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Abstract. Elevated global atmospheric CO2 intensifies the complexity of climate variability and ecosystem productivity, and 

its impact on terrestrial ecosystems carbon cycle remains unclear. Using twelve Dynamic Global Vegetation Models 

(DGVMs) in Trends in land carbon cycle datasets and Global Carbon Budget dataset, we quantified the sensitivity of 

ecosystem productivity-defined as the rate of change in productivity with global atmospheric CO2 growth rate-in East Asia 10 

from 1959 to 2023. Most DGVMs showed net ecosystem production sensitivity as negative, implying a weakening of 

terrestrial carbon absorption capacity in response to elevated atmospheric CO2. By separating East Asia into monsoon and 

non-monsoon regions, we examined the temporal changes in gross primary productivity sensitivity, which has been 

decreasing in both regions since the late 1990s. These productivity responses were primarily controlled by soil moisture 

sensitivity in non-monsoon region, whereas photosynthetically active radiation emerged as the key factor in monsoon region. 15 

Furthermore, the dominance of croplands and woody savannas in monsoon region contributes to regional difference in the 

mechanism associated with vegetation productivity to atmospheric CO2 growth. By considering regional climate systems and 

vegetation characteristics, this study highlights that environmental and structural differences influence the ecosystem 

response to atmospheric CO2 growth. Ultimately, our findings suggest that considering regionally distinct climate-vegetation 

feedbacks is essential for improving the accuracy of global carbon cycle projections under future climate change.  20 

1 Introduction 

Assessing terrestrial ecosystems response to rising atmospheric CO2 is crucial for understanding future vegetation-carbon-

climate feedback. Terrestrial ecosystems act as a major carbon sink, with vegetation absorbing 112-169 PgC/year through 

photosynthesis (Penuelas, 2023; Baldocchi et al., 2016). The carbon absorption through photosynthesis of such vegetation 

varies by region and seasonality (Na and Yeh, 2025; Bi et al., 2022; Ueyama et al., 2024). While ecosystem productivity can 25 

be enhanced by the CO2 fertilization effect as atmospheric CO2 increases in response to climate change, it can also be 

weakened by climate variability such as temperature and respiration (Yun et al., 2022). In particular, East Asia exhibits 

contrasting precipitation patterns and vegetation characteristics across the region (Fu, 2003; He et al., 2022b; Kim and Park, 

2016), where a greater diversity of factors interact to regulate ecosystem carbon exchange. 
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Numerous studies have analyzed regional and temporal variations in gross primary productivity (GPP), i.e., the carbon 30 

uptake by vegetation through photosynthesis in terrestrial ecosystems. While increases in atmospheric CO2 generally 

enhance vegetation productivity through photosynthesis, this effect has been weakening in recent decades (Wang et al., 2020) 

despite that the atmospheric CO2 growth rate (ACGR, hereafter), which is defined as the year-to-year increase in global 

atmospheric CO2 concentration, has rapidly increased (Canadell et al., 2007; Friedlingstein et al., 2024). In addition, the 

strong positive effect of CO2 on GPP has diminished to nearly half since the 2000s, with the extent of this reduction varying 35 

across climate zones (Wang et al., 2024). Another study analyzing decadal-scale changes in factors affecting global GPP and 

vegetation activity found that GPP showed the strongest correlations with photosynthetically active radiation (PAR), 

temperature, and vapor pressure deficit over time, revealing temporal variability in these relationships (Shin et al., 2025; 

Madani et al., 2020).  

