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Abstract. A weather generator can provide a link between downscaled precipitation or temperature statistics on the one hand,

and impact models that require daily data as input on the other. A simple design for a weather generator for daily precipitation

is described together with results from an evaluation against rain gauge observations from Norway, Ghana and Romania. The

results from the evaluation indicate that it gives a close approximation of the observed characteristics for daily precipitation in

different climatological settings. A simple weather generator for daily temperature is also presented, and an assessment of its5

performance also suggests a reasonable skill level. These weather generators are part of the free and open-access R-package

’esd’.

1 Introduction

Global climate models (GCMs) are the most important tool for simulating future climatic conditions, such as World Climate

Research Programme’s (WCRP) Coupled Model Intercomparison Project (CMIP) phase 5 and 6 (Meehl et al., 2014; Eyring10

et al., 2015; IPCC, 2021). Numerical experiments have revealed that a single GCM starting with different initial conditions can

produce different regional outlooks due to inherent chaotic (non-deterministic) decadal variability (Deser et al., 2012, 2020),

and an important consideration for robust information about a future climate is to involve large GCM ensembles. Furthermore,

the GCMs are only designed to reproduce large-scale processes, phenomena and conditions with skill, and are known to

have a minimum skilful scale (Takayabu et al., 2015). However, detailed small-scale information is needed for inferring local15

consequences of climate change, such as impact on nature or for risk analysis to inform climate change adaptation (IPCC,

2023). For instance, hydrological models often require sequences of hourly or daily local rainfall and temperature, and are

often calibrated with in-situ historical rain gauge measurements (Engeland and Alfredsen, 2020). When such models are used

for assessing future consequences of a continued global warming, they need new input data which both represent the same type

of basic situation as in the past but also account for a shift in the weather statistics associated with climate change.20

Skilfully reproduced large-scale information distilled from GCM simulations can be combined with information about how

local details depend on the large scales in what is known as downscaling, for which there traditionally have been two main

approaches: (1) dynamical, performed with regional climate models (RCMs), and (2) empirical-statistical downscaling (ESD).

Downscaling with RCMs and ESD are based on different assumptions and have different strengths and weaknesses. RCMs use
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physics-based equations to compute weather information with a higher resolution than GCMs, with model time steps on the25

order of a few minutes for typically hundreds of variables for each grid cell within a regional domain. This is computationally

very expensive, limiting the number of GCM runs that can be downscaled dynamically.

ESD, on the other hand, determines statistical relationships between large scale structures provided by global models and

local climatic conditions, and is typically carried out for one or two variables. This makes ESD computationally cheap and

enables it to be applied to large multi-model ensembles of GCM simulations (Schuler et al., 2025; Benestad et al., 2025). It is30

best suited for downscaling large multi-model ensemble when ESD involves the estimation of statistical parameters describing

the shape of mathematical curves ("downscaling climate"), as opposed to estimating each individual data point ("downscaling

weather"). Moreover, the wet-day frequency fw and wet-day mean precipitation µ are two key parameters for 24-hr precip-

itation which are found to change with a global warming (Benestad et al., 2019, 2025). However, this information can only

be utilised in subsequent hydrological models if it can be unfolded as a sequence of daily precipitation amounts through a35

conditional weather generator (WG).

A WG can be described as a ’weather dice’ that produces random (stochastic) data with prescribed statistical properties and

structure. There are numerous types of WGs (Wilks, 1992; Wilks and Wilby, 1999; Mezghani and Hingray, 2009; Semenov

and Barrow, 1997; Semenov and Brooks, 1999), however, none have been designed specifically to connect ESD, for which

the output are the key parameters fw and µ, to impact models that require daily precipitation as input data. In the SPRINGS40

project1 the WG is part of a modelling chain that links the dispersion of waterborne pathogens to climate change, and ultimately

outbreak of diarrhoea in Ghana and Romania. In other words, the WG facilitates a link that passes information from downscal-

ing of GCMs on to hydrological models, and hence involves the generation of appropriate input data for hydrological models.

