

1 **Review article:Advances in Polar Environmental Monitoring with**
2 **ICESat-2: From Ice Sheet Mass Balance to Sea Ice Thickness Retrieval**

3 Farui Jiang^{1,2,3}, Wenyu Shen^{1,2,3},Chengen Wu^{1,2,3}, Yueyun Wang^{1,2,3}, Bing He^{1,2,3}, Zhongnan Yan^{1,2,3}, Xiaoping
4 Pang^{1,2,3*}

5 1 Chinese Antarctic Center of Surveying and Mapping, Wuhan University, Wuhan 430079, China.

6 2 Key Laboratory of Polar Environmental Monitoring and Public Governance, Ministry of Education (Wuhan
7 University), Wuhan 430079,China

8 3 School of Geodesy and Geomatics,Wuhan University, Wuhan 430079,China

9 Corresponding author: Xiaoping Pang (pxp@whu.edu.cn)

10 129 Luoyu Road, Hongshan District, Wuhan, Hubei Province, China.

11 **Abstract :**

12 ICESat-2's advanced topographic laser altimeter system provides unprecedented technical support for polar
13 environmental research including ice sheet mass balance detection and multi-dimensional sea ice parameter retrieval.
14 However, the satellite's technical innovations and application advantages for polar environments still lack systematic
15 elaboration, its high-precision data have not been effectively integrated from single-factor analysis to multi-process
16 collaborative cognition, and the main sources of uncertainty as well as future technical breakthrough paths also remain
17 unclear. To address these gaps, this review explores three core scientific questions. First, how to accurately solve the
18 inversion challenges of key parameters through ICESat-2's technical innovations. Second, how to apply its high-
19 precision inversion results to deepen the understanding of multi-sphere and multi-element interaction processes in
20 polar regions and further reveal their systematic change laws. Third, what are the main uncertainties in ICESat-2's
21 polar monitoring applications and what targeted technical paths can achieve breakthroughs. By systematically
22 organizing relevant research progress, this review clarifies the inherent connection between technical innovations and
23 polar parameter inversion, and ultimately provides solid support for the construction of cross-element integrated
24 scientific cognition of polar environments.

25 **Keywords:** ICESat-2; Polar Environment; Sea Ice Thickness; Ice Sheet Mass Balance; Climate Change

26

27 1 Introduction

28 As a core component of the global climate system, the cryosphere's dynamic changes are synergistically
29 regulated by complex radiative and non-radiative interactions between the atmosphere, ocean, and ice (Goosse et al.,
30 2018; Ding et al., 2021). Polar regions, as the central part of the cryosphere, have witnessed a series of significant
31 changes in recent decades due to intensified global warming, including rapid Arctic sea ice shrinkage, accelerated
32 Greenland Ice Sheet ablation, and permafrost degradation (Jahn et al., 2024; Michael et al., 2021; Liu et al., 2019;
33 Qu et al., 2022). Acting as a key regulator of polar energy balance, sea ice has a surface albedo of 80%–90%, more
34 than 10 times that of open oceans. Its retreat significantly enhances the ocean's capacity to absorb solar radiation,
35 further amplifying polar warming (Serreze and Stroeve, 2015). Meanwhile, the massive freshwater stored in polar
36 ice sheets, if fully melted, would cause a substantial rise in global sea levels, posing severe threats to coastal
37 ecosystems and human societies (Pritchard et al., 2012). Therefore, accurately capturing changes in key polar
38 environmental parameters and clarifying their systematic evolution laws are core prerequisites for understanding
39 global climate change mechanisms and improving climate prediction capabilities.

40 Remote sensing serves as the primary means for large-scale, long-term polar monitoring, but traditional remote
41 sensing technologies have inherent limitations in practice. ICESat-1's (Ice, Cloud, and land Elevation Satellite) single-
42 beam observation design struggled to effectively distinguish slope effects from true elevation changes, leading to large
43 errors in ice sheet mass balance inversion (Neuenschwander et al., 2008; Urban et al., 2005). CryoSat-2's radar
44 signals are susceptible to snow penetration, significantly restricting the accuracy of sea ice thickness retrieval (Howat
45 et al., 2008; Kwok et al., 2009). Launched in 2018, ICESat-2 with the advanced topographic laser altimeter system
46 (ATLAS) overcomes traditional observational bottlenecks via revolutionary photon-counting technology, elevating
47 key cryospheric parameter monitoring accuracy to the centimeter level and providing a novel technical approach for
48 precise cryospheric monitoring (Markus et al., 2017).

49 Despite the breakthroughs brought by ICESat-2 to cryosphere research, a systematic review of existing studies
50 reveals several key scientific gaps and weaknesses. Specifically, while technical parameters such as the six-beam
51 spatial distribution of the ATLAS system have been explicitly disclosed, and related studies have developed
52 algorithms based on these technical characteristics and verified their accuracy improvement effects (Liu et al., 2022),
53 most of these studies merely present inversion results without systematically elaborating on ICESat-2's technical
54 design and application advantages for polar environmental observations.

55 Secondly, existing research mainly focuses on single-factor or local-scale observational analyses, such as ice
56 sheet mass balance (Brunt et al., 2021), ice shelf stability analysis (Li et al., 2020; Li et al., 2022), lead detection
57 (Petty et al., 2021), and sea ice thickness changes. It fails to integrate the aforementioned high-precision observational
58 data to deepen the scientific understanding of multi-sphere and multi-factor interaction processes in polar regions,
59 thereby revealing the systematic change laws of the polar environment. Finally, although dominant uncertainties in
60 ICESat-2's cryosphere observations have been initially identified and targeted resolved (Petty et al., 2023; Kwok et
61 al., 2021), core uncertainties such as snow depth estimation biases, complex terrain observation interference, and
62 inherent limitations of the observation system lack systematic classification and in-depth analysis of their combined

63 impact mechanisms. This restricts the reliability verification of ICESat-2's observational results and forms a
64 bottleneck for the technological development of the next generation of laser altimetry satellites.

65 To address the above scientific gaps, this review will systematically explore three aspects: (1) By systematically
66 reviewing ICESat-2's core technical innovations, multi-level data product system, and adaptive design for extreme
67 polar environments, deeply elaborate on its technical mechanisms for solving inversion challenges of key polar
68 environmental parameters such as ice sheet mass balance and sea ice thickness. (2) By systematically integrating the
69 understanding of polar ice sheet/ice shelf stability and multi-dimensional sea ice parameter retrieval from ICESat-2,
70 construct a holistic scientific cognition of the systematic change laws of the polar environment. (3) By systematically
71 clarifying the resolution of dominant observational uncertainties by ICESat-2 and the main remaining uncertainty
72 sources, deeply analyze the impact mechanisms of each source, and further clarify feasible technical paths for targeted
73 breakthroughs in the future. Notably, although ICESat-2 has also demonstrated significant value in ecological fields
74 such as large-scale biomass estimation and global carbon stock assessment (Lefsky et al., 2005; Neumann et al.,
75 2019; Yu et al., 2024; Zhu et al., 2020), to maintain the focus of the research theme, this review will only
76 systematically summarize its progress in cryosphere science, with a particular emphasis on polar environments.

77 **2 ICESat-2/ATLAS Observation System and Its Mechanistic Link to 78 Polar Environmental Parameter Retrieval**

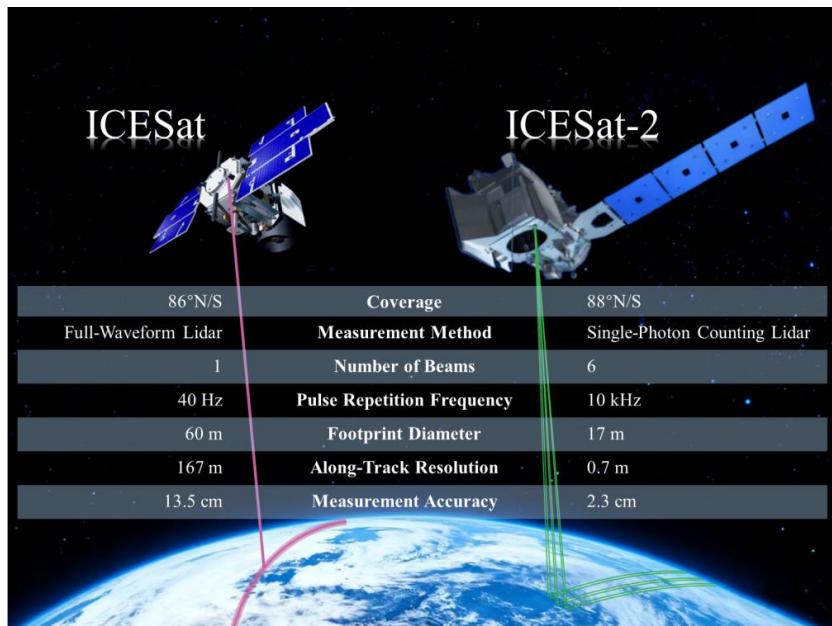
79 The core technical innovations of ATLAS provide basic support for the retrieval of key polar parameters by
80 establishing high-precision and high-density observational capabilities; the multi-level data product system realizes
81 the effective conversion of raw observational data into key polar environmental parameters through targeted
82 preprocessing and refined processing procedures; the adaptive design of the observation system for polar
83 environmental characteristics ensures the reliability and stability of the retrieval process in different scenarios. The
84 integration of these three aspects enables ICESat-2 to significantly improve the accuracy and applicability of polar
85 environmental parameter retrieval.

86 **2.1 Historical Evolution of Technical Innovations in the ICESat Series**

87 In cryospheric change research, the ICESat mission launched by NASA in 2003 has provided crucial
88 observational data. Through laser altimetry technology, the satellite played a central role in assessing the mass balance
89 of mountain glaciers and polar ice sheets (Gardner et al., 2011; Urban et al., 2008). Based on its elevation data,
90 researchers first achieved spatialized estimates of the mass balance of glaciers in the Hindu Kush–Karakoram–
91 Himalaya region (Kääb et al., 2012), global peripheral glaciers, and the Greenland Ice Sheet (Bolch et al., 2013).
92 Additionally, ICESat was successfully applied to the remote sensing retrieval of sea ice freeboard, thickness, and
93 volume (Farrell et al., 2009; Connor et al., 2013). However, despite its remarkable achievements, ICESat's single-
94 beam observation mode had obvious limitations in analyzing complex cryospheric processes: particularly in regions
95 with rugged terrain, the sensor struggled to effectively distinguish slope effects from true elevation changes, requiring
96 multi-period observational data for signal separation (Moholdt et al., 2010; Abdalati et al., 2010). Meanwhile, the
97 low spatial resolution of the single beam limited its ability to capture microfeatures such as sea ice cracks and melt

98 ponds, restricting the accuracy of sea ice type identification and thickness retrieval. Coupled with laser lifespan issues,
99 its scientific data collection ceased in 2009.