In East Asia, links between the East Asian Summer Monsoon and GPP have also been suggested. For example, changes in 40 

atmospheric circulation field, precipitation, and downward solar radiation associated with the East Asian summer monsoon 

result in regional differences in GPP within China (Han et al., 2024). However, research comparing the key environmental 

factors influencing GPP sensitivity-defined as the response of vegetation productivity to variations in the ACGR-between 

monsoon and other regions is not well organized. Building upon these findings, this study investigates the primary drivers of 

changes in GPP sensitivity to ACGR in East Asia.  45 

We provide the sensitivity of terrestrial ecosystem productivity in East Asia to global ACGR using Dynamic Global 

Vegetation Models (DGVMs) in Trends in land carbon cycle (TRENDY) datasets and Global Carbon Budget dataset. By 

contrasting GPP changes in monsoon and non-monsoon regions in East Asia and examining relevant environmental factors 

such as soil moisture (SM) and PAR, we aim to identify mechanisms explaining regional differences in the sensitivity of 

terrestrial ecosystem productivity to global ACGR in East Asia. Understanding these regional differences can improve the 50 

projection of future vegetation-carbon-climate feedback in East Asia. 

2 Data and Methods 

2.1 Atmospheric CO2 growth rate 

We used global ACGR from 1959 to 2023 from the Global Carbon Budget 2024, provided by the US National Oceanic and 

Atmospheric Administration Global Monitoring Laboratory (Lan et al., 2025). Data from 1959 to 1979 are observed by the 55 

Scripps Institution of Oceanography, based on average atmospheric CO2 concentration measured at Mauna Loa and South 

Pole stations (Keeling et al., 1976). Data from 1980 to 2023 are estimated from global averages of multiple stations (Global 

Carbon Project, 2024). The ACGR was calculated as the annual change in atmospheric CO2 concentration, defined as the 

year-to-year difference [GtC yr-1] (Global Carbon Project, 2024; Friedlingstein et al., 2024).  
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2.2 Trends in land carbon cycle datasets (TRENDY) models 60 

The TRENDY dataset, an ensemble of DGVMs, provides estimates of terrestrial carbon sinks and sources (Sitch et al., 2024; 

Friedlingstein et al., 2024). We analyzed TRENDY outputs to identify changes in carbon flux sensitivity within East Asia, 

using 12 DGVMs included in the TRENDY version 13 ensemble (TRENDY v13) (Table 1) conducted for the Global Carbon 

Budget 2024 (Friedlingstein et al., 2024). We examined 8 ecosystem variables from TRENDY under the S3 scenario for 

1959 to 2023, which considers changes of CO2, climate, Land Use and Land Cover Change (Sitch et al., 2024). These 65 

variables include CO2 fluxes (for example, GPP, autotrophic respiration (Ra), heterotrophic respiration (Rh)), water fluxes 

(for example, SM, transpiration, precipitation), and radiation including PAR. PAR was estimated as 0.5 of surface 

downwelling shortwave radiation, and values in W m-2 were converted to μmol s-1 m-2 using relationship 1 J = 4.6 μmol of 

PAR (Li et al., 2018). All datasets were regridded to a 1.0° × 1.0° spatial resolution using bilinear interpolation with the 

Climate Data Operator.  70 

Table 1. Information on the TRENDY v13 model list used in this study. 

 Model Modeling center  Reference 

1 CLASSIC Environment and Climate Change Canada  (Asaadi and Arora, 2021) 

2 CLM6.0 
National Center for Atmospheric Research 

NCAR  
(Lawrence et al., 2019) 

3 E3SM US Department of Energy  (Tang et al., 2023) 

4 EDv3 University of Maryland (Ma et al., 2021) 

5 IBIS McGill University  (Landry et al., 2016) 

6 ISBA-CTRIP 
Météo-France, French national meteorological 

centre  
(Decharme et al., 2019) 

7 JULES 

UK Met Office, Centre for Ecology & 

Hydrology, University of Reading, University of 

Exeter 

(Burton et al., 2019) 

8 LPJmL Potsdam Institute for Climate Impact Research 
(Beer et al., 2007; Rolinski et 

al., 2018) 

9 LPX-Bern University of Bern (Lienert and Joos, 2018) 

10 ORCHIDEE Institut Pierre-Simon Laplace, IPSL (Krinner et al., 2005) 

11 SDGVM University of Sheffield  (Walker et al., 2017) 

12 VISIT The University of Tokyo, NIES, and JAMSTEC (Ito, 2019) 
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2.3 Cloud cover data 

In TRENDY, DGVMs use forcing from the Climate Research Unit (CRU) dataset or from a combined product that 

integrates CRU with the Japanese 55-year Reanalysis (JRA-55) (Friedlingstein et al., 2024; Sitch et al., 2024). Because cloud 75 

cover is not provided in the TRENDY, we additionally used the CRU Time-series version 4.09 dataset to analyze cloud 

cover in this study.  