Figure 1 shows a schematic of the simple WG, which in this case is designed to translate the downscaled key precipitation

parameters fw and µ to appropriate input data for hydrological models that need chronological sequences of daily rainfall from45

a single site.

2 Design of the simple weather generator for daily precipitation

One requirement of the WG in a model chain from global climate models to local hydrology is that it must be able to simulate

changed rainfall due to changes in the wet-day frequency fw and wet-day mean precipitation µ. In addition, it must provide

a realistic representation of the rainy seasons, and this differs with traditional WGs based on a Markov-chain process, where50

the probability of a wet day depends on the previous day. Markov-chains are not defined for reproducing rainy seasons unless

the probabilities vary with the seasons. Furthermore, the WG was designed to ensure that the number of rainy days and

intensities are consistent with prescribed fw and µ in addition to preserving their climatological properties in both fw and µ.

Since the mean precipitation is approximately the product of the two x≈ fwµ (not exact because of a cut-off threshold of 1

mm/day to distinguish between ’dry’ and ’wet’ days), the traditional rainfall climatology is expected to be representative if the55

climatologies for both fw and µ are realistic.

1https://www.springsproject.eu/
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Simulations with the simple WG involve a process which loops over individual years, and for each year in the loop, it starts

with estimating the total number of wet days based on the annual wet-day frequency for the respective year (nwet = 365.25fw).

The following step is then to distribute nwet wet days over the year based on a climatological profile of fw, which is used as

a representation of the probabilities of a wet day on a given Julian day pt,wet. To get an annual number of wet days that60

approximately is the same as nwet, the entire curve describing the climatological profile is scaled so that the its mean value

is equivalent to the annual wet-day frequency. Here pt,wet is the probability of a wet day for the Julian day t ∈ [1,ny] of

the respective year, where ny is 365 days for normal years and 366 days for leap years. A random number generator with a

uniform distribution Wt ∈ [0,1] is subsequently used to determine whether the individual Julian days are dry or wet according

to wet⇐Wt < pt,wet. The total number of wet days is then compared with nwet, and a subsequent process removes or adds65

random wet days so that the final number matches the expected number nwet associated with the annual wet-day frequency.

Once all the wet days have been dealt out throughout the year, they are given a daily rainfall amount. The simulation of

the 24-hr amounts is based on an approximation by the exponential distribution X ∼ exp(1/µ) and subsequently adjusted by

a scaling factor based on its return value β′ = 1.256 +0.064ln(τ), where τ is the return interval in terms of years (Benestad

et al., 2019). In other words, the amounts are derived by a random number generator that produce nwet numbers with an70

exponential distribution that subsequently are scaled by matching their probabilities according to prescribed distribution with

the with the return interval p = (365.25 ∗ τ)−1. In order to ensure a typical climatological profile in the intensity, both the

wet-day mean precipitation µ climatology and the random daily amounts Xt are ranked, however, a noise term (a "smudge"

factor) is introduced to the ranking of the climatology to avoid an unnaturally sharp peak in the climatology and avoid piling

up the greatest precipitation amount on one particular day in the year. The default smudge factor is set to σµclim
µclim/2.75

The WG is part of the free and open-source R-package esd (Benestad et al., 2015) 1.11.17 or later versions, and is available

from https://github.com/metno/esd. The R-package provides documentation on its usage as well as some examples of use. It is

designed with a flexibility in how it can be applied that is controlled by its arguments, and by default it uses daily rain gauge

data from Bjørnholt, Oslo, Norway provided by the R-package, but this data can be replaced with data from any other location.

For the use in Ghana with its rainy season, for instance, it needs local rain gauge data with a representative climatology. Unless80

prescribed, the annual wet-day frequency fw and wet-day mean precipitation µ are estimated from the training rain gauge

series, but their chronology is scrambled while keeping the temporal structure. The scrambling procedure involves a Fourier

transform F (y) =
∑

i ai cos(wit) + bi sin(wit), where the coefficient ai and bi determine the spectral power (a2
i + b2

i ), and

involves changing these coefficients in a conservative way so that the spectral power is the same as in the original data. This

is equivalent to introducing random phase shifts to all spectral components. If prescribed, on the other hand, the input of the85

