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Abstract: 14 

Indian River basins experience frequent flooding during the Indian summer monsoon 15 

rainfall and pose several challenges to the large population of the region. To effectively 16 

manage flood risk in the region, a better understanding of flood-generating mechanisms 17 

is essential, yet hydrometeorological and catchment drivers controlling flood processes 18 

are poorly explored across India. In this study, we examine the role of 19 

hydrometeorological variables (such as precipitation and surface runoff) and catchment 20 

area in the flood occurrence in one of the largest river basins (Godavari River basin) of 21 
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the Indian Subcontinent using observed and VIC-simulated datasets. Based on the 22 

temporal analysis of precipitation, runoff, and streamflow, we show that floods caused by 23 

multiple high-intensity precipitation days predominantly occur in the semi-humid sub-24 

basins (Tekra, Pathagudam, Perur, and Polavaram) of the Godavari River. The majority 25 

of floods in the semi-humid sub-basins are associated with 10 to 11 days of accumulated 26 

precipitation, having multiple high-intensity precipitation events prior to flood. In 27 

contrast, the majority of floods in the semi-arid region of Godavari (Mancherial sub-28 

basin) are triggered by a single high-intensity precipitation day and associated with short-29 

duration (2 days) accumulated precipitation. In addition to temporal analysis, we also 30 

performed Empirical Orthogonal Functions (EOF) analysis using precipitation, runoff, 31 

and streamflow data to identify the flood-dominant catchment area. Our results 32 

demonstrate that central and downstream areas of the basin contribute disproportionately 33 

to flood occurrence, with the Tekra sub-basin generating substantially higher runoff due 34 

to favorable catchment characteristics. Overall, this study advances understanding of 35 

flood-generating mechanisms over the Godavari River basin, which can be helpful for 36 

flood control and management during the monsoonal climate of the Indian Subcontinent.    37 

Keywords: Flood mechanisms, Hydrometeorology, Catchment Characteristics, Godavari 38 

basin, Monsoonal climate.    39 

Highlights 40 

• The majority of floods in the semi-humid regions of the Godavari River 41 

predominantly occur due to multiple high-intensity rainfall days 42 

• Floods in the semi-arid Mancherial sub-basin are triggered by a single high-43 

intensity precipitation event 44 
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• Central and downstream areas of the Godavari River basin dominate in the 45 

flood occurrence 46 

• High runoff generation in the Tekra sub-basin plays an important role in 47 

downstream flooding in the Godavari River basin 48 

 49 

1. Introduction 50 

Floods are one of the costliest natural disasters, which cause severe damage to 51 

infrastructure and socio-economic conditions. According to the World Bank report in 2006, 52 

floods caused damage of 163 million US$ annually during the 1999–2005 period in India. 53 

Moreover, the occurrence of floods has increased in India in the last few decades under the 54 

warming climate, which has affected millions of people in the region (Ali et al., 2019; 55 

Gosain et al., 2006; Gupta and Nair, 2011; Milly et al., 2002). For instance, recently 56 

occurred flood events in the Indian sub-continent (i.e., 2018 Kerala flood, 2014 Jammu and 57 

Kashmir flood, 2013 Uttarakhand flood) caused enormous loss of property and human lives 58 

(Lindell et al., 2019; Mishra et al., 2018; Ray et al., 2019). Due to global warming, the 59 

frequency of high-intensity precipitation events has increased at the regional and global 60 

scales (Allan and Soden, 2007; Gosain et al., 2006; Guerreiro et al., 2018; Min et al., 2011; 61 

Rogger et al., 2017; Trenberth et al., 2003; Ummenhofer et al., 2011), which instigated the 62 

increase in flood magnitude and frequency across the globe (Ali et al., 2019; Gosain et al., 63 

2006; Gupta and Nair, 2011; Kundzewicz et al., 2014; Milly et al., 2002). Therefore, an 64 

improved understanding of flood processes is required in the densely populated Indian sub-65 

continent to reduce the severe impact of flood events. 66 
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Flood mechanisms comprise multiple processes that control the intensity and 67 

magnitude of flow in a river. In the monsoonal climate, the majority of floods occur 68 

primarily due to high-intensity precipitation events (Ali et al., 2019; Garg and Mishra, 69 

2019; Nanditha et al., 2022; Nanditha and Mishra, 2022). However, static factors of 70 

catchment properties (basin slope, geometry, land use land cover, drainage density, 71 

drainage area, and soil parameters) can also have an essential role in the flood generation 72 

mechanism, apart from extreme precipitation (Blöschl et al., 2017, 2013; Merz and Blöschl, 73 

2003; Tarasova et al., 2019). For example, forest land cover generates less runoff than 74 

arable land cover during storm events (Lane, 2017; Marc and Robinson, 2007). 75 

 To examine flood control processes, several causative processes and storylines 76 

(e.g., high precipitation, rain on snow, cloudburst,  excess runoff) have been used in 77 

previous studies (Berghuijs et al., 2016; Keller et al., 2018; Li et al., 2019; Nied et al., 78 

2014; Tarasova et al., 2019; Viglione et al., 2010). These causative processes include the 79 

hydroclimatic, hydrological, and hydrograph perspectives to better understand the flooding 80 

mechanisms (Tarasova et al., 2019). Based on the causative classification, the flood 81 

mechanisms, considering the weather systems, storm patterns, moisture transport, and 82 

weather circulation, are classified in the hydroclimatic perspective (Blöschl et al., 2013; 83 

Grams et al., 2014). Hydrograph perspective uses discharge time-series data to evaluate the 84 

different hydrographs, which show distinct flood generation mechanisms (Tarasova et al., 85 