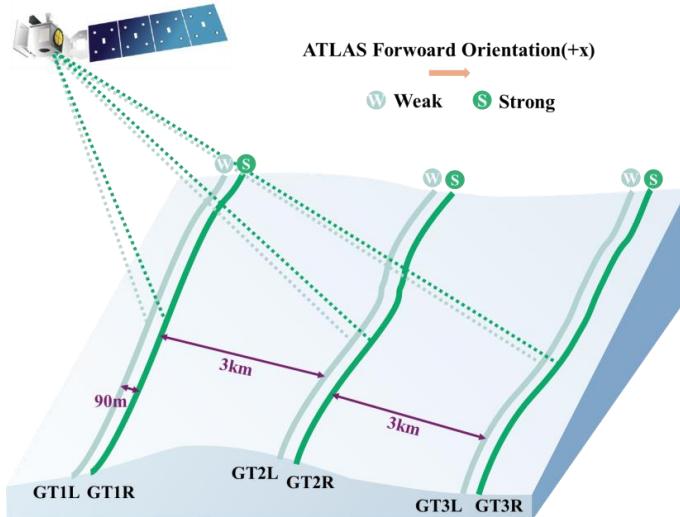
100 Building on this, NASA launched the next-generation ICESat-2 satellite on September 15, 2018, which officially
101 initiated scientific observation missions on October 14 of the same year. Compared with the previous mission, ICESat-
102 2 effectively addressed the limitations of ICESat's single beam in spatial resolution and terrain slope measurement by
103 equipping the ATLAS and a six-beam observation configuration ([Howat et al., 2008](#)), significantly enhancing the
104 high-precision monitoring capabilities for glaciers, ice sheets, and sea ice ([Magruder et al., 2020](#)). Its observational
105 technical characteristics are reflected in three core dimensions: observational geometry design, detection technology
106 innovation, and positioning/coverage accuracy (**Figure 1**).



107
108 **Figure 1.** Schematic diagrams of the satellite sampling configurations for ICESat and ICESat-2

109 In terms of observational geometry design, the ATLAS altimeter onboard ICESat-2 constructs a high-density 3D
110 observation network through an innovative configuration of three pairs of beams and yaw angle optimizatio, whose
111 core technical design logic can be summarized as multi-beam collaborative coverage and dynamic energy adaptatio.
112 Specifically, unlike the first-generation ICESat's single-beam along-track sampling mode, ATLAS splits a single laser
113 beam into three pairs of left, nadir, and right beams using diffractive optical elements. Combined with a 2° yaw angle
114 design, the strong and weak energy beams within the same beam pair form a cross-track spacing of approximately 90
115 meters. Ultimately, the six ground tracks have an along-track spacing of about 3 kilometers and a total cross-track
116 width of approximately 6 kilometers, achieving a systematic expansion of the observational coverage ([Neumann et](#)
117 [al., 2019](#)) (**Figure 2**). Meanwhile, the system adopts a parameter combination of 0.7-meter along-track sampling
118 interval and 11-meter laser footprint diameter to enhance the ability to capture microtopographic features; the 4:1
119 energy ratio design of strong and weak beams forms a differentiated adaptation mode for different surface reflectivity

120 characteristics—high-energy strong beams meet the signal capture needs of low-reflectivity regions, while low-energy
121 weak beams effectively avoid signal saturation in high-reflectivity regions (Kwok et al., 2022).



122
123 **Figure 2.** The ICESat-2 observational geometry: multi-beam configuration, laser footprints, and ground tracks.

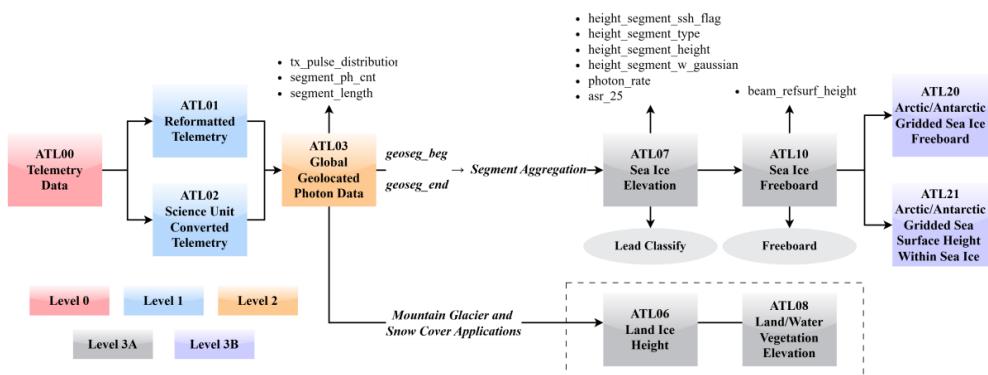
124 In terms of detection technology innovation, ATLAS's photon-counting lidar technology breaks through the
125 limitations of traditional pulse waveform detection, enabling accurate capture of weak signals. Unlike the first-
126 generation ICESat, which obtained elevation information by integrating pulse echo waveforms, ATLAS can record
127 the position and time of each returning single photon from laser pulses, constructing a high-resolution 3D photon
128 cloud (Kwok et al., 2021). This technical characteristic endows the system with extremely high sensitivity to single-
129 photon signals, enabling effective discrimination of different surface types in mixed high- and low-reflectivity regions.
130 Additionally, the high temporal resolution of photon-counting technology, combined with multi-source data fusion
131 from GPS receivers, star trackers, and the Laser Reference System (LRS), achieves centimeter-level 3D geolocation
132 accuracy (Magruder et al., 2020).

133 In terms of positioning and coverage capabilities, ATLAS adopts a near-polar orbit design (inclination of 92°,
134 covering 88°S to 88°N) combined with the uniform distribution of 1387 independent Reference Ground Tracks
135 (RGTs), achieving comprehensive coverage of key global regions and addressing the insufficient coverage of the first-
136 generation ICESat in polar marginal areas (Abdalati et al., 2010). The system sets an average operating altitude of
137 496 kilometers and a revisit period of 91 days, balancing observational efficiency and spatiotemporal resolution; it
138 not only enables temporal dynamic monitoring of target parameters but also ensures the spatial representativeness of
139 regional-scale observations through uniform track distribution (Markus et al., 2017).

140 **2.2 Multi-Level Data Product System of ICESat-2**

141 ICESat-2 has constructed a multi-level data product system from Level-1 to Level-3, which realizes the effective
142 conversion of raw photon data into retrieval parameters through targeted preprocessing and refined processing
143 procedures, serving as a core bridge connecting the observation system and parameter retrieval (Magruder et al.,

144 **2020) (Figure 3).** Through a hierarchical processing logic to accurately address the retrieval needs of different
 145 scenarios, this product system forms a close mechanistic link with polar environmental parameter retrieval: Level-1
 146 products achieve initial calibration of raw observational data, providing a high-quality foundation for subsequent
 147 processing; Level-2 products extract reliable surface elevation information through purification and screening of
 148 photon-level data; Level-3 products conduct dedicated refined processing and parameter retrieval for the retrieval
 149 needs of different polar environmental parameters, ultimately forming thematic products adapted to different retrieval
 150 objectives (Kwok et al., 2023).



151
 152 **Figure 3.** Overview of the ICESat-2 ATL data product suite and their hierarchical relationships

153 The processing flow from Level-1 to Level-2 products focuses on addressing the fundamental challenge of raw
 154 photon data purification and elevation extraction, thereby providing a unified, high-quality elevation dataset for all
 155 cryospheric parameter retrievals. Level-1 products, including ATL01 (raw time tags and photon response counts) and
 156 ATL02 (geophysical range correction), achieve the initial standardization of raw observational data through
 157 instrument temperature and voltage effect correction, as well as geophysical range calculation—effectively
 158 eliminating systematic errors inherent to the instrument itself (Kwok et al., 2020b).

159 Building on this, Level-2 product ATL03 provides high-precision 3D coordinates for each photon through solid
 160 tide, polar tide, ocean loading tide and total atmospheric delay correction, constructing a raw photon cloud dataset
 161 (Kwok et al., 2020a; Xie et al., 2023). The preprocessing flow of ATL03 including photon aggregation, surface
 162 detection, noise removal and scattering correction directly serves the goal of reliable surface elevation extraction.
 163 Initial separation of signal photons and background noise is achieved through continuous pulse photon clustering and
 164 height histogram construction. Outlier photons are removed using local mode positioning and window truncation
 165 methods, effectively suppressing the impact of background noise and first-photon bias. Elevation data accuracy is
 166 optimized through subsurface scattering correction, ultimately converting raw photon cloud data into clean and precise
 167 surface elevation data to provide core foundational support for subsequent cryospheric parameter retrieval.

168 Among Level-3 thematic products, ATL07 and ATL10 are the core backbone products for sea ice research.
 169 Together with ATL20/21, they form a sea ice parameter retrieval chain from core parameter retrieval to macro-scale
 170 integration, realizing accurate conversion from elevation data to sea ice freeboard. As the basic core product for sea

171 ice parameter retrieval, ATL07 takes the purified elevation data from ATL03 as input. After a series of geophysical
172 corrections based on the CryoSat-2 and DTU13 mean sea surface models, GOT4.8 tide model, and GEOS-FP-IT
173 atmospheric inverse pressure correction (Andersen et al., 2015), it generates height segments by aggregating 150
174 consecutive signal photons, with segment intervals automatically adjusted based on photon density and surface
175 reflectivity (Kwok et al., 2019; Kwok et al., 2020b). It adopts a decision tree classification algorithm based on three
176 core parameters—surface photon rate, photon distribution width, and background noise rate (Kwok et al., 2023)—
177 which can accurately distinguish surface types such as sea ice, open water, and clouds, while providing geographic
178 location, observation time, and confidence information, laying a solid data foundation for subsequent ATL10
179 freeboard retrieval (Table 1).

180 **Table 1** Detailed definitions of relevant fields in the ATL07 product

Field Type	Field Name	Unit	Field Description
classification	height_segment_asr_calc	/	calculated apparent surface reflectivity
	height_segment_height	m	segment surface height
	height_segment_w_gaussian	m	best-fit Gaussian width
	height_segment_length_seg	m	segment length
	n_pulse_seg_used	m	the number of photons used in each height segment
	photon density	/	calculated by dividing the number of photons used by the length of the height segment
original classification	photon_rate	photon	photon rate
	hist_w	m	width of photon height distribution
	background_r_norm	Hz	normalized background rate (50 pulses)
quality control	height_segment_ssh_flag	/	sea ice classification (0 = sea ice; 1 = sea surface)
	height_segment_type	/	segment surface type
cloud	fit_quality_flag	/	(-1 = invalid; 1 = optimal)
	n_pulse_seg_used	/	number of laser pulses used in sea ice segments
cloud	height_segment_quality	/	height segment quality flag
	cloud_flag_asr	/	cloud probability flag based on apparent reflectivity

181 ATL10 is the core dataset for ICESat-2 sea ice research, directly conducting sea ice freeboard estimation based
182 on ATL07 classification results: it constructs a local sea surface reference by identifying valid sea surface height
183 segments and calculates the freeboard difference of sea ice height segments relative to this reference. To improve
184 statistical robustness, ATL10 adopts an adaptive aggregation design with an approximately 10-kilometer
185 neighborhood window to generate freeboard scan segments; the window length and sampling interval can be
186 dynamically adjusted according to sea ice distribution density, and no scan segments are generated for tracks lacking
187 reliable sea surface references to avoid additional uncertainty. Each scan segment is accompanied by uncertainty
188 assessment and quality indicators integrating factors such as beam quality and distance from the sea surface reference,
189 while providing a freeboard histogram constructed from full-beam data to characterize the freeboard distribution
190 within the scan segment (Kwok et al., 2019). As an extension of ATL10, the ATL20/21 gridded products map along-
191 track freeboard and sea surface height data to a 25-kilometer polar stereographic projection grid, generating
192 daily/monthly scale sea ice freeboard statistics and monthly scale sea surface height information (Kwok et al., 2021),
193 realizing scale upgrading from fine observations to regional-scale and long-term sea ice research and providing support
194 for macro cryospheric system change analysis.

