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Abstract. Snowpacks in mountain regions with Mediterranean climates are exceptionally sensitive to climate warming.
However, these marginal snowpacks are sparsely monitored, limiting our understanding of recent snow losses and constraining
our ability to anticipate and manage future changes in mountain water supply. Here we present snowMapper v1.0, a modular,
physics-informed, machine-learning-based model for reconstructing daily snow cover at high spatial resolution using satellite
imagery and gridded climate products. snowMapper is fully configurable and features dedicated modules for masking,
preprocessing, snow binarization, snow reconstruction, spatiotemporal aggregation, and validation. It performs with
exceptionally high skill. Using snowMapper, we generate a monthly snow-cover climatology for ten of Greece’s highest
mountain massifs for the period 1984-2025. Our results reveal a rapid and widespread decline in snow cover area (SCA),
amounting to a ~ 58 % reduction relative to the 1984-2025 mean. We identify sustained warming throughout the snow season
as the primary driver of this decline. Precipitation changes correlate with SCA only in early and mid-winter, underscoring the
dual role of air temperature in controlling both accumulation (via snowfall fraction) and ablation processes. The North Atlantic
Oscillation exerts only a modest influence on mid-winter SCA, and primarily when acting in conjunction with the Arctic
Oscillation, representing a stark contrast to patterns observed in western Mediterranean mountain ranges. Finally, the absence
of a strong relationship between SCA and the Atlantic Multidecadal Oscillation reinforces the conclusion that the observed

trends lie outside the bounds of natural climate variability.

1 Introduction

Mountains play a vital role in regulating the water supply to ecosystems and populations downstream (Viviroli et al., 2007).
In the Mediterranean region, precipitation is strongly seasonal, peaking in autumn and winter, with a large fraction of it falling
at higher elevations as snow (Fayad et al., 2017). The seasonal lag between snow accumulation and its subsequent meltwater
release later in the hydrological year helps to mitigate summer water deficits, when demand is highest and precipitation is

lowest (Avanzi et al., 2024; Garcia-Ruiz et al., 2011; Lopez-Moreno et al., 2024; Loukas et al., 2007). This delayed runoff is
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especially critical in basins with limited artificial storage capacity - common in the region - where a significant fraction of
winter precipitation would otherwise be lost as runoff to the sea, reducing its availability for ecosystems and for domestic,
agricultural, and industrial use (Barnett et al., 2005; Shea et al., 2021). Moreover, the Mediterranean mountain ranges outside
of the Alps lack major glaciers, which act as natural hydrological buffers during years of meteorological drought (Pritchard,
2019). This absence heightens dependence on climatically marginal snowpacks, which are inherently vulnerable to warming

owing to their predominantly isothermal state (Lopez-Moreno et al., 2024, 2025).

Since the early 21st century, the Mediterranean region has been recognised as a climate change “hotspot,” experiencing some
of the fastest rates of environmental change globally (Giorgi, 2006). Although debate continues over whether regional
precipitation trends reflect anthropogenic forcing or natural variability (Trancoso et al., 2024; Vicente-Serrano et al., 2025),
there are robust signals of rising temperatures, which are consistently linked to a declining snowfall fraction and earlier
snowmelt across the region’s mountain ranges (Akyurek et al., 2023; Alonso-Gonzalez et al., 2020; Capozzi et al., 2025;
Choler et al., 2025; Fayad et al., 2017; Gottlieb and Mankin, 2024; Li et al., 2025; Lopez-Moreno et al., 2017, 2025;
Masloumidis et al., 2025; Notarnicola, 2020, 2024b). These regional changes are further amplified by the global phenomenon
of elevation-dependent warming, which enhances temperature increases in mountain environments and alters associated

precipitation regimes (Abbas et al., 2024; Pepin et al., 2015, 2022).

Although marginal snowpacks are crucial to ecosystems and society, and are highly sensitive to climate change, research into
their climatology remains limited to a few well-studied ranges, such as the European Alps and the Pyrenees, with little to no
information available for the other ranges (Fayad et al., 2017; Lopez-Moreno et al., 2024). Given the substantial spatial and
temporal limitations of in situ snow observations, satellite remote sensing has long provided a valuable alternative for
investigating mountain snow hydrology (Fayad et al., 2017; Gascoin et al., 2024). However, gaps in satellite records—due to
persistent cloud cover and, low revisit frequency, especially in the earlier missions—Ilimit the utility of these datasets in their

original form.

To overcome these limitations, researchers have developed a variety of gap-filling and data aggregation methods. These
include decision tree-based approaches leveraging snowline altitude for detection and interpolation (Gascoin et al., 2019;
Koehler et al., 2022); yearly aggregation techniques that normalise observations across multiple decades (Moazzam et al.,
2022); and more advanced frameworks that combine snowline-based gap-filling with monthly aggregation (Poussin et al.,
2024). Spatial and temporal filtering methods have also been employed, using neighbouring grid cells in space and time,
respectively, to reconstruct missing binary snow-cover data (Barrou Dumont et al., 2025; Gafurov and Bardossy, 2009;
Gascoin et al., 2015, 2022; Notarnicola, 2020; Parajka and Bloschl, 2008). Another approach has employed a machine learning
classifier trained on a combination of MODIS and reanalysis-derived spatial aggregates of fractional snow cover, using the

latter to extend the MODIS record into the past (Gascoin et al., 2022).

2
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Despite their effectiveness in specific contexts, these techniques entail notable trade-offs. First, spatial filters require a
sufficient number of same-day observations (pixels), restricting their use to periods with adequate imagery and forcing a choice
between datasets: the high spatial resolution but low revisit frequency of, e.g., Landsat or Sentinel-2, versus the higher
frequency but coarser resolution of, e.g., MODIS. Second, temporal filters can reliably bridge data gaps of only 5-10 days,
making them unsuitable for much of the early Landsat record, where gaps often far exceed this range due to limited satellite
coverage, persistent cloud contamination, and the Scan Line Corrector (SLC) failure of Landsat 7°s ETM+ sensor. Third,
temporal aggregation methods, even when supplemented with gap-filling steps, inherently sacrifice day-to-day variability and
risk introducing substantial bias, for example when a single early- or late-month observation is used to represent an entire

month’s snow conditions.

