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Abstract. Elevated global atmospheric CO; intensifies the complexity of climate variability and ecosystem productivity, and
its impact on terrestrial ecosystems carbon cycle remains unclear. Using twelve Dynamic Global Vegetation Models
(DGVMs) in Trends in land carbon cycle datasets and Global Carbon Budget dataset, we quantified the sensitivity of
ecosystem productivity-defined as the rate of change in productivity with global atmospheric CO, growth rate-in East Asia
from 1959 to 2023. Most DGVMs showed net ecosystem production sensitivity as negative, implying a weakening of
terrestrial carbon absorption capacity in response to elevated atmospheric CO,. By separating East Asia into monsoon and
non-monsoon regions, we examined the temporal changes in gross primary productivity sensitivity, which has been
decreasing in both regions since the late 1990s. These productivity responses were primarily controlled by soil moisture
sensitivity in non-monsoon region, whereas photosynthetically active radiation emerged as the key factor in monsoon region.
Furthermore, the dominance of croplands and woody savannas in monsoon region contributes to regional difference in the
mechanism associated with vegetation productivity to atmospheric CO, growth. By considering regional climate systems and
vegetation characteristics, this study highlights that environmental and structural differences influence the ecosystem
response to atmospheric CO; growth. Ultimately, our findings suggest that considering regionally distinct climate-vegetation

feedbacks is essential for improving the accuracy of global carbon cycle projections under future climate change.

1 Introduction

Assessing terrestrial ecosystems response to rising atmospheric CO; is crucial for understanding future vegetation-carbon-
climate feedback. Terrestrial ecosystems act as a major carbon sink, with vegetation absorbing 112-169 PgC/year through
photosynthesis (Penuelas, 2023; Baldocchi et al., 2016). The carbon absorption through photosynthesis of such vegetation
varies by region and seasonality (Na and Yeh, 2025; Bi et al., 2022; Ueyama et al., 2024). While ecosystem productivity can
be enhanced by the CO; fertilization effect as atmospheric CO; increases in response to climate change, it can also be
weakened by climate variability such as temperature and respiration (Yun et al., 2022). In particular, East Asia exhibits
contrasting precipitation patterns and vegetation characteristics across the region (Fu, 2003; He et al., 2022b; Kim and Park,

2016), where a greater diversity of factors interact to regulate ecosystem carbon exchange.
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Numerous studies have analyzed regional and temporal variations in gross primary productivity (GPP), i.e., the carbon
uptake by vegetation through photosynthesis in terrestrial ecosystems. While increases in atmospheric CO, generally
enhance vegetation productivity through photosynthesis, this effect has been weakening in recent decades (Wang et al., 2020)
despite that the atmospheric CO, growth rate (ACGR, hereafter), which is defined as the year-to-year increase in global
atmospheric CO, concentration, has rapidly increased (Canadell et al., 2007; Friedlingstein et al., 2024). In addition, the
strong positive effect of CO, on GPP has diminished to nearly half since the 2000s, with the extent of this reduction varying
across climate zones (Wang et al., 2024). Another study analyzing decadal-scale changes in factors affecting global GPP and
vegetation activity found that GPP showed the strongest correlations with photosynthetically active radiation (PAR),
temperature, and vapor pressure deficit over time, revealing temporal variability in these relationships (Shin et al., 2025;
Madani et al., 2020).

In East Asia, links between the East Asian Summer Monsoon and GPP have also been suggested. For example, changes in
atmospheric circulation field, precipitation, and downward solar radiation associated with the East Asian summer monsoon
result in regional differences in GPP within China (Han et al., 2024). However, research comparing the key environmental
factors influencing GPP sensitivity-defined as the response of vegetation productivity to variations in the ACGR-between
monsoon and other regions is not well organized. Building upon these findings, this study investigates the primary drivers of
changes in GPP sensitivity to ACGR in East Asia.

