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Abstract. Shallow, mixed-phase clouds associated with cold-air outbreak (CAO) events are natural laboratories for studying

mixed-phase cloud processes which are important for estimating cloud-phase feedback in the warming climate. Recent studies

show that CAO clouds are sensitive to aerosol-cloud interactions and ice formation processes, but many modelling studies per-

turbed model parameters individually, limiting the investigation of joint effects from multiple processes on cloud properties.

Here we investigated how six cloud microphysics parameters jointly affect CAO cloud properties by building model emulators5

trained on output from perturbed parameter ensembles of a high-resolution regional model. The parameters are cloud droplet

number concentration (Nd), ice-nucleating particle concentration (NINP), efficiencies of three secondary ice production pro-

cesses, as well as the mixed-phase overlap factor (mpof). For the CAO case studied, Nd and NINP most strongly control the

cloud radiative properties in the stratocumulus region; whereas in the cumulus region, effects from varying Nd and mpof are

the strongest. Our results show that these parameters have non-linear joint effects such that the magnitude and even sign of10

cloud responses to a parameter are highly dependent on the values of other parameters. For example, the sensitivity of cloud

albedo to increases in NINP varies between near zero to strongly negative across the sampled parameter space. Therefore, per-

turbing parameters individually is an inadequate method for determining the cloud responses to model parameters. This work

demonstrates the power of model emulation and the importance of a full exploration of parameter space in order to understand

the factors controlling cloud properties.15

1 Introduction

Low-level, mixed-phase clouds at mid and high latitudes play a key role in the low-cloud optical depth feedback through their

phase changes in a warming climate and affect the Earth’s radiation budget (Ceppi et al., 2017), which is referred to as the cloud-

phase feedback (Mitchell et al., 1989; Storelvmo et al., 2015; Ceppi et al., 2017; Murray et al., 2021). In these mixed-phase

clouds, liquid and ice hydrometeors exist at the same time, and the radiative properties of these clouds are strongly controlled by20

the characteristics and interactions of these hydrometeors at the microphysical scale (Korolev et al., 2017). However, because

current global climate models are generally poor in representing mixed-phase cloud microphysics (Bodas-Salcedo et al., 2019;
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Sherwood et al., 2020), uncertainties persist in both the direction and magnitude of the cloud-phase feedback (Sherwood et al.,

2020; Zelinka et al., 2020; Forster et al., 2021; Murray et al., 2021). In fact, cloud microphysical processes are subject to large

uncertainties due to their highly parametrized and complicated nature (Morrison et al., 2020), even within high-resolution25

models such as cloud-resolving models and large-eddy simulations.

In this study, we focused on a specific synoptic-scale meteorological event called a cold-air outbreak (CAO). During a

CAO event, air masses flow from cold and dry high-latitude continents or ice-covered regions to the warm, open and sea-

ice free ocean, leading to instability of the marine boundary layer and strong atmospheric convection for cloud formation

(Brümmer, 1996; Brümmer, 1999; Renfrew and Moore, 1999; Kolstad and Bracegirdle, 2008; Kolstad et al., 2009; Fletcher30

et al., 2016a, b). As the temperature during CAO events is low and normally below 0 ◦C, extensive mixed-phase clouds form.

These mixed-phase CAO clouds have a well-defined flow, which makes them ideal natural laboratories for understanding the

mixed-phase processes that are important for modelling the behaviour of mixed-phase clouds under the warming climate. The

CAO clouds usually begin with a form of "cloud street" or stratocumulus-like clouds, and then transition into cumulus-like

clouds downwind (Brümmer, 1999; McCoy et al., 2017), which can have very different radiative properties (McCoy et al.,35

2017).

Cloud microphysics strongly controls mixed phase CAO cloud properties. Several high-resolution modelling studies have

been conducted to understand the effect of various cloud microphysics processes and parameters on CAO clouds (Field et al.,

2014; Abel et al., 2017; Vergara-Temprado et al., 2018; de Roode et al., 2019; Tornow et al., 2021; Karalis et al., 2022;

Li et al., 2023; Possner et al., 2024; Huang et al., 2025). These studies show that the cloud properties are very sensitive to40

aerosols including those that can act as cloud condensation nuclei (CCN) and ice-nucleating particles (INPs), as well as ice

formation processes including primary ice production and secondary ice production (SIP). However, all of these studies were

conducted by perturbing parameters individually, often called a one-at-a-time (OAT) sensitivity approach. Such an OAT test

only allows the responses of cloud properties around a control simulation to be quantified, lacking full exploration of the

parameter space and interactions between the parameters. For example, Johnson et al. (2015) has shown that the responses of45

modelled precipitation in deep convective clouds to the concentration of Aitken and accumulation modes of aerosols and the

collection efficiency of drops by graupel are strongly dependent on the values of each other.

A large number of simulations are needed to explore multiple combinations of parameters, which is computationally expen-

sive and impractical for a large number of parameters. To obtain the responses of model variables over the whole parameter

space, we applied the approach of model emulation with Gaussian Process (GP) emulators, which is a Bayesian machine50

learning approach that statistically learns the relationship between model inputs and outputs and acts as a surrogate model of

the complex numerical model (Oakley and O’Hagan, 2002; O’Hagan, 2006). The training data are produced by running PPE

(perturbed parameter ensemble) simulations of a numerical model, where parameters are perturbed in combinations that are

well-designed for training the emulators. The model emulation approach has been recently applied in many complex climate

and atmospheric models, including understanding the magnitude and causes of uncertainty in aerosol radiative forcing (Lee55

et al., 2011, 2012, 2013; Regayre et al., 2014, 2015, 2018; Lee et al., 2016; Johnson et al., 2018; Marshall et al., 2019), as-

sessing potential model simplification of cloud microphysics in global climate models (Proske et al., 2022, 2023), constraining
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model parametric uncertainties with observations (Johnson et al., 2020; Regayre et al., 2023) and identifying the potential

existence of structural deficiencies in climate models (Regayre et al., 2023; Prévost et al., 2025). Besides global models, this

approach has also been used in regional models such as investigating the environmental controls on sea breeze circulations60

(Igel et al., 2018; Park et al., 2020), understanding the controls of cloud properties for deep convective clouds (Johnson et al.,

2015; Wellmann et al., 2018, 2020; Hawker et al., 2021) and stratocumulus clouds (Glassmeier et al., 2019; Sansom, 2021;

Sansom et al., 2024, 2025). With the model response surface generated from the GP emulators, a variance-based sensitivity

analysis (Saltelli et al., 2000) can be applied to quantify the sensitivities of model variables to the investigated parameters.

Here we focus on the influences of aerosol-cloud interactions and ice formation processes on a CAO cloud system over the65

Labrador Sea on 24 October 2022. This is the warmer case studied in our previous OAT test work (Huang et al., 2025), which

showed similar cloud responses to previous studies of aerosol-cloud interactions and ice formation processes in CAO clouds.

We explore the joint effects of 6 parameters: (1) fixed in-cloud droplet number concentration, (2) INP concentration, (3-5) three

parameters from SIP processes including the Hallett-Mossop process, ice-ice collision and droplet shattering, as well as (6) a

parameter controlling the extent of spatial overlap between liquid and ice clouds. The parameters for ice-ice collision, droplet70

shattering and the extent of spatial overlap between liquid and ice clouds are additional to the parameters studied in Huang

et al. (2025). All three SIP mechanisms have been shown to be important for CAO cloud morphology (Karalis et al., 2022) and

ice crystal number concentrations in Arctic stratocumulus clouds (Sotiropoulou et al., 2020). It is also suggested that changing

the degree of spatial overlap between liquid and ice, which can be estimated with observations, can exert a strong influence on

the liquid water path (LWP) and radiative properties of mixed-phase CAO clouds (Abel et al., 2017; Evans et al., 2025).75

This paper is structured as follows. In Section 2, we describe the numerical model setup, PPE design, training, validation and

testing of the GP emulators. In Section 3, we present the results starting with example PPE output, and then emulated model

responses from the emulators, as well as the multiple OAT tests across the whole parameter space from emulators, followed by

summary and discussion on the results of our study compared to previous work, limitations of this study and potential future

work in Section 4.80
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2 Methods

Our overall approach was to use PPEs (perturbed parameter ensembles) and GP (Gaussian Process) emulators to understand

the joint effects of six cloud microphysics parameters at different stages of a CAO (cold-air outbreak) event. A flow chart of

methods involved in this work is shown in Appendix D.