2019). Under the hydrological perspective, hydrometeorological variables within the 86 

catchment, soil moisture information, and hydrological processes (i.e., saturation excess 87 

and infiltration) are considered (Berghuijs et al., 2016; Nied et al., 2014; Sikorska et al., 88 

2015).  89 
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In some cases, multiple criteria were used in the evaluation of flood processes, for 90 

example, short-duration heavy rainfall and long-duration rainfall (with and without high-91 

intensity rainfall) (Keller et al., 2018; Li et al., 2019; Nied et al., 2014; Tarasova et al., 92 

2019). Additionally, the spatial variability of hydrometeorological variables within the 93 

catchment is also crucial to the flooding mechanism. For instance, Freyberg et al. (2014) 94 

found that a small portion of the catchment induces large streamflow in a pre-alpine 95 

catchment during the rainy days, which causes floods in the basin. Therefore, determining 96 

the flood-dominating catchment areas based on the hydrometeorological and catchment 97 

properties before the peak flood is crucial for understanding flood processes. Overall, we 98 

need to thoroughly analyze the temporal and spatial properties of hydrometeorological 99 

variables for a better understanding of flood generation mechanisms.  100 

Flood mechanisms remain largely unexplored in large rivers within the monsoonal 101 

climate of India, which presents unique conditions of hydrometeorology and catchment 102 

properties. For instance, large river basins of India have dry soil conditions in the pre-103 

monsoon season, while extremely wet soil conditions during the mid and late monsoon. 104 

Moreover, large basins exhibit a variety of climate zones, topographies, soil parameters, 105 

and vegetation covers, which result in different hydrological responses during the monsoon 106 

season.  Therefore, the goal of the present study is to understand the major flood-generating 107 

mechanisms in one of the largest river basins in the Indian Subcontinent, the Godavari 108 

River basin. Using the Variable Infiltration Capacity [VIC; (Cherkauer et al., 2003; Liang 109 

et al., 1996, 1994)] simulated hydrological variables and observed meteorological datasets, 110 

first, we examine the temporal variability of hydrometeorological variables (precipitation 111 

and surface runoff) before the peak streamflow events to identify the dominating flood 112 
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processes. Later, we evaluate the spatial variability of hydrometeorological variables to 113 

identify flood-dominant catchment areas, which are associated with the occurrence of 114 

downstream flood events.    115 

2. Study area  116 

The Godavari River basin (Figure 1) is the second largest river basin in India, after 117 

the Ganges basin. The Godavari River witnessed many severe floods in the past decades 118 

(Garg and Mishra, 2019; Mujumdar et al., 1969; Rakhecha and Singh, 2017; Rakhecha, 119 

2002), which affected the livelihood and life of millions of people in the basin. For instance, 120 

the floods during the year 1969 and 1976 in the Indravati (tributary of the Godavari River) 121 

stream posed severe damage in the basin (Garg and Mishra, 2019; Mujumdar et al., 1969; 122 

Rakhecha, 2002), which resulted in enormous loss of property and human lives. Similarly, 123 

the year 1986 flood in the downstream part of the river affected millions of people, with a 124 

loss of more than 250 lives (Rakhecha and Singh, 2017; The Hindu, 2011). Moreover, the 125 

high flow level in the Godavari River during 2019 displaced more than 17000 people of 126 

Andhra Pradesh (https://floodlist.com/asia/india-godavari-river-flood-andhra-pradesh-127 

august-2019).   128 

The Godavari river basin has a drainage area of approximately 312,800 km2 and a 129 

river length of 1,465 km. The basin covers six Indian states (Maharashtra, Karnataka, 130 

Andhra Pradesh, Telangana, Chhattisgarh, and Odisha) and is located in peninsular India. 131 

Godavari River originates from Triambakeshwar, a high-altitude (1067 m above sea level, 132 

masl) place in the Nasik district of Maharashtra. The river flows eastward from the Western 133 

Ghats to the Bay of Bengal across the Deccan Plateau (Figure 1). The basin exhibits 134 

significant elevation variability (Figure 1a), ranging from a flat plain (below 10 masl) to a 135 
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hill range (above 1200 masl). Due to its low elevation, the downstream part of the basin 136 

has experienced numerous floods in the past. For instance, the irrigation department of 137 

Andhra Pradesh issued 22 flood warnings between 1962 and 1990 at Dowlaiswarm (the 138 

place is located near the river mouth) (Nageswara Rao, 2001). The basin also shows a large 139 

diversification in land use and land cover (LULC). The upper part of the basin is primarily 140 

covered by irrigated agricultural land, while the downstream region has forest land cover 141 

(Figure 1b).  142 

There is a large spatial variation in climate conditions across the basin. The annual 143 

mean temperature of the basin varies between 20 to 30 °C, primarily correlated with 144 

elevation (Figure 1c). Moreover, the Godavari river basin receives the majority of 145 

precipitation in the form of rainfall (without any snowfall), which predominantly occurs 146 

during the monsoon season (June to September), with large spatial variability in the annual 147 

mean (Figure 1d). The annual mean precipitation varies from 500 to 1200 mm, where the 148 

eastern part of the basin receives a large amount of rainfall, while the western part receives 149 

less than 600 mm of precipitation during the monsoon season (Figure 1d). Based on the 150 

Aridity Index (AI; the ratio of mean annual precipitation and mean annual potential 151 

evapotranspiration), the western part of the Godavari basin falls under the semi-arid region 152 