2.4 Land cover data 

The Moderate Resolution Imaging Spectroradiometer land cover type product is used to describe annual global land cover 

map at 500m spatial resolution (He et al., 2022a; Friedl and Sulla-Menashe, 2022). The dataset classifies each grid cell into 80 

17 land cover classes based on International Geosphere-Biosphere Program schemes (Loveland and Belward, 1997; Zhang 

and Roy, 2017). We analyzed the mean land cover map for 2001 to 2023. If several land cover types appear with the same 

frequency within a grid cell, the type from the most recent year was used. The dataset was regridded to a 0.5° × 0.5° spatial 

resolution, with each grid cell used as the most frequently appearing land cover type within its extent, and no equal 

frequency was found. 85 

2.5 Definition of sensitivity of ecosystem variables to Atmospheric CO2 growth rate 

Using Global Carbon Budget 2024 and TRENDY v13, we focused on assessing the sensitivity of ecosystem variables to 

ACGR from 1959 to 2023, over East Asia (10º-50º N, 90º-150º E). We adopted the methodology to define the sensitivity of 

GPP to global ACGR following (Li et al., 2024). The methods are as follows: First, the long-term trends of annual GPP and 

ACGR were removed to produce detrended time series (Fig. 1a, b). A linear regression was then performed using a 20-year 90 

moving window, with the slope of each regression defined as the sensitivity of GPP to ACGR (Fig. 1c). This represents the 

change in GPP in response to changes in ACGR, and a positive sensitivity indicates that GPP increases with an increase of 

ACGR and vice versa. In contrast, a negative sensitivity indicates either a decrease of GPP with an increase of ACGR or an 

increase of GPP with a decrease of ACGR. A value close to zero indicates a minimal or no response.  
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 95 

Figure 1. Methodological procedure for ecosystem productivity sensitivity to atmospheric CO2 growth. (a) Detrended 

time series of GPP over East Asia from nine TRENDY v13 models. (b) Detrended atmospheric CO2 growth from the 

Global Carbon Budget 2024. (c) Sensitivity of atmospheric CO2 growth and GPP over 20-year moving windows in 

1959-2023. For all panels, see Data and Methods for details.  

 100 

On the other hand, NEP is an important indicator of the carbon sequestration capacity of terrestrial ecosystems (Yuan et 

al., 2023; Zhang et al., 2023) and was defined as GPP minus Ra and Rh [g m-2 day-1].  

𝑁𝐸𝑃 = 𝐺𝑃𝑃 − 𝑅𝑎 −  𝑅ℎ                                                                                                                                                (1) 

PAR is essential energy source for vegetation photosynthesis (Ren et al., 2018; Kalaji et al., 2014), and as it is governed by 

atmospheric conditions rather than ACGR changes, it was analyzed using actual PAR values instead of ACGR sensitivity. 105 

Note that the same method to calculate the GPP sensitivity was applied to obtain the sensitivity of NEP, Ra, and SM in 

response to changes in ACGR. 

3 Results 

3.1 East Asian GPP and NEP relationship with ACGR 

We first analyzed the sensitivity of NEP using each of the 12 DGVMs (Fig. 2a). All models except LPX-Bern simulated 110 

negative NEP sensitivities, suggesting a weakening of ecosystem carbon uptake ability in East Asia as ACGR increases for 

1959-2023. Note that the statistical significance of NEP sensitivity was assessed using the last 20-year (2004-2023) moving 

window to reflect recent ecosystem changes. With these criteria applied, three models showed statistically insignificant 

relationships (p>0.05) or inconsistent signs; consequently, in subsequent analysis, only the nine models simulated as 
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significant were used. The model selection was based on NEP sensitivity, as NEP is an integrated indicator accounting for 115 

both carbon uptake through photosynthesis and carbon release through respiration. Note that the overall results in the present 

study little change when all 12 DGVMs are used.  