2.1 Model setup and case description85

The nested UM (Unified Model) (Brown et al., 2012a) from the UK Met Office was coupled with a double-moment cloud

microphysics scheme CASIM (Cloud AeroSol Interacting Microphysics) (Field et al., 2023). We used UM version 13.0 with

the RAL (Regional Atmosphere and Land) 3.2 configuration (Bush et al., 2025). The boundary conditions of the nested domains

were provided hourly by a global model (N216) with the GAL (Global Atmosphere and Land) 6.1 configuration (Walters et al.,

2017). The cloud parameterization in the nested model was from the Bimodal Cloud scheme (Weverberg et al., 2021b, a),90

and the radiative processes were from SOCRATES (Suite Of Community Radiative Transfer codes based on Edwards and

Slingo) (Manners et al., 2023). Mass mixing ratio and number concentration of ice hydrometeors were both considered when

calculating the single-scattering albedo of ice in SOCRATES (Baran et al., 2025). The parameterization of boundary layer

processes in our model is from Lock et al. (2000).

The selected CAO event occurred on 24 October 2022 over the Labrador Sea, which coincided with two flights (C322 and95

C323) during the M-Phase aircraft campaign (Murray and the M-Phase Team, 2024; Clarke et al., 2025). Figure 1 shows

the tracks of both flights, the corresponding nested model domains, and the analysis domains. Flight C322 measured regions

dominated by stratocumulus (Sc) clouds, while Flight C323 focused on regions dominated by cumulus (Cu) clouds.

Both nested model domains contain 500 × 500 gridpoints with a horizontal grid spacing of 1.5 km, centred at 60 °N, 60.5

°W for capturing the early stage and Sc region and 56 °N, 51 °W for the Cu region. Field et al. (2017) has demonstrated that this100

grid spacing is capable of reproducing the general cloud features of a CAO event. The nested model domains were designed

to ensure the model analysis domains remained sufficiently distant from the domain boundaries, allowing cloud fields to fully

develop when they leave the ice edge and before entering the model analysis domains. At this point, the model has already

spun up from the boundaries. The regional model has 90 vertical levels capped at 40 km with 16 model levels below 1 km and

28 model levels below 3 km.105

The simulations were initialized at 0000 UTC and performed for 24 hours, with the model output from the first 12 hours

excluded from the analysis due to model spin-up.

2.2 Perturbed parameters and PPE design

Six parameters were investigated in this study: Nd (cloud droplet number concentration), N−15
INP (INP concentration at -15 ◦C),

EHM (efficiency of the Hallett-Mossop process), EBR (leading coefficient controlling the efficiency of the ice-ice collisional110

breakup process), EDS (efficiency of the droplet shattering process), and mpof (mixed-phase overlap factor). All the parameters

are within the CASIM scheme. A description of each perturbed parameter and the selection of their perturbed ranges are
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Figure 1. Flight tracks (dotted line), nested model domains (dashed squares) and model analysis domains (solid rectangles) for Sc region

(yellow) and Cu region (blue) on 24 October 2022 over the Labrador Sea: (a) the RGB satellite imagery created using bands 1 (620-670 nm), 3

(459-479 nm) and 4 (545-565 nm) from MODIS (Moderate Resolution Imaging Spectroradiometer) Level 1B Calibrated Radiances Product

(Collection 6.1) (MODIS Characterization Support Team (MCST), 2017) onboard the Aqua satellite, (b) the SW (shortwave) reflectance at

the top-of-the-atmosphere from the control simulations. The selected model time is the same as the satellite retrieval time at 17:00 UTC and

the model output fields are instantaneous.

introduced in this section. The combinations of the six parameter values were designed with the maximin Latin hypercube

sampling method. The single OAT test was performed for every parameter before running the PPEs to investigate the effects

of perturbing each parameter individually around the control simulation (not shown).115

Figure 2 shows the main processes in CASIM with relevant processes for the perturbed parameters in this work highlighted.

Not all processes in CASIM are shown here (e.g., self-collection, sedimentation, evaporation and sublimation); see Field et al.

(2023) for a complete description of CASIM implementation in the UM. To keep the consistency of symbols, we used the same

symbol for mass tendency (P ) and number tendency (N ) in the description of parameters below.

2.2.1 Nd (cloud droplet number concentration)120

Nd is a fixed vertical profile of in-cloud droplet number concentration set in CASIM if aerosols are not used for deriving

the cloud droplet number concentration. We did not select the option to use aerosol-derived Nd in this study to avoid extra

complexity for parameter perturbation and model output interpretation. Nd was set to 35 cm−3 in the control simulation and

perturbed over the range from 5 cm−3 to 75 cm−3 in the PPE design to cover most of the observed Nd values from the CDP

(cloud droplet probe) instrument onboard M-Phase C322 and C323 (Figure 3a). The 1 Hz CDP measurements were averaged125

to match the model resolution (1.5 km) and those with Nd less than 1 cm−3 were removed before averaging.

The range of Nd was chosen to understand how much the variation of Nd in a CAO event affects the cloud properties, which

is uncertain in the modelling of in-cloud aerosol processing and limited by the fixed Nd setup. We did not select the bigger

5
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Figure 2. Key processes among the five CASIM hydrometeors: liquid water, rain, ice crystal, snow and graupel. Processes which contain the

parameters investigated in this work are highlighted in orange. Liquid-liquid processes are highlighted in yellow, mixed-phase processes are

highlighted in green and ice-ice processes are in dark grey. Details of the treatment of SIP processes are shown in the Methods section. Not

all the cloud microphysical processes in CASIM are shown here; see Field et al. (2023) for detailed information about the implementation of

CASIM in the UM.

range as in Huang et al. (2025) because the Nd at coarser resolution can be obtained from satellite retrievals (e.g., Grosvenor

et al. (2018)), which is not the major source of uncertainties considered for this case in Nd.130

2.2.2 N−15
INP (INP concentration at -15 ◦C)

The INP concentrations over the Labrador Sea region were derived based on a new ns(T ) (active site density) parameterization

for soil dusts (Appendix A), to account for the biogenic component associated with the dust (Herbert et al., 2025). The dust

concentrations from a global model over the Labrador Sea region during the M-Phase aircraft campaign period were used with

the above soil dust parameterization to derive the temperature-dependent INP concentration perturbed in this study. Appendix135

B shows the details of the global model and the INP concentration in the control simulation which agrees well with INP

measurements from the M-Phase aircraft campaign as in Figure 3c.

INP concentrations were perturbed by the same scale factor at all temperatures. For ease of reference to typical values

we define the parameter in the PPE as N−15
INP (INP concentration at -15 ◦C, L−1), which is around 0.17 L−1 (170 m−3) in

the control simulation. The range of N−15
INP in the PPE is shown in Figure 3b. The N−15

INP were perturbed with a range from140

1.7× 10−5 L−1 (0.017 m−3) to 17 L−1 (17000 m−3) (factor of 0.0001 – 100 relative to the control value). Such big range

of INP concentration (6 orders of magnitude) was selected to represent the uncertainties of INPs to our knowledge without

the in-situ measurements of INPs from the aircraft campaign. This is because, unlike Nd, INP concentration cannot be derived

from satellite/remote sensing.
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2.2.3 EHM (efficiency of the Hallett-Mossop process)145

The Hallett-Mossop process (also called rime splintering) produces small ice splinters during the riming of liquid droplets onto

existing ice hydrometeors (Hallett and Mossop, 1974). The efficiency of the Hallett-Mossop process (EHM) is defined as the

number of splinters produced per milligram of rimed liquid, with the mass of each splinter (MI0) set as 10−18 kg. The mass

tendency of ice created by the Hallett-Mossop process in CASIM (Pihal) is based on the mass tendencies of graupel-cloud

water (Pgacw) and snow-cloud water riming (Psacw) with the number of splinters per milligram of rime varying according to a150

triangular function (f(T )) between -2.5 °C and -7.5 °C (outside of which the value is zero) with the peak at -5 °C (Field et al.,

2023).