(0.2 ≤ AI < 0.5) due to less rainfall (Figure S1), while the central and eastern parts of the 153 

basin fall under dry semi-humid and wet semi-humid region, respectively (Figure S1). 154 

Detailed information about the basin elevation, land use land cover (LULC), precipitation, 155 

and temperature can be obtained from Figure 1.     156 

We selected five streamflow stations (Mancherial, Tekra, Pathagudam, Perur, and 157 

Polavaram; Figure 1a) for our analysis, which are located at major river reaches of the 158 
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Godavari River. The Mancherial, Tekra, and Pathagudam stations are on reaches that drain 159 

into the reach measured by the Perur station, which in turn, drains into the Polavaram 160 

station. Based on the area of catchment, Pathagudam is the smallest sub-basin with around 161 

35,625 km2 area, followed by Mancherial (84,375 km2), Tekra (90,625 km2), and Perur 162 

(226,250 km2) sub-basins. Polavaram is the largest sub-basin, covering approximately 163 

257,500 km².  164 

 165 

3. Data and methods  166 

3.1. Observed data 167 

We used the daily meteorological forcing for hydrological modeling to simulate the 168 

streamflow from 1967-2019 over the Godavari River basin. Daily precipitation, minimum 169 

and maximum temperature, and wind speed datasets were used to develop the daily 170 

meteorological forcing. We obtained daily 0.25º gridded observed precipitation data from 171 

the India Meteorological Department [IMD, (Pai et al., 2014)]. IMD developed daily 172 

gridded precipitation data at 0.25º spatial resolution using the approximately 6995 stations 173 

located across the country using the inverse distance weighted interpolation scheme (Pai et 174 

al., 2015). Daily maximum and minimum temperature data were also obtained from the 175 

IMD at 1º spatial resolution based on 395 stations located across India (Srivastava et al., 176 

2009). To maintain consistency in spatial resolution, maximum and minimum temperature 177 

data were regridded at 0.25º using a lapse rate relationship and digital elevation model 178 

(DEM) described by Maurer et al. (2002). The precipitation and temperature data from 179 

IMD capture the spatial and temporal variability well across India and have been used 180 

widely in previous studies (Chawla and Mujumdar, 2015; Garg and Mishra, 2019; Mahto 181 
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and Mishra, 2019; Rajeevan et al., 2012; Shah and Mishra, 2016). The gridded wind data 182 

is not available from IMD. Therefore, we collected reanalysis wind speed data from the 183 

National Centers for Environmental Prediction- National Center for Atmospheric Research 184 

(NCEP-NCAR), which is available at 0.25º spatial resolution. Daily streamflow discharge 185 

data for model calibration and validation were obtained from the Central Water 186 

Commission (CWC) for the five selected gauging stations (Mancherial, Tekra, 187 

Pathagudam, Perur, and Polavaram), for the period 1967-2014. Streamflow data after 2014 188 

have too many gaps and therefore could not be used for our analysis.  189 

3.2. The Variable Infiltration Capacity (VIC) and routing models 190 

The VIC model (Cherkauer et al., 2003; Cherkauer and Lettenmaier, 1999; Liang 191 

et al., 1996, 1994) is a physically based, land surface, grid-based hydrologic model that 192 

simulates energy and water fluxes at daily and sub-daily timescales for each grid cell (Gao 193 

et al., 2010). The hydrological model considers the soil parameters, vegetation parameters, 194 

including their sub-grid variability, and meteorological forcing (precipitation, maximum 195 

and minimum temperature, and wind speed data) to simulate surface runoff, baseflow, 196 

evaporation, and soil moisture. The sub-grid variability of soil and vegetation makes the 197 

VIC model more realistic than other physically-based models in heterogeneous 198 

topographic regions (Gao et al., 2012). Vegetation parameters for the VIC model were 199 

extracted from the Advanced Very High-Resolution Radiometer (AVHRR) global land-200 

cover information, which is available at 1km spatial resolution (Hansen et al., 2000; 201 

Sheffield and Wood, 2007). We used the Harmonized World Soil Database [HWSD; 202 

(Fischer et al., 2008)] soil data to develop soil parameters for the VIC model. For the given 203 

parameters and meteorological data, the VIC model uses the Xinanjiang model (Ren-Jun, 204 
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1992) and Richard’s equation (Liang et al., 1994) to estimate the runoff and soil moisture, 205 

respectively. VIC considers three layers of soil. Out of the three, only the top two soil layers 206 

contribute to the estimation of surface runoff, while the bottom layer contributes to 207 

baseflow estimation.  208 

Along with the VIC model, the stand-alone routing model from Lohmann et al., 209 

(1996) was used to route surface runoff and baseflow simulated by the VIC to desired 210 

locations over the basin. The model is based on two parts, routing within grid cell and 211 

channel routing, where the first uses the unit hydrograph method while the second is 212 

performed using the linearized Saint-Venant equation. Both parts of the routing model are 213 

developed using the simple linear transfer function (Gao et al., 2010). The streamflow 214 

routing model assumes that surface runoff and baseflow exit a cell in a single flow direction 215 

based on the topography. Basin and sub-basin delineation and flow direction were 216 

computed from the Shuttle Radar Topography Mission elevation data (Digital Object 217 