Following this selection, we analyzed the spatial distribution of GPP sensitivity in East Asia (Fig. 2b). Within East Asia, 

GPP sensitivity displays a distinct spatial contrast between central-eastern China, Korea, and Japan (Fig. 2b). This suggests 

that the response of ecosystem productivity (i.e., GPP sensitivity) to ACGR is not spatially consistent in East Asia and is 120 

influenced by regional environmental factors. Therefore, we separated East Asian into two regions to investigate the regional 

heterogeneity of ecosystem responses, one is East Asian monsoon region (10º-40º N, 110º-140º E) (Li and Zeng, 2002; 

Jianping and Qingcun, 2003) and the other is non-monsoon region – consisting of northern (41º-50º N, 90º-150º E) and 

western (10º-40º N, 90º-110º E) areas. Although the GPP sensitivity patterns do not perfectly align with the East Asian 

monsoon boundary, the monsoon region generally covers areas where positive sensitivity predominates, whereas the non-125 

monsoon region includes areas with distinctly negative sensitivity. These regional distinctions, related to the monsoon 

system, provide a basis for understanding regional differences in ecosystem responses, reflecting the climatic influences of 

East Asia.  
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Figure 2. (a) Scatter plot of the sensitivity between atmospheric CO2 growth and NEP during 1959-2023, based on 12 130 

models from TRENDY v13. Each scatter represents atmospheric CO2 growth and NEP sensitivity of an individual 

model. Models with statistically significant relationships at the 95% confidence level (from the last 20-year window) 

are outlined in black. (b) Spatial patterns of the sensitivity to atmospheric CO2 growth and GPP over East Asia, 

based on nine TRENDY models ensemble mean during 1959-2023. An x mark denotes statistically significant 

relationships at the 90% confidence level evaluated from the last 20-year window. 135 

 

In Figure 3a, NEP sensitivity in non-monsoon region remained negative throughout the entire period, displaying an 

increasing trend until the late 1990s before decreasing. In contrast, the monsoon region showed weakly positive NEP 

sensitivity, which gradually decreased and became negative around the 1990s (Fig. 3a). Both regions exhibited a persistent 

downward trend in negative NEP sensitivity, highlighting a greater weakening of carbon absorption capacity to an increase 140 
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of ACGR in East Asia in recent decades. Similarly, the GPP sensitivity broadly revealed a similar pattern to NEP sensitivity, 

though with greater amplitude, indicating a stronger response to ACGR (Fig. 3b). In non-monsoon region, GPP sensitivity 

remained negative for most of the period, increasing until the late 1990s before declining (Fig. 3b). By contrast, the monsoon 

region showed positive GPP sensitivity that gradually weakened and turned negative in the late 2000s (Fig. 3b). This 

reduction in negative GPP sensitivity implies a progressive weakening of the vegetation response to ACGR over time. 145 

Particularly in non-monsoon region, the stronger magnitude of negative GPP sensitivity indicates that carbon uptake through 

photosynthesis is comparatively more constrained.  

Furthermore, Ra sensitivity exhibited a pattern generally consistent with GPP sensitivity, as Ra is closely related to 

photosynthesis activity (Fig. 3c). Regarding these relationship, Ra showed a consistent decreasing trend with GPP sensitivity, 

reflecting a reduction in vegetation respiration activity associated with weakened photosynthetic response to ACGR.  150 
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Figure 3. Time series of the sensitivity between atmospheric CO2 growth and (a) NEP, (b) GPP, (c) Ra over 20-year 

moving window in 1959-2023 (see Data and Methods for details). Lines show the ensemble mean of nine TRENDY 

models for the non-monsoon (red) and monsoon (blue) regions. 