Pihal = EHMMI0(Pgacw + Psacw)f(T ) (1)

EHM was set to 350 mg−1 in the control simulation and perturbed from 35 mg-1 to 3500 mg-1 (factor of 0.1 – 10). This range

was defined based on previous findings that simulations with a factor of 10 higher efficiency than the default value agree well155

with observed ice crystal number concentrations (Young et al., 2019). The lower limit was chosen to ensure that the default

value remains sufficiently distant from the boundary of the parameter space, where emulator predictions are typically subject

to higher uncertainties. The multiple OAT test (Section 3.3) and global sensitivity analysis (Appendix G) were performed with

a different range of EHM from the range of PPE design, which is from 350 mg−1 to 3500 mg−1 rather than from 10 mg−1 to

3500 mg−1 .160

2.2.4 EBR (coefficient controlling the efficiency of the ice-ice collisional breakup)

EBR is a coefficient controlling the efficiency of the ice-ice collisional breakup (χBR), which is the number of fragments pro-

duced from hydrometeor collisions. The ice-ice collisional breakup parameterization used in this study follows the temperature-

dependent approach in Takahashi et al. (1995) and Sullivan et al. (2018).

Niics,xy =−χBRNxacy (2)165

χBR = EBR(T −Tmin)1.2exp[− (T −Tmin)
γBR

] (3)

The minimum temperature (Tmin) for ice-ice break-up is set at -21 ◦C and a decay rate (γBR) of fragment number at warmer

subzero temperatures is set to 5. The collisions involve ice and snow particles breaking up through collisions with graupel.

Nxacy are the existing number tendencies from graupel collecting ice and graupel collecting snow. Detailed description of

mixed-phase and cold-phase collection between particles of different hydrometeors in CASIM can be found in Field et al.170

(2023).
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EBR was set to 280 in the control simulation and perturbed with a range from 2.8 to 2800 (factor of 0.01 – 10 relative to

the control value). The lower limit of the perturbation range is similar to the scaling factors in Sotiropoulou et al. (2020),

considering that the original value from Takahashi et al. (1995) overestimates the number of fragments as their experiments

were conducted with hails. Although the upper limit is highly unlikely for ice and snow particles due to the excessive number175

of fragments it implies, it was retained to ensure that the default value remains sufficiently distant from the boundary of the

parameter space, where emulator predictions are generally associated with greater uncertainties. The multiple OAT test (Section

3.3) and global sensitivity analysis (Appendix G) were performed with the realistic range of EBR from 2.8 to 280.

Compared to the parameterization from Phillips et al. (2017), which is based on collision kinetic energy, our approach here is

simplified and only considered the broad type II of collision with graupel. Such choice was made to avoid extra complexity for180

parameter perturbation of the ice-ice collision process and future work is recommended to investigate with the parametrization

from Phillips et al. (2017) for a more comprehensive understanding of the role of ice-ice breakup.

2.2.5 EDS (efficiency of the droplet shattering process)

During the freezing of large supercooled droplets, the pressure inside the freezing droplets increases which can lead to the

breakup of the frozen droplets and ice crystal formation (Leisner et al., 2014). Our approach follows the droplet shattering185

parameterization from Sullivan et al. (2018), in which the droplet shattering tendency is dependent on the number of fragments

produced for each droplet shattering (EDS), a temperature-dependent shattering probability (pDS) and the Bigg droplet freezing

rate (Bigg, 1953) (NBigg). The equation below shows the calculation of the number tendency of ice (Nidps) from the droplet

shattering process. Details on pDS can be found in Sullivan et al. (2018) and the Bigg droplet freezing in CASIM can be found

in Field et al. (2023).190

Nidps = (1 + pDSEDS)NBigg (4)

The shattering probability was set to the same as the default one in Sullivan et al. (2018) with the shattering probability

centred at -15 ◦C and the maximum probability set at 20%. EBR was set to 5 in the control simulation with a perturbed range

from 2 to 10 in the PPE design, following the sensitivity test values in Sullivan et al. (2018).

2.2.6 mpof (mixed-phase overlap factor)195

When both ice and liquid clouds exist in the same model grid box, the mpof (mixed-phase overlap factor) is used for determin-

ing the extent to which ice and liquid co-exist in the same air in CASIM, which is important for mixed-phase processes (Field

et al., 2023; Evans et al., 2025). We followed the naming of this parameter the same as in Field et al. (2023) and Evans et al.

(2025) for consistency.

The mpof controls a function that quantifies the fractional overlap during the run time of the model rather than being a200

fixed value in a model grid box. When mpof is 1, the sub-grid liquid and ice cloud are maximally overlapped. When mpof

is 0, the sub-grid liquid and ice are not overlapped as long as CFliq + CFice < 1, where CF refers to cloud volume fraction
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Figure 3. Comparison between the perturbed range and the measurements: (a) Nd with measured in-cloud Nd from M-Phase C322 and C323

using the CDP (cloud droplet probe) onboard; (b) perturbed temperature-dependent NINP ranges compared to INP measurements at high

latitudes in the Northern Hemisphere (Sanchez-Marroquin et al., 2020a; Franz Conen, 2016; Creamean et al., 2018, 2019; DeMott et al.,

2016; Hartmann et al., 2020, 2021; Irish et al., 2019; Mason et al., 2016; Porter et al., 2020a, 2022; Si et al., 2019; Welti et al., 2020; Raif

et al., 2024); (c) perturbed temperature-dependent NINP ranges compared to all INP measurements from the M-Phase campaign (Tarn et al.,

2025). Boundaries of each perturbed range (maximum and minimum values) are shown with dashed black lines, and the values used for the

control simulations are shown with solid black lines. Cloud top temperatures are around -15 ◦C for the CAO clouds in this case and -15 ◦C

is marked with bold gray solid line in (b) and (c).

in a model grid box. Once the combined cloud fraction goes above 1, there will be overlap. For an mpof of 0, the overlap is

minimised. Values of mpof in between lead to increasing overlap, but once either the liquid or ice cloud fraction reaches 1, then

mixed-phase overlap is maximum whatever mpof is set to. See section A.6 in the documentation of CASIM implementation205

in the UM from Field et al. (2023) for more information. The mpof was set to 0.5 in the control simulation with a perturbed

range from 0 to 1 in the PPE design.

2.2.7 Parameter design of PPE members

The maximin Latin hypercube sampling method was used to generate random combinations of parameter values across the

6-dimensional space for PPE simulations. The ranges of each parameter are discussed above. The maximin design maximizes210

the minimum distances between the points in parameter space. Each PPE contains 66 members following the guidance from

Loeppky et al. (2009) that at least 10 × n (where n is the number of parameters) simulations are required for training GP

emulators. Two 6-member testing sets of simulations were also performed with parameter values from another maximin Latin

hypercube sampling design. The testing simulations were used for assessing the performance of emulators trained with PPE

output. The values of parameters in the testing simulations were different from the ones in the PPE simulations which were215

used for training the emulators. Figure 4 shows the PPE and testing set input values.
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Figure 4. Paired combinations of parameters perturbed in this study. Colour filled circles are the 66 PPE members used for training the

GP emulators, and the unfilled squares are the six testing members used for testing the trained GP emulators. Each colour suggests a set of

parameter values. Results of kernel selection, validation and testing are shown in Appendix C.
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2.3 Gaussian Process (GP) emulators

Gaussian Process (GP) emulation is a non-parametric supervised machine learning method that learns the relationship between

model input parameters and outputs of interest (Oakley and O’Hagan, 2002; O’Hagan, 2006). GP emulators were constructed

on the output from the PPE simulations and acted as a statistical "surrogate" model for the computationally-expensive numer-220

ical model. The GP emulators enabled efficient exploration of the entire parameter space with dense sampling, allowing for

construction of multi-dimensional response surfaces and a variance-based sensitivity analysis to assess the importance of the

perturbed parameters to the cloud variables. Detailed methodologies and explanations on building GP emulators for climate

and atmospheric models can be found in Lee et al. (2011) and Johnson et al. (2015).