WG may be (1) downscaled annual fw and µ, or (2) the arguments may be single numbers which it will add to the scrambled

annual fw and µ derived from the training data. Some examples of how the WG can be used are provided in Algorithms 1–2

in the appendix.
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2.1 Evaluation of the weather generator for daily rainfall

The WG was tested and evaluated against daily rain gauge data from Norway, Ghana and Romania, and involved a comparison90

between observed and predicted daily amounts as well as wet/dry spell duration and climatology. Figure 2 shows the test results

for Bjørnholt, Oslo, Norway, and a quantile-quantile plot (upper left) shows a good agreement between the daily precipitation

amounts from the rain gauge measurements and the output of the WG. There are modest deviations in the upper quantiles,

but this is also expected due to random sampling fluctuations. The lower left panel shows a comparison between the annual

number of wet days (based on fw), and the WG does not indicate the same modest trend as the observations since the annual95

precipitation statistics are randomly scrambled through a Fourier transform with scrambled phases. The right panels show a

comparison between dry-spell and wet-spell durations, and the test indicated that the WG has a tendency to generate too many

short wet spells as well as too many short dry spells. In this case, the spell durations had not been considered other than being a

result of probabilities connected to the fw climatology, but this aspect can be improved through a subsequent step where single

wet days are moved to the nearest cluster of wet days.100

Figure 3 shows further diagnostics of the WG, and the upper left panel compares the sum of total annual precipitation.

The WG produced results which are comparable to the observations in terms of mean level and annual spikes. Furthermore,

it reproduced the climatologies in terms of total precipitation (lower left), wet-day frequency (upper right) and wet-day mean

precipitation (lower right) reasonably well.

Figures 4–5 show results from a similar evaluation for Akosombo in Ghana which also indicate a reasonable reproduction105

of the daily data. In this case, the data source was from Ghana Meteorological Agency that were shared within the SPRINGS

project. A similar assessment was carried out for daily precipitation from Cluj-Napoca in Romania using rain gauge data from

ECA&D (Klein Tank et al., 2002), and the results of the evaluation for Romania are presented in Figures 6–7. In sum, the

evaluation of the simple WG for daily precipitation suggests that is gives an approximate description of various aspects of

precipitation except for the statistics of dry and wet spell duration.110

3 A simple weather generator for daily temperature

A WG simulating temperature has to deal with different considerations than a WG simulating precipitation, as the temperature

is a continuous function in time as opposed to intermittent precipitation. Hence, there is no need to split the days into two cat-

egories for temperature, such as as ’dry’ and ’wet’ days for precipitation. Furthermore, daily temperature can be approximated

by the normal distribution T2m ∼N (µ,σ2), and hence the WG for daily temperature uses the mean and standard deviation115

as two input parameter. The WG for temperature also uses a phase-scrambled Fourier series, but uses it on the daily data in

order to preserve time structures such as auto-correlations. The scrambled data then provide probability estimates, given its

mean value and standard deviation. It is subsequently subject to a transform N (µ0,σ
2
0)→N (µx,σ2

x) where µx and σx are

new mean and standard deviations. Some test results are shown in Figure 8 in the shape of a quantile-quantile plot, and they

indicate a reasonably good reproduction of the temperatures. The time structure of the time series is designed to mimic that of120

observations by the use of scrambled Fourier series.
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4 Discussion

One interesting question is why there is such an underestimation of dry and wet spell durations in the data from the WG, at

least for Bjørnholt, and one explanation may be that when the wet-day frequency climatology is flat (fw ∈ [0.29,0.42]) then

the wet days tend to spread more out during a year, as opposed to when they are concentrated into more distinct rainy seasons.125

However, it may also be possible to shift some of the wet days simulated by the WG so that they also improve the spell length

statistics, e.g. by moving single days to the closest group of consecutive wet days.