We provide the sensitivity of terrestrial ecosystem productivity in East Asia to global ACGR using Dynamic Global
Vegetation Models (DGVMSs) in Trends in land carbon cycle (TRENDY) datasets and Global Carbon Budget dataset. By
contrasting GPP changes in monsoon and non-monsoon regions in East Asia and examining relevant environmental factors
such as soil moisture (SM) and PAR, we aim to identify mechanisms explaining regional differences in the sensitivity of
terrestrial ecosystem productivity to global ACGR in East Asia. Understanding these regional differences can improve the

projection of future vegetation-carbon-climate feedback in East Asia.

2 Data and Methods

2.1 Atmospheric COz growth rate

We used global ACGR from 1959 to 2023 from the Global Carbon Budget 2024, provided by the US National Oceanic and
Atmospheric Administration Global Monitoring Laboratory (Lan et al., 2025). Data from 1959 to 1979 are observed by the
Scripps Institution of Oceanography, based on average atmospheric CO, concentration measured at Mauna Loa and South
Pole stations (Keeling et al., 1976). Data from 1980 to 2023 are estimated from global averages of multiple stations (Global
Carbon Project, 2024). The ACGR was calculated as the annual change in atmospheric CO, concentration, defined as the
year-to-year difference [GtC yr] (Global Carbon Project, 2024; Friedlingstein et al., 2024).
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2.2 Trends in land carbon cycle datasets (TRENDY) models

EGUsphere\

The TRENDY dataset, an ensemble of DGVMs, provides estimates of terrestrial carbon sinks and sources (Sitch et al., 2024;

Friedlingstein et al., 2024). We analyzed TRENDY outputs to identify changes in carbon flux sensitivity within East Asia,
using 12 DGVMs included in the TRENDY version 13 ensemble (TRENDY v13) (Table 1) conducted for the Global Carbon
Budget 2024 (Friedlingstein et al., 2024). We examined 8 ecosystem variables from TRENDY under the S3 scenario for
1959 to 2023, which considers changes of CO,, climate, Land Use and Land Cover Change (Sitch et al., 2024). These

variables include CO; fluxes (for example, GPP, autotrophic respiration (R.), heterotrophic respiration (Rp)), water fluxes

(for example, SM, transpiration, precipitation), and radiation including PAR. PAR was estimated as 0.5 of surface

downwelling shortwave radiation, and values in W m? were converted to pmol s m? using relationship 1 J = 4.6 umol of

PAR (Li et al., 2018). All datasets were regridded to a 1.0° x 1.0° spatial resolution using bilinear interpolation with the

Climate Data Operator.
Table 1. Information on the TRENDY v13 model list used in this study.

Model Modeling center Reference
1 CLASSIC Environment and Climate Change Canada (Asaadi and Arora, 2021)
National Center for Atmospheric Research
2 CLM6.0 (Lawrence et al., 2019)
NCAR
3 E3SM US Department of Energy (Tang et al., 2023)
4 EDv3 University of Maryland (Ma et al., 2021)
5 IBIS McGill University (Landry et al., 2016)
Meétéo-France, French national meteorological
6 ISBA-CTRIP (Decharme et al., 2019)
centre
UK Met Office, Centre for Ecology &
7 JULES Hydrology, University of Reading, University of (Burton et al., 2019)
Exeter
(Beer et al., 2007; Rolinski et
8 LPJmL Potsdam Institute for Climate Impact Research
al., 2018)
9 LPX-Bern University of Bern (Lienert and Joos, 2018)
10 ORCHIDEE Institut Pierre-Simon Laplace, IPSL (Krinner et al., 2005)
11 SDGVM University of Sheffield (Walker et al., 2017)
12 VISIT The University of Tokyo, NIES, and JAMSTEC (Ito, 2019)
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2.3 Cloud cover data

In TRENDY, DGVMs use forcing from the Climate Research Unit (CRU) dataset or from a combined product that
integrates CRU with the Japanese 55-year Reanalysis (JRA-55) (Friedlingstein et al., 2024; Sitch et al., 2024). Because cloud
cover is not provided in the TRENDY, we additionally used the CRU Time-series version 4.09 dataset to analyze cloud

cover in this study.