A GP emulator consists of a mean function and a covariance function, also called the kernel. To obtain a good GP emulator225

of each variable of interest we tested four commonly-used stationary kernels: the Radial Basis Function (RBF) kernel and

three Matérn kernels with different smoothness parameters: the Matérn12 kernel (0.5), the Matérn32 kernel (1.5) and the

Matérn52 kernel (2.5), implemented in the GP Jax Python library for Gaussian processes (Pinder and Dodd, 2022). When the

smoothness parameter becomes infinite in a Matérn kernel, it becomes equivalent to the RBF kernel. For each variable, we

conducted cross-validation by dividing the 66 PPE members into 11 sets with 60 training and 6 validation data points per set.230

The cross-validation was used here to maximise the use of our limited data due to the high computational cost of running the

numerical simulations. Emulator performance was assessed with graphical diagnostics including individual standardized error

plots and Q-Q plots following the guidance from Bastos and O’Hagan (2009), as well as the RMSE (root mean squared error)

and R2 (coefficient of determination). The kernel selection was mainly based on the RMSE values, with the Q-Q plots and

R2 for supporting the assessment. Once the best-performing kernel was selected for each variable, we trained the GP emulator235

with the best kernel on all 66 PPE members and tested it with the corresponding testing set. Appendix C shows the emulator

performances from the kernel selection and testing steps.
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3 Results

3.1 Example response from PPE simulations: TOA albedo

Before analysing emulated response surfaces of domain-mean outputs in the next section, we first illustrate the strength of240

perturbing parameters in a PPE design and use TOA albedo here as an example in Figure 5. Note that the emulators (Section 3.2)

define the relationship between input parameters and mean output variables (e.g., domain-mean albedo) and cannot describe

the specific cloud patterns shown here, hence why we start by showing the results of some PPE members. We selected two

parameters to demonstrate the PPE results: Nd and N−15
INP for the Sc region, and Nd and mpof for the Cu region. These parameter

pairs were chosen only for illustration because, as we show in Section 3.2, they have the strongest joint effects on cloud albedo245

in each region.

Figure 5 shows the maps of TOA albedo in 25 of the 66 PPE simulations over the two regions. The intervals between each

PPE output are not equal in Figure 5 because of the Latin hypercube design method used for sampling the parameter space,

and the subplots shown in Figure 5 are only ordered using the values of the selected parameters with the values of other four

parameters ignored.250

In both regions, the selected parameters jointly affect the TOA albedo. For example, in the Sc region (Figure 5a), low

Nd and high N−15
INP (top left subplot) result in the lowest TOA albedo, while high Nd and low N−15

INP (bottom right subplot)

result in the highest TOA albedo. With PPE simulations, we can see clear joint effects of parameters on cloud properties.

However, the number of simulations is too small to identify whether the joint effects are linear (combined effects) that could

be predicted from combinations of OAT simulations, or non-linear (interactive effects) (Sansom, 2023). See Appendix E for a255

simple illustration of linear and non-linear joint effects between two parameters. Using the emulators enables a much denser

sampling of the parameter space and, as we show in Section 3.2, exposure of non-linear effects (interactions) of combinations

of parameters that are not apparent in Figure 5.
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Figure 5. Responses of TOA albedo for maps of (a) the Sc region ordered according to Nd and N−15
INP and (b) the Cu region ordered according

to Nd and mpof . The selected model output time is 16:00 UTC. The selected domains are the same as the regions shown in Figure 1. Note that

each image shows a different simulation, and only 25 out of the 66 PPE parameters are shown here. Because of the Latin hypercube design

method used for sampling the parameter space, the subplots shown here are only ordered using the values of the selected two parameters

with the values of other four parameters ignored and the intervals between of these subplots for each parameter are not the same.
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3.2 Emulated model response surface

The PPE members provide considerable information about cloud behaviour across the 6-D parameter space, but the data260

sparseness (just 66 points in 6-D space) limits our ability to visualise joint parameter effects or to perform statistical analysis.

Therefore, we built emulators of temporally and spatially averaged cloud properties, which enable 6-D continuous response

surfaces to be created. The time of averaging is from 12 UTC to 19 UTC, and the domains of averaging are shown as analysis

domains in Figure 1. The response surfaces were generated by predicting one million output values from the emulators across

the parameter space.265

Figure 6 shows the distributions of TOA albedo, cloud cover, all-sky LWP (liquid water path), all-sky IWP (ice water path)

and all-sky TWP (total water path) from one million combinations of parameters drawn from the GP emulators. By perturbing

all 6 parameters in the Sc region, the TOA albedo ranges from 0.43 to 0.54 (inter-percentile range from 5% to 95%), cloud

cover from 0.84 to 0.91, LWP from 74.5 g m−2 to 149.5 g m−2, IWP from 0.0 g m−2 to 38.1 g m−2 and TWP from 97.6 g m−2

to 148.4 g m−2. In the Cu region, the TOA albedo ranges from 0.37 to 0.44, cloud cover from 0.78 to 0.84, LWP from 47.9270

g m−2 to 98.4 g m−2, IWP from 71.3 g m−2 to 186.1 g m−2 and TWP from 147.8 g m−2 to 244.4 g m−2.

Figures 7 and 8 show the joint effects of each combination of two parameters with the other parameter effects averaged

for TOA albedo and all-sky LWP, which are two key properties for cloud-phase feedback, respectively over the two selected

regions. These are known as "paired projections". Paired projections for cloud cover, all-sky IWP and all-sky TWP are shown

in Appendix F. The values shown on the paired projection plots are calculated by averaging over the other four dimensions,275

and therefore describe the mean response of each variable to each paired parameter set.

Using the paired-projections, we are able to qualitatively identify key parameters controlling the cloud properties over the

parameter space. In the Sc region, Nd and N−15
INP exert the strongest effects on TOA albedo and LWP. All parameters from

SIP processes and mpof only show weak effects across the projections due to the liquid-dominated nature of these clouds,

demonstrating limited effects in the Sc region. In the Cu region, Nd maintains its strong influence on TOA albedo and LWP,280

while the second most strongest effect is now from varying mpof . The perturbation of mpof now results in a stronger effect on

cloud properties compared to in the Sc region and to N−15
INP in the Cu region. A reduction in mpof leads to less interactions of

liquid and ice particles, which weakens the removal of liquid water through accretion. The increasing effect from mpof in Cu

region than the Sc region comes from an increasing ice formation in Cu clouds when the cloud top deepens and more mixing

between ice and liquid hydrometeors.285

All three SIP parameters have a relatively weak effect on TOA albedo and LWP in both Sc and Cu regions, even though the

cloud temperature covers most of the active temperature range of the HM process. Note that a low sensitivity does not imply

that SIP is unimportant, only that the cloud properties are fairly insensitive to its precise value. Although the influences from

varying SIP processes on albedo and LWP are small in both regions, the effect of each parameter is specific to this case study

and is not representative of all mixed-phase CAO clouds. The HM process has a much stronger effect on IWP and TWP in the290

Cu region (Appendix F), but such influence is weakly transferred to the radiative properties (TOA albedo).
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The influences of N−15
INP and mpof on TOA albedo are weaker compared to their influences on LWP in both regions. This

is because perturbing Nd also changes the single scattering albedo of cloud droplets and exerts a strong Twomey effect on

the liquid-dominated Sc clouds (over 80% of the Sc cloud water mass is liquid in the control simulation). As a result, the

effect of perturbing N−15
INP and mpof on TOA albedo become smaller than their effects on LWP. There are also non-monotonic295

responses of LWP to the perturbation of N−15
INP at lower N−15

INP values in the Sc region. An increase in N−15
INP does not lead to a

monotonic decrease in LWP; instead, LWP initially increases with increasing N−15
INP , followed by a decrease at higher N−15

INP .

