaker, less significant shifts.

Since spatial and temporal scales are not directly comparable, TOAD rescales the time dimension to match the mean standard

deviation of the spatial coordinates. This ensures that time and space contribute equally to clustering distances by default. An

additional scaling factor γ can be applied to the time dimension to control the relative weighting of time versus space, following170

a similar approach to Bathiany et al. (2020): larger γ values emphasise temporal proximity and produce clusters tightly grouped

in time, while smaller values prioritise spatial compactness and allow broader temporal spread within clusters. This scaling

factor is set to 1 by default.

2.3.3 Clustering algorithms

TOAD’s clustering module supports any algorithm based on the scikit-learn ClusterMixin interface (Pedregosa et al., 2011),175

meaning that standard methods such as DBSCAN, KMeans, and AgglomerativeClustering can be used directly. Custom clus-

tering algorithms can also be implemented following the same interface.
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The default clustering method in TOAD is HDBSCAN (Campello et al., 2013), a hierarchical density-based extension of

DBSCAN (Ester et al., 1996) accessed through scikit-learn (Pedregosa et al., 2011). A brief explanation of HDBSCAN is

given in Box 2. HDBSCAN is particularly well suited to clustering of abrupt shifts in the Earth system, because it can identify180

clusters of irregular shape and variable density. It handles noise robustly, does not require specifying the number of clusters

in advance, and is deterministic. It requires just one intuitive hyperparameter: the minimum cluster size, which controls the

minimum number of points required to form a cluster. DBSCAN is also useful in cases where you want to enforce a strict

maximum distance between points within a cluster, which is set using the parameter eps. Although TOAD defaults to the

scikit-learn implementation of HDBSCAN, users may benefit from using a faster parallelised variant (e.g. Tutte Institute for185

Mathematics and Computing, 2025) for large datasets.

How HDBSCAN works

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise) extends DBSCAN by identifying clusters of vari-

able density and classifying noise points robustly. TOAD uses the scikit-learn implementation (Pedregosa et al., 2011). The algorithm

proceeds as follows:

1. Compute mutual-reachability distances to emphasise dense regions and separate sparse noise points.

2. Build a minimum spanning tree of the mutual-reachability graph and form a hierarchical cluster tree by progressively removing

edges in order of increasing distance.

3. Condense the hierarchy based on the minimum cluster size to obtain a simplified tree of candidate clusters.

4. Identify stable branches of the condensed tree (clusters with high persistence across distance scales) and select these as the final

clusters; remaining points are labelled as noise.

Box 2. Overview of the HDBSCAN clustering algorithm (Campello et al., 2013), the default clustering method in TOAD v1.0.

2.3.4 Cluster masks and statistics

For each grid cell, TOAD produces a time series of integer labels indicating its cluster membership through time. We refer

to this three-dimensional output (space × space × time) as a cluster mask. Cluster labels are sorted by decreasing cluster

size (grid-cell counts) for comparability, and noise points are labelled as −1. The clustering results are added to the dataset190

within the TOAD object as a new variable, with incrementing suffixes if a variable of the same name already exists. Since all

clustering parameters are stored as xarray variable attributes, clustering results can be easily reproduced and compared across

different parameter settings. A cluster mask can be collapsed along the temporal dimension to form a set of two-dimensional

cluster maps, i.e. a map for each cluster showing the spatial extent, or footprint. Such maps offer a starting point for physical

interpretation, for example analysing local feedbacks, assessing regional stability, or examining early-warning signals in other195

variables.
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Cluster-level statistics—such as mean timing, duration, and spatial footprint—can be computed using TOAD’s statistics

module. The cluster masks form the primary input for the aggregation stage (Sect. 2.4), where clustering patterns are integrated

across models, variables, and ensemble members.

2.4 Aggregation200

Running TOAD on different models, variables, ensemble members, or parameter settings yields a collection of three-dimensional

cluster masks (space× space× time), hereafter referred to as clusterings. The final stage of TOAD addresses how to synthesise

information across multiple clusterings and produce summary outputs. A natural starting point is to consider where clusters

most frequently appear across the input clusterings. TOAD summarises this using the cluster occurrence rate diagnostic: for

each grid cell, it calculates the proportion of input clusterings in which that cell belonged to a cluster. A value of 1 means the205

cell was always clustered; 0 means it was never clustered. This provides a simple indicator of regions where abrupt shifts are

most likely to occur.

However, occurrence alone provides no information about dynamically coherent domains; in other words, it does not reveal

which grid cells consistently cluster together. To address this, TOAD implements a consensus clustering approach inspired

by Evidence Accumulation Clustering (EAC; Fred and Jain 2005). The core idea is to count how often pairs of neighbouring210

grid cells co-occur in the same cluster across all input clusterings, forming a sparse co-association graph. A user-specified

consensus threshold θmin is then applied, and connected components in the resulting graph define the final consensus clusters.