2.4 Land cover data

The Moderate Resolution Imaging Spectroradiometer land cover type product is used to describe annual global land cover
map at 500m spatial resolution (He et al., 2022a; Friedl and Sulla-Menashe, 2022). The dataset classifies each grid cell into
17 land cover classes based on International Geosphere-Biosphere Program schemes (Loveland and Belward, 1997; Zhang
and Roy, 2017). We analyzed the mean land cover map for 2001 to 2023. If several land cover types appear with the same
frequency within a grid cell, the type from the most recent year was used. The dataset was regridded to a 0.5° x 0.5° spatial
resolution, with each grid cell used as the most frequently appearing land cover type within its extent, and no equal
frequency was found.

2.5 Definition of sensitivity of ecosystem variables to Atmospheric CO:2 growth rate

Using Global Carbon Budget 2024 and TRENDY v13, we focused on assessing the sensitivity of ecosystem variables to
ACGR from 1959 to 2023, over East Asia (10°-50°N, 902-150°E). We adopted the methodology to define the sensitivity of
GPP to global ACGR following (Li et al., 2024). The methods are as follows: First, the long-term trends of annual GPP and
ACGR were removed to produce detrended time series (Fig. 1a, b). A linear regression was then performed using a 20-year
moving window, with the slope of each regression defined as the sensitivity of GPP to ACGR (Fig. 1c). This represents the
change in GPP in response to changes in ACGR, and a positive sensitivity indicates that GPP increases with an increase of
ACGR and vice versa. In contrast, a negative sensitivity indicates either a decrease of GPP with an increase of ACGR or an

increase of GPP with a decrease of ACGR. A value close to zero indicates a minimal or no response.
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Figure 1. Methodological procedure for ecosystem productivity sensitivity to atmospheric CO: growth. (a) Detrended
time series of GPP over East Asia from nine TRENDY v13 models. (b) Detrended atmospheric CO2 growth from the
Global Carbon Budget 2024. (c) Sensitivity of atmospheric CO2 growth and GPP over 20-year moving windows in
1959-2023. For all panels, see Data and Methods for details.

On the other hand, NEP is an important indicator of the carbon sequestration capacity of terrestrial ecosystems (Yuan et
al., 2023; Zhang et al., 2023) and was defined as GPP minus R, and Ry [g m™ day™].

NEP = GPP —R, — R, (1)
PAR is essential energy source for vegetation photosynthesis (Ren et al., 2018; Kalaji et al., 2014), and as it is governed by
atmospheric conditions rather than ACGR changes, it was analyzed using actual PAR values instead of ACGR sensitivity.
Note that the same method to calculate the GPP sensitivity was applied to obtain the sensitivity of NEP, Ra, and SM in

response to changes in ACGR.

3 Results

3.1 East Asian GPP and NEP relationship with ACGR

We first analyzed the sensitivity of NEP using each of the 12 DGVMs (Fig. 2a). All models except LPX-Bern simulated
negative NEP sensitivities, suggesting a weakening of ecosystem carbon uptake ability in East Asia as ACGR increases for
1959-2023. Note that the statistical significance of NEP sensitivity was assessed using the last 20-year (2004-2023) moving
window to reflect recent ecosystem changes. With these criteria applied, three models showed statistically insignificant

relationships (p>0.05) or inconsistent signs; consequently, in subsequent analysis, only the nine models simulated as
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significant were used. The model selection was based on NEP sensitivity, as NEP is an integrated indicator accounting for
both carbon uptake through photosynthesis and carbon release through respiration. Note that the overall results in the present
study little change when all 12 DGVMs are used.