195 In addition, to meet the retrieval needs of ice sheets and mountain glaciers, the ATL06 product provides high-
196 precision surface elevation through linear segment fitting, adapting to the need for accurate capture of elevation
197 temporal changes in the retrieval of parameters such as ice sheet mass balance and glacier retreat rate; its extension to
198 non-glacial mountainous areas also provides supplementary support for snow depth retrieval and topographic mapping
199 (Smith et al., 2019; Deschamps-Berger et al., 2023). Based on photon classification, the ATL08 product provides
200 both surface and vegetation height information over longer linear segments, primarily serving forest structure and
201 biomass assessment (Neuenschwander et al., 2021).

202 **2.3 Adaptive Design of ICESat-2 for Polar Environments**

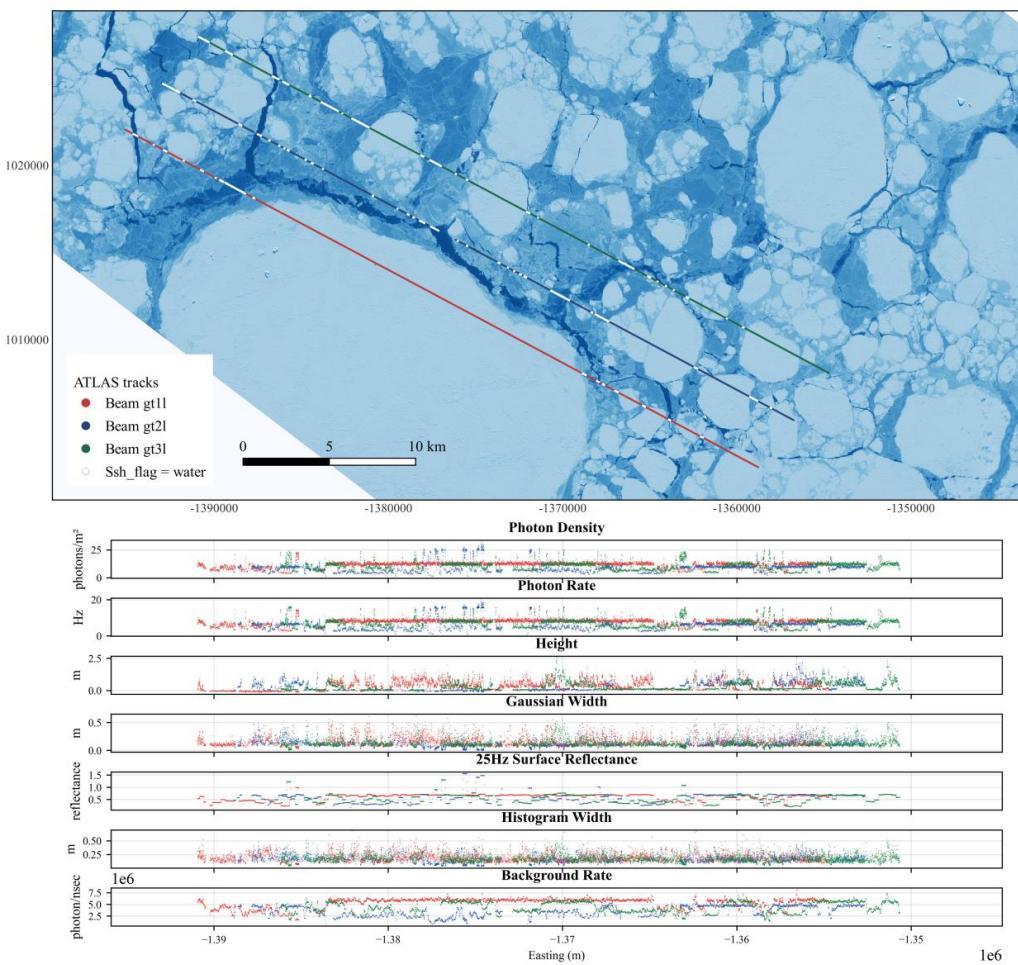
203 Polar environments exhibit significant spatiotemporal heterogeneity. Core characteristics such as surface
204 reflectivity differences, seasonal dynamic evolution, and polar solar radiation interference directly affect the quality
205 of laser observational signals and the reliability of retrieval results. The core advantage of the ICESat-2 observation
206 system lies in forming targeted environmental adaptation mechanisms through technical innovations. Through the
207 collaborative optimization of observational strategies and data processing flows, it effectively offsets the interference
208 caused by environmental heterogeneity, ensuring the stability and accuracy of parameter retrieval in different scenarios.

209 The first core environmental challenge is the extreme heterogeneity of surface reflectivity. Different surface
210 cover types in polar environments form a strong contrast pattern of "high reflectivity—low reflectivity": the
211 reflectivity of snow-covered sea ice, snow cover, and other regions can reach 0.7–0.8, while that of leads, dark cracks,
212 and other regions is only 0.1–0.2, a difference of nearly an order of magnitude (Kwok et al., 2021b). This contrast
213 risks signal saturation in high-reflectivity areas and noise-induced signal loss in low-reflectivity regions, limiting
214 capture efficiency (Kwok et al., 2022) (Figure 4). The ATLAS system addresses this through differentiated energy
215 output of strong and weak beams, matching reflectivity-specific signal needs to avoid saturation or insufficient capture,
216 and high-density multi-beam distribution that ensures complete coverage of heterogeneous surfaces without
217 observational blind spots.

218 The second core environmental challenge is the dynamic interference of polar solar radiation. ATLAS's 532 nm
219 visible band is vulnerable to solar background noise, with polar day-night alternation and varying solar elevation
220 angles amplifying interference complexity (Kwok et al., 2020a). Background photon counts exceed signal photons
221 by multiple times when solar elevation exceeds 30°, drowning effective signals, while interference is negligible below
222 10° or during polar nights—this dynamic directly impacts signal-noise distinction accuracy (Kwok et al., 2019; Liu
223 et al., 2024). ICESat-2 mitigates this by scheduling core polar observations during twilight or nighttime to avoid high
224 solar angles, and integrating solar elevation angle into signal screening algorithms with dynamic noise thresholds.
225 High solar angles trigger strengthened verification of surface photon rate and background noise rate linear
226 relationships to remove abnormal photons; low angles shield uncertain background noise parameters, extracting
227 signals solely via spatial distribution characteristics (Kwok et al., 2023).

228 The third core environmental challenge is the seasonal dynamic evolution of polar environments. Polar
229 environments exhibit region-specific seasonal changes: Arctic sea ice develops melt ponds and ablates marginally in
230 summer, while thickening and forming cracks in winter; Antarctic Ice Sheet margins see accelerated ice shelf calving
231 and ablation in summer, with snow accumulation and smooth surfaces in winter (You et al., 2021; Shen et al., 2021).

232 These differences reduce the accuracy of fixed retrieval algorithms. ICESat-2's data product system addresses this
233 through dynamically adaptive classification algorithms in core sea ice products ATL07 and ATL10. A refined
234 classification system distinguishes clouds, sea ice, and crack types like specular, dark, and rough during the growth
235 season (October–May) to match winter sea ice structure retrieval needs ([Kwok et al., 2023](#)). The system simplifies to
236 clouds, sea ice/melt pond mixtures, and cracks/melt ponds during the ablation season (June–September), focusing on
237 core surface types to ensure basic retrieval requirements.



238
239 **Figure 4.** The main figure uses a S2 image as the background, with the laser altimetry ground tracks of the strong
240 beams (gt11, gt21, gt31) from the ATL07 product overlaid. The white areas in the figure represent the sea surface
241 range identified by the ATL07 product. The series of subfigures respectively show the reflection characteristics of
242 key parameters in the ATL07 product, including photon density, photon rate and other parameters.

243 **3 ICESat-2 Observation Results Support In-depth Understanding of 244 the Systematic Change Laws of the Polar Environment**

245 **3.1 Monitoring of Ice Sheet and Ice Shelf Mass Balance**

246 Polar ice sheets and ice shelves are core cryospheric mass and energy storage carriers, with their mass balance
247 and stability exerting decisive regulatory effects on global sea level and climate system evolution ([Chen et al., 2013](#);
248 [Manabe & Stouffer, 1995](#)). As key links between ice sheets and the ocean, ice shelves block inland ice flow while
249 their basal melting and calving directly regulate ice sheet mass output ([Alley et al., 2021](#)). Major ice shelves globally
250 are retreating and thinning—accelerated calving of Antarctica’s Thwaites and Pine Island Ice Shelves drives Antarctic
251 ice loss ([Li et al., 2022](#)), while Greenland’s accelerated mass loss since the 1990s has released freshwater into the
252 North Atlantic, suppressing thermohaline circulation ([van den Broeke et al., 2017](#); [Shen et al., 2020](#)).

253 Coupling of ice sheet basal dynamics and ice shelf erosion further impacts system stability. Antarctic subglacial
254 lake drainage, a core subglacial hydrological process, transports meltwater to ice sheet downstream and grounding
255 lines, altering basal lubrication, intensifying ice shelf melting, and triggering surface uplift or collapse with potential
256 global climate and sea level impacts ([Smith et al., 2009](#)).

257 With centimeter-level elevation accuracy and high-density observation capabilities, ICESat-2 has established a
258 multi-dimensional monitoring system covering ice sheet and ice shelf mass balance, stability, and hydrological
259 processes. It advances research from single-parameter extraction to integrated multi-process, multi-scale, and multi-
260 mechanism analysis, providing key support for understanding systematic change laws ([Khan et al., 2022](#)).

261 **3.1.1 Ice Sheet Elevation Change and Mass Balance**

262 Ice sheet and ice shelf changes fall into two categories defined by their driving mechanisms, with distinct spatial
263 patterns: surface mass balance-driven changes show attenuated gradients and uniform thinning, whereas dynamic
264 imbalance-driven changes feature strong spatial heterogeneity and stress-transmitted instabilities ([Fredensborg](#)
265 [Hansen, 2021](#)).

266 To quantitatively analyze the above two types of ice sheet and ice shelf change processes, researchers have
267 established a multi-level methodological framework centered on ice sheet elevation change detection, based on
268 ICESat-2 combined with multi-source altimetry data such as CryoSat-2 ([Paolo et al., 2015](#); [Zhang et al., 2017](#)). For
269 changes driven by surface mass balance, the framework accurately extracts the elevation change rate of ice sheet areas
270 by gridding and time-series fitting of photon data, while suppressing systematic errors through crossover analysis,
271 thereby supporting the analysis of their dominant mechanisms. For changes driven by dynamic imbalance, it tracks
272 local evolutionary characteristics via repeat orbit analysis and sliding window methods, and improves data signal-to-
273 noise ratio through multi-level filtering, enabling refined characterization of such processes with strong heterogeneity
274 and stress-transmitted instabilities ([Wang et al., 2024](#)).