This may because the removal of liquid through warm rain processes is first reduced when increasing N−15
INP as the amount of

liquid is reduced, hence leading to a higher LWP; but with further increases in INPs, the removal of liquid is then dominated

by the mixed-phase processes rather than the warm rain processes, hence leading to a lower LWP eventually. One can also see300

that, as Nd increases, the warm rain processes reduce due to less rain autoconversion, and the value of N−15
INP required to let

mixed-phase processes start dominating the water removal process (where the increasing LWP becomes decreasing LWP with

increases in INP) decreases. To further test this, one can compare different model response surfaces between Nd and N−15
INP

with and without the warm rain and cold rain processes.

For most of the paired projections, non-linear joint effects (interactions) of the parameters on the cloud properties can be305

identified. Here we use the projections between Nd and N−15
INP in the Sc region and the ones between Nd and mpof in the Cu

region as examples. Parameter interactions are apparent when the sensitivity of a cloud property to a parameter perturbation

depends on the value of another parameter - i.e., the number of contours across for the same change of a parameter differs

when the value of another parameter changes. Using LWP in the Sc region as an example, by perturbing Nd from low to high

values and keeping N−15
INP low (less than 0.01 L−1), the LWP ranges from approximately 90 g m−2 to 140 g m−2; if the N−15

INP310

is high (more than 1 L−1), the LWP range approximately from 70 g m−2 to 95 g m−2. In the Cu region, the LWP ranges from

70 g m−2 to 90 g m−2 for low to high Nd values when mpof is low (less than 0.2), but from 50 g m−2 to 60 g m−2 when mpof

is high (more than 0.6).

Another example of parameter interactions is that the local sensitivity of a parameter can vary across the parameter space.

In the Sc region, the LWP is insensitive to N−15
INP when Nd is lower than approximately 20 cm−3 and N−15

INP less than 0.1 L−1,315

while it becomes very sensitive to N−15
INP when Nd is higher than approximately 50 cm−3. The relative importances of SIP

processes and mpof in the Sc region also depend on the values of Nd and N−15
INP , despite the perturbations of SIP parameters

and mpof having limited effect on cloud radiative properties in this region. When Nd is higher than about 40 cm−3 or N−15
INP

lower than 0.01 L−1, the influence on LWP is strongly enhanced by SIP processes and mpof . It is worth noting that the effects

of SIP processes and mpof on LWP are still quite small, so although they strongly affect the change in LWP in that part of the320

parameter space, their importance over the whole parameter space is small compared to Nd and N−15
INP . Such interdependency

between the parameters shows that a single OAT test is insufficient to draw conclusions about the importance of a parameter

or a process, and the results from the OAT test are highly dependent on the default values of the parameters in the control

simulation.

Figures 6-8 also show that different combinations of parameter values may result in the same value of cloud properties,325

which is called equifinality (Beven, 2006; Lee et al., 2016; Carslaw et al., 2025). For example, the mode TOA albedo in
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Figure 6. Distributions of cloud variables from 1 million combinations of parameter values for (a) all-sky TOA albedo (unitless), (b) cloud

cover (unitless), (c) all-sky LWP (g m−2); (d) all-sky IWP (g m−2) and (e) TWP (g m−2) which is the sum of LWP and IWP. Separate

distributions are shown for the Sc (top row) and Cu (bottom row) regions.

the Sc region is 0.54, meaning a large number of model variants with different parameter values produce the same albedo

of 0.54. The equifinality is also visible in the filled contour plots in the paired projections shown in Figures 7 and 8 - each

contour colour defines parameter combinations that produce equifinal model output. Equifinality becomes important when

model output is compared to observations, because model output from different combinations of parameters will agree equally330

well with observations. Perturbing each parameter individually to match observations may fall into the problem of equifinality

because it would result in a single and overly confident estimate of a parameter value rather than a range. Here we use TOA

albedo as an example. The observed, domain-mean TOA albedo from CERES onboard the Aqua satellite is around 0.48 in the

Sc region and around 0.39 for the Cu region at 17:00 UTC. There are more than 70,000 model variants out of the 1 million

model variants that produce this value of TOA albedo (+/- 0.005) in the Sc region, and more than 90,000 model variants in the335

Cu region. There would also be many more equifinal variants when accounting for observation uncertainty. Such equifinality

problem suggests that using a single variable to constrain the parameter space is not sufficient, and multiple variables for

different cloud properties are needed. A key question is whether there exists a single part of parameter space for which all the

variables agree well with observations, which will be shown in our subsequent paper comparing the PPE simulations shown in

this work with multiple observations (in-situ and satellite).340
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Figure 7. Emulated mean model responses of all-sky TOA albedo to paired parameters in (a) the Sc region and (b) the Cu region. The values

shown on the paired projection plots are calculated by averaging over the other four dimensions, and therefore describe the mean response

of each variable to each paired parameter set.
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Figure 8. Emulated mean model responses of all-sky LWP to paired parameters in (a) the Sc region and (b) the Cu region. The values shown

on the paired projection plots are calculated by averaging over the other four dimensions, and therefore describe the mean response of each

variable to each paired parameter set.
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3.3 Dependence of individual parameter sensitivities on other parameters

The response surfaces shown in the previous section show that the sensitivity of cloud properties to a change in a parameter

depends strongly on the setting of the other parameters. However, these paired projections neglect variations in the other four

parameters and therefore only present the mean response of each model variable to each paired parameter set. Therefore, to

understand how much the sensitivities of cloud properties vary within the parameter space, we present the results from multiple345

OAT tests across the parameter space in Figure 9.

We performed a large number OAT tests using the trained GP emulators for each model variable with different starting

points. To design the starting points, three values were selected for each parameter: low (25% of the perturbed range), mid

(50% of the perturbed range), and high (75% of the perturbed range). For N parameters each with M values, the number

of possible parameter combinations are MN . Hence, there were 729 starting points (control sets of parameter values) across350

the 6-D parameter space in the multiple OAT tests. For each OAT test, the parameters were perturbed to the high-end (95%

of the perturbed range) and the low-end (5% of the perturbed range) individually. The responses of cloud properties were the

change from high-end parameter value output to the low-end parameter value output. The perturbed ranges in the multiple OAT

tests were smaller than the parameter range in the PPE design to avoid the high uncertainties of emulators near boundaries of

the parameter space. As for each parameter, we perturbed the value from low-end to high-end without directly including the355

emulator output from the control simulation, the number of output points from the emulator for each variable is 2 × MN−1.

Therefore, for each model variable in one domain (one subplot in Figure 9), the total number of investigated model variants

is 2916. A compact distribution in Figure 9 means that the sensitivity of the cloud property to that parameter is not strongly

dependent on the setting of the other parameters.