In this study, we present snowMapper v1.0, a modular, physics-informed, machine-learning-driven model for reconstructing
daily snow cover at 100 m spatial resolution. Using this framework, we generate a comprehensive 41-year reconstruction of
snow cover across key mountain massifs in Greece, drawing on four decades of satellite observations. We then evaluate the
reconstructed datasets to identify climatologically significant trends and interpret these changes in relation to both local
atmospheric conditions and large-scale modes of climate variability. In this way, we contribute new insights into the largely

unexplored dynamics of snow cover in the Greek mountains.

2. Methods
2.1 Study area

In Greece, winter precipitation exhibits pronounced temporal and spatial variability due to the interaction between synoptic
circulation patterns and complex topography. The Pindus Mountains form a major climatic divide, separating the wetter
western mainland from the drier eastern regions. During meridional circulation, cold northeasterly flows - often triggered by
Siberian or central European blocking anticyclones - bring precipitation to eastern Greece, particularly in mid to late winter
(Bartzokas et al., 2003). Conversely, zonal circulation dominates in the west, producing longer and more frequent precipitation
events, with limited spillover to the eastern Pindus (Bartzokas et al., 2003). Analysis of surface station data from 2010-2023,
indicates that heavy winter precipitation events (R20 > 20 mm day™') occur most frequently over western Greece (Kotroni et
al., 2025). Snow cover typically persists from November to May, with isolated patches lasting into mid-summer (Masloumidis

et al., 2025).

The study area was delineated using the hierarchical inventory of the world’s mountains, Global Mountain Biodiversity

Assessment (GMBA) v2 product (Snethlage et al., 2022a, b). The dataset was clipped to the Greek national borders, and ten
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mountain massifs across the mainland with maximum elevations > 2,000 m a.s.l. were selected for snow-cover reconstruction

and climatological analysis (Fig. 1).

Water was masked using the Joint Research Centre’s Global Surface Water dataset v1.4 (Pekel et al., 2016), based on the
maximum extent observed over the dataset period, 1984-2022. Snow cover detection over forested areas presents a known
challenge for optical remote sensing (Gascoin et al., 2024; Muhuri et al., 2021), and therefore a forest mask was applied using
the 2015 Tree Cover Density 100 m dataset (European Environment Agency, 2018). Grid cells were masked when tree cover
density was > 50% (Barrou Dumont et al., 2025). Lastly, an elevation mask was applied, discarding areas lower than 700 m

a.s.l., based on the Shuttle Radar Topography Mission (SRTM) digital elevation dataset (DEM) v3 (Farr et al., 2007).

N. Pindus Mt. Grammos Mt. Voras Mt. Falakro

Mt. Vardousia

a7
Mt. Chelmos [] GMBAvV2 Mask $ B H Mt. Ziria
2918m [ ROI
[J<700m
[ Forest
B Water
Om

Figure 1: Locations of the ten Greek mountain massifs analysed in this study, together with their regions of interest (ROIs) for snow-
cover reconstruction, delineated following the application of elevation, forest, and water masks.
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2.2 snowMapper model overview

snowMapper is a modular, physics-informed, machine-learning-driven model developed in this study for reconstructing daily
snow cover (Fig. 2). The model is (a) trained on in situ data, (b) forced by reanalysis-derived meteorological conditions, and
(c) updated through assimilation of binary snow cover from available high-resolution satellite imagery. The entire process is
performed using the cloud-based resources of Google Earth Engine through the Python API (Gorelick et al., 2017). The model
input data and preprocessing, model development and snow reconstruction, and model validation and assimilation are detailed

in the following subsections.
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Figure 2: Schematic of the snowMapper v1.0 model.
2.3 Data & pre-processing
2.3.1 Satellite imagery

We imported atmospherically corrected surface-reflectance imagery from the following high-resolution satellite sensors
available in the Google Earth Engine Data Catalogue: Landsat 4/5 TM, Landsat 7 ETM+, Landsat 8 OLI, Landsat 9 OLI-2,
and Sentinel-2A/B/C MSI. First, pre-processing was performed separately on each image to apply sensor-specific scaling
factors and to mask cloud-covered pixels. Clouds masking used CFMask (Foga et al., 2017) for the Landsat sensors and Cloud
Score+ (Pasquarella et al., 2023) for Sentinel-2, with a probability threshold of 60% (default) for the latter. All imagery was
then resampled to 100 m resolution and aligned to the Greek Grid (EPSG:2100). Daily overlapping scenes were fused using

the median reflectance of coincident pixels.
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Various methods have been developed to derive binary snow cover from surface reflectance (Barella et al., 2022; Bousbaa et
al., 2022; Gascoin et al., 2015, 2019; Koehler et al., 2022; Poussin et al., 2024; Wang et al., 2025), most of which employ the
Normalised Difference Snow Index (NDSI), computed from the green and shortwave infrared (SWIR) bands (Eq. 5) and a

decision tree of thresholds.

NDSI = Green—SWIR (5)
Green+SWIR
We empirically modified the approach used by Gascoin et al. (2015), classifying a pixel as snow-covered when NDSI > 0.4

and red-band reflectance < 0.1. This produced binary snow cover maps of snow presence (1) and snow absence (0). Pixels

lacking reflectance data due to cloud masking, Landsat 7 SLC-off gaps, or missing imagery were flagged (2) for reconstruction.

Reflectance differences between sensors were assumed to be negligible, and therefore, no inter-sensor reflectance calibration
was applied. Several previous studies have created multi-sensor snow cover products without such calibration (Barrou Dumont
etal.,2025; Bousbaa et al., 2022; Gascoin et al., 2019; Koehler et al., 2022; Moazzam et al., 2022; Poussin et al., 2024; Wayand
et al., 2018), while Rumpf et al. (2022) reported that applying sensor calibrations did not affect their results.