The respective simple WGs for precipitation and temperature have been designed for single series, and while they take annual

statistics as input, which may correlate between nearby sites, they don’t take into account possible daily systematic overlap

between adjacent sites associated with precipitation or temperature with large spatial extent. Nor do they take into account130

potential correlation between daily precipitation and temperature. In some cases, there is no clear correlation between the two,

such as in Akosombo (Figure 9), so that the different variables may be generated by different WG simulations. Furthermore,

many sites only measure rainfall or temperature and not both. The covariance between daily temperature and precipitation may

also be a problem with RCMs which also reproduce biased bi-variate statistical distributions (Benestad and Haugen, 2007).

Some variables may not change much or may be associated with a weak response in the impact model, and in this case,135

they may be represented by surrogate noise. For instance, Mtongori et al. (2015) used a crop model to evaluate the effect of

either changed temperature or rainfall on maize crops, and found the model to be more sensitive to temperature change. There

are other elements such as wind and short-wave radiation (sunlight) which may affect local hydrology, but there is no clear

evidence that wind speed and direction are expected to change substantially. Short-wave radiation is affected by cloudiness

and aerosols, and is not expected to change as a direct consequence of an increased greenhouse effect (but may nevertheless be140

affected by altered anthropogenic emissions of for example sulphur and soot).

The simple WGs presented herein were not designed to simulate changes in climatological profiles, and when annual statis-

tics is used as input, it is also assumed that the climatology is stationary. However, a more advanced strategy is to use monthly

statistics as input that may make it possible to simulate changes to the climatological profiles, e.g. based on downscaled monthly

estimates of fw and µ.145

5 Conclusions

In summary, a simple weather generator developed for the SPRINGS project facilitates a link between the downscaled pre-

cipitation statistics from global climate models and hydrological models that require daily rainfall as input. It can take single

numbers for fw and µ as arguments, for instance from gridded maps, and simulate daily precipitation with a change to those pa-

rameters. The weather generator can also take annual statistics as arguments for fw and µ, and use them rather than aggregated150

statistics from the training data. Hence, it facilitates a link between downscaled output from ensembles of global climate mod-

els and impact models. A weather generator for daily temperature uses annual mean temperature as well as standard deviation

as input, and an evaluation of both WG types indicates that they give a reasonable reproduction of the observations.
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Code and data availability. Code for the WGs is available as part of the open-source R-package ’esd’ version 1.11.21 from FigShare

DOI:10.6084/m9.figshare.1160493.v18 (Benestad and Mezghani, 2026). Some of the data is provided as a part of the R-package, except155

for the rain gauge data from Ghana. The ECA&D data is public and available from https://www.ecad.eu/dailydata/.
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Figure 1. A schematic presentation of the WG which takes a sample station series for training and takes fw and µ as input for simulating

a sequence of 24-hr precipitation. It uses a sample rain gauge sequence for determining the climatologies in wet-day frequencies fw and

wet-day mean precipitation µ and hence how the number of wet days vary throughout the year (rainy seasons) as well as the intensity of the

precipitation. If annual fw and µ are not provided, it will estimate them from the sample data but shuffle the years by scrambling the Fourier

Series phases.
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Figure 2. Test results for the WG applied to Bjørnholt rain gauge measurements north of Oslo, Norway. Upper left shows a quantile-quantile

plot of the observed as opposed to simulated daily rainfall amounts; Lower left panel compares the number of annual wet days; upper right

panel shows a quantile-quantile plot that compares the observed and simulated dry spell durations; and lower right shows a comparison

between observed and simulated dry-spell durations. Data source: Norwegian Meteorological Institute (https://frost.met.no/index.html).
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Meteorological Institute
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Figure 4. Same as Fig.1 but for Akosombo in Ghana. The data source is the Ghana Meteorological Agency.
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Figure 5. Same as Fig. 2. but for Akosombo in Ghana. The data source is the Ghana Meteorological Agency.
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Figure 6. Same as Fig.1 but for Cluj Napoca in Romania. The data source is ECA&D.
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Figure 7. Same as Fig. 2. but for Cluj Napoca in Romania. The data source is ECA&D.
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Figure 8. A quantile-quantile plot presenting test results for the simple WG for daily maximum temperature at Akosombo in Ghana. There

was a some discrepancy in the lowest temperatures, but otherwise a good match with the observations.
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Figure 9. A bivariate statistical distribution or daily rainfall and daily mean temperature at Akosombo in Ghana shows that there is little

covariance between the two variables.
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Algorithm 1 A simple demonstration of the use of the WG.