Following this selection, we analyzed the spatial distribution of GPP sensitivity in East Asia (Fig. 2b). Within East Asia,
GPP sensitivity displays a distinct spatial contrast between central-eastern China, Korea, and Japan (Fig. 2b). This suggests
that the response of ecosystem productivity (i.e., GPP sensitivity) to ACGR is not spatially consistent in East Asia and is
influenced by regional environmental factors. Therefore, we separated East Asian into two regions to investigate the regional
heterogeneity of ecosystem responses, one is East Asian monsoon region (10°40° N, 1102140° E) (Li and Zeng, 2002;
Jianping and Qingcun, 2003) and the other is non-monsoon region — consisting of northern (41250° N, 902150° E) and
western (10240° N, 902110° E) areas. Although the GPP sensitivity patterns do not perfectly align with the East Asian
monsoon boundary, the monsoon region generally covers areas where positive sensitivity predominates, whereas the non-
monsoon region includes areas with distinctly negative sensitivity. These regional distinctions, related to the monsoon
system, provide a basis for understanding regional differences in ecosystem responses, reflecting the climatic influences of
East Asia.
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130 Figure 2. (a) Scatter plot of the sensitivity between atmospheric CO2 growth and NEP during 1959-2023, based on 12
models from TRENDY v13. Each scatter represents atmospheric CO2 growth and NEP sensitivity of an individual
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140

model. Models with statistically significant relationships at the 95% confidence level (from the last 20-year window)

are outlined in black. (b) Spatial patterns of the sensitivity to atmospheric CO2 growth and GPP over East Asia,

based on nine TRENDY models ensemble mean during 1959-2023. An x mark denotes statistically significant

relationships at the 90% confidence level evaluated from the last 20-year window.

In Figure 3a, NEP sensitivity in non-monsoon region remained negative throughout the entire period, displaying an

increasing trend until the late 1990s before decreasing. In contrast, the monsoon region showed weakly positive NEP
sensitivity, which gradually decreased and became negative around the 1990s (Fig. 3a). Both regions exhibited a persistent

downward trend in negative NEP sensitivity, highlighting a greater weakening of carbon absorption capacity to an increase
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of ACGR in East Asia in recent decades. Similarly, the GPP sensitivity broadly revealed a similar pattern to NEP sensitivity,
though with greater amplitude, indicating a stronger response to ACGR (Fig. 3b). In non-monsoon region, GPP sensitivity
remained negative for most of the period, increasing until the late 1990s before declining (Fig. 3b). By contrast, the monsoon
region showed positive GPP sensitivity that gradually weakened and turned negative in the late 2000s (Fig. 3b). This
reduction in negative GPP sensitivity implies a progressive weakening of the vegetation response to ACGR over time.
Particularly in non-monsoon region, the stronger magnitude of negative GPP sensitivity indicates that carbon uptake through
photosynthesis is comparatively more constrained.

Furthermore, R, sensitivity exhibited a pattern generally consistent with GPP sensitivity, as R, is closely related to
photosynthesis activity (Fig. 3c). Regarding these relationship, R, showed a consistent decreasing trend with GPP sensitivity,

reflecting a reduction in vegetation respiration activity associated with weakened photosynthetic response to ACGR.

(a)

CO, & NEP Sensitivity

0.02
=== NON-mMonsoon region
\ ~==_monsoon region

o
=)
S

Sensitivity (yT)
S
N

—0.04

1970 1980 1990 2000 2010

T

CO, & GPP Sensitivity

g
o
'y

== NoON-monsoon region
—~==_monsoon region

o
<)
]

Sensitivity (yT)
S o
S 8

-0.04

1970

1980

1990

°

CO, & R, Sensitivity

2000

2010

~== NON-monsoon region

=== _monsoon region

-0.01

Sensitivity (yT)

—-0.02

A
I\
I~
[

oy

N
\
\

\
< i
==t

o)

1970

1980

1990

2000

2010




155

160

165

170

175

180

https://doi.org/10.5194/egusphere-2026-353
Preprint. Discussion started: 28 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Figure 3. Time series of the sensitivity between atmospheric CO2 growth and (a) NEP, (b) GPP, (c) Ra over 20-year
moving window in 1959-2023 (see Data and Methods for details). Lines show the ensemble mean of nine TRENDY

models for the non-monsoon (red) and monsoon (blue) regions.