Identifier (DOI) number: /10.5066/F7PR7TFT) for the routing model.  218 

We used the previously calibrated VIC model of the Godavari River basin from 219 

Garg and Mishra (2019). Garg and Mishra (2019) calibrated the VIC model using the six 220 

soil parameters: Dsmax (maximum velocity of baseflow), Ds (Fraction of Dsmax where 221 

nonlinear baseflow begins), Ws (fraction of the maximum soil moisture where nonlinear 222 

baseflow occurs), binf (shape of the variable infiltration capacity curve), and soil depths of 223 

the second and third layers; which control surface runoff, baseflow, evaporation (in bare 224 

soil), and soil moisture in the VIC model. The infiltration shape parameter (binf) and soil 225 

depths are used in the estimation of surface runoff, infiltration, soil moisture, and bare soil 226 

evaporation, while Dsmax, Ds, and Ws parameters are mainly used for baseflow estimation. 227 
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More information on the VIC model, input datasets, and parameters can be obtained from 228 

Gao et al., (2010) and the Land Surface Hydrology Research Group at the University of 229 

Washington (http://uw-hydro.github.io/).  230 

In this study, the calibrated VIC model (Garg and Mishra, 2019) was re-evaluated 231 

for the five stations using the updated observed daily streamflow data (Figure S2, Table 232 

S1, S2). We re-evaluated the model performance for the Mancherial, Tekra, Pathagudam, 233 

Perur, and Polavaram stations of the Godavari River basins for the 1970-2014 period, 234 

where the first 10 years are the calibration period (Garg and Mishra, 2019) and the rest is 235 

the validation period (Figure S2, Table S1). The model performance was evaluated using 236 

the Nash–Sutcliffe efficiency [NSE; (Nash and Sutcliffe, 1970)], the coefficient of 237 

determination (R2), and bias percentage at low (Bias_Q5), mean (Bias_mean), and high 238 

(Bias_Q95) streamflow values. These metrics (NSE, R2, and Bias values) show that the VIC 239 

model performs satisfactorily during the calibration period (Table S1, Figure S2) and has 240 

an acceptable performance during the validation period (Table S2, Figure S2).  241 

In the present study, we did not consider the interventions of human activities in 242 

the water cycle due to the limited availability of human intervention datasets. However, 243 

human activities in the basin do not affect the natural river flow in the majority of sub-244 

basins except for the semi-arid region of the Mancherial sub-basin. A large number of 245 

reservoirs were constructed for water storage in this region, which affected the model 246 

performance, mostly after 1994. Therefore, the validation period was limited to 1980-1993 247 

for the Mancherial station (Figure S2, Table S2). Such effects were not found in the 248 

downstream stations of Perur and Polavaram since the streamflow volume contribution of 249 

the semi-arid Mancherial basin is low relative to the rest of the basin area of these two 250 
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basins. Overall, our results showed that the VIC simulated natural streamflow compares 251 

well against the observed daily streamflow for all five stations during the calibration and 252 

validation period (Figure S2, Table S1, S2). Therefore, the use of VIC (without human 253 

intervention) simulated streamflow is acceptable for our analysis.    254 

 255 

3.3. Flood event characterization 256 

To understand the flood generation mechanism, we evaluated two major aspects over 257 

the Godavari river basin (Figure 2): (i) temporal properties of flood-causing precipitation 258 

and surface runoff, and (ii) flood-dominating catchment area.  259 

These analyses were based on observed precipitation data and VIC-simulated runoff 260 

and streamflow data. As the focus here is on floods, we identified independent high-261 

streamflow events using the peak-over-threshold approach. First, we selected the daily 262 

streamflow discharge more than the 95th percentile threshold value to determine the high-263 

streamflow events. Later, we grouped the events that occurred with less than 10 days of 264 

separation (Brunner et al., 2020a, 2020b; Diederen et al., 2019) to identify the independent 265 

high-streamflow event. If two or more high-streamflow events occurred together within 266 

each separation (within 10 days), we used the highest discharge value to make the event 267 

independent. 268 

3.3.1. Temporal properties of flood-causing precipitation and surface runoff  269 

Based on the duration of precipitation that leads to flood events, the events can be 270 

classified into long or short rain flood types (Berghuijs et al., 2016; Merz and Blöschl, 271 

2003). Accordingly, we performed a temporal analysis of precipitation and runoff to 272 
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identify the flood types. The correlation between the event peak discharge and basin area-273 

averaged accumulated precipitation (before the peak streamflow) for different durations 274 

(range of 1-20 days) and lag times (0-7 days, representing the lag between the end of the 275 

precipitation window and the day of the peak streamflow) was estimated for all five sub-276 

basins. A similar analysis was conducted by correlating the event peak discharge with 277 

accumulated surface runoff prior to the peak.  278 

The precipitation in the time windows found most correlated with the peak discharge was 279 

further analyzed to identify three flood-generation storylines, following the studies by 280 

Keller et al., (2017) and Berghuijs et al., (2016): (i) flood caused by a single high-intensity 281 

precipitation day; (ii) flood caused by multiple high-intensity precipitation days; and (iii) 282 

floods caused by low-to-medium intensity precipitation days. For this, we checked the 283 

number of high precipitation days (above 99th percentile) within the relevant window prior 284 

to the flood event. If the number is one, it is identified as caused by a single high 285 

precipitation day. If it is more than one, then the flood event is caused by multiple high-286 

intensity precipitation days. Finally, if both conditions fail and there is no high precipitation 287 

day prior to the flood, then the flood event is caused by multiple low-to-medium intensity 288 

precipitation days.  289 

3.3.2. Flood-dominating catchment area      290 

Next, we evaluated the dominated catchment area in flood generation by examining the 291 

precipitation and runoff spatial variability (Figure 2). For that, we used the empirical 292 

orthogonal function (EOF) analysis and obtained the leading modes of spatial variability 293 

in precipitation and surface runoff (Mishra et al., 2012). In the EOF analysis, we used the 294 