install.esd <- ("esd" %in% rownames(installed.packages()) == FALSE)

if (install.esd) {

## Install esd from GitHub:

install.devtools <- ("devtools" %in% rownames(installed.packages()) == FALSE)

if (install.devtools) {

print('Need to install the devtools package')

## You need online access.

install.packages('devtools', dependencies = TRUE)

}

library(devtools)

## Need the R-packages zoo and ncdf4

install.zoo <- ("zoo" %in% rownames(installed.packages()) == FALSE)

if (install.zoo) install.packages('devtools', dependencies = TRUE)

install.ncdf4 <- ("ncdf4" %in% rownames(installed.packages()) == FALSE)

if (install.ncdf4) install.packages('ncdf4', dependencies = TRUE)

library(devtools)

print('Now install the esd package')

## You need online access.

install_github('metno/esd')

}

## activate the esd-package

library(esd)

## Get the WG help page with examples - also use '?WG' for help pages on WG()

data(bjornholt)

## Demo run

z <- WG(bjornholt)

## simulate a hypothetical climate with fewer but more intensive rainy days

x <- WG(bjornholt,fw=wetfreq(z) - 0.1,mu=wetmean(z) + 2)

index(x) <- index(x) - index(x)[1] + as.Date('2050-01-01')

plot(zoo(combine.stations(z,x)),plot.type='single',col=c('black','grey'))
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Algorithm 2 More advanced demonstration of the use of the WG.

## Retrieve gridded key annual rainfall statistics for the Nordic countries from thredds/OpenDap

url <- 'https://thredds.met.no/thredds/dodsC/metusers/rasmusb/'

mMU <- retrieve(file.path(url,'mu_Ayear_DSEns_Nordics_1850-2100_ssp370_.nc'))

mFW <- retrieve(file.path(url,'fw_Ayear_DSEns_Nordics_1850-2100_ssp370_.nc'))

sMU <- retrieve(param='ens_sd_mu',file.path(url,'mu_Ayear_DSEns_Nordics_1850-2100_ssp370_.nc'))

sFW <- retrieve(param='ens_sd_fw',file.path(url,'fw_Ayear_DSEns_Nordics_1850-2100_ssp370_.nc'))

## Use bjornholt (near Oslo, Norway) as an example

data(bjornholt)

## There is a difference in precipitation measured at Oslo-Blindern and Bjørnholt

# > c(wetfreq(Oslo.Blindern),wetfreq(bjornholt)): 0.3139275 0.3717596; diff= 0.06

## > c(wetmean(Oslo.Blindern),wetmean(bjornholt)): 6.804407 8.778730; diff= 1.97

## Extract daily annual statistics for the coordinates corresponding to selected site

## using bi-linear interpolation: the ensemble mean. The 8 km resolution of the gridded

## data but the distance between thetwo sites is 13 km.

mmu <- regrid(mMU,is=bjornholt)

mfw <- regrid(mFW,is=bjornholt)

## There was some missing data in fw

ok <- is.finite(mfw)

coredata(mfw) <- approx(year(mfw[ok]),coredata(mfw)[ok],xout = year(mfw))$y

## The ensemble spread

smu <- regrid(sMU,is=bjornholt)

sfw <- regrid(sFW,is=bjornholt)

ok <- is.finite(sfw)

coredata(sfw) <- approx(year(sfw[ok]),coredata(sfw)[ok],xout = year(sfw))$y

## Create annual statistics based on mean and standard deviation

mu <- zoo(rnorm(length(mmu),mean=mmu,sd=smu),order.by=year(mmu)) + 1.97

fw <- zoo(rnorm(length(mfw),mean=mfw,sd=sfw),order.by=year(mfw)) + 0.06

## Here - the difference between Bjørnholt and Oslo-Blindern is accounted for.

z <- WG(bjornholt,mu=mu,fw=fw)

yz <- combine.stations(bjornholt,z)

plot(yz)
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