The magnitudes of cloud responses to individual parameter perturbations are sometimes strongly dependent on the values360

of other parameters. For example, in the Sc region, the increase in LWP (Figure 9e) by perturbing Nd from low to high values

ranges from +31 g m−2 to +65 g m−2, and the decrease in LWP by perturbing N−15
INP from low to high values ranges from -73

g m−2 to -29 g m−2. In the Cu region, the decrease in LWP (Figure 9f) by perturbing mpof from low to high values ranges from

-39 g m−2 to -15 g m−2. Although the projection plots suggest clouds are not very sensitive to variations of SIP processes, the

multiple OAT tests here show that in some parameter space, varying SIP processes can have same or even stronger effects on365

cloud cover, IWP and TWP in the Cu region than Nd and N−15
INP . In addition, due to the existence of dominant parameters across

the parameter space (e.g., Nd), the effects from SIP processes may be obscured through averaging in the paired projections. The

relative importance of each parameter across the parameter space can also be quantitively compared by using the statistics of

the sensitivities from the multiple OAT test (e.g. mean or mode), which shows similar results to those from a global sensitivity

analysis in Appendix G.370

The direction (or sign) of the cloud response can also depend on the control values of the parameters. For example, changes

in SIP parameters can cause either increases or decreases in cloud cover (Figures 9c and 9d) depending on the other parameters

(primarily Nd and N−15
INP which dominate the sensitivities). In the Cu region, increasing N−15

INP does not consistently lead to a

reduction of the TOA albedo (Figure 9b). For most OAT tests with N−15
INP perturbations, increasing N−15

INP causes cloud cover to
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increase (Figure 9d), but also leads to a reduction in LWP (Figure 9f). These two effects compensate each other for the effect375

of increasing N−15
INP on TOA albedo. Therefore, the influence from a high N−15

INP on TOA albedo in Cu region is controlled by

multiple cloud properties, and these cloud properties can have different responses to changing N−15
INP at different part of the

parameter space.

In summary, the sensitivities of modelled cloud properties to each individual perturbed parameter depend on the starting

point in the parameter space; this includes both the magnitudes and sign of responses. Results from our multiple OAT tests380

across the parameter space demonstrate that using a single OAT test is inadequate for determining the magnitude and even

sign of the cloud response to model parameters. It is therefore important to investigate the whole parameter space for a more

comprehensive understanding of the effects from these parameters.
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Figure 9. Distributions of the cloud property changes resulting from an increase of individual parameters one-at-a-time (OAT) in multiple

OAT tests for: all-sky TOA albedo (a, b), cloud cover (c, d), all-sky LWP (e, f), all-sky IWP (g, h), and all-sky TWP (i, j). The left panel

shows the results from the Sc region, and the right panel shows the results from the Cu region. Errors of the GP model are propagated through

into these multiple OAT test results, but the errors are generally much smaller than the variations shown here (Appendix C). For the process

of performing the multiple OAT test, please refer to the details in Section 3.3.
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4 Discussion and Conclusions

We present here the first analysis of mixed-phase CAO (cold-air outbreak) cloud responses to combinations of six key cloud385

microphysics parameters related to aerosol-cloud interactions and ice formation processes. The perturbed ranges of these

parameters either match the observed ranges when available, or were chosen based on uncertain ranges suggested by previous

studies. The full 6-dimensional parameter space of cloud responses was explored using PPEs (perturbed parameter ensembles),

GP (Gaussian Process) emulators, and multiple OAT (one-at-a-time) tests across the whole parameter space. The properties we

investigated included all-sky TOA (top-of-the-atmosphere) albedo, all-sky LWP (liquid water path), cloud cover, all-sky IWP390

(ice water path) and all-sky TWP (total water path) which are key properties that influence the radiative effects of mixed-phase

clouds (Ceppi et al., 2017). Model simulations were based on a CAO event case over the Labrador Sea on 24 October 2024,

focused on Sc(stratocumulus) and Cu(cumulus) cloud regimes and covering the routes of two research flights from the M-Phase

aircraft campaign (Murray and the M-Phase Team, 2024; Clarke et al., 2025).

In this CAO case, where the liquid phase dominates with cloud top temperatures of around -15 ◦C, Nd exerts the strongest395

controls on TOA albedo and LWP in both regions with the Twomey effect (Twomey, 1977) and the Albrecht effect (Albrecht,

1989). The effects of Nd on mixed-phase CAO clouds in these simulations are also consistent with previous simulations from

de Roode et al. (2019) who reported that higher Nd leads to a higher LWP and cloud cover, and vice versa. However, we further

show that the effect of changing Nd varies strongly across the parameter space. Perturbing Nd from low to high in different

parts of the parameter space leads to TOA albedo responses ranging from +0.08 to +0.11 and LWP responses ranging from +31400

g m−2 to +65 g m−2 in the Sc region, and TOA albedo responses ranging from +0.02 to +0.07 and LWP responses ranging from

near-zero (+2 g m−2) to +24 g m−2 in the Cu region. Thus, although the effect of Nd on albedo and LWP are dominating, there

are strong variations depending on other parameters. Such variation demonstrates the importance of performing simulations

across a joint parameter space to avoid incomplete conclusions or overly confident estimates of sensitivities.

An increase in N−15
INP leads to a reduction in TOA albedo and LWP in the Sc region, which is consistent with the results405

from previous studies on the influences of different INP concentrations (Tornow et al., 2021) or ice treatment in models (Abel

et al., 2017). However, the sampling of parameter space using PPEs and emulators shows that the magnitude and even sign of

response to N−15
INP perturbations depends on the setting of other parameters, even within the single environment represented

by the case we studied. It is seen in the Sc region that the modelled TOA albedo is not sensitive to N−15
INP when Nd is low

(less than approximately 20 cm−3). A similar weak sensitivity of clouds to changes in N−15
INP was found by the study from410

McCluskey et al. (2024) over the Southern Ocean, where they found that the modelled IWP was relatively insensitive to the

representation of INP under low Nd condition. It is shown that their model underestimate CCN concentration (Niu et al., 2025)

over the Southern Ocean, which could account for the weak INP sensitivity consistent with our results. We also find that in

the Cu region, the sensitivity of clouds to N−15
INP is relatively weaker and the sign of the cloud response as a function of N−15

INP

varies over the parameter space. For example, an increase in N−15
INP can lead to both increases and decreases of TOA albedo415

(from -0.02 to +0.03) and cloud cover (from -0.02 to +0.08) when the values of other parameters are changed. The pronounced

variation in the modelled cloud sensitivity to INP concentrations highlights the importance of having good representations of
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other microphysical processes in the model and the necessity of a full exploration of the parameter space, including other cases,

to understand the role of INPs in mixed-phase CAO clouds.

Our results results show that aerosols (which affect Nd and N−15
INP ) strongly control mixed-phase cloud radiative properties420

in the Sc region, but with large uncertainty in the sensitivities depending on other poorly quantified model parameters. Obser-

vational constraints can be obtained from satellite retrievals and applied to constrain the Nd part of the parameter space, but

measurements of NINP are sparse and difficult to be obtained from satellite, leaving the sensitivity of clouds to NINP difficult

to constrain. A high temporal and spatial coverage of INP measurements are therefore needed to constrain the properties and

sensitivities of mixed-phase CAO clouds.425

The SIP parameters generally have a weak effect on the radiative properties (TOA albedo) of CAO clouds in this case. Our

results on the effect from SIP processes on LWP are generally consistent with previous work from Karalis et al. (2022) who

showed that an enhancement of SIP can lead to the reduction of LWP. However, we show that the magnitude of LWP (and

other cloud properties) responses to perturbations of all three SIP parameters vary across the parameter space, with strong

dependency on the other parameters such as Nd and N−15
INP . Compared to the results from Karalis et al. (2022), the relative430

importance of each of the SIP process differs between our study and theirs. In Karalis et al. (2022), the droplet shattering

process was more effective than the Hallett-Mossop process in the Cu region, while the Hallett-Mossop process exerts stronger

effects on LWP in our case. Such differences may occur because the environmental conditions vary between cases, which will

affect the efficiencies of SIP processes. In addition, Karalis et al. (2022) used alternative parameterizations for the droplet-

shattering and ice-ice break processes which follow Phillips et al. (2017). Therefore, it is worth noting that our conclusions are435

potentially specific to this CAO case and may be dependent on the CAO case being simulated, and may be influenced by the

model setup or choice of parameterizations.