We then used all binary snow-cover maps to compute monthly multi-year snow-cover probabilities (SC,,) (Poussin et al.,
2024; Wayand et al., 2018), representing the likelihood, from 0 (snow-free) to 1 (snow-covered), that a grid cell contains snow

in a given month (Fig. A2) (Eq. 6).

SC,, = LSCdem ()

Nm

Lastly, we incorporated MODIS Terra imagery. Fractional snow cover (FSC) from the MOD10A1 V6.1 Snow Cover Daily
Global product (Hall and Riggs, 2015) was filtered to retain only pixels with the highest quality score (bit 0 under Basic Quality
Assessment). These data were bicubically resampled from 500 m to 100 m, and then binarized using an empirically based 50%
FSC threshold (Notarnicola, 2020; Shen et al., 2025). Although several methods exist for downscaling MODIS to higher
resolutions (Kollert et al., 2024; Mahanthege et al., 2024; Revuelto et al., 2021), bilinear - and, by extension, bicubic -

resampling has been shown to provide a robust and computationally efficient method for this purpose (Kollert et al., 2024).

Given its coarser native spatial resolution, MODIS was used in an auxiliary role for gap-filling, rather than to supplement the
primary observational dataset, from the Landsat and Sentinel-2 satellites. Although it extends back only to February 2000, we
anticipated that integrating MODIS Terra data would significantly enhance reconstruction accuracy during snowMapper’s

decision-tree gap-filling stage.
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2.3.2 Reanalysis

The land component of the fifth generation of European ReAnalysis, ERAS5-Land, produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF), provides gridded global hourly meteorological data at 0.1° spatial resolution
(Munoz-Sabater et al., 2021). We aggregated the hourly fields into daily values running from 11:00 on day i to 10:00 on day
i+1. This window was chosen over the standard midnight to midnight period because 10:00 corresponds closely to the typical
satellite overpass time in the region, ensuring that each daily composite reflects the most relevant and recent meteorological

conditions for the associated satellite image.

We used daily aggregates of mean near-surface air temperature and total precipitation to drive the quasi-physically based
meteorological downscaling model MicroMet (Liston and Elder, 2006b). MicroMet applies monthly air temperature lapse
rates and precipitation adjustment factors, calculated for the Northern Hemisphere by Kunkel (1989) and Thornton et al.
(1997), respectively, together with a DEM at the target resolution. We used the 30 m SRTM DEM v3 (Farr et al., 2007),
resampled bicubically to 100 m. While other downscaling approaches may provide higher accuracy (Fiddes and Gruber, 2014;
Sebbar et al., 2023), MicroMet strikes a good balance between realism and computational efficiency (Fig. A1), and has been

successfully used in similar applications (Choler et al., 2024; Liston and Elder, 2006a).

In addition to air temperature (T) and precipitation (P), we derived four additional daily variables at 100 m resolution: heating
degrees (HD; Eq. 1), cooling degrees (CD; Eq. 2), precipitation occurring under heating conditions (P7P; Eq. 3), and

precipitation occurring under cooling conditions (P¢?; Eq. 4):

HD = max(0,T — Tpgse) (1)
CD =max(0,Tpgse — T) 2)
P,if T >T,
HD _— ’ base
P B {0: if T < Tbase (3)
P,if T<T,
CD — ! base
P = {0, if T > Thase @)

where T},5. = 0 °C.
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2.3.3 Terrain

Elevation was sourced from the 100 m bicubically resampled SRTM DEM. We also incorporated two SRTM-derived terrain
variables from Theobald et al. (2015): the multi-scale topographic positioning index (mTPI; 270 m resolution) and the
Continuous Heat-Insolation Load Index (CHILI; 90 m resolution), both of which were bicubically resampled to 100 m. mTPI
distinguishes ridge from valley forms, while CHILI characterises the effect of insolation and topographic shading on surface
energy balance and evapotranspiration, both contributing valuable ancillary information relevant for modelling snow-cover

dynamics.

2.3.4 In situ data

The snowMapper classifier requires in situ data for training. For this purpose, we used in situ observations of snow-depth, air
temperature, and precipitation from the European Climate Assessment & Dataset (ECA&D) project (Klein Tank et al., 2002).
We selected all 49 stations located within the Mediterranean region, primarily in the Pyrenees and European Alps (Fig. A3a),
since no data were available for Greece. Daily in situ observations were preferred over daily ERAS5-Land reanalysis data
because they provide higher accuracy and greater sensitivity to local scale variability at the 100 m resolution of the model

(Monteiro and Morin, 2023), which is crucial for training a machine learning classifier.

First, we binarized snow depth measurements at the 1 cm threshold (Barrou Dumont et al., 2025; Pan et al., 2024; Sadeghi et
al., 2025). To ensure accurate determination of snow cover onset, melt-out, and duration—and the associated meteorological
conditions relevant to accumulation and ablation—the dataset was filtered to retain only continuous records. A restrictive
sequential filtering routine excluded sections of daily data when:
i a snow-cover period lacked a traceable first day (i.e., no snow-absence observation immediately preceding the first
snow-presence day); or

ii. there was a gap in the record = 1 day during a snow-cover period.

For the remaining continuous snow-cover periods, additional daily metadata variables were computed, including the
cumulative snow cover on day di (2SC), heating degrees (¥HD), cooling degrees (XCD), precipitation under warming

conditions (¥ P"P), and precipitation under cooling conditions (X PP), following Eq. (7),
IXq, = (EXq,_, +Xg,) X SCq (7)
for X in [SC, HD, CD, PHP, PCP] . By multiplying the sum of X with the current binary snow cover condition (SC), we ensure

that cumulation occurs only on days when snow is present, while in the absence of snow, each cumulative variable is reset to

zero. This approach ensures that the five cumulative variables influence snow cover processes, but not snow-free conditions.
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Each station’s dataset was further augmented with the SRTM-derived terrain indices, mTPI and CHILI, with elevation taken
directly from each station’s metadata, as well as the monthly multi-year snow cover probability corresponding to the station’s
grid cell. To maintain a purely physics-informed classifier, the training dataset excluded both the geographic coordinates of

the stations and the dates of measurement.