 155 

3.2 Regional and structural drivers of GPP sensitivity 

While NEP represents a comprehensive result by including both photosynthetic production and respiratory losses, whereas 

GPP reflects only direct vegetation responses through photosynthesis. Therefore, GPP is more suitable for assessing changes 

in ecosystem productivity. The differences in GPP sensitivity between the monsoon and the non-monsoon regions are likely 

attributable to differences in ecosystem structure, such as climate and hydrological conditions. To identify how these 160 

structural differences influence ecosystem productivities, we examined the relationships between GPP sensitivity and key 

environmental factors in each region (Fig. 4).  

In the non-monsoon region, GPP sensitivity exhibited a strong positive correlation (r=0.85; here r is a simultaneous 

correlation with p< 0.01 ; Fig. 4a) with SM sensitivity. Both GPP and SM sensitivities showed an increase followed by a 

decline over period, yet remained within the negative sensitivity range for most of the period (Fig. 4a). This indicates that the 165 

response of both variables to ACGR has consistently weakened. Additionally, the strong positive correlation suggests that 

the decline in SM sensitivity reflects reduced water availability that limits vegetation activity, ultimately leading to a 

decrease in GPP sensitivity. However, the monsoon region shows a contrasting pattern, resulting in a significant negative 

correlation (r=-0.65, p<0.01; Fig. 4b). In this region, SM sensitivity increased over time from negative to positive, while 

GPP sensitivity decreased from positive to negative (Fig. 4b). Although an increase in SM sensitivity is generally associated 170 

with improved water availability and stomatal regulation, the GPP response to ACGR was weaken despite this improvement. 

This implies that the monsoon region is inherently a better-watered environment, meaning that increases in SM sensitivity no 

longer act as a primary constraint on GPP response. Consistent with this interpretation, the explanatory power of the 

relationship between SM and GPP sensitivities was remarkably lower in the monsoon region (r2=0.42) compared with the 

non-monsoon region (r2=0.72), indicating that other environmental factors may play a key role.  175 

To evaluate this possibility, we analyzed light, a crucial factor for photosynthesis. In the non-monsoon region, no 

meaningful relationship was observed between PAR and GPP sensitivity (r=0.07, p>0.1; Fig. 4c), consistent with the fact 

that PAR showed only minimal temporal variations, explaining no influence on GPP sensitivity (r2=0.01; Fig. 4c). In the 

monsoon region, GPP sensitivity decreased from positive to negative, and PAR also showed a distinct decreasing trend (Fig. 

4d); a significant positive correlation was shown (r=0.72, p<0.01; Fig. 4d). As sufficient radiation is required for vegetation 180 

to respond to ACGR, reduced PAR likely contributed to the weakening of GPP sensitivity, explained by high explanatory 

power (r2=0.52; Fig. 4d). These results demonstrate that in the monsoon region, where moisture is relatively abundant, 

radiation limitation-rather than changes in SM sensitivity-plays a primary role in driving the reduction in GPP sensitivity.  
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In the non-monsoon region, a significant positive correlation (r=0.59, p<0.01; Fig. 4e) was observed between transpiration 

sensitivity and SM sensitivity. Transpiration sensitivity increased from negative to slightly positive value before declining 185 

again, while SM sensitivity exhibited a similar increase-decrease pattern, but remained negative (Fig. 4e). This indicates that 

although ACGR causes stomatal closure, leads to reduced transpiration, such change does not translate into substantial SM 

accumulation in this comparatively dry region. Limited improvement in water availability, combined with reduced stomatal 

conductance, constrains photosynthetic activity, and contributes to the weakening of GPP sensitivity. In contrast, the 

monsoon region showed increasing SM sensitivity from negative to positive, whereas transpiration sensitivity exhibited a 190 

decreasing trend from positive to negative (r=0.66, p<0.01; Fig. 4f). These opposing trends reflect the physiological process 

whereby reduced stomatal conductance under ACGR suppresses transpiration, thereby promoting SM accumulation. In this 

relatively moisture-sufficient region, stomatal closure leads to increased SM; however, the simultaneous decrease in stomatal 

conductance limits the uptake of CO2 required for photosynthesis, resulting in a weakening of GPP sensitivity. Consequently, 