The influence of mpof is more prominent in the Cu region where an increase in mpof leads to a reduction in LWP and cloud

cover, and therefore a lower TOA albedo. These responses of cloud properties to changes in the mpof value are similar to the

results from Abel et al. (2017). However, the sensitivity of LWP as a function of mpof in our work is weaker in the Sc region440

than seen in Abel et al. (2017) where they also modified the cloud liquid and ice overlap. Although our case here has similar

cloud temperature as the case investigated in Abel et al. (2017), the overlap parameter used in their work is from the bulk cloud

scheme, while the mpof in our work is within the cloud microphysics scheme. This suggests that different model setups can

also lead to potentially different sensitivities of cloud properties to the parameters. Similar to the other parameters, the effect

from mpof on the investigated cloud properties vary across the parameter space and interactively affect the influence of the445

other parameters.

We expect the large, non-linear joint effects of cloud microphysical parameters on CAO clouds will be a feature of CAOs in

other meteorological environments, but the sensitivities are likely to vary. By limiting our analysis to a single case study, we are

able to fully explore the sensitivity of the CAO clouds to six key parameters without the confounding effects of environmental

conditions. The sensitivity of mixed-phase CAO clouds to the parameters investigated here may be substantially different in a450

different CAO event, as we have shown in previous work by comparing the responses from warm and cold CAO cases (Huang

et al., 2025). We also made some simplifications to the cloud microphysics processes (e.g. no spatial variation of Nd and NINP)
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and did not include all important parameters and processes such as boundary layer mixing (Field et al., 2014) and cloud fraction

schemes (cloud macrophysics) (Van Weverberg et al., 2023), for the reason to enhance the interpretation of the complex model

output. Future work is recommended to investigate the control of various environmental conditions on CAO clouds and their455

interactions with key cloud parameters. It is also recommended to include aerosol processes for a complete understanding of

aerosol influences on mixed-phase CAO clouds.

To conclude, this work illustrates the power of using PPEs and model emulation for systematically quantifying important

non-linear joint effects of multiple cloud microphysical parameters on mixed-phase CAO clouds. These interactions of param-

eters cannot be revealed using single OAT tests, which may therefore lead to misleading or overly confident estimates of the460

key factors controlling mixed-phase cloud properties. Exploration of the entire parameter space is necessary to fully understand

the influences on CAO clouds from these uncertain model parameters, and to constrain the effect of the uncertainties on the

estimation of cloud-phase feedback.

Data availability. MODIS Level 1B Calibrated Radiances Product (Collection 6.1) onboard the Aqua satellite for RGB composites with

bands 1,3 and 4 were obtained from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD021KM with geolo-465

cation data from https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MYD03. The INP data during the M-Phase

aircraft campaign were obtained from https://zenodo.org/records/14781199.The measurements during the M-Phase aircraft campaign can be

obtained from https://catalogue.ceda.ac.uk/uuid/7569dbd04216467db6fc2529a7bc2a6f for M-Phase C322 and https://catalogue.ceda.ac.uk/

uuid/586d4691756c4a91b5ad2d0b14bf10c7 for M-Phase C323. Processed data from PPE simulations for both regions can be obtained from

https://doi.org/10.5281/zenodo.18267702.470
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Appendix A: Deriving a new ns(T ) parameterization for soil dusts

A recent study by Herbert et al. (2025) has shown that the ice-nucleating ability of dust in the atmosphere is influenced by

a mineral component and a biogenic component associated with the surface area of the dust. The authors suggest that soil

dusts that have come from arid, desert-like, environments are best represented by the mineral component alone, whereas dusts

from biologically productive regions are best represented by the inclusion of both components. The authors refer to these two475

classes of soil dusts as desert soils and fertile soils, respectively. Some parameterizations that are commonly used to represent

INP concentrations in modelling studies (Harrison et al., 2019, e.g.,) only account for the mineral component, and therefore

may only be representative of desert soils. Here, we present a new empirical parameterization for the ice-nucleating activity of

fertile soils, which is likely more representative of INP measurements in the mid- to high latitudes (Herbert et al., 2025).

Laboratory measurements of soil-dust ice nucleating activities were collated from literature (Barr et al., 2023; King, 2024;480

O’Sullivan et al., 2014; Paramonov et al., 2018; Porter et al., 2020b; Sanchez-Marroquin et al., 2020b; Steinke et al., 2020;

Thompson, 2024; Steinke et al., 2016). These are studies that have tested the untreated properties of soil dusts that have been

sampled in situ or collected from the surface. We purposefully omit measurements from desert soil sources, such as the Sahara

desert.

Figure A1. Empirical soil-dust parameterization of ns,soil(T ). Coloured circles show measurements from laboratory studies (references

within figure) that have measured the ice-nucleating activity of soil dust sampled from locations around the world. The solid blue line shows

the best fit to the data assuming a K-Fe component (weight percent of 3 %) and a biogenic component described by a power law.

We use the measurements to produce an empirical parameterization which consists of two additive functions, accounting for485

the two components. For the mineral component, we use a parameterization from Harrison et al. (2019) that is dependent on

the potassium-feldspar (K-Fe) present in the dust. We use a constant K-Fe content (fKFe) of 0.03, which is representative of a

global-mean value (Harrison et al., 2019). For the biogenic component, we use the power law ns(T ) =−kTα, which provides
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Table A1. Polynomial coefficients used in Eq. A1. Values are taken from Harrison et al. (2019)

Polynomial coefficient Value

P1 −3.25

P2 −0.793

P3 −6.91× 10−2

P4 −4.17× 10−3

P5 −1.05× 10−4

P6 −9.08× 10−7

a shape consistent with measurements of ns at high temperatures (Figure A1). The variables α and k were systematically varied

until the root-mean square error between the measurements and summed contributions of the two functions was minimized.490

The resulting parameterization of ns,soil(T ) in cm−2 is shown in Figure A1, and described by the function

ns,soil(T ) = (−kTα) + 10(P1+P2T+P3T 2+P4T 3+P5T 4+P6T 5)fKFe, (A1)

where k = 3.907× 10−5, α = 6.531, and the values of P1 to P6 are shown in Table A1. The temperature T is in ◦C.

26

https://doi.org/10.5194/egusphere-2026-311
Preprint. Discussion started: 23 January 2026
c© Author(s) 2026. CC BY 4.0 License.



Appendix B: Simulated dust size distributions during M-Phase

In this section, we produce an INP parameterization that is representative of the location and time period of the M-Phase495

campaign. We apply the new ns,soil(T ) parameterization from Eq. A1 to simulated dust concentrations. Dust concentrations

are simulated using a global configuration of the Met Office Unified Model (Brown et al., 2012b) version 12.1 which includes

Global Atmosphere version 8.0 and Global Land model version 9.0 (Willett et al., 2020). The configuration we use is de-

scribed in detail by Jones et al. (2022) with the addition of dust in a super-coarse aerosol mode. The emission, advection, and

removal of aerosol is simulated by the UK Chemistry and Aerosol (UKCA-mode) model (Mann et al., 2010) which includes500

a prognostic two-moment aerosol microphysics scheme. In this configuration of UKCA-mode, aerosol components (sea-salt,

sulphate, black carbon, organic carbon, and dust) are represented by log-normally distributed aerosol modes. Dust is present

in the accumulation, coarse, and super-coarse modes. Global dust emission parameters (horizd, usam, and smcorr) were tuned

to global observations of dust aerosol optical depths, dust size distributions, surface dust concentrations, and dust deposition

fluxes (Woodward et al., 2022). The resulting values are horizd = 6.0, usam = 1.45, and smcorr = 0.7.505

A simulation was run from 2018 to 2024, with U and V wind components above the boundary layer nudged to 6-hourly

ERA5 reanalysis, and sea surface properties and fluxes represented by observed climatologies of sea surface temperature and

sea ice content. The simulated dust aerosol size distributions were extracted for a region (62.8◦W – 51.6◦W, 53.1◦N – 60.6◦N)

and time period (23/10/22 – 5/11/22) consistent with the M-Phase campaign. The dust INP number concentration (Ndust−INP)

is calculated at each temperature T and in each dust size bin i following the singular description (Murray et al., 2012; DeMott510

et al., 2015; Vali, 2008) using

Ndust−INPi(T ) = Ndusti(1− ens,soil(T )πd2
), (B1)

where Ndusti is the dust number concentration in each size bin (L−1 of air) and d is the mean diameter of the bin. The bins

are summed to obtain the total Ndust−INP for each grid box and for each time step (3 hr) of the time series. This is repeated

for three model levels (surface, 1 km and 2 km) and a mean taken over the three. A polynomial fit to all values of Ndust−INP515

is used to produce a parameterization for NINP,M−Phase(T ) which is described by

log10NINP,M−Phase(T ) =−4.591− 0.5284T − 3.341× 10−2T 2− 1.249× 10−3T 3− 1.579× 10−5T 4, (B2)

where NINP,M−Phase has units L−1 of air and T is in ◦C.
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Appendix C: Kernel selection and testing results of GP emulators

Figure C1. Kernel selection and testing results of the GP emulators on TOA albedo, cloud cover, and LWP in the Sc model analysis region.