3.2 Regional and structural drivers of GPP sensitivity

While NEP represents a comprehensive result by including both photosynthetic production and respiratory losses, whereas
GPP reflects only direct vegetation responses through photosynthesis. Therefore, GPP is more suitable for assessing changes
in ecosystem productivity. The differences in GPP sensitivity between the monsoon and the non-monsoon regions are likely
attributable to differences in ecosystem structure, such as climate and hydrological conditions. To identify how these
structural differences influence ecosystem productivities, we examined the relationships between GPP sensitivity and key
environmental factors in each region (Fig. 4).

In the non-monsoon region, GPP sensitivity exhibited a strong positive correlation (r=0.85; here r is a simultaneous
correlation with p< 0.01 ; Fig. 4a) with SM sensitivity. Both GPP and SM sensitivities showed an increase followed by a
decline over period, yet remained within the negative sensitivity range for most of the period (Fig. 4a). This indicates that the
response of both variables to ACGR has consistently weakened. Additionally, the strong positive correlation suggests that
the decline in SM sensitivity reflects reduced water availability that limits vegetation activity, ultimately leading to a
decrease in GPP sensitivity. However, the monsoon region shows a contrasting pattern, resulting in a significant negative
correlation (r=-0.65, p<0.01; Fig. 4b). In this region, SM sensitivity increased over time from negative to positive, while
GPP sensitivity decreased from positive to negative (Fig. 4b). Although an increase in SM sensitivity is generally associated
with improved water availability and stomatal regulation, the GPP response to ACGR was weaken despite this improvement.
This implies that the monsoon region is inherently a better-watered environment, meaning that increases in SM sensitivity no
longer act as a primary constraint on GPP response. Consistent with this interpretation, the explanatory power of the
relationship between SM and GPP sensitivities was remarkably lower in the monsoon region (r?=0.42) compared with the
non-monsoon region (r?=0.72), indicating that other environmental factors may play a key role.

To evaluate this possibility, we analyzed light, a crucial factor for photosynthesis. In the non-monsoon region, no
meaningful relationship was observed between PAR and GPP sensitivity (r=0.07, p>0.1; Fig. 4c), consistent with the fact
that PAR showed only minimal temporal variations, explaining no influence on GPP sensitivity (r>=0.01; Fig. 4c). In the
monsoon region, GPP sensitivity decreased from positive to negative, and PAR also showed a distinct decreasing trend (Fig.
4d); a significant positive correlation was shown (r=0.72, p<0.01; Fig. 4d). As sufficient radiation is required for vegetation
to respond to ACGR, reduced PAR likely contributed to the weakening of GPP sensitivity, explained by high explanatory
power (r>=0.52; Fig. 4d). These results demonstrate that in the monsoon region, where moisture is relatively abundant,