accumulated precipitation and surface runoff at each pixel for the time windows found 295 
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most correlated with peak discharge, according to the findings in step 1 above. Lastly, we 296 

examine the role of antecedent soil moisture conditions in the runoff generation 297 

mechanism. We categorize all flood events into dry and wet conditions based on the soil 298 

moisture simulated for the first soil layer before the time window found most correlated 299 

with peak discharge. If the soil moisture is more than 75th percentile, the flood event is 300 

identified as a wet condition or vice versa. Thereafter, we analyzed the mean runoff 301 

coefficient (surface runoff divided by precipitation) for wet and dry conditions for the time 302 

window found in step 1.  303 

 304 

4. Results 305 

4.1. High-intensity precipitation and Discharge Flood events  306 

Using the daily precipitation and simulated discharge data, we estimated the high-307 

intensity precipitation and streamflow values (precipitation and discharge values above 308 

95th percentile; P95 and Q95) for each month at the Mancherial, Tekra, Pathagudam, Perur, 309 

and Polavaram stations, considering the 95th percentile threshold value of the period 310 

1967-2019 (Figure S3). The majority of high-intensity precipitation (P95) and streamflow 311 

(Q95) occurred during the monsoon months (June-September; Figure S3a-e). The ratio of 312 

high-intensity streamflow and precipitation values varies with time. The early months of 313 

monsoon (i.e., June and July) have a low ratio of Q95 and P95 compared to late monsoon 314 

months (i.e., August and September). Due to dry initial soil moisture conditions, the 315 

majority of high-intensity precipitation that occurred in June and July did not cause high 316 

streamflow in the Godavari River. However, most high-intensity precipitation events 317 
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cause high streamflow in August and September due to wet soil moisture conditions in 318 

the late monsoon season (Figure S3). Moreover, we noticed a higher ratio of Q95 and P95 319 

in October in the Mancherial sub-basin, which is associated with wet moisture conditions 320 

and the onset of the Northeast monsoon in the sub-basin (Mishra et al., 2021; Rajeevan et 321 

al., 2012a). Our preliminary analysis indicates the significant role of high-intensity 322 

precipitation and antecedent soil moisture conditions in the high-intensity streamflow 323 

occurrence over the Godavari basin, which is consistent with the previous study of Garg 324 

and Mishra (2019).  325 

To further understand the role of high-intensity precipitation and runoff in basin floods, 326 

first, we identified flood events (independent high streamflow events as described in the 327 

method section) for each sub-basin during the period 1967-2019 (Figure 3a). We found a 328 

total of 116, 107, 88, 105, and 104 independent high streamflow events in the 329 

Mancherial, Tekra, Pathagudam, Perur, and Polavaram stations, respectively, during the 330 

period 1967-2019 (Figure 3a). Using the identified flood events, we analyzed the 331 

temporal and spatial variability of precipitation and runoff in further analysis to 332 

understand the attribution of hydrometeorological variables and catchment area to flood 333 

generation.  334 

4.2. Temporal properties of flood-causing precipitation and surface runoff 335 

Next, we analyzed the temporal properties of precipitation before the peak 336 

streamflow of flood events. We found (Table 1, Table S3-S7) that the highest correlation 337 

between the basin-averaged accumulated precipitation and the peak streamflow is for lags 338 

of 1-2 days and durations that vary between stations. Floods in the semi-arid Mancherial 339 

sub-basins were linked with short-duration (2 days) precipitation events (Table S3) while 340 
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floods at other sub-basins (Tekra, Pathagudam, Perur, and Polavaram, Tables S4-S7) 341 

were correlated well with long-duration (10-11 days) precipitation. Similarly, we 342 

analyzed the temporal dynamics of surface runoff before the occurrence of peak 343 

streamflow (Table 2, Tables S8-S12). As expected, the Mancherial sub-basin showed the 344 

highest correlation with short-duration (2 days) accumulated runoff, while for the other 345 

sub-basins, the highest correlation was found with long-duration (7-8 days) accumulated 346 

runoff (Table 2). The temporal properties of surface runoff are similar to precipitation but 347 

with a smaller time window, which is due to the depletion of some of the precipitation 348 

into soil storage. Overall, we found that the floods in large parts of the Godavari basin are 349 

associated with long-duration precipitation and surface runoff except for the Mancherial 350 

sub-basin, where the floods are characterized by short-duration precipitation and surface 351 

runoff (Tables 1, 2).   352 

The precipitation in the time window presented above was further analyzed for 353 

the three different conditions (see Section 3.3.1). We found that for four out of five sub-354 

basins (Tekra, Pathagudam, Perur, and Polavaram), the majority of flood events (around 355 

40-50%) occurred due to multiple high-intensity precipitation (more than 99th percentile) 356 

days (Figure 3b). However, most of the floods in the Mancherial sub-basin occurred due 357 

to single high-intensity precipitation days (Figure 3b). This is not surprising, given the 358 

shorter precipitation duration found for Mancherial compared to the other sub-basins. We 359 

also found that around 30-40% flood events in Mancherial, Perur, and Polavaram sub-360 

basins are associated with long-term low-intensity precipitation (Figure 3b). Overall, our 361 

results showed that the majority of flood events in Tekra, Pathagudam, Perur, and 362 

Polavaram sub-basins occurred due to the higher attribution of multiple high-intensity 363 
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precipitation days. However, the majority of flood events in the Mancherial sub-basin 364 

occurred due to higher attribution of single-day high-intensity precipitation (Figure 3, 365 