For example, setting θmin = 0.5 requires that at least half of the clusterings agree on the co-association of two neighbouring

cells. The temporal dimension is collapsed before computing co-association, which is necessary for computational tractability:

even with spatial restriction to adjacent grid cells, including temporal connectivity would lead to an intractable number of215

calculations. This design choice means that consensus clusters identify regions of spatial agreement—grid cells that consis-

tently cluster together across input clusterings—without requiring temporal synchronization in the clustering decision itself.

Consequently, multiple abrupt shifts affecting the same or overlapping spatial regions at different times may be merged into a

single consensus domain. However, temporal information is not lost: TOAD computes summary statistics for each consensus

cluster, including temporal properties derived from the underlying shift detections (e.g. mean shift time and spread across input220

clusterings) and spatial properties (e.g. size, centroid), enabling assessment of whether spatial agreement is accompanied by

temporal agreement. The algorithm is described in more detail in Box 3 and a detailed flowchart of the aggregation procedure

is shown in Figure B2 in the appendix.

2.5 Diagnostic visualisation

TOAD provides core plotting tools for visualising both cluster maps and time series. Cluster maps allow spatial inspection225

of cluster assignments with customisable projections. For temporal analysis, TOAD supports plotting individual time series

as well as aggregate statistics (mean, median, interquartile range). Combined plots enable side-by-side views of cluster maps

and their corresponding time series, making it easy to interpret the spatial and temporal behaviour of detected clusters. TOAD

9
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How consensus clustering works

TOAD’s consensus clustering method is inspired by Evidence Accumulation Clustering (Fred and Jain, 2005), adapted for large Earth-

system grids. The standard EAC approach constructs a dense co-association matrix over all point pairs and then applies hierarchical cluster-

ing (typically single-link) to obtain the final clustering. This quickly becomes intractable at typical climate model resolutions, as the number

of point pairs scales quadratically with grid size. The first step toward tractability is therefore to restrict evaluation to spatially adjacent grid

cells only. However, even with this spatial restriction, including the temporal dimension remains computationally prohibitive. For example,

a global 1◦ grid contains 360×180 = 64,800 spatial grid cells. If we then add daily output over one year, we obtain N ≈ 2.4×107 space–

time nodes. Even restricting connectivity to immediate neighbours (approximately eight spatial and two temporal neighbours per node)

results in E ≈ 2.4× 108 edges, which is too large to evaluate in practice. To make the method computationally tractable, TOAD therefore

collapses the temporal dimension before computing co-association. The algorithm proceeds as follows:

1. Construct a sparse spatial adjacency graph connecting each grid cell to its immediate neighbours—via k-nearest neighbours on the

sphere (for geographic grids) or 8-connectivity (for Cartesian grids). For regular latitude–longitude grids, HEALPix regridding is

applied to obtain an equal-area neighbourhood structure. This adjacency graph is built once and reused across all clusterings.

2. For each clustering v and each cluster ID within that clustering, collapse the temporal dimension to form a two-dimensional spatial

footprint: a grid cell is marked as active if it was assigned to that cluster at any point in time.

3. For each clustering v, evaluate each edge (i, j) in the adjacency graph: (i) a vote V
(v)

ij = 1 if cells i and j belong to the same cluster

in that clustering (i.e. both are active in the same cluster’s spatial footprint), and 0 otherwise; and (ii) an availability count A
(v)
ij = 1

if both cells are valid (non-NaN) in that clustering, and 0 otherwise. For example, if one grid cell lies outside the valid data domain

(e.g. ocean for a land-only variable) and is always NaN, that edge is unavailable in that clustering.

4. Compute the consensus weight for each edge as

Wij =

∑
v V

(v)
ij∑

v A
(v)
ij

,

representing the fraction of clusterings in which cells i and j are jointly clustered.

5. Retain edges with Wij ≥ θmin, where θmin is the user-specified consensus threshold.

6. Identify connected components in the resulting sparse graph; these define the final consensus clusters. Unlike standard EAC, which

uses hierarchical clustering on the full co-association matrix and may produce non-contiguous clusters, TOAD’s use of connected

components ensures that each consensus cluster is spatially contiguous (all cells within a cluster are connected through adjacent cells

that meet the threshold). Separate clusters can border each other; if two adjacent cells belong to different clusters, the edge between

them did not meet the consensus threshold.