275 Based on long-term time-series observations from ICESat-2 the overall accelerating loss trend and spatial
276 heterogeneity characteristics of the Antarctic and Greenland Ice Sheets have been accurately characterized.
277 Observation data show that the Antarctic Ice Sheet had an overall elevation decrease rate of -10.65 ± 3.20 cm/yr
278 between 2003 and 2020. The extreme melting event in 2019 further intensified ice mass loss ([Yang et al., 2022](#)). The

279 Greenland Ice Sheet had a mass loss rate of -45.02 ± 34.21 Gt/yr between 2019 and 2022 equivalent to a global sea
280 level rise of approximately 0.12 mm/yr. Rising temperatures are the main driving factor (Wang et al., 2024). Notably
281 the mass loss rate of peripheral glaciers in Greenland especially in the northern region has increased fourfold over the
282 past two decades accounting for $11 \pm 2\%$ of the total loss of the Greenland Ice Sheet. This highlights the characteristic
283 of continuously increasing spatial heterogeneity of mass loss in the ice sheet system (Khan et al., 2022).

284 In terms of multi-source data collaboration and product validation ICESat-2 data show good consistency with
285 radar altimetry data such as CryoSat-2. At a 5 km grid resolution and 30–60 day time window the elevation change
286 trends of the Greenland Ice Sheet reflected by the two are highly consistent. The interannual difference is only 3.3 ± 6.0
287 cm/yr which significantly improves the credibility of monitoring results (Ravinder et al., 2024). At the same time
288 cross-validation with independent data such as ground-based GNSS measurements and airborne lidar has confirmed
289 that the horizontal accuracy of ATL03 photon-level data from ICESat-2 is better than 5 cm. The accuracy of ATL06
290 elevation products reaches sub-decimeter level providing a solid foundation for the production and dynamic update
291 of high-precision ice sheet DEMs (Shen et al., 2022). The currently achieved 500 m resolution DEM of the Antarctic
292 Ice Sheet has a root mean square error controlled at -0.19 m and has annual update capability. It significantly improves
293 the spatial details and timeliness of ice sheet topographic change monitoring.

294 **3.1.2 Ice Shelf Stability Analysis**

295 For the identification and morphological analysis of sub-ice shelf channels multi-beam laser profile terrain
296 analysis technology uses the advantage of ICESat-2's six-beam dense spatial sampling to extract linear depression
297 features on the ice shelf surface. It inverts the development process and thermal erosion effect of sub-ice channels
298 combined with ice flow velocity data (Siegfried and Fricker, 2018).

299 Observations reveal that basal erosion processes play a core role in ice shelf dynamic adjustment. For example
300 subglacial melt channels extend toward the grounding line at a rate of approximately 1 km/yr along the ice flow
301 direction. The lateral migration rate reaches 70–80 m/yr and the basement erosion rate can reach 22 m/yr. This clearly
302 reflects the dominant regulatory role of complex hydrodynamic processes at the base of ice shelves on ice shelf
303 movement and structural stability (Chartrand et al., 2020). In addition for the inversion of ice thickness changes in
304 ice shelf areas methods based on hydrostatic equilibrium principles are widely used. Ice thickness changes can be
305 directly estimated through surface elevation combined with density differences between ice and seawater (Chuter
306 and Bamber, 2015; Griggs and Bamber, 2011) providing key parameters for ice shelf mass balance and stability
307 assessment.

308 In terms of key boundary monitoring ICESat-2 has significantly improved the spatial density and geometric
309 accuracy of grounding line identification through repeat orbit observations. Collaborative analysis with differential
310 interferometric synthetic aperture radar data can control the identification error of grounding line position within 0.39
311 km (Li et al., 2020) providing high-precision geometric constraints for characterizing grounding zone migration and
312 dynamic development of subglacial melt channels. In the monitoring of ice shelf cracks and fracture processes the
313 high-resolution elevation data from ICESat-2 provides important support for the extraction of three-dimensional crack
314 morphology and tracking of propagation processes. Studies have shown that crack generation and propagation are
315 jointly driven by basement fractures extreme meteorological events and changes in the thermal-dynamic state of ice

316 shelves ([Wang et al., 2021](#); [Walker et al., 2021](#)). By performing high-resolution elevation gradient and curvature
317 analysis on ICESat-2 along-track elevation data and calculating the spatial variation of surface slope and curvature
318 potential crack development areas can be accurately identified and their propagation paths can be tracked ([Zhang et](#)
319 [al., 2020](#)).

320 In terms of numerical simulation and mechanism explanation the three-dimensional full Stokes ice flow model
321 based on Elmer/Ice integrates BedMachine Antarctica terrain data and ICESat-2 ice flow velocity observations to
322 achieve accurate simulation and verification of ice shelf dynamic processes ([Guo et al., 2019](#)). Typical case studies
323 show that after the TWIT calving the Thwaites Eastern Ice Shelf (TEIS) formed a relatively independent dynamic
324 system. The basal melting rate near the grounding line increased significantly confirming that changes in the physical
325 state of the grounding line are key factors controlling the precursors of ice shelf calving ([Alley et al., 2021](#)).

326 **3.1.3 Ice Sheet Hydrological Process Monitoring**

327 In terms of subglacial lake monitoring, researchers first proposed a method for identifying subglacial lakes based
328 on elevation change rate thresholds using first-generation ICESat data ([Wingham et al., 2006](#)), whose core idea is to
329 calculate ice sheet surface elevation change rates, set reasonable thresholds, and combine visual interpretation to
330 identify dynamic subglacial lakes and determine their boundaries. Subsequent studies further optimized the method
331 by improving threshold adjustment and signal separation technologies ([Stearns et al., 2008](#)), and ICESat-2 has
332 achieved accurate identification and refined boundary extraction of such lakes relying on its higher-precision photon-
333 counting altimetry data under this framework.

334 For fine monitoring of subglacial lake water level changes, the repeat orbit elevation anomaly analysis method
335 based on ICESat-2 captures filling and drainage events and their dynamic characteristics by analyzing time-series
336 elevation data along preset orbits ([Siegfried et al., 2021](#)). Sliding time window and multi-source data fusion methods
337 enhance hydrological event detection continuity by integrating adjacent observation period data, while the method of
338 elevation anomaly difference inside and outside the lake extracts net elevation signals caused by subglacial lake
339 activities by subtracting background area changes from target area anomalies ([Scambos et al., 2011](#)). For rapid
340 hydrological activities, the maximum elevation change rate algorithm improves the detection capability of drainage
341 and water storage events by extracting instantaneous change extremes between consecutive grid observations. In data
342 quality control, multi-level filtering and residual elimination algorithms enhance the signal-to-noise ratio of elevation
343 change signals through step-by-step screening based on quality indicators and iterative gridded surface fitting ([Fair](#)
344 [et al., 2020](#)).

345 For supraglacial lake monitoring, ICESat-2 has realized high-precision identification and water depth inversion
346 of supraglacial lakes in Antarctica and Greenland through the automatic processing algorithm of ATL03 photon data.
347 With a maximum detection depth of 8.25 meters and bathymetric accuracy better than 0.32 meters ([Xiao et al., 2023](#)),
348 this achievement significantly expands the application dimension of laser altimetry in ice sheet hydrological process
349 monitoring.

350 3.2 Multi-dimensional Sea Ice Parameter Retrieval

351 Accurately acquiring multi-dimensional core parameters including sea ice lead distribution, freeboard,
352 thickness, melt pond morphology and snow depth is a prerequisite for analyzing sea ice evolution laws and
353 quantifying its climate effects ([Perovich & Polashenski, 2012](#); [Koo et al., 2023](#)). ICESat-2 has driven sea ice
354 observation to advance from extensive extraction of single parameters to synergistic and accurate inversion of
355 multi-parameters.

356 3.2.1 Lead Detection and Sea Ice Freeboard Retrieval

357 In terms of lead identification research methods have developed from early interpretation based on a single
358 elevation threshold to a collaborative classification system of machine learning and deep learning integrating multi-
359 dimensional features of photon point clouds and multi-source remote sensing information. By systematically
360 extracting elevation distribution statistics photon rate echo waveform features and background noise levels from
361 ICESat-2 photon data combined with spectral indices of high-resolution optical images and backscattering
362 characteristics of SAR images a multi-modal feature space with strong separability has been constructed ([Pang et al.,](#)
363 [2022](#); [Liu et al., 2024](#)) ([Figure 5](#)).

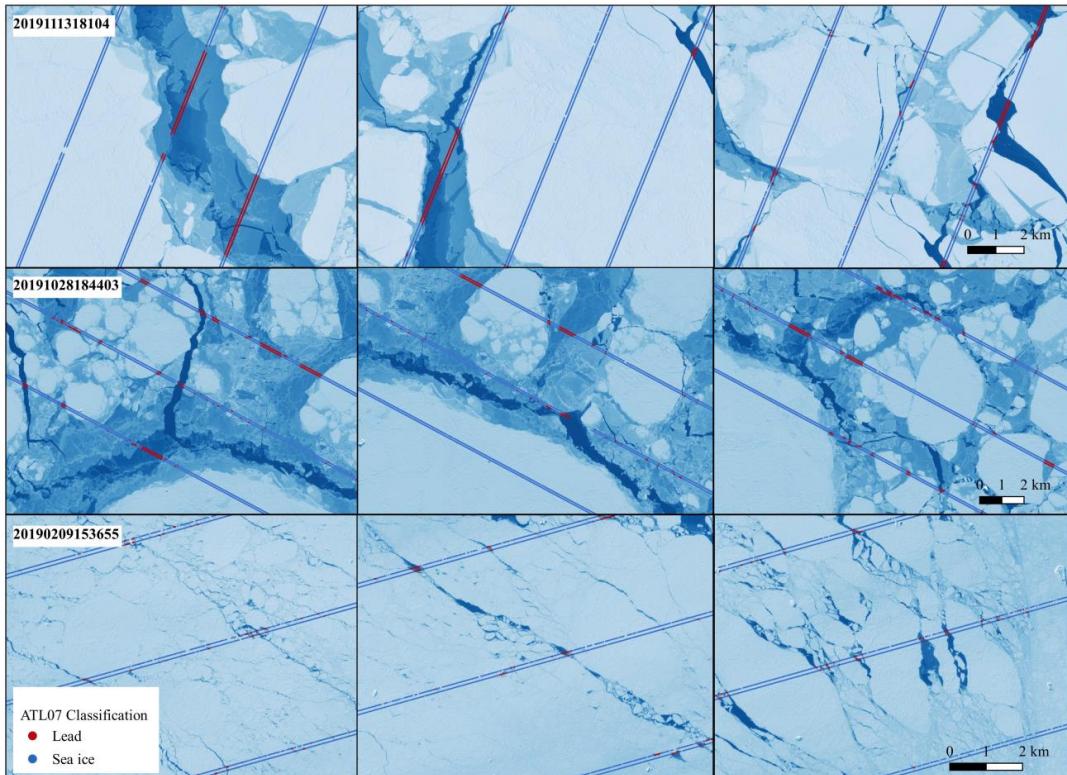
364 Traditional supervised learning methods (such as random forests and support vector machines) have achieved
365 robust classification of leads and sea ice based on this feature space. Deep learning methods based on convolutional
366 neural networks and Transformer architectures have further improved the accuracy and generalization ability of lead
367 boundary identification under complex ice-water mixing conditions through end-to-end feature learning and spatial
368 context modeling ([Liang et al., 2022](#); [Ricker et al., 2023](#)).