radiation limitation-rather than changes in SM sensitivity-plays a primary role in driving the reduction in GPP sensitivity.
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In the non-monsoon region, a significant positive correlation (r=0.59, p<0.01; Fig. 4e) was observed between transpiration
sensitivity and SM sensitivity. Transpiration sensitivity increased from negative to slightly positive value before declining
again, while SM sensitivity exhibited a similar increase-decrease pattern, but remained negative (Fig. 4e). This indicates that
although ACGR causes stomatal closure, leads to reduced transpiration, such change does not translate into substantial SM
accumulation in this comparatively dry region. Limited improvement in water availability, combined with reduced stomatal
conductance, constrains photosynthetic activity, and contributes to the weakening of GPP sensitivity. In contrast, the
monsoon region showed increasing SM sensitivity from negative to positive, whereas transpiration sensitivity exhibited a
decreasing trend from positive to negative (r=0.66, p<0.01; Fig. 4f). These opposing trends reflect the physiological process
whereby reduced stomatal conductance under ACGR suppresses transpiration, thereby promoting SM accumulation. In this
relatively moisture-sufficient region, stomatal closure leads to increased SM; however, the simultaneous decrease in stomatal
conductance limits the uptake of CO; required for photosynthesis, resulting in a weakening of GPP sensitivity. Consequently,
GPP sensitivity in the monsoon region is influenced more strongly by PAR, while stomatal responses to ACGR contribute to
reduction in vegetation productivity.

10
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11



205

210

215

220

https://doi.org/10.5194/egusphere-2026-353
Preprint. Discussion started: 28 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

3.3 Temporal change of environmental controls on GPP sensitivity

As shown in Figure 3b, the GPP sensitivity in non-monsoon region showed a reversal pattern, increasing until 1998 before
decreasing. To better understand this pattern, the relationship between GPP sensitivity and environmental factors was
reanalyzed for two periods, i.e., 1959- 1998 and 1999-2023 (Fig. 5, 6), using the same approach as in Figure 4.

In non-monsoon region, the correlation between GPP sensitivity and SM sensitivity exhibited a strong positive correlation
in both periods (r=0.92, p<0.01 for the early period; r=0.87, p<0.01 for the late period), with high explanatory power
(r?=0.85 and r?=0.76, respectively; Fig. 5a, b). This follows the same pattern as the relationship between GPP sensitivity and
SM sensitivity observed in the entire period, suggesting that SM sensitivity remained the key factor regulating the GPP
response to ACGR throughout the study period. Conversely, the role of radiation showed temporal shifts. During the early
period, GPP sensitivity showed no correlation with PAR (r=0.09, p>0.1; Fig. 5c), consistent with the full period analysis.
However, in the late period, a positive correlation emerged (r=0.59, p<0.05; r?=0.35; Fig. 5d), with both PAR and GPP
sensitivity decreasing, and GPP sensitivity having a negative value. This reveals that while SM remained the main factor, the
increased coefficient of determination in the later period implies that radiation limitation influences vegetation productivity
response to ACGR as a regulating factor. In addition, the relationship between transpiration sensitivity and SM sensitivity
also remained consistently a positive correlation in both periods (r=0.89, p<0.01 for the early period; r=0.85, p<0.01 for the
late period), with consistently high coefficients of determination (r>=0.80 and r?=0.73, respectively; Fig. 5e, f). Both
sensitivities increased during the initial period before decreasing later on, reflecting the same mechanism identified in the
analysis of the overall period. That is, the reduction in stomatal conductance response to ACGR suppresses transpiration but
does not lead to a substantial increase in SM under relatively dry conditions. Simultaneously, it limits vegetation CO, uptake,

resulting in a weakening of GPP sensitivity.

12
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for the non-monsoon region during 1959-1998 (left) and 1999-2023 (right). Each scatter represents a 20-year moving

window, with color changes representing the time period. ***p < 0.01; **p < 0.05; *p < 0.1; not significant, p > 0.1.

In monsoon region, the correlation between GPP sensitivity and SM sensitivity became slightly stronger during the late