We categorised data points into one of the following four snow cover phases (Eq. 8):

no snow, if SCq, = 0 and 25C,, , =0

gcPhase _ new snow, if SCy, = 1 and XSCy4,_, =0 ®
i snow, if SCy4, = 1and XSCy4,_, 21

melted snow, if SCy, = 0and X5C;, =1

We then sampled approximately 10,000 daily data points from all available stations, using stratified sampling to ensure an
approximately even representation across different elevation bands, mTPI and CHILI values, monthly multi-year snow cover

probabilities, and snow cover phases (Fig. A3b).

2.4 Snow cover reconstruction
2.4.1 Machine learning classifier

Random forests (Breiman, 2001) are one of the most widely used machine learning models in land-surface and atmospheric
research, often chosen for their robustness, high accuracy and relatively low computational cost compared to other statistical
methods (Belcore et al., 2020; Hu and Shean, 2022; Mahanthege et al., 2024; Sheykhmousa et al., 2020). In our case, the
classifier was configured with 30 trees, a minimum leaf population of 1, and a bag fraction of 0.5. This configuration ensures
that each tree is trained on a random 50% bootstrap sample of the available data, while terminal nodes can contain a single
observation, thereby maximizing the model’s ability to capture local variability in snow—land-surface relationships. Figure 3

shows the relative importance assigned by the classifier to each variable in the training dataset.



245

250

255

260

265

https://doi.org/10.5194/egusphere-2026-327
Preprint. Discussion started: 28 January 2026 G
© Author(s) 2026. CC BY 4.0 License. E U Sp here

Tg,
ZHDy,, -
28Cy,,
=CDy, ,

5C,. -

CD
2:Pdm )

mTPI A
Py, 1
PP -

CHILI

l

5 10
Normalised Importance (%)

o

Figure 3: Normalised importance of each predictor variable in the snowMapper random forest classifier.
2.4.2 Initialization

We chose October as the initialisation month for each annual snowMapper run. Within snowMapper, cloud-masked surface
reflectance satellite images from October of a given year were combined into a single mean-reflectance composite. This
composite was then converted to a binary snow cover map using the NDSI approach described in Section 2.3.1, with any
remaining gaps assigned a snow-free value (0). The last day of October was set as the date of this initial-state image, and
meteorological conditions of that day, along with terrain variables and the monthly multi-year snow cover probability, were

added as metadata. Initial states of cumulative variables were calculated based on these initial snow cover conditions using

Eq. (7).

2.4.3 Model run

snowMapper reconstructs daily snow cover conditions on a cell-by-cell basis across the grid through sequential daily iterations,
using the previous day’s (d;_;) cumulative variables, the current day’s (d;) meteorological variables, the current month’s (m)
multi-year snow cover probability, and the terrain variables. In the first step of reconstruction, a three-stage sequential decision-

tree gap-filling algorithm is applied.

For a given day (d;) and grid cell, snow cover is first inferred from the previous day’s state (d;_;), combined with
meteorological conditions: if snow was present on (d;_,) and the current-day air temperature is < 0 °C, snow cover is
maintained; conversely, if snow was absent on (d;_;), current-day precipitation is zero and air temperature is > 0 °C, snow-
free conditions are maintained. In the second stage, any remaining no-data grid cells are filled using the down-sampled clear-
sky MODIS snow cover data. In the third stage, remaining empty grid cells are classified based on multi-year snow cover
probabilities following Poussin et al. (2024): cells with a monthly snow cover probability of 1 are classified as snow-covered,

while those with a probability of 0 are classified as snow-free. The full decision tree is described in Eq. (9):

10
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Lif SCy , = 1and Ty, < Thae
Lif SC4°P" =1
1,if SC,, =1
0,if SCq,_, = 0and Ty, > Tpqse and Py, = 0 mm ©)
0,if SC%OD[S =0
0,if SC,, =0

SCdi =1

In the second step of reconstruction, all remaining no-data grid cells are assigned snow or no-snow values using the random

forest classifier.

2.4.4 Assimilation

Once the classifier has filled all remaining gaps, available clear-sky Landsat- or Sentinel-derived snow cover observations are
assimilated by simply replacing the predicted values with observed ones. The cumulative variables for the current day are then
updated based on the latest snow cover conditions using Eq. (7). snowMapper then progresses sequentially to the next day,

iterating daily until the end of the simulation period.

2.4.5 Final output

Once snowMapper has fully reconstructed daily snow cover across the domain and simulation period, we compute monthly
aggregates to facilitate dataset evaluation and analysis. Daily binary snow cover is converted to monthly fractional snow cover
(FSC), which we consider a more representative metric for temporal aggregation than binary snow cover. This approach differs
from that of Poussin et al. (2024), who determined snow cover in a binary format using the maximum NDSI value from a

given month.

2.5 Model evaluation & bias correction

After reconstructing each day’s snow cover, but prior to assimilating any available Landsat- or Sentinel-derived observations,
we evaluated the performance of each grid cell on a day-to-day basis against these satellite observations. Cells were classified
as ‘true positive’ (tp), ‘true negative’ (tn), ‘false positive’ (fp), or ‘false negative’ (fn), based on the conditions outlined in Eq.
10:

tp, if chibserved =1and ch:'mulated =1
tn, if chibserved =0and Scéiimulated =0
fp’ if chibserved =0and ch:'mulated =1

n, if SCopserved =1and SCs‘Lmulated =0
dl dl

Evaluationg, = (10)

11
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At the end of the model run, we used these daily evaluations to calculate monthly performance metrics: accuracy (Eq. 11),

snow overestimation (Eq. 12), and snow underestimation (Eq. 13) (Parajka and Bldschl, 2008):

(m,y)
Z?Ll AP my) Tt (imy))

Accuracym vy = (11)

(m.y) Zli\,:(:n'y)(tP(i,m,y)+tn(i,m,y)+fp(i,m,y)+f"(i,m,y))

my)
B i i
Overestimation p, yy = —s = UPimy) (12)
Yi=1  PampyHnimy P imy) H Mimy))
(my)

. . ZN= nei

Underestimation p, yy = —s =1 UMimy) (13)