369 Sea ice freeboard retrieval hinges on accurate classification of sea ice and sea surface height segments, with
370 ATL07/10-based photon classification algorithms distinguishing ice and water signals via signal intensity, photon
371 distribution, elevation statistics and waveform feature analysis. However, current inversion faces multiple challenges:
372 summer melt ponds are often misclassified as mixtures in ATL07, introducing type determination inconsistencies
373 ([Tilling et al., 2020](#)); local non-crack segments used as sea surface references may cause estimation biases;
374 ATL07/10's local height filter risks losing effective crack data and reducing spatial coverage; cloud attenuation can
375 misclassify low-reflectivity regions as dark cracks ([Petty et al., 2021](#)). Notably, subsequent ATL07 versions excluded
376 dark cracks from sea surface height calculations, lowering freeboard product spatial coverage by ~10–20% ([Kwok et](#)
377 [al., 2021](#)).

378 In terms of detection and verification the method system has evolved from single optical verification to multi-
379 source collaboration and intelligent identification. Early studies based on Sentinel-2 optical images proposed a crack
380 ratio estimation method under strict spatiotemporal matching conditions. It was confirmed that ICESat-2 is reliable in
381 identifying specular cracks but there is still great uncertainty in dark cracks and thin ice cracks ([Petty et al., 2021](#)).
382 Subsequently SAR data was introduced to improve the accuracy of sea ice thickness inversion by improving the local
383 sea surface height calculation algorithm ([Pang et al., 2022](#)).

384 In recent years, the integration of machine learning methods has significantly improved detection performance.
385 A study constructing an unsupervised and supervised learning framework achieved a breakthrough in lead detection
386 accuracy of 98.6% and recall rate of 91.8% ([Liu et al., 2025](#)). At the same time near-synchronous observations from

387 SWOT and ICESat-2 have verified their high consistency in freeboard estimation (Kacimi et al., 2025) marking a
388 new stage of multi-platform collaborative observation for sea ice parameter verification.

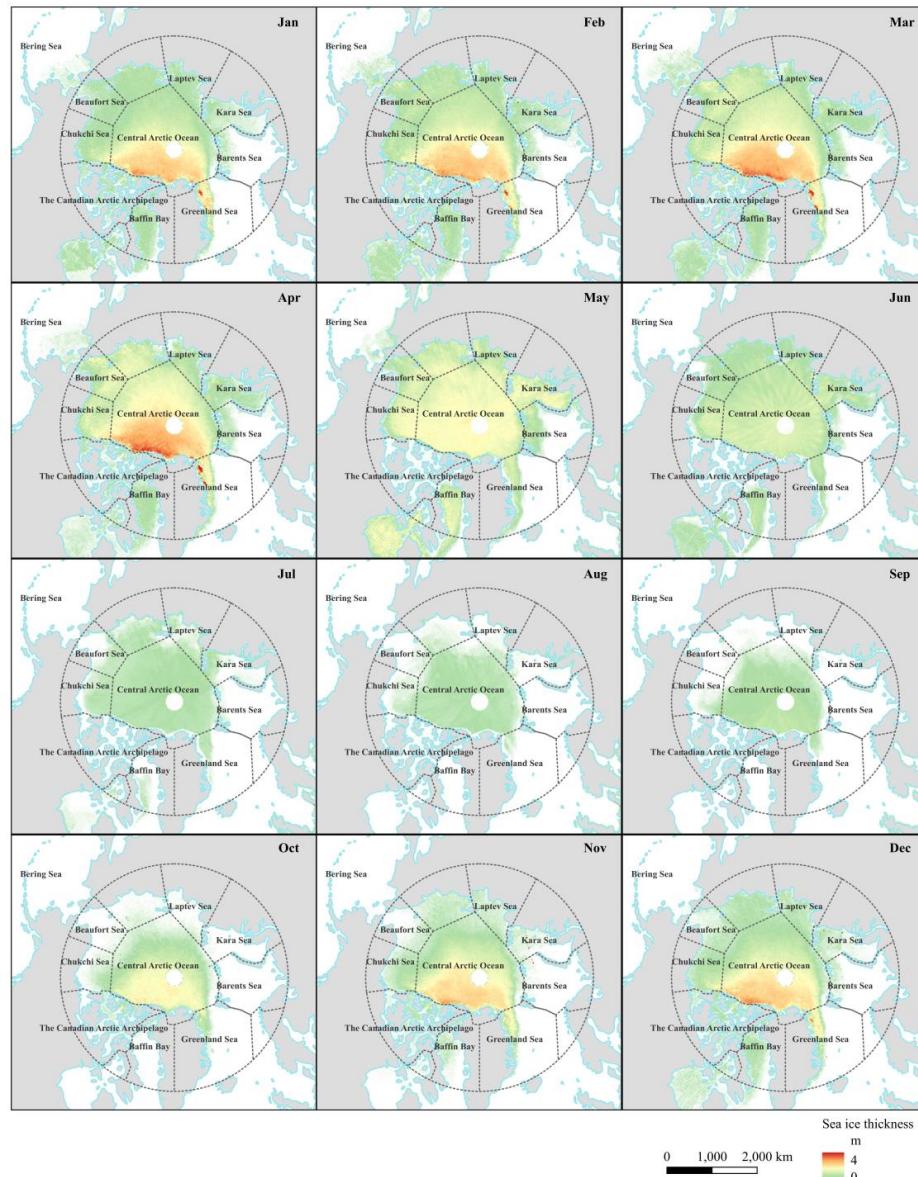


389
390 **Figure 5.** A Comparison of Sea Ice/Sea Surface Classification Between the ATL07 Decision Tree and a Machine
391 Learning Approach Integrating Imagery.

392 **3.2.2 Sea Ice Thickness Retrieval**

393 A freeboard-thickness conversion theoretical framework based on hydrostatic equilibrium principles has been
394 established. With ICESat-2 observed sea ice freeboard as the core input parameter, sea ice thickness is indirectly
395 estimated by introducing snow depth correction terms and ice, snow, seawater density parameters (Studinger et al.,
396 2024; Bocquet et al., 2023; Dong et al., 2023; Chen et al., 2023) (Figure 6).

397 In terms of data preprocessing and multi-source collaboration the accuracy and robustness of freeboard estimation
398 have been improved by improving sea ice/seawater classification algorithms and local sea surface height determination
399 methods. The extensive integration of multi-source data such as CryoSat-2 radar altimetry and passive microwave
400 brightness temperature has significantly reduced the uncertainty of thickness inversion (Koo et al., 2021; Kacimi et
401 al., 2020). Multi-platform verification results show that the thickness inverted by ICESat-2 has good consistency with
402 IceBridge airborne observations SIMBA buoys and satellite products such as CryoSat-2 and HY-2B. Its systematic
403 bias is mainly caused by the differential penetration effect of lasers in thin ice areas. This phenomenon has been
404 quantitatively explained through pulse waveform analysis and radiative transfer models.



405
406 **Figure 6.** Arctic Monthly Sea Ice Thickness from 2013 to 2023 Derived from CryoSat-2, ICESat-2, and an Improved
407 Snow Model

408 In terms of inversion method innovation the improved One-Layer Model (OLMi) has reduced the inversion
409 uncertainty of Antarctic sea ice thickness to approximately 0.3 meters by optimizing freeboard calculation and
410 reference sea surface determination ([Xu et al., 2021](#)). At the same time machine learning methods have been gradually
411 applied to feature recognition and parameter optimization related to thickness. For example random forest models can
412 realize automatic detection of detached fast ice with an identification accuracy of 99% ([Koo et al., 2025](#)). Current

413 research further explores the application of deep learning in thickness inversion. By integrating multi-source remote
414 sensing features and physical constraints the thickness estimation accuracy under complex ice conditions is improved.

415 In terms of scientific application and mechanism cognition the thickness products inverted by ICESat-2 have
416 supported the drawing of spatial distribution maps of sea ice thickness in the Arctic and Antarctic (3–4 m in the Arctic
417 and 2–3 m in the Antarctic) revealing their seasonal and interannual change characteristics ([Shen et al., 2021](#); [Petty et al., 2020](#)). Research has further quantified the relative contributions of thermodynamic growth and dynamic
418 thickening of sea ice. It has been found that the scope of the Antarctic marginal ice zone is significantly underestimated
419 by approximately 7 times in traditional sea ice concentration algorithms highlighting the unique value of laser
420 altimetry in finely depicting sea ice-ocean interactions ([Brouwer et al., 2022](#)). These observations not only deepen
421 the understanding of sea ice change processes and climate effects but also provide a centimeter-level accuracy
422 elevation benchmark for global cryosphere remote sensing monitoring playing an irreplaceable role in Earth system
423 change research ([Magruder et al., 2024](#)).

425 **3.2.3 Melt Pond Detection**

426 The spatial distribution, depth, and geometric morphology of melt ponds are jointly regulated by ice type, surface
427 roughness, and melting stage ([Dawson et al., 2022](#)). In recent years, research using high-precision laser altimetry data
428 such as ICESat-2 has advanced notably in multi-source data collaboration, algorithm innovation, and parameter
429 inversion ([Webster et al., 2022](#)). Melt pond detection integrates ICESat-2's photon penetration capability and multi-
430 spectral images' spectral response characteristics, forming a complete observation chain from micro-scale water depth
431 inversion and macro-scale spatial mapping to climate effect analysis.

432 In terms of detection and inversion methods, the UMD-RDA algorithm based on ICESat-2 photon point clouds
433 has achieved centimeter-level resolution detection of sea ice microtopography, revealing structural differences
434 between multi-year and first-year ice. At the point scale, laser photons penetrate clear water, enabling water depth
435 inversion (accuracy ~0.1 m) via analyzing echo time differences between water surfaces and pond bottoms, with
436 accuracy affected by water turbidity, ice internal structure, and pond bottom morphology ([Farrell et al., 2020](#)). For
437 coverage and morphology monitoring, the improved normalized difference water index classification combined with
438 dual-surface elevation tracking algorithm realizes synergistic inversion of melt pond coverage (seasonal peak:
439 16%±6%) and depth (seasonal peak: 0.97 m±0.51 m). Additionally, the density-dimension dual-segmentation
440 algorithm achieves automatic 0.7 m-resolution detection and feature extraction of melt ponds, showing good
441 operational potential ([Buckley et al., 2023](#); [Tilling et al., 2018](#)).

442 At the regional scale, multi-spectral images identify melt pond ranges via normalized difference water index and
443 spectral features; collaboration with ICESat-2 data enables acquisition of their three-dimensional morphology and
444 spatial distribution, as well as quantification of their impacts on ice surface albedo and ice-albedo feedback intensity
445 ([Buckley et al., 2023](#)). Due to their optical and thermodynamic properties falling between high-albedo ice and low-
446 albedo open water, melt ponds are often misclassified as leads or thin ice in traditional methods, affecting the reliability
447 of sea ice concentration, freeboard, and mass balance estimation ([Dawson et al., 2022](#)). To address this, current
448 research constructs multi-modal deep learning models integrating laser elevation, multi-spectral, and thermal infrared
449 data, classifying melt ponds as an independent land cover type.