Box 3. Overview of TOAD’s consensus clustering method, used to aggregate multiple clusterings into a single spatial consensus cluster map.

also reports a range of cluster statistics, including temporal properties (start, end, duration, steepest gradient, and interquartile

ranges) and spatial metrics (spatial footprint size, location).230
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3 Demonstrations

The following examples serve to showcase how TOAD works, illustrate the types of results it produces, and demonstrate

its versatility across diverse Earth system components. These demonstrations are not intended as comprehensive analyses of

the respective systems; rather they provide proof-of-concept applications illustrating TOAD’s methodological capabilities. In-

depth physical interpretation and systematic evaluation of abrupt shifts in each system are left for dedicated follow-up studies.235

3.1 Synthetic data

We first demonstrate that TOAD can recover known abrupt shifts in a simple synthetic dataset. We generate a dataset containing

two sigmoid shift regions with different timings and magnitudes, imposed on a white-noise background (Figure 2A). TOAD

successfully detects the exact grid cells on which the synthetic shifts were imposed (Figure 2B). The corresponding cluster

time series (Figure 2C) clearly show both the early and late transitions, and the shading highlights the shift periods despite the240

background noise. While these synthetic shifts are highly idealised, the experiment demonstrates that TOAD can successfully

detect and recover shift regions when the underlying structure is unambiguous; more systematic benchmarking will be possible

with the forthcoming benchmark suite by Röhrich et al. (forthcoming).
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Figure 2. Synthetic shift experiment demonstrating TOAD’s ability to recover known spatio-temporal transitions. (A) Two synthetic

shift regions generated with white-noise background variability and spatially correlated shift timings. (B) TOAD accurately recovers both

shift regions. (C) Time series from all grid cells belonging to each detected cluster. Shaded regions denote the detected transition windows.

3.2 Antarctic Ice Sheet

The West Antarctic Ice Sheet and parts of the East Antarctic Ice Sheet are widely regarded as climate tipping elements because245

strongly positive, nonlinear feedbacks—notably marine ice sheet instability (MISI) driven by grounding-line retreat and ocean

water undercutting the ice sheet—can drive large-scale, self-reinforcing ice loss beyond critical warming thresholds (Mercer,

1978; Feldmann and Levermann, 2015; Fox-Kemper et al., 2021; Garbe et al., 2020). Here, we apply TOAD to the Antarctic

Ice Sheet hysteresis simulation by Garbe et al. (2020) (Figure 3), in which the Parallel Ice Sheet Model (PISM) was forced

11

https://doi.org/10.5194/egusphere-2026-356
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



with a prescribed global mean surface temperature (GMST) starting from the pre-industrial ice-sheet state and increasing250

incrementally (from 0 to ∼14 ◦C above pre-industrial, at a rate of 10−4 ◦C yr−1) until near-complete deglaciation of the

Antarctic continent is reached. The warming rate is chosen to be sufficiently slow for the ice sheet to remain close to equilibrium

throughout the simulation, so each model state can be interpreted as a quasi-equilibrium configuration at a given GMST. This

structure makes the dataset particularly suitable for identifying dynamical instabilities as abrupt deviations from otherwise

smooth trajectories.255

The analysis targets the ice-thickness field (thk), represented on a 341× 341 grid (with a model grid resolution of 16 km)

across 700 GMST-indexed snapshots. To suppress numerical noise near zero ice thickness, a lower bound of 1 m is imposed

before any detection. Abrupt shifts are first identified using the ASDETECT algorithm (see Sect. 2.2), applying a timescale

window of (0.5◦C, 3.5◦C)—which translates to segment lengths of lmin=24 and lmax=174 simulation steps. Subsequently,

the detected shift events are clustered with HDBSCAN, restricting analysis to negative shifts (i.e., ice-sheet thinning) and using260

a standard shift threshold of 0.5 together with min_cluster_size=100, equivalent to a spatial footprint of 25,600 km2.

Using these parameters, 36 clusters are identified; Figure 3 displays these clusters and presents the trajectories for the

eight largest. Computationally, the full detection and clustering pipeline is fast: ASDETECT (applied to all 116,281 grid

cells) completes in about 1.5 minutes on an Apple M1 Pro laptop, while the HDBSCAN clustering requires ∼10 seconds (or

∼1 second using the accelerated fast_hdbscan implementation (Tutte Institute for Mathematics and Computing, 2025)).265

The eight largest clusters (Figure 3) reveal broad, dynamically coherent regions that undergo abrupt shifts at distinct intervals

along the GMST-warming trajectory. Their spatial footprints form contiguous domains across West and East Antarctica. In