Yiz1  EPEmy) Tt Emy) tPmy) t i m,y))

We bias-corrected the reconstructed monthly FSC values using an approach inspired by the trend-preserving delta-change
method (Matiu and Hanzer, 2022). First, we calculated the representativeness index (RI) (Koehler et al., 2022), which
quantifies the percentage of available observations in a given month for a given GMBA mountain area relative to the total

number of grid cells in that month and area (Eq. 14):

obs

N m,
Ry = ﬁ (14)

Second, we removed all instances where the RI < 0.015, as such a low proportion of observations was considered insufficient
for reliable validation and subsequent bias correction. This threshold corresponds roughly to having a clear-sky view of half
the area’s grid cells on a single day within a month. Third, for each massif over the study period, we calculated the monthly

mean underestimation (U,,,) and overestimation (0,,,) metrics. Fourth, these values were then used to correct the reconstructed

FSC according to Eq. (15):
FSCeorrectedimy = FSCmy + min(Ugn,yy, Upn) — min (Ogn,y), Om) (15)

Finally, we converted the corrected monthly FSC values to monthly snow-covered area (SCA) by multiplying each value by
the masked area (km?) of the respective massif (Section 2.1).

2.6 Climatological analysis

We performed climatological analyses both across the entire study area and at the massif scale.
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Ten-year moving averages of the bias-corrected SCA time-series were calculated for each calendar month of the snow season
(November - May) to smooth interannual variability. For each month, we applied the Mann-Kendall test to identify trends and
we estimated their slope using the Theil-Sen method, both for individual massifs and for all 10 massifs collectively. To
facilitate inter-month comparison Sen’s slopes were normalised by dividing by the mean SCA for that month, yielding the
fractional annual change in SCA relative to the mean snow-covered area rather than to the total reconstructed area of each

massif.

SCA anomalies were calculated relative to the 1984-2025 monthly means. Monthly 80" and 20" percentile thresholds were
then determined to identify extreme high and low snow-cover events. Extremes were grouped annually, and the Mann-Kendall

test was applied again, this time to identify trends in both frequency and magnitude of these events (Li et al., 2025).

Using the unsmoothed SCA time-series for each month, we examined correlations with climate and climate variability by
performing Pearson’s tests against: (a) mean air temperature, (b) cumulative precipitation, (c¢) North Atlantic Oscillation

(NAO) index, (d) Atlantic Multidecadal Oscillation (AMO) index, and (e) Arctic Oscillation (AO) index.

Finally, each month’s unsmoothed SCA time-series was split into two partially overlapping 21-year subperiods: 1984/1985-
2004/2005 and 2004/2005-2024/2025. For each subperiod, we calculated the mean and standard deviation and applied

Levene’s test to assess differences in SCA variability.

For all statistical tests, we report statistical significance at the 95% confidence level (p < 0.05).

3. Results
3.1 snowMapper evaluation

The 41-year daily snow cover reconstruction produced by snowMapper was based on 1.1 billion clear sky observations (image
pixels) from Landsat and Sentinel-2 (Fig. 4), representing just 7.6 % of the final dataset. The remaining 92.9 % of snow cover
values were reconstructed through the model’s two-step gap-filling approach: the decision-tree algorithm (44.9 %) and the

machine learning classifier (47.5 %).

A clear annual cycle is evident in the proportion of grid cells reconstructed by the decision-tree algorithm, which is higher
during winter months, compared to the machine learning classifier. This pattern reflects seasonal variation in the reliability of
the air temperature - snow cover relationship. In winter, high altitudes temperatures are often < 0 °C, enabling the decision-

tree to confidently classify snow presence based on the previous day’s conditions. However, during snow transition periods -
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late autumn/early winter and late spring - snow presence may not coincide with freezing temperatures preventing the first

decision-tree criterion (Eq. 9) from being satisfied.

The fraction of values gap-filled by the decision-tree algorithm increased after 2000 due to the launch of MODIS Terra, while
the availability of clear-sky observations has risen more than fivefold since the launch of Sentinel-2 during the last decade of

the study period.

1.0

Il Clear-sky observations
I Decision tree
0.8 Machine learning

0.6

0.4

Fraction of pixels

0.2

0.0

'85 '90 '95 '00 '05 10 15 20 25

Figure 4: Monthly proportions of original clear-sky grid cells and gap-filled grid cells reconstructed by the decision-tree and
machine-learning algorithms.

Overall, across the ten massifs, the daily snow cover reconstruction achieved an average accuracy of 93 % (Fig. 5). Of the
remaining 7 % of misclassified cases, snow presence was underestimated in 4.7 % (snow present but classified as absent) and
overestimated in 2.3 % (snow absent but classified as present). Model performance declines slightly during the transitional

months of the snow season compared to mid-winter, primarily due to a systematic underestimation of snow cover.
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Figure 5: Skill of snowMapper across the entire study area, calculated monthly through Eq. (11)-(13), and presented as yearly means
(solid lines), minimums/maximums (dashed lines), and standard deviations (). Vertical lines mark the beginning of a new satellite
dataset, from the ones included in the reconstruction configuration. Also included in the reconstruction but not displayed in the
above graph is Landsat 4-5 TM launched at the start of the time-series. Massif-level evaluation is provided in Fig. A4.

3.2 Mountain snow cover trends & anomalies

Across the Greek mountains, SCA has exhibited a steep declining trend over the past four decades, both for the overall snow
season (-8.64 km? yr'!) and for each month from November through to May (Fig. 6). Trends are statistically significant for all
months except February (p=0.1). The steepest absolute declines occur in December (-18.9 km? yr!), followed by March (-13.7
km? yr'!), January and April (both -7.9 km? yr'!), February (-7.3 km? yr'!), November (-5.9 km? yr'!), and May (-0.6 km? yr'!).
When these rates are normalised by each month’s mean SCA (1984-2025), the greatest proportional losses emerge at the
beginning and end of the snow season: November (-3.0 % yr!), December (-1.9 % yr!), April (-1.6 % yr'!), May (-1.3 % yr-
1, and March (-1.1 % yr'!). In contrast, the mid-winter months show markedly smaller fractional declines, with January at -

0.5 % yr! and February at -0.4 % yr..
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Figure 6: (a) Monthly mean, minimum, maximum, and 25-75th and 5-95th percentiles of snow cover area (SCA) across the snow
season. (b) Decline in SCA, shown in absolute and relative terms, calculated based on the mean SCA for the period 1984-2025.
Asterisks (*) denote statistically significant trends. All metrics are calculated for the entire study area.