450 For multi-source data fusion and verification, combining spectral characteristics of high-resolution optical images
451 improves melt pond boundary identification accuracy, and medium-resolution optical data is found to systematically
452 underestimate melt pond coverage ([Tilling et al., 2020](#)). Meanwhile, cross-validation between CryoSat-2 and ICESat-
453 2 reveals radar signals' elevation underestimation on melt pond surfaces due to complex scattering, highlighting the
454 complementary value of laser and radar observations ([Dawson & Landy, 2023; Kwok et al., 2020c](#)).

455 3.2.4 Snow Depth

456 Currently snow depth estimation has formed an inversion system integrating multi-sensor collaboration physical
457 mechanisms and data-driven methods. Three mainstream method systems have been developed with ICESat-2 as the
458 core ([Yan et al., 2024; Glissenaar et al., 2021](#)).

459 The first is the radar-laser collaborative inversion method. Based on synchronous observations from CryoSat-2
460 and ICESat-2 it utilizes the characteristic that radar signals can penetrate dry snow layers while laser signals are
461 mainly reflected from the snow layer surface. By accurately registering the observed elevations of the two the radar
462 penetration depth is directly estimated and then the snow depth is calculated ([Kwok et al., 2018; Saha et al., 2025](#)).
463 This method has been systematically verified in the Arctic sea ice area revealing the seasonal change of snow depth
464 from approximately 9 cm in October to 19 cm in April. The snow depth in multi-year ice areas is significantly higher
465 than that in first-year ice ([Kwok et al., 2020a](#)). However there is an underestimation of 2–4 cm in areas without open
466 leads. The inversion accuracy is jointly affected by ice surface roughness snow salinity and tide correction errors
467 ([Fredensborg Hansen et al., 2024](#)). Further integrating L-band passive microwave radiation can realize the joint
468 optimization inversion of sea ice thickness and snow depth effectively reducing the uncertainty caused by parameter
469 coupling ([Zhou et al., 2018](#)).

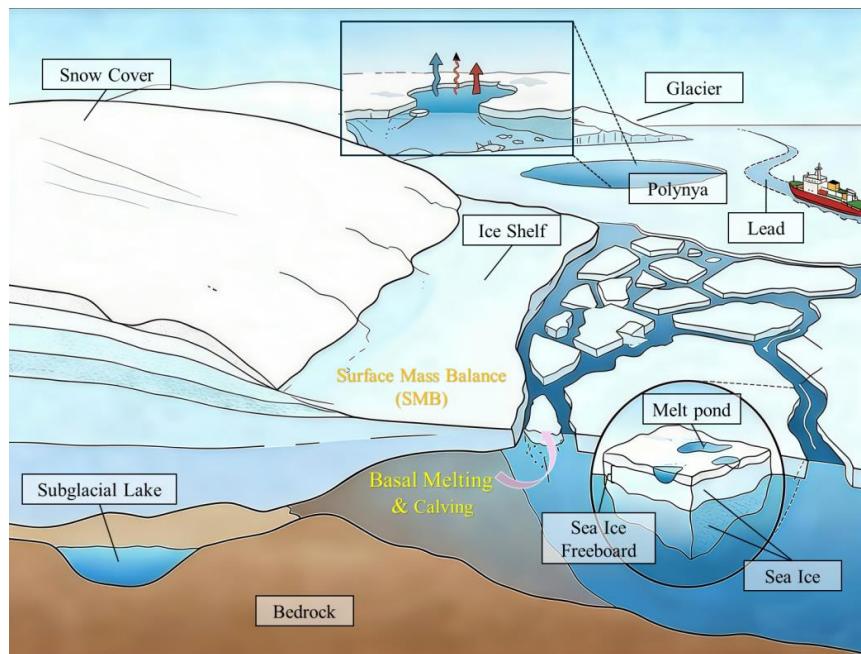
470 The second is the laser altimetry differential method. Based on photon elevation data such as ICESat-2
471 ATL06/ATL08 the seasonal snow depth is directly extracted by differencing with high-precision snow-free DEM.
472 This method performs well in low-slope non-vegetated areas. The basin-scale snow depth inversion accuracy can
473 reach 0.18–0.33 m (RMSE) and it has a high correlation with measured snow depth in flat bare areas (R^2 up to 0.88)
474 ([Besso et al., 2024; Deschamps-Berger et al., 2023; Feng et al., 2025](#)). However in complex terrain forested areas
475 and glacier surfaces the inversion accuracy decreases significantly affected by terrain occlusion vegetation penetration
476 and seasonal evolution of ice surfaces ([Enderlin et al., 2022](#)).

477 The third is the multi-source data fusion and machine learning method. Snow depth estimation is performed by
478 integrating passive microwave optical remote sensing and reanalysis data combined with radiative transfer models or
479 machine learning algorithms. Passive microwave radiation information is incorporated into the modeling framework.
480 Its brightness temperature is sensitive to snow layer microphysical properties and can establish a correlation with snow
481 depth through radiative transfer models or machine learning methods ([Saha et al., 2025](#)). Optical remote sensing
482 combined with radiative transfer models can achieve high-precision snow depth inversion under suitable conditions.
483 The average difference between the simplified scheme and buoy-measured snow depth is only 4.1 cm ([Wang et al.,
484 2023](#)). Machine learning methods can effectively integrate passive microwave brightness temperature laser altimetry
485 features and other auxiliary data to realize daily snow depth estimation in the Arctic with an RMSE of about 9–10 cm
486 showing strong spatiotemporal modeling and generalization capabilities ([Sun-Mack et al., 2025](#)).

487 Furthermore multi-source data fusion strategies adopt dynamic assimilation and feature fusion methods such as
488 observation updates based on time-series filtering and cross-modal feature extraction and mapping using neural
489 networks. They integrate complementary information from radar altimetry laser altimetry passive microwave and
490 reanalysis data effectively suppressing systematic biases caused by sensor limitations seasonal changes and spatial
491 heterogeneity (Zeng et al., 2018; Hu et al., 2022; Kacimi et al., 2022).

492 **3.3 Holistic Changes of the Polar Environment and Multi-element 493 Collaborative Applications**

494 Constructing a holistic understanding of polar cryosphere systematic changes is key to clarifying intra-sphere
495 and cross-sphere coupling mechanisms and linking local-regional-global cognition. As an initial forcing factor,
496 climate warming reshapes atmospheric circulation and ocean thermal structure, acting on cryosphere core components
497 to trigger chain responses that feed back to sphere interactions, forming feedback loops that amplify or regulate climate
498 signals (Zeng et al., 2018; Saha et al., 2025; Hu et al., 2022) (Figure 7). Examples include ice sheet meltwater
499 altering ocean stratification to regulate sea ice dynamics, and sea ice reduction with melt pond development lowering
500 albedo to drive atmospheric-sea ice-energy positive feedback. The cryosphere is also deeply intertwined with
501 ecological and atmospheric spheres (Quartry et al., 2019; Zhang et al., 2023). ICESat-2 provides key data for
502 analyzing multi-sphere and multi-element collaborative coupling mechanisms (Ham et al., 2019). It captures subtle
503 changes in ice sheets, sea ice, vegetation and other elements, supporting quantification of interaction intensity,
504 revelation of evolution laws and construction of holistic cognition.



505 506 **Figure 7.** Schematic diagram of polar environmental elements. It illustrates the typical ice-ocean system
507 environmental elements in polar regions covering ice units such as ice sheets ice shelves and sea ice.

508 3.3.1 Analysis of Ice Sheet/Ice Shelf-Ocean-Atmosphere Coupling Mechanisms

509 Under climate warming, rising polar temperatures intensify ice sheet surface melting, altering ice surface runoff
510 paths and reshaping the ice sheet's internal hydrological cycle (Scambos et al., 2011; Smith et al., 2009). Increased
511 frequency and intensity of subglacial lake filling and drainage change lubrication conditions between the ice sheet
512 base and bedrock, reducing ice flow resistance and accelerating ice flow, forming a multi-element collaborative
513 response chain of temperature rise, enhanced hydrological activity, and dynamic strengthening (Alley et al., 2021).

514 Accelerated ice flow triggers further multi-element chain reactions. It increases ice shelf mass output to the ocean,
515 intensifying interactions between the ice shelf front and warm circumpolar currents and raising ice shelf basal erosion
516 rates. Meanwhile, continuous ice shelf thinning and structural damage cause inland grounding line migration,
517 weakening overall ice sheet stability (Siegfried and Fricker, 2018). This multi-element chain collaborative response
518 profoundly affects polar mass balance and global sea level change trends.

519 ICESat-2's high-precision time-series data enables accurate quantification of multi-element collaborative effect
520 intensity and key correlation parameters. For instance, its ice flow velocity and subglacial lake water level data capture
521 temporal synchronization and spatial correspondence between Antarctic subglacial lake drainage events and sudden
522 ice flow acceleration, clarifying subglacial hydrological processes' regulatory effect on ice sheet dynamics (Herzfeld
523 et al., 2023).

524 Tracking Greenland Ice Sheet melt pond coverage, surface albedo, and melting rate changes reveals that a 10%
525 increase in melt pond coverage reduces surface albedo by 8%-12%, boosting surface melting rate by 15%-20%
526 (Niehaus et al., 2025; Painter et al., 2016). Additionally, ICESat-2 ice sheet elevation data separates contributions
527 of dynamic thinning and surface accumulation/ablation processes, enabling accurate attribution of ice sheet change
528 mechanisms and clarifying their contribution to global sea level rise (Khan et al., 2022; Brunt et al., 2019).

529 3.3.2 Analysis of Sea Ice-Ocean-Atmosphere Coupling Mechanisms

530 As a key interface for polar cryosphere-ocean-atmosphere interactions, sea ice drives multi-element collaborative
531 evolution via energy exchange regulation and material cycle coupling. In terms of energy exchange, polar warming-
532 induced rapid snow melting and extensive ice surface melt ponds lower ice surface albedo. This enhances polar solar
533 radiation absorption efficiency, strengthens sensible heat, latent heat and radiative energy exchange between sea and
534 atmosphere, and accelerates sea ice thermodynamic ablation (Perovich & Polashenski, 2012). Meanwhile, increased
535 sea ice fragmentation and large-scale lead development expand direct ocean-atmosphere contact area, amplifying
536 energy exchange intensity. This forms a positive feedback cycle of warming, sea ice ablation and enhanced energy
537 exchange, promoting atmospheric-sea ice-energy collaborative intensification and polar warming (Curry et al., 1995;
538 Marcq et al., 2012).

539 In material cycle, high-salinity brine released during sea ice growth strengthens ocean vertical mixing, boosting
540 deep warm water upward transport that feeds back to sea ice basal erosion. Abundant freshwater from sea ice ablation
541 alters upper ocean stratification stability, inhibiting deep warm water upward transport and forming negative feedback
542 on sea ice melting—together maintaining the dynamic balance of the polar ocean-sea ice system (Deems et al., 2013;
543 Painter et al., 2016). Additionally, sea ice has close cross-component connections with ice sheets and ice shelves,
544 highlighting polar environment holism. Ocean surface temperature and salinity changes from sea ice ablation affect

545 ice shelf front current distribution and regulate ice shelf basal erosion rate. Freshwater from ice sheet and ice shelf
546 melting alters sea ice growth conditions, inhibiting its formation and development, forming an ice sheet-ice shelf-sea
547 ice-ocean multi-element cross-component collaborative evolution pattern ([Frei et al., 2012](#)).