West Antarctica, two of the largest regions shift at low warming levels: cluster #5 spans large parts of the Ross region and

collapses at warming levels between about 1 and 2 ◦C above pre-industrial levels, followed by cluster #2, which encompasses

the Amundsen Sea and Filchner-Ronne Ice Shelf regions and collapses at warming levels of about 2 to 2.5 ◦C above pre-270

industrial levels. In East Antarctica, cluster #0—the largest cluster covering ca. 1.7 million km2 and spanning large parts of the

Aurora Subglacial Basin—collapses at warming levels between about 7 and 8◦C above pre-industrial levels, while cluster #1

spans parts of the central East Antarctic plateau, including the South Pole, and collapses at even higher warming levels of about

8 to 10 ◦C above pre-industrial levels, broadly consistent with the findings of Garbe et al. (2020). Clusters covering multiple

present-day drainage systems are expected and likely reflect the fact that as the ice sheet thins and retreats, its flow structure275

reorganises (Loriani et al., forthcoming). The collapse events are characterised by narrow, temporally coherent transition bands,

indicating synchronised ice loss within each cluster.

Although the simulation evolves close to equilibrium, the imposed warming rate remains finite and sufficiently fast that the

ice sheet cannot fully adjust to each incremental forcing level. As a result, in temperature regimes of particularly high ice-sheet

sensitivity with respect to forcing, the transient simulation differs noticeably from stationary true-equilibrium runs (compare280

curves and triangles in Figure 2 of Garbe et al. (2020)), which is reflected in the transitions appearing gradual rather than

Heaviside-like. In this setting, the detected collapse events correspond to periods of most rapid ice loss and therefore likely

occur after the underlying critical threshold has been crossed, consistent with the concept of committed ice loss under transient

forcing (Coulon et al., 2025).
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Figure 3. Clusters of abrupt ice-sheet thinning detected by TOAD in a quasi-equilibrium Antarctic Ice Sheet warming simula-

tion. (A) Spatial distribution of the eight largest clusters (outlined and labelled) out of 36 detected clusters; remaining clusters are shown

in greyscale for context. The simulation by Garbe et al. (2020) applies a prescribed GMST warming rate of 10−4 ◦C yr−1, such that

each GMST value represents an approximate steady state. Abrupt thinning events are detected with ASDETECT using a GMST-based

timescale window of (0.5, 3.5)◦C, a shift threshold of 0.5, and a temporal weighting γ = 2.0, and are clustered using HDBSCAN with

min_cluster_size=100. (B) Ice-thickness trajectories for all grid cells belonging to each of the eight largest clusters. Shaded boxes

indicate the GMST interval between the first and last detected shift events across all grid cells in each cluster; individual shift times are

defined as the points of maximum shift rate.

3.3 Global terrestrial biosphere285

As a third example, we demonstrate TOAD’s application to vegetation carbon (vegc) output from the Lund-Potsdam-Jena

dynamical global vegetation model with managed Land (LPJmL) v4.0 (Schaphoff et al., 2018). LPJmL integrates plant func-

tional types, fire, hydrology, and biogeochemical dynamics to simulate terrestrial vegetation and carbon-cycle processes. The

transient simulation starts in 1861 with historical land use (Fader et al., 2010) applied until 2005 and held constant thereafter.

Climate forcing follows HadGEM2-ES under RCP8.5 (Taylor et al., 2012; Riahi et al., 2011), bias-corrected following the290

ISIMIP2b protocol (Frieler et al., 2017; Lange, 2018); end-of-century climate variability (2090–2099) is randomly repeated

beyond 2100, and CO2 is fixed from 2020 onward. Our analysis spans 1900–2200.

We apply standard ASDETECT to the vegetation carbon time series and perform clustering using a shift threshold of 0.75,

a time weighting of 3.0, and the DBSCAN algorithm with eps=500 and min_samples=50. While HDBSCAN is also
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applicable, in this case it produced numerous low-density clusters, so instead we opted for DBSCAN. All parameters have295

again been chosen for illustration purposes and can be tuned to emphasise or de-emphasise different aspects of the data.

Figure 4 shows six negative-shift clusters. Major shifts are detected in North and South America and across Eurasia in the

latter half of the 21st century (clusters #0, #1, #2, and #3). Apparent recoveries in some clusters (e.g., clusters #1 and #2) likely

reflect transitions toward new vegetation compositions rather than a return to prior states. This also motivates future extensions

of TOAD to explicitly assess hysteresis and reversibility.300

3.4 North-Atlantic Subpolar Gyre

For our final example, we use TOAD to detect and aggregate abrupt changes in mixed-layer depth (mlotst) in the Subpolar

Gyre (SPG) region, using 10 ensemble members from the fully coupled MPI-ESM1-2-LR model under ScenarioMIP SSP5-8.5

(Wieners et al., 2019).