Beyond the overall downward trends, the monthly evolution of SCA exhibits three distinct temporal patterns (Fig. 7):

e Steady decline: November shows a consistent, approximately linear decrease in SCA throughout the past four

decades.

o Mid-period peak followed by sustained decline: December and March show an initial rise in SCA, reaching peaks

in the early 2000s and late 1990s, respectively, followed by a steady decline over the past two decades.

e Rise to a peak followed by a rapid, decade-long drop: January, February, April and May display an early period

increase culminating in a peak, after which SCA declines sharply over an interval of approximately ten years. These
periods of decline occur between 2005-2013 for January, 2008-2021 for February, 2000-2010 for April, and 1991-
2001 for May. For April and May, SCA subsequently stabilises — though with some variability, particularly notable

for January - at a substantially lower level.
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Figure 7: Yearly SCA time-series (light blue lines), 10-year-smoothed SCA (dark blue lines), and overall trends (dashed red lines),
along with differences in variability between two 21-year sub-periods across the entire study area. Bold text indicates statistically
significant trends (line chart: Mann-Kendall/Sen’s slope) and significant differences in variability (boxplot: Levene’s test). Massif-
level trends and variability differences are shown in Figs. A5 and A6.

Trend analysis of the monthly SCA anomalies across the study area and time period reveals a significant decline in the
magnitude of extremely high snow-cover instances, accompanied by a significant increase in the frequency of extremely low

snow cover instances (Fig. 8).
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Figure 8: Monthly SCA anomalies (%) relative to the 1984-2025 period, and Mann-Kendall trends the magnitude and frequency of
extremely high and low snow cover, based on the monthly 80" and 20%" percentiles, respectively.

3.3 Correlations

Pearson’s correlation analyses show that, across the entire study area, SCA is more strongly associated with temperature and
precipitation than with regional climate indices (Fig. 9). Air temperature displays strong and statistically significant
anticorrelations with SCA in all months, whereas precipitation shows moderate to strong positive correlations during
November-December and February-March. Among the climate indices, a significant anticorrelation with NAO is found only
in February, while both the AO and AMO show significant anticorrelations in February and March. These patterns are broadly
consistent at the individual massif scale, with only minor shifts (1 month) in the timing of significant correlations with
precipitation and the climate indices (Fig. A7). At the massif scale, February is the only month in which all ten massifs display
a significant positive correlation between SCA and precipitation, while March is the only month in which all ten massifs
display a significant negative correlation between SCA and AMO. Among the three climate indices, the AO exhibits the
clearest and most coherent behaviour, with positive correlations across all ten massifs in early winter (Dec-Jan) and negative
correlations in the later months (Feb-Apr), significant only for the massifs located in the northern parts of mainland Greece

(Fig. A7).
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Figure 9: Pearson correlation coefficients between SCA and monthly mean 2 m air temperature (T2M), monthly cumulative
precipitation (PRECIP), and major regional climate indices (NAO, AO, AMO) across all massifs in the study area. Red and blue
indicate positive and negative correlations, respectively, and hatching denotes statistically significant values.

3.4 Variability

Levene’s test, applied to the two 21-year sub-periods (1984/1985-2004/2005 and 2004/2005-2024/2025) for each month,
revealed no significant difference in the variability of total SCA between the two sub-periods. This result is consistent both

across the entire study area and at the scale of the individual massifs (Fig. A6).

4 Discussion
4.1 Trends, drivers & implications of snow cover reduction

Over the past four decades, ten of the highest massifs in Greece have undergone a rapid decline in SCA throughout the snow
season, amounting to an average reduction of 57.5 % (£ 1.4 %) at the end of the study period relative to the 1984-2025 mean.
Rates of decline are greatest at both the beginning and end of the season, consistent with global evidence for a shortening of
snow-cover duration driven by later onset and earlier melt-out dates (Notarnicola, 2020). Snow cover declined steadily in
November, December and March across most of the record, whereas January, April and May show a pronounced drop around
the turn of the century (10 years). In contrast, the decline in February becomes apparent only within the past decade.
Corresponding patterns are observed in the SCA anomalies, which display a marked shift - both in frequency and magnitude -

toward years with below-average SCA.

To compare our results with existing literature on Greece and with other, better-studied mountain ranges, we repeated the trend

analysis workflow described in Section 2.6 using the snow-cover phenology dataset of Notarnicola (2024a, b). Because that
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dataset is based on MODIS and begins only in 2000, we filtered our own dataset to the same time period, and re-ran the trend
analysis. This revealed, once again, a significant decline in SCA, with a Sen’s slope, normalised to the mean snow cover area,
of -2.3 % yr'!. The snow loss estimated from the Notarnicola (2024a) dataset was of comparable magnitude (-1.8 % yr!), with
a slight underestimation likely due to methodological differences: our analysis is restricted to the snow season (Nov-May),

whereas Notarnicola (2024b) considers the full hydrological year.

Using the same dataset, comparable rates of snow loss over 2000-2023 are evident for other mountains with Mediterranean or
Mediterranean-like climates and marginal snowpacks (Table 1). In contrast, major mountain ranges with more persistent
snowpacks exhibit far slower declines (e.g., Rockies: -0.02% yr'!; Hindu Kush Himalaya: -0.04% yr!; Cordillera Central: -
0.9% yr') (Notarnicola, 2024a). These comparisons highlight that marginal snowpacks, especially those of the Greek

mountains, are diminishing at some of the fastest rates observed globally.

Table 1: Mann-Kendall trends and normalized Sen’s slopes for mountains with Mediterranean climates and marginal snowpacks,
based on data from Notarnicola (2024a, b) and from this study (for the Greek mountains).