GPP sensitivity in the monsoon region is influenced more strongly by PAR, while stomatal responses to ACGR contribute to 195 

reduction in vegetation productivity.  
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Figure 4. Correlation between (a, b) CO2&GPP sensitivity (y-axis) and CO2&SM sensitivity (x-axis), (c, d) CO2&GPP 

sensitivity (y-axis) and PAR (x-axis), and (e, f) CO2&transpiration sensitivity (y-axis) and CO2&SM sensitivity (x-axis) 

for the non-monsoon (left) and monsoon (right) region during 1959-2023. Each scatter represents a 20-year moving 200 

window, with color changes representing the time period. ***p < 0.01; **p < 0.05; *p < 0.1; not significant, p > 0.1. 
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3.3 Temporal change of environmental controls on GPP sensitivity 

As shown in Figure 3b, the GPP sensitivity in non-monsoon region showed a reversal pattern, increasing until 1998 before 

decreasing. To better understand this pattern, the relationship between GPP sensitivity and environmental factors was 205 

reanalyzed for two periods, i.e., 1959- 1998 and 1999-2023 (Fig. 5, 6), using the same approach as in Figure 4.  

In non-monsoon region, the correlation between GPP sensitivity and SM sensitivity exhibited a strong positive correlation 

in both periods (r=0.92, p<0.01 for the early period; r=0.87, p<0.01 for the late period), with high explanatory power 

(r2=0.85 and r2=0.76, respectively; Fig. 5a, b). This follows the same pattern as the relationship between GPP sensitivity and 

SM sensitivity observed in the entire period, suggesting that SM sensitivity remained the key factor regulating the GPP 210 

response to ACGR throughout the study period. Conversely, the role of radiation showed temporal shifts. During the early 

period, GPP sensitivity showed no correlation with PAR (r=0.09, p>0.1; Fig. 5c), consistent with the full period analysis. 

However, in the late period, a positive correlation emerged (r=0.59, p<0.05; r2=0.35; Fig. 5d), with both PAR and GPP 

sensitivity decreasing, and GPP sensitivity having a negative value. This reveals that while SM remained the main factor, the 

increased coefficient of determination in the later period implies that radiation limitation influences vegetation productivity 215 

response to ACGR as a regulating factor. In addition, the relationship between transpiration sensitivity and SM sensitivity 

also remained consistently a positive correlation in both periods (r=0.89, p<0.01 for the early period; r=0.85, p<0.01 for the 

late period), with consistently high coefficients of determination (r2=0.80 and r2=0.73, respectively; Fig. 5e, f). Both 

sensitivities increased during the initial period before decreasing later on, reflecting the same mechanism identified in the 

analysis of the overall period. That is, the reduction in stomatal conductance response to ACGR suppresses transpiration but 220 

does not lead to a substantial increase in SM under relatively dry conditions. Simultaneously, it limits vegetation CO2 uptake, 

resulting in a weakening of GPP sensitivity.  
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Figure 5. Correlation between (a, b) CO2&GPP sensitivity (y-axis) and CO2&SM sensitivity (x-axis), (c, d) CO2&GPP 

sensitivity (y-axis) and PAR (x-axis), and (e, f) CO2&transpiration sensitivity (y-axis) and CO2&SM sensitivity (x-axis) 225 

for the non-monsoon region during 1959-1998 (left) and 1999-2023 (right). Each scatter represents a 20-year moving 

window, with color changes representing the time period. ***p < 0.01; **p < 0.05; *p < 0.1; not significant, p > 0.1. 

 

In monsoon region, the correlation between GPP sensitivity and SM sensitivity became slightly stronger during the late 

period, though it remains statistically insignificant in both periods (r=0.01, p>0.1 for the early period; r=-0.30, p>0.1 for the 230 
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late period; Fig. 6a, b). Compared to the analysis across the entire period, most environmental relationships showed weaker 

correlations when analyzed by separated period, with the exception of the relationship between GPP sensitivity and PAR. 