548 ICESat-2 data supports systematic analysis of seasonal and interannual dynamic characteristics of sea ice growth
549 and ablation, as well as their collaborative correlations with atmospheric temperature, ocean currents and other
550 elements ([Tilling et al., 2020](#); [Buckley et al., 2023](#)). Combined with surface albedo, snow depth and other auxiliary
551 parameters, it enables ice surface energy balance closure calculation and improves polar energy-sea ice-atmosphere
552 multi-element cycle models. Freshwater release flux estimated from high-resolution sea ice thickness data accurately
553 characterizes the impact of ice melting on ocean surface salinity, clarifying polar freshwater-ocean-thermohaline
554 circulation collaborative mechanisms.

555 ICESat-2 along-track thickness information allows accurate evaluation of seasonal and interannual sea ice mass
556 balance changes at regional and basin scales. Combined with sea ice movement trajectory data, it accounts for ice
557 mass budget in specific sea areas ([Herzfeld et al., 2023](#)). Research results on energy and material fluxes based on its
558 high-precision data provide key parameterization scheme verification for ocean-ice-atmosphere coupling models,
559 improving model reliability in simulating polar multi-element collaborative evolution ([Dawson et al., 2018](#)).

560 **3.3.3 Analysis of Polar Cryosphere-Ecology-Atmosphere Coupling Mechanisms**

561 Holistic polar environment changes manifest not only in cryosphere-ocean-atmosphere core interactions but also
562 in cryosphere-ecology-atmosphere multi-element collaborative evolution. In tundra ecosystem research, ICESat-2
563 vegetation canopy height data is a key structural parameter linked to tundra carbon-nitrogen cycle efficiency,
564 permafrost thermal stability and habitat quality, providing critical initial data and verification basis for building
565 cryosphere-ecology-permafrost multi-element coupling models ([Zhang et al., 2025](#)).

566 Meanwhile, ICESat-2 snow depth and canopy height data facilitate accurate analysis of their interaction
567 mechanisms. For instance, tall shrubs capture and retain snow, altering winter soil thermal insulation, which in turn
568 affects permafrost thermal state and melting depth. This provides a new perspective for understanding vegetation-
569 snow-soil-permafrost cascading collaborative effects and revealing polar ecology-cryosphere evolution laws ([Bisson
570 et al., 2021](#)).

571 In polar atmospheric process research, ICESat-2 derived atmospheric parameter data fills gaps in traditional
572 passive remote sensing for refined polar boundary layer vertical structure observation. Analyzing photon vertical
573 distribution in atmospheric scattering layers enables accurate inversion of aerosol extinction coefficient profiles and
574 cloud vertical structure parameters, clarifying vertical transport paths and distribution laws of aerosols, water vapor
575 and clouds in the polar boundary layer ([Urban et al., 2008](#); [Zhang et al., 2023](#)). This quantifies their contribution to
576 cloud condensation nuclei formation and regulation of surface net radiation. Measured data-based vertical process
577 constraints make up for climate model deficiencies in simulating polar cloud-radiation-aerosol collaborative forcing,
578 improving model accuracy in simulating polar cryosphere-atmosphere coupling.

579 4. Key Uncertainties and Technical Breakthrough Paths in ICESat-2 580 Cryosphere Observations

581 Early algorithms have improved accuracy by addressing photon signal processing refraction correction and multi-
582 source data fusion. However breakthroughs in addressing snow depth spatiotemporal heterogeneity complex terrain
583 interference and observation system limitations remain insufficient. This chapter systematically sorts out the initial
584 resolution of dominant uncertainties through ICESat-2 algorithm evolution. It deeply traces the core uncertainty
585 sources in snow depth estimation complex terrain observation and observation system limitations. It clarifies future
586 technical development directions providing theoretical and technical support for analyzing the mechanisms of polar
587 system change.

588 4.1 ICESat-2 Algorithm Evolution Initial Resolution of Uncertainties and 589 Practical Achievements

590 4.1.1 Core Algorithm Improvements in the Academic Community

591 **Table 2** Core Algorithm Innovations in the Academic Community

Associated Products	Uncertainty Issues	Improved Algorithms	Optimization Effects and Conclusions	References
ATL07	Cloud attenuation reduces photon rate leading to misclassification of dark leads. This causes the reference value of sea surface height to be too high and freeboard estimation to be too low.	Construct an automatic sea surface type classification algorithm based on multi-parameters such as photon rate distribution width and background noise.	Version R003 only uses specular lead data. The coverage rate decreases by 10–20% but the average freeboard increases by 0–4 cm.	Kwok et al., 2021
ATL10 NESOSIM v1.1	Snow spatiotemporal heterogeneity and simplified model assumptions lead to insufficient sea ice thickness inversion accuracy.	NESOSIM v1.1 introduces atmospheric blowing snow loss terms ERA5 snowfall forcing calibrated by CloudSat and recalibrates with OIB snow depth data.	The upgrade of ATL10 freeboard improves thickness inversion accuracy. It enhances consistency with CryoSat-2 results.	Petty et al., 2023
ATL03 ATL07	Significant noise photon interference. It is difficult to accurately extract sea ice signal photons affecting the accuracy of sea ice change monitoring.	Propose an Adaptive Clustering and Kernel Density Estimation method to accurately separate noise and sea ice signal photons from photon cloud data.	It outperforms traditional algorithms under different signal-to-noise ratio conditions. The accuracy and F-score reach 0.97. The inverted height has a correlation $R > 0.97$ with ATM airborne data.	Liu et al., 2023
ATLAS Underwater terrain-related products	Deviations between model assumptions and actual scenarios lead to systematic displacement errors	A refraction correction method based on ray tracing and JONSWAP wave spectrum. Reconstruct the wave profile to calculate the air/sea surface intersection of seabed photons.	Realize photon-level 3D coordinate compensation. Overcome the limitation of vertical correction. Improve bathymetric accuracy in shallow water areas and under fluctuating sea surface conditions	Zhang et al., 2022

592 Aiming at observational bottlenecks such as sea ice freeboard estimation bias and insufficient bathymetric
593 accuracy in early ICESat-2 data products caused by cloud interference noise photons and model simplification the
594 academic community has carried out algorithm innovations focusing on core links such as signal processing and model
595 adaptation (Chen et al., 2022). Through the implementation and application transformation of technical schemes it
596 has helped continuously improve the accuracy of polar environmental observation data providing key support for
597 subsequent product iterations (Table 2).

598 **4.1.2 Multi-version Iteration of Official Algorithms**

599 Official version iteration integrates academic algorithm innovations into global optimized products, translating
600 technical breakthroughs into large-scale applications.

601 In the elevation product iteration from V03 to V07, the official launched multi-dimensional collaborative
602 upgrades focusing on enhancing data absolute accuracy and reliability (Kwok et al., 2022). On one hand, it integrated
603 high-precision tidal parameters, modern reference frameworks and high-resolution DEM, while updating atmospheric
604 and oceanic correction models to systematically address comprehensive uncertainties from terrain and atmospheric
605 interference, absorbing academic technical insights on complex scene correction. On the other hand, it upgraded the
606 quality control system, expanding control dimensions from basic engineering markers to photon-level parameters,
607 adding a dynamic uncertainty assessment module to strengthen signal extraction in high signal-to-noise ratio
608 environments. Supplementary core indicators such as geometric parameters and photon weights improved product
609 data dimensions and application flexibility, providing standardized data support for subsequent uncertainty tracing
610 and in-depth analysis (Bagnardi et al., 2021).

611 In the sea ice product iteration from V04 to V06, the official took reference benchmark unification as the core,
612 linking algorithm correction, quality control upgrades and function expansion to achieve global performance
613 optimization (Kwok et al., 2021b). To address freeboard inversion bias caused by inconsistent early tidal benchmarks,
614 it built a unified and reliable geometric foundation through full-link tidal benchmark unification and parameter
615 transmission, laying a standardized premise for centimeter-level freeboard inversion. Absorbing academic automated
616 processing experience, it upgraded quality control from traditional manual inspection to an automated multi-level
617 filtering system, which accurately identifies and removes invalid and abnormal data by combining multi-dimensional
618 quality markers and auxiliary data to ensure product purity. It also corrected sea ice segment length calculation
619 methods, calibrated first photon bias, applied dynamic atmospheric correction models to improve inversion accuracy,
620 expanded product parameter dimensions, deepened integration with external remote sensing data, and enhanced
621 product adaptability in climatology and air-sea interaction research (Neumann et al., 2022), forming a standardized
622 and highly compatible observation product system.

623 **4.2 Tracing Core Uncertainties in ICESat-2 Cryosphere Observations**

624 Although early algorithm iterations have resolved some dominant uncertainties residual errors and potential
625 interference still exist in snow depth estimation complex terrain observation and observation system limitations.

626 4.2.1 Uncertainty Sources in Snow Depth Estimation

627 Snow depth is a core parameter for sea ice thickness inversion and ice sheet mass balance assessment, with its
628 uncertainties directly affecting downstream results. These uncertainties manifest in three dimensions.

629 First, interference from snow's spatiotemporal heterogeneity ([Petty et al., 2023](#)). Polar snow forms complex
630 layered structures and dynamic density distributions under blowing snow, wind-driven accumulation and snowmelt
631 refreezing. Its physical characteristics vary by region and season, limiting the universality of single models. Early
632 models incorporated blowing snow loss terms but failed to fully characterize spatiotemporal heterogeneity, with local
633 snow depth fluctuations and compaction-induced photon interaction changes during snowmelt causing estimation
634 biases.

635 Second, observation system signal recognition errors ([Liu et al., 2023](#)). Photon signals are prone to cloud, aerosol
636 scattering and background noise interference, with unresolved confusion in snow-ice and snow-atmosphere interface
637 classification. Cloud attenuation may misclassify snow surface photons as ice surface ones, underestimating snow
638 depth, while high-reflectivity snow amplifies noise and impairs effective photon extraction—driving continuous
639 optimization of denoising algorithms.

640 Third, deviations between model assumptions and actual scenarios ([Zhang et al., 2022](#)). Traditional snow depth
641 inversion relies on hydrostatic equilibrium or empirical models, ignoring processes like spatiotemporal snowfall
642 differences. Most parameters depend on regional calibration data, lacking global applicability. Even with optimized
643 density parameters, fixed assumptions conflict with actual snow density, and low snowfall data spatial resolution leads
644 to inaccurate accumulation estimation and systematic biases.