Greek Greek European  Dinaric Apennines Taurus  Atlas  Central  Pyrenees Baetic Sierra Snowy
mountain  mountain Alps Alps Massif System Nevada  Mounta
s (present s (US) ins
study) (AU)

@

=

S T

- = -2.4 -1.8 -1.0 -3.8 -2.7 -1.5 -23 -1.3 -1.1 =22 -0.4 35

o ‘i\t

@

n

Y

—§ 0.01 0.37 0.07 0.03 0.03 0.4 0.14 0.49 0.09 0.04 0.92 0.09

2

The strong anticorrelation between SCA and air temperature — along with the moderate correlation with precipitation — across
the ten massifs is consistent with findings from other Mediterranean mountain regions (Alonso-Gonzalez et al., 2020; Lopez-
Moreno et al., 2025). These relationships indicate that temperature is the dominant control on SCA throughout the snow season,
reflecting its dual influence on both atmospheric processes (e.g., the partitioning of precipitation into rain or snow) and land-
surface snowpack processes, including accumulation, compaction, sublimation, and melt (Fayad et al., 2017). The role of
precipitation, significant mainly in early (November-December) and late winter (February-March), aligns with the region’s
seasonal dynamics, during which zonal and meridional circulation patterns respectively contribute most to snow accumulation
(Bartzokas et al., 2003). However, the lack of a persistent drying trend in recent decades (Lagouvardos et al., 2024; Vicente-

Serrano et al., 2025) suggests that declining snowfall, and therefore decreasing SCA, is primarily temperature-driven rather
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than the result of reduced precipitation (Abbas et al., 2024; Giorgi et al., 1997; Kad et al., 2023; Li et al., 2025; Monteiro and
Morin, 2023; Pepin et al., 2015, 2022; Rottler et al., 2019).

In contrast to the strong anticorrelation between SCA and temperature, the negative correlations with the NAO, AO, and AMO
are generally weak and become significant only during the peak of the snow season (February-March), with small spatial
variations among the massifs. The concurrent timing of the NAO and AO anticorrelations likely reflects large-scale synoptic
patterns that influence the northeastern Mediterranean in late winter, particularly the formation of a blocking Central European
anticyclone or the expansion of the Siberian anticyclone, and their downstream effects over the Balkans and eastern
Mediterranean (Bartzokas et al., 2003; Tayang et al., 1998). While the NAO exerts a strong influence on winter precipitation
and temperature over the western Mediterranean (Lionello et al., 2006; Lopez-Moreno et al., 2011), thereby modulating SCA
in regions such as the Atlas mountains (Marchane et al., 2016), our results indicate that this influence weakens markedly

toward the eastern Mediterranean.

Although climate change is often associated with increased variability (Nordling et al., 2025; Pendergrass et al., 2017), our
comparison of two 21-year subperiods (1984/1985-2004/2005 and 2004/2005-2024/2025) revealed no consistent changes in
SCA variability across the ten massifs. This likely reflects the magnitude and spatial scale at which snow cover has declined
over the past four decades. Furthermore, the rapid warming of the eastern Mediterranean and Greece (Lagouvardos et al.,
2024), combined with the strong influence of temperature on SCA, means that even in years with exceptional snowfall, such
as February 2022 (Patlakas et al., 2024), snowpack conditions remain unfavourable for persistent cover, leading to accelerated

melt.

These findings are particularly relevant for marginal snowpacks in mountains with Mediterranean and Mediterranean-like
climates, which are shifting towards increasingly ephemeral snow cover (Lopez-Moreno et al., 2025; Sturm and Liston, 2021).
They also carry implications for more continental mountain ranges that currently maintain seasonal snowpacks but may be
transitioning toward marginal conditions. Underlined by the decreasing magnitude of positive SCA anomalies and the
increasing frequency of negative ones, our results add to a growing body of evidence warning of escalating snow-drought risk
in Mediterranean and global mountain regions (Avanzi et al., 2024, 2025; Baba et al., 2025; Gottlieb and Mankin, 2025; Han
et al., 2025; Pokharel et al., 2024; Singh et al., 2025). Taken together, these conclusions highlight the urgent need for

modernising and optimising water-resource management strategies in Greece.

4.2 snowMapper skill

snowMapper demonstrated strong skill in reconstructing a 41-year snow-cover climatology across the temperate mountains of
mainland Greece. The framework provides a modular, medium-complexity solution for gap-filling spatially and temporally

patchy satellite observations, using a novel modelling approach that integrates area masking, preprocessing, gap-filling, post-
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processing, and validation. Furthermore, the high performance of the model’s physics-informed machine-learning component
- achieving high accuracy despite being trained on in situ data from outside the study area - highlights its potential for broader
application in other data-sparse or unmonitored mountain regions (e.g., Pritchard, 2021). In addition to offering a standalone
model for directly reconstructing snow-cover time series, snowMapper could also be used as part of more complex
hydrological modelling workflows, through the use of daily high-resolution snow-cover maps for deriving boundary conditions
and even calculating snow depletion curves, ultimately replacing coarser-resolution MODIS-based datasets (Tekeli et al.,
2005).

The slightly lower performance of snowMapper during the transitional months of the snow season reflects a well-documented
challenge in snow-cover and snow-hydrological modelling (Chereque et al., 2025; Krinner et al., 2018; Toure et al., 2018).
These months are characterised by high meteorological variability (e.g., air temperatures fluctuating around 0°C that
complicate rain-snow partitioning and melt-freeze cycles) and strong pre-conditioning of land-surface conditions (e.g., above-

freezing ground temperatures at the start of the snow season that produce short-lived snowpacks).