The relationship between GPP sensitivity and PAR exhibited a significant positive correlation in both periods (r=0.46, 

p<0.05 for the early period; r=0.77, p<0.01 for the late period), and its coefficients of determination strengthened over time 

(r2=0.21 and r2=0.59, respectively; Fig. 6c, d), emphasizing that the role of PAR in explaining GPP sensitivity enhanced 235 

during later period. The relationship between transpiration sensitivity and SM sensitivity showed insignificant correlation 

during early period (r=0.13, p>0.1; Fig.6e), but became significantly negatively correlated during the later period (r=-0.50, 

p<0.05; r2=0.26; Fig. 6f), highlighting that the same pattern identified in the full period analysis whereby reduced stomatal 

conductance in response to ACGR suppresses transpiration and accelerates SM accumulation. In conclusion, the coefficient 

of determination for the entire period indicates that the primary factor weakening GPP sensitivity is the reduction in PAR. 240 

Moreover, although no clear relationship emerged during the early period, the decrease in stomatal conductance in response 

to ACGR promotes SM accumulation while simultaneously constraining vegetation CO2 uptake, thereby contributing to the 

weakening of GPP sensitivity.  
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Figure 6. Correlation between (a, b) CO2&GPP sensitivity (y-axis) and CO2&SM sensitivity (x-axis), (c, d) CO2&GPP 245 

sensitivity (y-axis) and PAR (x-axis), and (e, f) CO2&transpiration sensitivity (y-axis) and CO2&SM sensitivity (x-axis) 

for the monsoon region during 1959-1998 (left) and 1999-2023 (right). Each scatter represents a 20-year moving 

window, with color changes representing the time period. ***p < 0.01; **p < 0.05; *p < 0.1; not significant, p > 0.1. 

 

Furthermore, variations in PAR are connected to changes in atmospheric conditions, including precipitation and cloud 250 

cover, within East Asia. In the non-monsoon region, while precipitation trends are not statistically significant (slope=0.0001), 
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cloud cover (slope=-0.058, p<0.01) and PAR (slope=0.056, p<0.01) exhibit significant changes (Fig. 7a, c, e). The 

correlation between precipitation and cloud cover is close to zero (r=-0.08, p>0.1), indicating a weak association between 

precipitation and cloud formation processes. This may also be linked to the relatively low precipitation levels in the non-

monsoon region. However, a distinct negative correlation emerges between cloud cover and PAR (r=-0.78, p<0.01), with 255 

decreased (increased) cloud cover reducing the amount of shortwave radiation reaching the surface, thereby increasing 

(decreasing) PAR. More prominently, in the monsoon region, PAR shows a consistent downward trend (slope=-0.286, 

p<0.01), while precipitation (slope=0.003, p<0.01) and cloud cover (slope=0.020, p<0.01) generally increase (Fig. 7b, d, f). 

Precipitation and cloud cover exhibit a significant positive correlation (r=0.77, p<0.01), possibly reflecting that increased 

precipitation provides favorable environmental conditions for cloud formation. Conversely, cloud cover and PAR show a 260 

strong negative correlation (r=-0.91, p<0.01), consistent with the general mechanism whereby increased cloud cover reduces 

shortwave radiation. A reduction in PAR limits the light available for photosynthesis, leading to decreased vegetation 

productivity. Consequently, the reduced GPP sensitivity in monsoon region indicates that even when SM is abundant, the 

ecosystem’s carbon absorption capacity may still be constrained if radiation is limited by precipitation and cloud cover.  

 265 

Figure 7. Time series of the (a, b) Precipitation, (c, d) Cloud cover, (e, f) PAR anomalies over 20-year moving window 

in 1959-2023. Panels (a), (b), (e), and (f) are based on the ensemble mean of nine TRENDY models, and cloud cover in 

panels (c) and (d) is derived from CRU TS dataset. 
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4 Discussion 270 