Table 1, 2).   366 

4.3. Flood-dominating catchment area      367 

Next, we identify the catchment area, which dominantly contributes to the flood 368 

generation mechanism. The flood-dominating catchment area is identified based on the 369 

spatial variability of hydrometeorological variables (precipitation and surface runoff 370 

patterns) and catchment conditions before the peak streamflow. Using the EOF analysis, 371 

we estimated the leading spatial patterns of variability in the accumulated precipitation 372 

and surface runoff before the peak streamflow, where accumulation of precipitation and 373 

runoff was based on the time-windows estimated in the previous analysis (i.e., 2, 10, and 374 

11 days for precipitation and 2, 7, and 8 days for runoff, Tables 1, 2).  375 

Based on EOF analysis, we found that flood-causing precipitation occurred 376 

predominantly in downstream areas of the Mancherial and Tekra sub-basins, which reside 377 

in the central part of the Godavari basin (Figure 4a-c). However, the leading spatial 378 

pattern (Mode-1) of accumulated precipitation covers the entire region of Pathagudam 379 

(Figure 4a-c). Perur sub-basin also showed a similar spatial pattern of EOF analysis for 380 

the 10 and 11 days accumulated precipitation and indicated the high weightage over the 381 

central and downstream parts of the sub-basins during flood generation (Figure 4e-h). For 382 

the Polavaram sub-basin, we found a high dominance of the central and downstream part 383 

of the Godavari basin in the flooding mechanism (Figure 4i-k). Moreover, the correlation 384 

between peak streamflow and the leading mode (mode-1) of 10 or 11 days of 385 

accumulated precipitation is higher than the leading mode of 2 days of accumulated 386 
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precipitation (Figure 4d) due to long-rain type floods at Tekra, Pathagudam, Perur, and 387 

Polavaram sub-basins (Table 1). Furthermore, EOF analysis for accumulated surface 388 

runoff (Figure 5) showed a similar leading spatial pattern, although its area is slightly 389 

smaller compared to the precipitation (Figure 4). Other than EOF analysis, we also 390 

computed the pixel-based correlation between accumulated precipitation and peak 391 

streamflow (Figure S4) and between accumulated runoff and peak streamflow (Figure 392 

S5), for each sub-basin over the relevant duration. Our results showed spatial patterns of 393 

correlation analysis that were similar to those obtained from the EOF analysis. In 394 

addition, our analysis (Figure S4 and Figure S5) confirms the previous finding (Figure 4 395 

and Figure 5) where higher correlations of peak streamflow in the Tekra, Pathagudam, 396 

Perur, and Polavaram sub-basins are with long-duration precipitation and runoff, 397 

compared to short-duration, while for the Mancherial station, the opposite behavior was 398 

found. 399 

We further estimated the pixel-based runoff coefficient (ratio of surface runoff to 400 

precipitation) before the peak streamflow for 2, 7, and 8 days durations under both dry 401 

and wet soil moisture conditions (Figure 6). We found that the Tekra basin showed the 402 

highest values of runoff coefficient compared to the other parts of the basin for all 403 

durations and in both wet and dry conditions (Figure 6), indicating the dominance of the 404 

Tekra sub-basin in the Godavari river flooding. We also found that the variation in runoff 405 

coefficient among durations is lower during the dry conditions compared to the wet 406 

conditions (Figure 6). For instance, under wet conditions, the values of the runoff 407 

coefficient are higher for the 2 days duration and decrease slightly for 7 and 8-day 408 

durations. The decrease in runoff coefficient for 7 and 8 days durations is due to the 409 
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lower intensity of rainfall in long-time span compared to 2 days duration rainfall. 410 

However, we found that runoff coefficient values are quite similar for all durations under 411 

the dry condition. Overall, our results highlight the flood-dominated area of the Godavari 412 

basin based on the hydrometeorology and catchment properties. Our analysis reveals that 413 

the central region of the Godavari basin and the Tekra sub-basin contribute significantly 414 

to flood generation, compared to other parts of the basin. Furthermore, these results can 415 

be used for flood management in the basin.     416 

 417 

5. Discussion and Conclusions   418 

Floods pose severe challenges to the infrastructure, ecology, and socio-economic 419 

development of the largely populated Indian Subcontinent. Moreover, the risk of floods 420 

has increased significantly under global warming (Ali et al., 2019; Arnell and Gosling, 421 

2016; Dottori et al., 2018; Hirabayashi et al., 2013; Milly et al., 2002). Thus, an effort is 422 

required to better understand flood generation mechanisms in the large river basins of the 423 

Indian Subcontinent during the monsoonal climate for effective flood management. In 424 

this study, we examined the temporal and spatial variability of hydrometeorological 425 

variables to identify the dominant flood-generating mechanisms and flood-contributing 426 

areas using the observed and VIC-simulated hydrological variables-  427 

In our analysis, we considered two hydrometeorological variables, precipitation 428 

and surface runoff, across the basin to evaluate the flood generation mechanism where 429 

high-intensity precipitation is the primary driver in the flood occurrence. However, 430 

previous studies (Garg and Mishra, 2019; Sharma et al., 2018) showed that high-intensity 431 
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precipitation and floods are not always linked due to pre-hydrological conditions over the 432 

catchment. There is only 50 to 70% of high-intensity precipitation, which causes flooding 433 

in a basin (Garg and Mishra, 2019; Wasko and Sharma, 2017). Our results show that the 434 

attribution of high-intensity precipitation to flood generation varies with time. For 435 

instance, the majority of high-intensity precipitation events in the late monsoon season 436 