230 period, though it remains statistically insignificant in both periods (r=0.01, p>0.1 for the early period; r=-0.30, p>0.1 for the
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late period; Fig. 6a, b). Compared to the analysis across the entire period, most environmental relationships showed weaker
correlations when analyzed by separated period, with the exception of the relationship between GPP sensitivity and PAR.
The relationship between GPP sensitivity and PAR exhibited a significant positive correlation in both periods (r=0.46,
p<0.05 for the early period; r=0.77, p<0.01 for the late period), and its coefficients of determination strengthened over time
(r?=0.21 and r?=0.59, respectively; Fig. 6¢c, d), emphasizing that the role of PAR in explaining GPP sensitivity enhanced
during later period. The relationship between transpiration sensitivity and SM sensitivity showed insignificant correlation
during early period (r=0.13, p>0.1; Fig.6e), but became significantly negatively correlated during the later period (r=-0.50,
p<0.05; r?=0.26; Fig. 6f), highlighting that the same pattern identified in the full period analysis whereby reduced stomatal
conductance in response to ACGR suppresses transpiration and accelerates SM accumulation. In conclusion, the coefficient
of determination for the entire period indicates that the primary factor weakening GPP sensitivity is the reduction in PAR.
Moreover, although no clear relationship emerged during the early period, the decrease in stomatal conductance in response
to ACGR promotes SM accumulation while simultaneously constraining vegetation CO; uptake, thereby contributing to the
weakening of GPP sensitivity.
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245 Figure 6. Correlation between (a, b) CO2&GPP sensitivity (y-axis) and CO2&SM sensitivity (x-axis), (c, d) CO2&GPP
sensitivity (y-axis) and PAR (x-axis), and (e, f) CO2&transpiration sensitivity (y-axis) and CO2&SM sensitivity (x-axis)
for the monsoon region during 1959-1998 (left) and 1999-2023 (right). Each scatter represents a 20-year moving

window, with color changes representing the time period. ***p < 0.01; **p < 0.05; *p < 0.1; not significant, p > 0.1.

250 Furthermore, variations in PAR are connected to changes in atmospheric conditions, including precipitation and cloud

cover, within East Asia. In the non-monsoon region, while precipitation trends are not statistically significant (slope=0.0001),
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cloud cover (slope=-0.058, p<0.01) and PAR (slope=0.056, p<0.01) exhibit significant changes (Fig. 7a, c, €). The
correlation between precipitation and cloud cover is close to zero (r=-0.08, p>0.1), indicating a weak association between
precipitation and cloud formation processes. This may also be linked to the relatively low precipitation levels in the non-
monsoon region. However, a distinct negative correlation emerges between cloud cover and PAR (r=-0.78, p<0.01), with
decreased (increased) cloud cover reducing the amount of shortwave radiation reaching the surface, thereby increasing
(decreasing) PAR. More prominently, in the monsoon region, PAR shows a consistent downward trend (slope=-0.286,
p<0.01), while precipitation (slope=0.003, p<0.01) and cloud cover (slope=0.020, p<0.01) generally increase (Fig. 7b, d, f).
Precipitation and cloud cover exhibit a significant positive correlation (r=0.77, p<0.01), possibly reflecting that increased
precipitation provides favorable environmental conditions for cloud formation. Conversely, cloud cover and PAR show a
strong negative correlation (r=-0.91, p<0.01), consistent with the general mechanism whereby increased cloud cover reduces
shortwave radiation. A reduction in PAR limits the light available for photosynthesis, leading to decreased vegetation
productivity. Consequently, the reduced GPP sensitivity in monsoon region indicates that even when SM is abundant, the

ecosystem’s carbon absorption capacity may still be constrained if radiation is limited by precipitation and cloud cover.
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Figure 7. Time series of the (a, b) Precipitation, (c, d) Cloud cover, (e, f) PAR anomalies over 20-year moving window
in 1959-2023. Panels (a), (b), (e), and (f) are based on the ensemble mean of nine TRENDY maodels, and cloud cover in
panels (c) and (d) is derived from CRU TS dataset.
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270 4 Discussion