Points in orange indicate a failed emulated point in the standardized error check. The kernel name highlighted in blue indicates that the kernel

was selected and the testing results are from comparing the emulator trained with the selected kernel with the testing dataset.
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Figure C2. Kernel selection and testing results of the GP emulators on IWP and TWP in the Sc model analysis region. Points in orange

indicate a failed emulated point in the standardized error check. The kernel name highlighted in blue indicates that the kernel was selected

and the testing results are from comparing the emulator trained with the selected kernel with the testing dataset.
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Figure C3. Kernel selection and testing results of the GP emulators on TOA albedo, cloud cover, and LWP in the Cu model analysis region.

Points in orange indicate a failed emulated point in the standardized error check. The kernel name highlighted in blue indicates that the kernel

was selected and the testing results are from comparing the emulator trained with the selected kernel with the testing dataset.
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Figure C4. Kernel selection and testing results of the GP emulators on IWP and TWP in the Cu model analysis region. Points in orange

indicate a failed emulated point in the standardized error check. The kernel name highlighted in blue indicates that the kernel was selected

and the testing results are from comparing the emulator trained with the selected kernel with the testing dataset.
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Appendix D: Flow chart for methods involved in this work520

Figure D1. Flowchart for methods involved in this work. The sections include the corresponding results are highlighted in blue.
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Appendix E: Simple illustration of linear and non-linear joint effects between two parameters

Figure E1. A simple illustration of linear and non-linear joint effects between two parameters. This diagram is adapted from Figure 3.3 in

the work of Sansom (2023). With linear joint effects, the effect of changing one parameter on the model output is independent of the value of

the other parameter. With non-linear joint effects, the effect of changing one parameter on the model output is then dependent on the value of

the other parameter. The length of the arrows shown in the 2D output represents the variation needed for a parameter to across three contour

lines. All the contour lines shown here are with linear scale.
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Appendix F: Additional paired-projection figures from GP emulators

Figure F1. Projected mean model responses of cloud cover to paired parameters in (a) Sc region and (b) Cu region.
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Figure F2. Projected mean model responses of all-sky IWP (ice water path) to paired parameters in (a) Sc region and (b) Cu region.
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Figure F3. Projected mean model responses of all-sky TWP (total water path) to paired parameters in (a) Sc region and (b) Cu region.
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Appendix G: Results from the global sensitivity analysis

A variance-based sensitivity analysis was also performed to quantify the sensitivities of model variables to the perturbed

parameters based on a dense sampling of the emulated parameter space (Saltelli et al., 2000). We used the Sobol’ method525

(Saltelli et al., 2000) with the Python library SALib (Usher et al., 2016) to calculate the sensitivity indices. The first-order

sensitivity index measures the main effect of each parameter on a model variable. The total sensitivity index includes both

the main effect and any additional effects from interactions with other parameters. Therefore, the difference between the total

index and the first-order index indicates how much of a parameter’s influence comes from its interactions with other parameters

(interactive effects) (Johnson et al., 2015).530

Figure F1 shows the sensitivity indices over the whole parameter space. This comparison allows us to quantitatively inves-

tigate the dominant parameters for the cloud properties of interest over the 6-D parameter space, rather than, as shown in the

paired projections, limiting to the values averaged across the parameter space for the non-paired parameters.

Nd dominates the TOA albedo in both regions and exerts strong influences on cloud cover and LWP. In contrast, IWP in both

regions has little sensitivity to the perturbations of Nd. The strong control of Nd over the TOA albedo suggests that an accurate535

representation of Nd and associated processes, including background aerosol fields, droplet activation of CCN and in-cloud

processing of CCN, is essential to accurately represent these mixed-phase clouds in simulations.

N−15
INP has a strong control of all-sky LWP and IWP in both regions, but its effect on TOA albedo is much weaker compared

to Nd. In the Cu region, a high N−15
INP leads to a reduction in LWP but also an increase in IWP, therefore, its overall influence on

TWP is compensated. Although N−15
INP strongly influences LWP in both cases, its weaker influence on TOA albedo compared540

to the influence from Nd suggests that, in this CAO case, the Twomey effect associated with perturbations in Nd plays a more

dominant role in determining the radiative properties of CAO clouds. As a result, TOA albedo exhibits more sensitivity to

perturbations of Nd than to N−15
INP . It is also worth noting here that because the cloud temperature in our case is warm (with a

cloud top temperature around -15 ◦C), the INP concentrations are generally low. Most of the perturbed N−15
INP is below 1 L−1,

which is smaller than the threshold suggested from Vergara-Temprado et al. (2018) for INP to have a strong effect on TOA545

albedo.

In this CAO case, all SIP parameters (EHM, EBR and EDS) have generally weak influence on the cloud radiative properties

in both regions, compared to other parameters. Comparing the different regions shows that the influence from SIP processes

on cloud properties is relatively enhanced in the Cu region, as the clouds deepen and IWP increases with more snow and

graupel formations. Most of their influences on cloud cover are interactive effects, suggesting an additional dependency on550

other parameters. Among the three SIP parameters, EHM has the strongest influence on LWP, IWP and TWP. This occurs

because most cloud temperatures in this case (ranging from -5 to -15 ◦C) are warmer than the peak temperature for the ice-ice

collision (-21 ◦C) and droplet shattering (-15 ◦C) processes, but within the temperature range for the HM process (-7.5 ◦C to

-2.5 ◦C) which peaks at -5 ◦C. Therefore, the sensitivities of cloud properties to the parameters shown here are case specific;

this point will be further discussed in the Discussion section.555
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The influences of mpof are weak in the Sc region, but become much stronger in the Cu region for cloud cover and LWP,

where IWP increased a lot compared to the ones in the Sc region. Its effects on TOA albedo are also enhanced in the Cu region,

but much weaker compared to the those from Nd. The explanation is similar to N−15
INP , as in this case, the radiative properties

of CAO clouds are dominated by the Twomey effect associated with perturbations in Nd, rather than the change in LWP. The

mpof parameter controls the extent to which liquid and ice hydrometeors interact with each other, and our results suggest that560

for cloud cover and LWP in the Cu region, it is important to have a good representation of the degree of overlap between ice

and liquid hydrometeors. However, mpof remains poorly constrained in models (Abel et al., 2017; Korolev and Milbrandt,

2022; Evans et al., 2025) and can lead to large uncertainties in estimating mixed-phase cloud behaviours under the warming

climate and their influences to the Earth’s energy budget.
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Figure G1. Sensitivity indices of all the perturbed parameters for TOA albedo (unitless), cloud cover (unitless), all-sky LWP (g m−2), all-

sky IWP (g m−2) and all-sky TWP (g m−2). Each sensitivity index consists of the first-order, main effect (solid fill) and the second-order,

interactive effects (dashed). Indices are shown separately for the Sc (left column) and Cu (right column) regions.
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