Vegetation composition in East Asia exhibits distinct spatial heterogeneity even within non-monsoon and monsoon regions, 

which contributes to structural and functional characteristics of terrestrial ecosystem. As ecosystem productivity is affected 

by vegetation type, understanding the mechanisms underlying regional differences in ACGR and GPP relationship is 

essential. Therefore, we examined East Asian land cover based on MODIS dataset. Our analysis revealed that the non-

monsoon region dominated by grasslands and barren, while monsoon region predominantly features croplands and woody 275 

savannas (Fig. 8). Generally, ecosystems dominated by croplands and woody savannas maintain higher vegetation 

productivity compared with grasslands and barren areas. These differences in vegetation structure may help explain the 

pattern where positive GPP sensitivity was observed initially in the monsoon region, whereas negative sensitivity was 

maintained for most of the period in the non-monsoon region. This sustained negative sensitivity is likely a consequence of 

stress factors being reflected more rapidly in the non-monsoon region, depending on vegetation structure. Consequently, 280 

these variations imply different ecosystem functions and vegetation-moisture mechanisms across regions, emphasizing that 

regional environmental conditions control ecosystem productivity responses to ACGR. 
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Figure 8. East Asian land cover distribution based on IGBP classification. MODIS land cover averaged during 2001-

2023, percentage distribution of land cover types in (a) non-monsoon and (b) monsoon region. For all panels, see Data 285 

and Methods for details.  

 

5 Conclusion 

We investigated the mechanisms regulating ecosystem productivity across different regions within East Asia based on the 

spatial pattern of GPP sensitivity. The analysis focused on moisture and light conditions, as well as stomatal responses, 290 

which can influence GPP sensitivity. These factors were interpreted considering the climatic characteristics of monsoon and 

non-monsoon regions. Furthermore, based on the diverse vegetation types distributed across East Asia, the factors 

contributing to changes in GPP sensitivity were additionally analyzed. The main conclusions were as follows: 

(1) GPP sensitivity was negative in non-monsoon and positive in monsoon regions. However, both regions ultimately 

showed a decline trend, converging towards negative sensitivity as the time progresses. This trend was also observed in NEP 295 

sensitivity, indicating a weakening of ecosystem productivity and carbon sequestration in East Asia.  

(2) In the non-monsoon region, SM sensitivity consistently appeared as the dominant factor constraining GPP sensitivity, 

whereas in the monsoon region, reductions in PAR played the primary role in weakening the GPP response. Across both 

regions, reduced stomatal conductance under ACGR limited vegetation CO2 uptake, acting as a common mechanism that 

converged over time towards a weakening of GPP sensitivity.  300 

(3) Regional differences in moisture conditions were also revealed in stomatal responses. In non-monsoon region, reduced 

transpiration did not lead to SM accumulation, whereas in the relatively humid monsoon region, the same stomatal response 

contributed to SM accumulation. 

Our findings provide important implications for projecting future carbon cycle under climate change. The weakening 

sensitivity of ecosystem productivity to ACGR suggests that the CO2 effect on East Asian vegetation is saturating or even 305 

declining, which potentially accelerates global warming through a reduced terrestrial carbon sink. Therefore, future climate 

projections and carbon budget assessments need to explicitly account for regional climatic constraints, particularly soil 

moisture and radiation. Overall, these results highlight that future changes in carbon uptake across East Asia will be 

determined not only by rising CO2 but also by climatic factors, implying that carbon neutrality strategies should be designed 

with regional specificity influenced by internal climate variability.  310 
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Code and data availability 

The sensitivity analysis code of this study is available via Zenodo at https://zenodo.org/records/18307449. The sensitivity 

calculation follows the method of Li et al., (2024), with minor modifications. Additionally, we used LOWESS-based trend 

removal using A. Gramfort’s python package (https://gist.github.com/agramfort/850437). (1) The dynamic global vegetation 315 

models outputs from TRENDY v13 are available upon request. (2) The cloud cover data used in this study was obtained 

from the CRU TS version 4.09 dataset, provided by the Center for Environmental Data Analysis (CEDA), and are available 

at https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.09/data/cld. (3) The MODIS land-cover data was obtained from the 

MCD12Q1 version 6.1 data, available from NASA Earthdata at DOI: https://doi.org/10.5067/MODIS/MCD12Q1.061. The 

data was accessed via the AppEEARS.  320 
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