(August-September) cause flooding in the Godavari basin (Figure S3) due to wetter soil 437 

moisture conditions. Therefore, we used a bottom-up approach in our study to examine 438 

the temporal and spatial variability of hydrometeorological variables, i.e., we first 439 

identified the flood events, and then precipitation and surface runoff variables before the 440 

flood events were evaluated to understand their role in the flooding mechanism.  441 

We evaluated the temporal properties of hydrometeorological variables 442 

(precipitation and surface runoff) to identify the flood types and processes (Keller et al., 443 

2018; Merz and Blöschl, 2003) that predominantly occur over the Godavari basin in the 444 

monsoonal climate.  We found that the majority of floods in the Godavari basin (except 445 

Mancherial Basin) are long-rain type floods (Keller et al., 2018; Merz and Blöschl, 446 

2003), which are associated with the 10 to 11 (7 to 8) days long precipitation (surface 447 

runoff) with multiple high-intensity precipitation events. However, the majority of floods 448 

in the semi-arid Mancherial sub-basin are short-rain type. The majority area of the 449 

Godavari basin, associated with long-duration precipitation (surface runoff), falls in the 450 

semi-humid climate. The rivers in the humid climate can carry a large volume of water 451 

(or have a large storage capacity); therefore, a significant amount of rainfall is required 452 

for the flood occurrence (Merz and Blöschl, 2003). Previous studies (Hirschboeck et al., 453 

2000; Merz and Blöschl, 2003) have found that persistent rainfall in the region is the 454 
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primary factor in generating long-rain type floods. Consistent with our results, Merz and 455 

Blöschl, (2003) showed the long-rain type flood for most humid regions of Austria. 456 

Similarly, short-rain type flood in the semi-arid Mancherial region is associated with the 457 

small storage capacity of the river in the region, which can be easily achieved with 458 

shorter rainfall. Therefore, to minimize the risk of flooding in the region, we require a 459 

forecast system, which can predict the rainfall for 10 to 11 days duration in the semi-460 

humid climate region.  Moreover, we need to understand the occurrence of multiple 461 

concurrent extreme precipitation events in the future changing climate.      462 

While the temporal properties of hydrometeorological variables have been widely 463 

evaluated to identify flood processes (Keller et al., 2018; Merz and Blöschl, 2003), the 464 

spatial patterns of hydrometeorology and catchment conditions before peak streamflow 465 

are commonly ignored. This study also evaluated the spatial variability of precipitation 466 

and surface runoff before peak streamflow to delineate the dominating flood-generating 467 

areas using the EOF and correlation analyses.  We showed that the (long or short duration 468 

accumulated) precipitation and surface runoff before peak streamflow dominantly occur 469 

over the central and downstream areas of the Godavari basin, which contribute to the 470 

flood generation. Nied et al., (2014) found that the pre-event spatial patterns of 471 

hydrometeorological variables are linked with leading moisture transport and weather 472 

system patterns in the region. Moreover, the pre-event hydrometeorological patterns are 473 

also associated with the soil moisture patterns (Nied el al., 2014). Since the majority of 474 

floods in monsoonal climate occur during the wetter soil moisture condition, the soil 475 

moisture patterns may not affect the pre-event hydrometeorological patterns.  476 
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Apart from spatial patterns of precipitation and surface runoff prior to the flood, 477 

catchment properties also play an essential role in flood generation. We found that the 478 

majority area of the Tekra sub-basin generates more runoff compared to the other sub-479 

basins. The high runoff ratio in the Tekra sub-basin can be associated with various 480 

catchment characteristics (such as high slope, forest-crop land cover, clay soil, etc.) in 481 

this semi-humid region, which results in a large fraction of precipitation contributing to 482 

the surface runoff and causing flooding in the downstream areas. Previous studies 483 

(Boardman et al., 2003; Holman et al., 2003; Lane, 2017; Marc and Robinson, 2007) 484 

showed that the high irrigation area, deforestation, and high slope accelerate the runoff 485 

generation mechanism, which causes high runoff in the basin. 486 

With a limited understanding of flood processes in the Indian Subcontinent during the 487 

monsoonal climate, this study initiates a new discussion to better comprehend the flood 488 

generation mechanisms in India, aiming to improve flood management. Using the same 489 

approach, we can identify the temporal and spatial variability of hydrometeorological 490 

variables for the other Indian River basins, which can be used for numerous flood control 491 

applications. Overall, our findings provide a better insight into the flood generation 492 

mechanism over a large river basin of the Indian Subcontinent during the monsoonal 493 

climate. Based on our study, we conclude the following:  494 

1. The majority of floods in the Godavari river basin occurred during the monsoon 495 

season. However, during the late monsoon, there is a higher ratio of high flood 496 

events to high precipitation events due to wet soil-moisture conditions. 497 

2. Four out of five sub-basins (except the Mancherial sub-basin) showed the 498 

dominance of long-duration type floods in the period 1967-2019. Long-duration 499 
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(10-11 days) rainfall causes floods in the semi-humid region of Tekra, 500 

Pathagudam, Perur, and Polavaram sub-basins. However, Floods in the semi-arid 501 

Mancherial sub-basin are associated with short-duration (2 days) precipitation and 502 

surface runoff.  503 

3. Floods in the Tekra, Pathagudam, Perur, and Polavaram sub-basins predominantly 504 

occur due to multiple high-intensity rainfall days. Therefore, long-duration type 505 

floods occurred in these sub-basins. Moreover, our analysis revealed that short-506 

duration floods in the semi-arid Mancherial sub-basin are primarily associated 507 

with single-day high-intensity precipitation.  508 

4. Based on the EOF and correlation analyses of precipitation and surface runoff, 509 

central and downstream areas of the basin dominate in the flood generation 510 

mechanism in the Godavari River, which highlights the importance of these areas 511 

in flood management in a future warming climate. Moreover, medium-term (10 to 512 