Vegetation composition in East Asia exhibits distinct spatial heterogeneity even within non-monsoon and monsoon regions,
which contributes to structural and functional characteristics of terrestrial ecosystem. As ecosystem productivity is affected
by vegetation type, understanding the mechanisms underlying regional differences in ACGR and GPP relationship is
essential. Therefore, we examined East Asian land cover based on MODIS dataset. Our analysis revealed that the non-
275 monsoon region dominated by grasslands and barren, while monsoon region predominantly features croplands and woody
savannas (Fig. 8). Generally, ecosystems dominated by croplands and woody savannas maintain higher vegetation
productivity compared with grasslands and barren areas. These differences in vegetation structure may help explain the
pattern where positive GPP sensitivity was observed initially in the monsoon region, whereas negative sensitivity was
maintained for most of the period in the non-monsoon region. This sustained negative sensitivity is likely a consequence of
280 stress factors being reflected more rapidly in the non-monsoon region, depending on vegetation structure. Consequently,
these variations imply different ecosystem functions and vegetation-moisture mechanisms across regions, emphasizing that

regional environmental conditions control ecosystem productivity responses to ACGR.
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Figure 8. East Asian land cover distribution based on IGBP classification. MODIS land cover averaged during 2001-
2023, percentage distribution of land cover types in (a) non-monsoon and (b) monsoon region. For all panels, see Data
and Methods for details.

5 Conclusion

We investigated the mechanisms regulating ecosystem productivity across different regions within East Asia based on the
spatial pattern of GPP sensitivity. The analysis focused on moisture and light conditions, as well as stomatal responses,
which can influence GPP sensitivity. These factors were interpreted considering the climatic characteristics of monsoon and
non-monsoon regions. Furthermore, based on the diverse vegetation types distributed across East Asia, the factors
contributing to changes in GPP sensitivity were additionally analyzed. The main conclusions were as follows:

(1) GPP sensitivity was negative in non-monsoon and positive in monsoon regions. However, both regions ultimately
showed a decline trend, converging towards negative sensitivity as the time progresses. This trend was also observed in NEP
sensitivity, indicating a weakening of ecosystem productivity and carbon sequestration in East Asia.

(2) In the non-monsoon region, SM sensitivity consistently appeared as the dominant factor constraining GPP sensitivity,
whereas in the monsoon region, reductions in PAR played the primary role in weakening the GPP response. Across both
regions, reduced stomatal conductance under ACGR limited vegetation CO, uptake, acting as a common mechanism that
converged over time towards a weakening of GPP sensitivity.

(3) Regional differences in moisture conditions were also revealed in stomatal responses. In non-monsoon region, reduced
transpiration did not lead to SM accumulation, whereas in the relatively humid monsoon region, the same stomatal response
contributed to SM accumulation.

Our findings provide important implications for projecting future carbon cycle under climate change. The weakening
sensitivity of ecosystem productivity to ACGR suggests that the CO; effect on East Asian vegetation is saturating or even
declining, which potentially accelerates global warming through a reduced terrestrial carbon sink. Therefore, future climate
projections and carbon budget assessments need to explicitly account for regional climatic constraints, particularly soil
moisture and radiation. Overall, these results highlight that future changes in carbon uptake across East Asia will be
determined not only by rising CO; but also by climatic factors, implying that carbon neutrality strategies should be designed

with regional specificity influenced by internal climate variability.
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Code and data availability

The sensitivity analysis code of this study is available via Zenodo at https://zenodo.org/records/18307449. The sensitivity
calculation follows the method of Li et al., (2024), with minor modifications. Additionally, we used LOWESS-based trend
removal using A. Gramfort’s python package (https://gist.github.com/agramfort/850437). (1) The dynamic global vegetation
models outputs from TRENDY v13 are available upon request. (2) The cloud cover data used in this study was obtained
from the CRU TS version 4.09 dataset, provided by the Center for Environmental Data Analysis (CEDA), and are available
at https://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_4.09/data/cld. (3) The MODIS land-cover data was obtained from the
MCD12QL1 version 6.1 data, available from NASA Earthdata at DOI: https://doi.org/10.5067/MODIS/MCD12Q1.061. The
data was accessed via the AppEEARS.
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