Prior to analysis, the data is restricted to the Northern Hemisphere, converted to annual means, and temporally smoothed305

using a Gaussian filter with an effective width of 6 years (σ = 6/
√

12). The resulting dataset comprises 86 annual time steps

on the native ocean grid. Each ensemble member is first analysed independently. ASDETECT is applied for shift detection and

DBSCAN for clustering. DBSCAN was chosen after HDBSCAN was found to produce numerous low-density clusters for this

dataset. Only negative shifts are considered, using DBSCAN parameters eps = 400 and min_samples = 25, with the

temporal dimension weighted by a factor of γ = 2.0. Panels A and B in Figure 5 show two representative examples out of the310

10 ensemble members.

After running the analysis for all ensemble members, aggregation is performed as described in Sect. 2.4. Figure 5C shows

the consensus cluster map with a 0% consensus threshold, corresponding to the union of all clusters detected across ensemble

members and revealing numerous clustered regions across the North Atlantic. Some clustered regions at high northern latitudes

likely reflect known low-resolution convection artefacts in MPI-ESM1-2-LR rather than physically realistic deep convection315

sites. Figure 5D shows the consensus cluster map with a 50% threshold, where only two regions remain: cluster #0 in the

Irminger Sea and cluster #1 in the Labrador Sea. These regions are consistent with known deep convection sites in the SPG

(Swingedouw et al., 2021). We verified that the spatial structure of detected clusters is robust to alternative smoothing strategies,

including rolling means and variations in Gaussian filter width. However, detected shift timing is sensitive to the degree of

smoothing: stronger smoothing can move detected shift times later by 1–2 years, consistent with the fact that ASDETECT320

identifies the point of maximum gradient, which smoothing displaces.

TOAD also computes summary statistics for each consensus cluster, including the ensemble-mean shift time and its inter-

ensemble standard deviation. These quantities are obtained by averaging detected shift times across all grid cells and ensemble

members contributing to each consensus cluster. Both clusters shift around year 2027, while the inter-ensemble standard devia-

tion is smaller for cluster #1 (∼ 4 years) than for cluster #0 (∼ 6 years). Figure 5E shows the cluster occurrence rate, defined as325

the fraction of ensemble members in which each grid cell participates in any cluster. It indicates that parts of both the Labrador

and Irminger Sea regions participate in clusters in nearly all ensemble members.
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Figure 4. Abrupt vegetation carbon shifts detected by TOAD in the LPJmL4.0 global vegetation model during simulation years 1900–

2200. The transient simulation starts in 1861 with historical land use applied until 2005 and held constant thereafter, forced by HadGEM2-ES

climate under RCP8.5, bias-corrected following the ISIMIP2b protocol; end-of-century climate variability (2090–2099) is randomly repeated

beyond 2100, and CO2 is fixed from 2020 onward. Abrupt shifts are detected with ASDETECT using a shift threshold of 0.75 and a temporal

weighting of γ = 3.0, and are clustered using DBSCAN with eps=500 and min_samples=50. (A) Spatial footprint of the six largest

clusters of negative shifts in vegetation carbon (vegc) detected between 1900 and 2200. Each cluster represents a region in which abrupt

declines occur. (B) Time series for all grid cells in each cluster, normalised to their own maxima for clearer visual comparison; shaded boxes

mark the temporal range over which the cluster is actively shifting.

Mixed-layer depth is used here as a local indicator of upper-ocean stratification and deep convection activity rather than as a

direct measure of basin-scale circulation strength. It is important to note that Swingedouw et al. (2021) found no Subpolar Gyre

collapse in MPI-ESM1-2-LR under SSP5-8.5 forcing. This does not contradict the results presented here. That study applied330
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strict, basin-scale criteria to identify an actual collapse of the SPG, whereas here we only detect abrupt, spatially coherent shifts

in mixed-layer depth, which may occur without leading to a full Subpolar Gyre collapse.

4 Discussion and outlook

The examples in Sect. 3 serve as proof-of-concept demonstrations that illustrate TOAD’s ability to detect and cluster abrupt

shifts across diverse systems and to synthesise results from multiple ensemble members using consensus clustering. More ex-335

tensive evaluation across different dynamical regimes will be needed to fully assess TOAD’s performance, and proper analysis

of abrupt shifts in these systems will require dedicated investigation beyond the scope of this methodological framework paper.

In the following, we discuss some of the limitations of TOAD v1.0 and potential directions for future development.