We emphasise that the careful selection of a reanalysis product is essential. Because the snow reconstruction relies on
reanalysis-derived air temperature and precipitation, the regional accuracy and native spatial resolution of the chosen dataset
exert a strong influence on overall model quality. These factors propagate through every stage of the workflow, from
MicroMet-based downscaling and the decision-tree gap-filling algorithm to the performance of the machine learning classifier.
In this study, we used ECWMEF’s ERAS5-Land, due to its comparatively high spatial resolution. Despite this, its land mask may
include mountain grid cells that overlap coastal areas, potentially introducing a warm bias for mountainous terrain on islands
or narrow peninsulas. In such cases, MicroMet’s lapse-rate downscaling can produce positively biased air temperatures, which
then propagate through the gap-filling steps and result in earlier modelled snowmelt or, in some cases, a complete absence of

snow accumulation when precipitation falls under conditions perceived as too warm for snowfall.

Future versions of snowMapper will incorporate downscaling of additional meteorological variables, including incoming
shortwave radiation, relative humidity, and wind speed. These additions would allow the calculation of wet-bulb temperature,
providing a more physically robust alternative to the constant T}, used for rain-snow partitioning. Because such variables
are commonly available in widely used reanalysis products, they could improve the performance of the machine-learning
classifier where corresponding in situ observations exist. Furthermore, alternative machine learning approaches, such as
support vector machines or regression tree boosting, will be integrated to provide additional methods for training the classifier,

other than random-forest.
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5. Conclusions

Our reconstruction and analysis of 41 years of snow cover across ten Greek massifs reveal a rapid and widespread decline in
SCA over the past four decades, with the most pronounced reductions occurring since the early 2000s. Sustained warming
emerges as the dominant driver of this decline, reflecting its dual influence on both atmospheric processes — through its control
on the fraction of precipitation falling as snow — and on snowpack processes at the surface. In contrast, precipitation correlates
with SCA only during early and mid-winter, when most seasonal accumulation occurs. The generally weak relationships
between SCA and the NAO, AO and AMO further indicate that the observed variability and rapid loss of snow cover are

driven primarily by anthropogenic radiative forcing rather than natural modes of climate variability.

The high skill, versatility, and fully configurable architechture of snowMapper make it a valuable new tool for reconstructing
daily snow-cover conditions over mountainous areas at high spatial resolution. Because it does not require local in situ data
for training, we hope that the snow science community will use snowMapper to illuminate snow-cover dynamics in other
mountain regions where snow is a vital water resource but where data limitations continue to constrain effective water-resource

management.
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545 Figure A2: Monthly multiyear snow cover probabilities, calculated for the massifs of the study area (north to south) from all
available Landsat & Sentinel-2 clear-sky observations between November 1984 and May 2025.
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Figure A3: (a) Locations of the in situ stations (n=49) from the ECA&D network, used to train the random forest classifier. (b)
Logarithmic distribution of sampled in situ data points (n=9,735) per variable. Previous day’s cumulative variables are calculated
550 through Eq. (7). Snow cover phases (Eq. 8) in the last panel are: new snow (1), snow (2), melted snow (3), and no snow (4).
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Figure A4: Violin plots of the overall model skill (i.e., accuracy, overestimation, and underestimation calculated through Eq. 11-13)
for snow mapping and reconstruction for the ten massifs of the study area over the entire time-series. The black dot and associated
number in each violin plot indicate the mean value of the skill metric for that massif.
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Figure AS: Monthly SCA time-series per massif, smoothed using a 10-year rolling mean. The blue line represents the monthly SCA,
while the red line shows the corresponding Sen’s slope (SCA loss in km? yr!). Bold text indicates statistically significant trends.
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Figure A6: Monthly SCA variability per massif for the periods 1984-2005 and 2004-2025. P-values indicate the statistical significance
560 of differences in variability between the two periods. Bold text denotes statistically significant differences.
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Figure A7: Monthly correlations per massif between SCA and air temperature (T2M), precipitation (PRECIP), the North Atlantic
Oscillation (NAQO), the Arctic Oscillation (AO), and the Atlantic Multidecadal Oscillation (AMO). Hatching indicates statistically

significant correlations.
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Figure A8: Monthly timeseries (grey lines), 10-year smoothed timeseries (blue lines), trends (Mann Kendall/Sen’s slope), and Pearson
correlations between SCA and air temperature, precipitation, the NAO, the AO, and the AMO. Bold text indicates statistically
significant trends or correlations.

Code availability

The snowMapper model code and supporting notebooks are available on GitHub under the MIT license, a short and simple
permissive license with conditions only requiring preservation of copyright and license notices. The download site for the
model code is https://github.com/snowMapper/snowMapper (last access: 15 September 2025). The model in the presented
version (v1.0.0) is available on Zenodo (https://doi.org/10.5281/zenodo.17663731, Alexopoulos et al., 2025).

Data availability

The GMBA Mountain Inventory v2 dataset was downloaded from https://doi.org/10.48601/earthenv-t9k2-1407 (last access:
15 September 2025). The following datasets were sourced from the Google Earth Engine Data Catalogue
(https://developers.google.com/earth-engine/datasets, last access: 15 September 2025): Landsat and Sentinel-2 imagery;
MODIS Fractional Snow Cover; SRTM DEM, CHILI, and mTPI; ERAS-Land. The geopotential layer for ERA5-Land,
required for the calculation of geopotential height, was not available through the Google Earth Engine Data Catalogue, and
was therefore downloaded directly from the Copernicus Climate Data Store

(https://cds.climate.copernicus.eu/datasets/reanalysis-eraS-land?tab=overview, last access: 15 September 2025). The Tree
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Cover Density raster layer used for the tree mask was downloaded from the Copernicus Land Monitoring Service
(https://sdi.eea.europa.cu/catalogue/copernicus/api/records/8bfbda74-7b62-4659-96dd-86600ead425a2 ?language=all, last
access: 15 September 2025). Station temperature, precipitation, and snow depth data used for the training of the machine
learning classifier were downloaded directly from the ECA&D website (https://www.ecad.eu/, last access: 15 September
2025). The NAO and AO index time-series were downloaded from National Oceanographic and Atmoshperic Administration
(https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily ao_index/teleconnections.shtml), while the AMO time-series
was downloaded from the National Center for Atmospheric Research (https://climatedataguide.ucar.edu/climate-data/atlantic-
multi-decadal-oscillation-amo). The MODIS-based snow cover phenology dataset over global mountain regions is made

available by Notarnicola (2024a).
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