11 days lead) precipitation forecasts in these regions will be useful for flood and 513 

reservoir management forecasting.  514 

5. Our analysis also indicated the importance of the Tekra sub-basin in the high 515 

runoff generation in the Godavari basin. Due to favorable catchment 516 

characteristics, a large fraction of precipitation contributes to the surface runoff in 517 

the Tekra sub-basin. Therefore, more efforts (i.e., afforestation and sustainable 518 

infrastructure development) are needed in the Tekra sub-basin for flood 519 

management in the downstream region.      520 

In the changing climate and land use land cover (urbanization and deforestation), the 521 

risk of floods is projected to increase over the Indian Subcontinent (Ali et al., 2019; 522 

https://doi.org/10.5194/egusphere-2026-339
Preprint. Discussion started: 12 February 2026
c© Author(s) 2026. CC BY 4.0 License.



24 
 

Gosain et al., 2006; Gupta and Nair, 2011; Rogger et al., 2017; Shah et al., 2019). 523 

Moreover, the moisture-holding capacity of the atmosphere increases (Karl and 524 

Trenberth, 2003; Kharin et al., 2007) due to a warming climate, which leads to frequent, 525 

intense, and more extended extreme precipitation events (Ali et al., 2019, 2014; Roxy et 526 

al., 2017; Vittal et al., 2013). Therefore, reliable information on precipitation and runoff 527 

forecasts in the basin is crucial for effective flood mitigation. Moreover, significant steps 528 

are needed to reduce the rapid runoff generation in the Tekra sub-basin using natural 529 

flood management methods for flood control in the downstream area of the basin (Lane, 530 

2017). For instance, attenuation of surface runoff can be achieved through afforestation 531 

(Marc and Robinson, 2007), changes in arable land-use practices (Boardman et al., 2003), 532 

reductions in livestock density (Orr and Carling, 2006), and Changes in tillage practices 533 

(Holman et al., 2003). Along with the study of natural drivers of floods, we also have to 534 

analyze the role of human activities (intensive agriculture practices, reservoir operation, 535 

groundwater depletion, urbanization, etc.) in the occurrence of flood events in the future.  536 
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 794 

Figure 1: Catchment and climate information of Godavari river. (a-b) Topographic 795 

using the Digital Elevation Map (DEM) and Land use land cover (LULC) information of 796 

the Godavari river basin. (c-d) Climate conditions over the basin using the annual mean 797 

temperature and precipitation during 1967-2019. 798 
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 799 

Figure 2. Major steps used in the analysis.  800 

 801 

 802 

Figure 3. Floods associated with multiple criteria of precipitation over Godavari 803 

River Basin. (a) number of flood events in each sub-basin. (b) Attribution (%) of low-804 

intensity precipitation, single high-intensity precipitation, and multiple days’ high-805 

intensity precipitation in flood generation.  806 

 807 
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 808 

Figure 4: The leading mode of variability in the accumulated precipitation during the high 809 

streamflow events for the period 1967-2019 using the method of empirical orthogonal function 810 

(EOF). (a-c) The first leading EOF mode of (a) 2-days, (b) 10-days, and (c) 11-days accumulated 811 

precipitation for the Polavaram sub-basin. (d) Correlation between first leading mode and flood 812 

peak at the Polavaram station. (e-h) same as (a-d) but for Perur sub-basin. (i-l) same as (a-d) but 813 

for Mancherial (left), Tekra (middle), and Pathagudam (right) sub-basins.  814 

 815 
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 816 

Figure 5. The leading mode of variability in the accumulated runoff (excess precipitation) during 817 

the extreme floods for the period 1967-2019 using the method of empirical orthogonal function 818 

(EOF). (a-c) The first leading EOF mode of (a) 2-days, (b) 7-days, and (c) 8-days accumulated 819 

runoff for Polavaram sub-basin. (d) Correlation between first leading principle component (PC-1) 820 

and extreme floods over at Polavaram station during 1967-2019 for 2, 7, and 8-days accumulated 821 

runoff. (e-h) same as (a-d) but for Perur sub-basin. (i-l) same as (a-d) but for Mancherial (left), 822 

Tekra (middle), and Pathagudam (right) sub-basins. 823 

 824 
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 825 

Figure 6. Runoff coefficient over Godavari basin during the flood events in the period 826 

1967-2019. (a-c) Variability in runoff coefficient values using (a) 2-days, (b) 7-days, and 827 

(c) 8-days cumulative precipitation and runoff during dry condition flood events. (d-f) 828 

Similar to (a-c) but variability in runoff coefficient values during wet condition flood 829 

events.  830 

 831 

 832 

Table 1: Duration and lag (days) where the basin-averaged accumulated precipitation has 833 

the highest correlation with simulated flood peak for high streamflow events at different 834 

stations.    835 

Station Lag-time Duration 

Mancherial 2 2 

Tekra 1 11 

Pathagudam 2 10 
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Perur 2 10 

Polavaram 2 11 

 836 

 837 

Table 2: Duration and lag (days) where the basin-averaged simulated accumulated 838 

surface runoff has the highest correlation with the simulated flood peak for high 839 

streamflow events at different stations    840 

Station Lag-time Duration 

Mancherial 2 2 

Tekra 1 8 

Pathagudam 2 7 

Perur 2 7 

Polavaram 2 7 

 841 
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