TOAD is fundamentally an introspection tool designed to facilitate exploration of abrupt-shift structure across different

parameter settings. Different choices of shift thresholds, temporal weightings, and clustering parameters can produce substan-340

tially different results, each revealing distinct aspects of the underlying shift dynamics. The parameter combinations shown in

this paper yield spatially coherent, interpretable clusters that align with known physical processes, but alternative parameteri-

sations could equally well emphasise different scales, timings, or spatial structures of abrupt change. This parameter sensitivity

is intentional: exploring parameter space allows researchers to assess the robustness of detected patterns and investigate shifts

at multiple scales, making parameter selection an integral part of the analysis workflow. The computationally efficient, object-345

oriented design enables users to quickly test various parameter combinations and compare results.

While manual parameter exploration is valuable, automated approaches may be useful in some contexts. TOAD v1.0 there-

fore provides an experimental cluster-optimisation method that allows for semi-automatic parameter selection. The optimi-

sation backend is Optuna (Akiba et al., 2019), which samples combinations of user-selected parameters such as the shift

threshold, temporal weighting (γ), and method-specific settings like the minimum cluster size. The objective functions are de-350

fined by different cluster scoring functions that reward different aspects of the clustering results, such as spatial autocorrelation,

temporal consistency, nonlinearity, or a combination thereof (De Maeyer et al., forthcoming). However, this feature remains

experimental and has not proven sufficiently robust for routine use across diverse applications, as the choice of appropriate

objective functions and their relative weightings often requires domain-specific knowledge that cannot be easily automated.

TOAD v1.0 currently supports only 2D data fields, not 3D fields that include a vertical dimension. Extending shift detection355

to 3D fields is trivial since detection operates independently on individual grid cells, and the clustering step could readily

accommodate a third spatial dimension by mapping it to the z component in the Euclidean embedding. However, consensus

clustering faces dimensionality constraints: the same computational challenges that prevent temporal structure from being

preserved in consensus clustering (see Sect. 2.4) also impede the inclusion of a third spatial dimension. Developing consensus

clustering approaches that can handle higher-dimensional structures—whether temporal or spatial—is therefore an important360

future direction. Successfully extending consensus clustering to preserve temporal structure would not only enable direct

identification of regions with both spatial and temporal agreement, but would also unlock support for 3D data fields, as the

same algorithmic redevelopment would address both challenges.
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Figure 5. Mixed-layer depth shifts around the Subpolar Gyre detected by TOAD in the MPI-ESM1-2-LR fully coupled Earth system

model. Abrupt shifts are detected with ASDETECT and clustered using DBSCAN with eps=400 and min_samples=25, with temporal

weighting γ = 2.0. Only negative shifts are considered. (A–B) Two representative ensemble members: spatial clusters (left) and time series of

the two largest clusters (right; shaded boxes indicate shift periods). (C) Consensus cluster map with 0% threshold (union of all clusters across

10 ensemble members). (D) Consensus cluster map with 50% threshold, showing regions in the Labrador and Irminger Seas jointly clustered

in at least half of the ensemble members. (E) Cluster occurrence rate (fraction of ensemble members in which each grid cell participates in

any cluster).
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Broadening TOAD’s shift detection capabilities is an important development priority. While ASDETECT performs well

for monotonic, step-like transitions (e.g. ice-sheet retreat or vegetation loss), it is not suited to oscillatory or quasi-periodic365

or chaotic systems such as monsoons or atmospheric circulation regimes, where abrupt changes may manifest as shifts in

variance, frequency, or recurrence structure rather than in the mean state. These limitations reflect the properties of the chosen

default detector rather than an intrinsic constraint of the TOAD framework itself. Recurrence-based approaches (Donges et al.,

2011; Marwan et al., 2009) or machine-learning methods (Huang et al., 2024b) that capture nonlinear dynamical behaviour and

associated transitions therefore represent promising complementary detectors, which could be integrated into TOAD’s modular370

architecture through future community-driven extensions.

Future work will also focus on facilitating essential pre-processing steps for multi-model analyses, including spatial grid

harmonisation and the merging of multiple datasets, either directly within TOAD or through tighter integration with existing

tools. Another important direction is the development of explicit hysteresis diagnostics to assess reversibility under reversed

forcing. In addition, alternative aggregation strategies for synthesising results across multiple models and variables, such as375

those proposed by De Maeyer et al. (forthcoming), represent promising avenues for future development.

TOAD occupies a distinct position within the broader ecosystem of tools for detecting abrupt or nonlinear change in climate

data. Edge-detection approaches (Bathiany et al., 2020; Terpstra et al., 2025) detect sharp transitions in space and time and pro-

vide powerful large-scale multi-model assessments, but do not provide a user-extensible pipeline. System-specific catalogues of

abrupt shifts (Angevaare and Drijfhout, 2025; Drijfhout et al., 2015) provide valuable inventories but rely on variable-specific380

criteria and do not generalise across model components. TOAD complements these efforts by offering a modular pipeline for

abrupt-shift detection and synthesis along with integrated functionality for statistics, plotting, aggregation, and spatial con-

sensus clustering. In this sense, TOAD is not an alternative detection algorithm but an integrating infrastructure capable of

incorporating and comparing different methods. TOAD’s xarray-based design also makes it technically compatible with com-

munity analysis frameworks such as ESMValTool (Eyring et al., 2020), where it could function as a specialised diagnostic for385

abrupt-shift analysis.

A common challenge for these approaches is the lack of systematic evaluation using standardised benchmark datasets. Es-

tablishing such benchmarks, spanning a range of dynamical regimes, is an important next step for the field. Well-designed

benchmarks would enable rigorous and transparent comparison across different detection methods (Röhrich et al., forthcom-

ing)—including future community-contributed algorithms integrated into TOAD as well as methods developed outside the390

TOAD framework—ultimately driving progress through shared standards and more reproducible analyses.

Viewed through the broader scientific questions that motivate TOAD, the framework provides robust answers for where

abrupt changes occur by delineating spatially coherent regions of co-occurring shifts, and a first-order indication of when

such changes manifest along a prescribed trajectory. The interpretation of the latter depends on both the detection method

and on whether the independent axis represents physical time or an external forcing variable. Using ASDETECT, detected395

shift events correspond to periods of maximum rate of change in the analysed time or forcing series rather than to the point

at which system stability is first lost. Only in the idealised limit of true equilibrium experiments with infinitesimally slow

forcing would such events coincide with critical thresholds. In practical applications involving transient simulations and finite
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forcing rates, detected shifts therefore typically lag the underlying critical threshold. A general, system-agnostic estimator of

critical thresholds is thus neither realistic nor necessarily desirable. Instead, abrupt shift times identified by TOAD should be400

interpreted as dynamical diagnostics and may be complemented by additional indicators of transition timing—such as early-

warning signals (Dakos et al., 2024) or machine-learning-based diagnostics of rate-induced tipping (Huang et al., 2024a) or

nonlinear regime change (Donges et al., 2011; Marwan et al., 2009)—which could be analysed jointly with shift detectors such

as ASDETECT.

Together, these considerations illustrate where TOAD already performs robustly and where further methodological devel-405

opment is required. Addressing these points will be essential to ensure that TOAD scales effectively to the multi-model,

multi-variable analyses envisioned in forthcoming tipping-point intercomparison efforts.

5 Conclusion

We have presented the first public release of the Tipping and Other Abrupt events Detector (TOAD v1.0), an open and modular

framework designed to address a central challenge in tipping-point research: the lack of a consistent, transparent, and scalable410

approach for detecting and comparing abrupt shifts in gridded Earth-system data ensembles. By unifying grid-level shift de-

tection, space–time clustering, and ensemble synthesis within a single workflow, TOAD provides the methodological structure

needed for coordinated, reproducible analyses in intercomparison efforts such as TIPMIP (Winkelmann et al., 2025).

The demonstrations across ice-sheet, vegetation carbon, and ocean mixed-layer depth simulations, as well as a synthetic

benchmark dataset, illustrate TOAD’s ability to identify spatially coherent domains of abrupt change. The mixed-layer depth415

example further demonstrates TOAD’s ensemble aggregation capabilities, showing how consensus clustering can synthesise

results across multiple ensemble members. In doing so, TOAD offers structured answers to several core questions in tipping-

point research: it robustly identifies where abrupt changes occur, provides a first-order indication of when these transitions

manifest in the data along a forcing trajectory, and quantifies uncertainty through ensemble spread in shift timing and spatial

footprint.420

A central strength of the framework lies in its flexible, modular architecture and the hyperparameters associated with each

stage of the pipeline. By tuning detection timescales, clustering sensitivities, space–time scaling, or consensus settings, users

can obtain complementary perspectives on their dataset and uncover patterns that would remain obscured under a single

methodological choice. TOAD thus provides not only a unified workflow but also a flexible exploratory environment that

helps reveal the structure and coherence of abrupt changes across models and variables.425

Importantly, TOAD is not intended to yield a single definitive detection for a given dataset. Instead, it is designed as an

introspective analysis tool that allows users to interrogate abrupt-change behaviour across scales. Exploring how detected

patterns vary across parameter choices and scale settings is an integral part of the analysis. Structures that persist across

parameter choices can be identified via consensus clustering and interpreted as robust features of the system. In this sense,

TOAD functions less as a point estimator of tipping behaviour and more as a configurable lens for exploring abrupt-change430
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dynamics across spatial and temporal scales. In its bottom-up approach, it allows users to reveal “hidden” tipping behaviour

that is otherwise obscured by regional averaging (Loriani et al., forthcoming).

TOAD’s outputs further serve as a foundation for downstream analysis. Clusters capture physically meaningful domains

for feedback analysis, early-warning signal evaluation, or multi-variable diagnostics. Ensemble synthesis enables transparent

intercomparison across models and methods, together with systematic quantification of uncertainty across scenarios.435

The framework remains under active development. Key priorities include extending shift detection methods to better capture

nonlinear and oscillatory dynamics, developing systematic benchmark datasets, facilitating multi-model preprocessing (e.g.

spatial harmonisation and dataset merging), and implementing dedicated hysteresis diagnostics. As these capabilities mature,

TOAD will increasingly support comprehensive and comparable assessments of abrupt Earth-system change, such as TIPMIP

and CMIP. TOAD is openly developed on GitHub, and we invite contributions from the community to help address these440

challenges and further expand the framework’s capabilities.

Code and data availability. TOAD is available as open-source software at https://github.com/tipmip-methods/toad, including tutorials and

documentation. The version used in this paper (v1.0.0) is archived on Zenodo at https://doi.org/10.5281/zenodo.18339224. The exact code,

test data, and environment used to generate all figures in the main text are archived separately at https://doi.org/10.5281/zenodo.18339253.

Antarctic Ice Sheet simulation data are from Garbe et al. (2020). MPI-ESM1-2-LR mixed-layer depth data are from CMIP6 ScenarioMIP445
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Appendix A: ASDETECT Bias Correction

The original ASDETECT algorithm, as described by Boulton and Lenton (2019), exhibits positional bias due to its use of a cen-605

tred segmentation approach. As the algorithm creates segments and centres them within the record, it produces a non-uniform

alignment of segment boundaries and thus oversamples particular periods of the time series—most notably the midpoint. This

leads to two major issues: (i) a spurious discontinuity near the centre of the detection signal, and (ii) systematic differences in

apparent shift magnitude depending on where in the record a shift occurs. These effects are illustrated in Figure A1. A fully

unbiased alternative would apply a sliding window for every segment length, but this becomes computationally prohibitive for610

high-resolution datasets. TOAD therefore adopts a more efficient two-sided segmentation scheme: for each segment length, the

series is segmented once from the start and once from the end, gradients from both passes are accumulated, and the detection

signal is normalised by the number of segments covering each time step. We further apply an edge correction to downweight

apparent abruptness near the start and end of the series, where reduced sampling yields less reliable estimates. Together, these

steps remove most positional bias at only twice the computational cost of the original centred implementation, which remains615

available in TOAD for completeness but is not recommended for typical use.

Appendix B: Supplementary Figures
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Figure A1. Comparison of centred and two-sided segmentation schemes applied to synthetic time series with a step-like shift and Gaussian

noise. (A) Input data with a shift before the series centre (vertical dashed line). (B) Detection time series: centred segmentation (orange)

introduces an artificial discontinuity at the centre, while two-sided segmentation (green) yields a smooth peak. (C) Input data with a shift at

the series centre. (D) Detection time series: centred segmentation produces a damped signal that does not reach magnitude 1, while two-sided

segmentation yields a single peak aligned with the true shift.
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Figure B1. False-shift rate of ASDETECT as a function of the detection threshold (|dts|), estimated from Gaussian white-noise time series

for a wide range of window lengths using two-sided segmentation. Even for purely noisy data, small thresholds (≤ 0.1–0.2) flag a substantial

fraction of points as “shifts”, whereas thresholds ≥ 0.5 reduce the false-shift rate below ≈ 0.01%. We therefore recommend |dts| ≥ 0.5 as

a conservative lower bound for the shift-selection threshold when using ASDETECT.
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Figure B2. Detailed overview of the TOAD pipeline. In the shift detection stage, the chosen detector is applied to the input variable var

to produce var_dts, a grid-cell detection time series. In the clustering stage, detected shift events are extracted, optionally regridded to

an equal-area HEALPix grid for geographic datasets, embedded into Cartesian coordinates (x,y,z, t), rescaled, and clustered using the

selected clustering algorithm; cluster labels are then mapped back to the original grid to form var_cluster. The consensus cluster-

ing shown here is an aggregation function that takes multiple cluster maps as input, collapses time, regrids and embeds coordinates into

(x,y,z) space, constructs a k-nearest-neighbour (or 8-connectivity) graph, accumulates a sparse co-association matrix across inputs, ap-

plies a min_consensus threshold, and identifies connected components as consensus clusters. Outputs include a consensus cluster map,

consensus-rate map, and a summary-statistics table. Coloured markers indicate operations that are skipped for non-geographic or irregular

grids.

29

https://doi.org/10.5194/egusphere-2026-356
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.