645 4.2.2 Uncertainty Sources in Complex Terrain Observations

646 Complex terrains such as ice sheet margins, ice shelf regions with dense crevasses, and mountain glaciers have
647 become high-uncertainty areas due to their special geometric characteristics and poor compatibility with observation
648 systems. Their impacts run through the entire processes of signal reception and data processing:

649 On the one hand, topographic geometric characteristics induce multiple interferences ([Li et al., 2024](#)). Steep
650 terrain causes laser spot occlusion, forming observational blind spots. Complex structures trigger multi-path reflection
651 of photons, generating spurious signals that interfere with the extraction of true elevation—this is also the core
652 background for the optimization of the AV-OPTICS model for near-seabed terrain. Meanwhile, the slope effect alters
653 the spot projection area; when the slope is large, signals disperse, reducing observation resolution and accuracy. The
654 narrow structures and steep sidewalls in areas with dense crevasses further exacerbate this problem.

655 On the other hand, there is a mismatch between observation systems and terrain resolution ([Kwok et al., 2023](#)).
656 Inherent limitations in the along-track sampling interval and spot size of ICESat-2 prevent accurate coverage of small-
657 scale, highly heterogeneous terrains, leading to the loss of topographic details. Moreover, atmospheric correction
658 models for complex terrains are mostly based on flat surface assumptions, ignoring the impact of topographic relief
659 on atmospheric scattering and refraction. Insufficient correction further amplifies uncertainties, which is also an
660 important reason for the continuous optimization of the atmospheric correction model in the ATL03 version.

661 4.2.3 Uncertainty Sources in Observation System Limitations

662 Observation system inherent limitations and on-orbit interference are core uncertainty sources in cryosphere
663 observations, manifesting mainly in three dimensions: payload performance, on-orbit operation, and observation
664 coverage.

665 First, inherent limitations of payload performance. The photon-counting lidar payload has technical shortcomings,
666 with weak ability to capture faint signals. On low-albedo ice-snow surfaces, thin snow cover or shadowed areas,
667 signals are easily attenuated, making effective extraction difficult and causing inversion errors (Neumann et al., 2019).
668 Fixed laser spot size and emission frequency limit spatial sampling density, failing to adapt to small-scale terrain and
669 fine snow structure observation needs, restricting accuracy improvement. Additionally, payload measurement noise
670 and systematic bias slightly affect photon positioning and elevation inversion, becoming inherent uncertainty factors.

671 Second, impacts of on-orbit operation interference. Satellite attitude jitter, orbit deviation and other dynamic
672 interferences are unavoidable, shifting laser irradiation positions from preset paths and indirectly reducing photon
673 positioning accuracy (Magruder et al., 2021). Such deviations accumulate in complex terrain and large-scale
674 continuous observations, amplifying overall errors. Meanwhile, ionospheric and atmospheric disturbances alter laser
675 signal propagation paths, interfering with signal reception and analysis and increasing data processing uncertainty.

676 Third, limitations of observation coverage and timeliness. Constrained by observation perspective, scanning
677 range and orbit design, large-scale cryosphere observations have time intervals, making high-frequency dynamic
678 monitoring difficult. Short-time scale processes like snow ablation, sea ice deformation and glacier movement are
679 easily missed, leading to incomplete capture of cryosphere changes (Markus et al., 2017). Moreover, single-payload
680 observation mode poorly adapts to complex weather; heavy clouds, snowfall and other conditions degrade data quality
681 or even cause interruptions, forming blind spots and exacerbating uncertainties.

682 4.3 Technical Paths and Future Directions for ICESat-2 Cryosphere 683 Observations

684 4.3.1 In-depth Breakthrough Paths for Uncertainties in Snow Depth Estimation

685 Build on early snow depth models and signal processing algorithms, advancing collaboration across signal
686 recognition, model mechanism and data fusion to address snow heterogeneity, signal interference and model deviation.

687 At the signal processing level, upgrade adaptive photon classification and denoising technologies (Liu et al.,
688 2023). Integrate deep learning semantic segmentation, random forests and other technologies into existing algorithms
689 to construct a multi-feature classification model based on photon intensity, spatial distribution and temporal changes,
690 distinguishing snow surface, ice surface photons and noise accurately. Develop dynamic threshold algorithms that
691 adjust parameters by regional signal-to-noise ratio to reduce misfiltering of effective snow photons, and use
692 convolutional neural networks to extract spatial texture features for complex snow scenarios.

693 At the model optimization level, construct a multi-process dynamic snow model (Petty et al., 2023b). Enhance
694 parameterized characterization of atmospheric blowing snow and snowmelt refreezing processes based on existing
695 models. Integrate satellite snow vertical structure data to optimize spatiotemporal dynamic schemes for snow density,

696 replacing fixed density assumptions. Establish regional and seasonal calibration systems by fusing high-resolution
697 snowfall data and airborne measurements to improve global applicability and mitigate biases from snow heterogeneity.

698 At the multi-source fusion level, build a collaborative observation system ([Zhang et al., 2022b](#)). Combine high-
699 precision laser altimetry data, wide-coverage microwave remote sensing data and ground observation data. Adopt data
700 assimilation technology to achieve high-precision, wide-coverage snow depth inversion, leveraging multi-source data
701 complementarity to reduce single-observation uncertainty and overcome limitations of early single data sources.

702 **4.3.2 In-depth Breakthrough Paths for Uncertainties in Complex Terrain Observation**

703 Address terrain occlusion, multi-path reflection and resolution mismatch in small or complex terrain observation
704 through observation strategies, signal processing and platform collaboration.

705 At the observation strategy level, adaptively optimize satellite observation parameters ([Kwok et al., 2023](#)). Adopt
706 encrypted orbits in key regions to reduce along-track sampling intervals, optimize laser spot size and emission
707 frequency to improve small-scale terrain resolution. Develop dynamic observation modes that adjust emission
708 parameters based on terrain slope, roughness and other prior information to mitigate occlusion and multi-path
709 reflection impacts at the source.

710 At the signal processing level, develop terrain-adaptive correction algorithms ([Li et al., 2024](#)). Integrate high-
711 resolution DEM prior information into existing models to identify occluded areas and multi-path reflection risk zones,
712 performing targeted photon signal correction. Introduce slope correction models to adjust photon elevation calculation
713 methods and eliminate slope-induced systematic biases. Use ray tracing to simulate photon propagation paths, correct
714 false signals in steep terrain, and develop morphological clustering algorithms to extract crack wall true elevation
715 accurately.

716 At the platform collaboration level, construct a three-dimensional observation network ([Bagnardi et al., 2021](#)).
717 Integrate laser altimetry data with high-resolution optical and SAR satellite macro-structural information to identify
718 blind spots and interference sources. Utilize UAVs and airborne lidar for close-range high-precision observations,
719 providing correction samples for laser data and forming an air-space-ground collaborative system to resolve
720 uncertainties.

721 **4.3.3 Targeted Breakthrough Paths for Observation System Limitations**

722 Address payload inherent limitations, on-orbit interference and resolution mismatch through payload technology
723 upgrades, on-orbit control optimization and observation mode adjustment, systematically improving data accuracy.

724 Upgrade payload technology to break hardware bottlenecks ([Kwok et al., 2022](#)). Enhance weak signal detection
725 sensitivity for low-albedo and thin snow scenarios, reduce signal attenuation errors. Upgrade laser emission and
726 reception modules to shrink spot size and increase frequency while maintaining observation range, improving spatial
727 sampling density for small-scale terrain. Integrate high-precision attitude measurement and correction modules to
728 monitor and correct on-orbit attitude jitter and orbit deviation in real time, enhancing data reliability.

729 Optimize on-orbit control and preprocessing. Build a collaborative processing system via intelligent control and
730 edge computing, adopting intelligent on-orbit control algorithms to adjust observation angles and paths based on snow
731 type and terrain complexity. Conduct high-frequency repeated observations in key regions to compensate for large-
732 scale observation time intervals and reduce omission of short-scale cryosphere changes ([Magruder et al., 2024](#)).

733 Strengthen on-orbit preprocessing capabilities to complete weak signal enhancement, outlier removal and uncertainty
734 prediction in advance, prioritizing high-value data transmission to reduce ground processing pressure.

735 Adjust observation modes through main-auxiliary payload linkage. Combine optimized lidar with microwave
736 radiometers and hyperspectral imagers to leverage multi-payload complementarity ([Magruder et al., 2021](#)). Use
737 microwave radiometers' all-weather advantages for cloud-covered scenario calibration, and hyperspectral imagers'
738 spectral recognition capabilities to improve photon classification accuracy in weak signal scenarios, alleviating system
739 limitations systematically.

740 **4.3.4 Future Direction Multi-dimensional Technology Fusion Empowers Accurate**

741 **Cryosphere Observations**

742 Advance cryosphere observation capabilities through deep coupling of intelligent data processing, multi-source
743 remote sensing fusion, single-satellite multi-payload integration and on-satellite-off-satellite collaborative processing,
744 building a high-precision, full-dimension, all-weather and intelligent observation system.

745 Develop intelligent data processing based on deep learning and reinforcement learning, building end-to-end
746 photon signal processing models adaptable to snow cover, complex terrain and fluctuating sea surfaces ([Yang et al.,](#)
747 [2025](#)). Complete signal classification, noise removal and outlier elimination without preset parameters, adopting
748 scenario-specific strategies—using background rate parameters for non-polar night scenarios and solar radiation-
749 independent photon characteristics for polar nights. Integrate physical mechanisms and data-driven hybrid modeling,
750 embedding snow evolution and terrain undulation processes into the framework to upgrade from phenomenon fitting
751 to mechanism explanation.

752 Promote multi-source remote sensing fusion by integrating optimized laser data with SAR, optical and gravity
753 satellite observations ([Liu et al., 2025](#)). Use data assimilation for collaborative inversion of elevation, humidity,
754 density and mass balance. Leverage optical satellites' macro texture recognition and SAR satellites' all-weather
755 advantages to locate blind spots and correct multi-path reflection false signals, taking high-precision elevation data as
756 the core reference to generate high-resolution application products for practical scenarios, forming an algorithm
757 optimization-data complementarity-application implementation closed loop.

758 Realize single-satellite multi-payload integration in upgraded satellite models, integrating lidar, hyperspectral
759 imagers and microwave radiometers for simultaneous acquisition of elevation, spectral characteristics, thermal
760 radiation intensity and humidity ([Pang et al., 2023](#)). Reduce spatiotemporal registration errors in multi-platform
761 fusion, and reserve expansion interfaces for flexible addition of interferometric measurement and thermal infrared
762 detection payloads to adapt to environmental changes and application demands.

763 Advance on-satellite-off-satellite collaboration: optimize on-satellite preprocessing to extract core parameters
764 such as sea ice thickness and concentration, reducing invalid data transmission; integrate off-satellite SAR ice type
765 identification, optical melt pond distribution and meteorological data to generate 100-meter high-resolution navigation
766 risk assessment maps ([Zhao et al., 2024](#)). Construct intelligent route planning systems based on multi-dimensional
767 data and ship parameters, and assimilate sea ice dynamic models with ocean current and atmospheric circulation
768 predictions for short-term sea ice change early warning ([Ricker et al., 2023](#)). Use long-term time-series data for

769 seasonal waterway prediction and fleet deployment, and dynamically monitor port-surrounding sea ice to assess
770 infrastructure damage risks ([Petty et al., 2021](#)).

771 **5. Summary and Outlook**

772 This review takes laser altimetry satellite technology as the core anchor, systematically collates its technical
773 characteristics and polar environmental application progress, and constructs a problem-driven analytical framework
774 around three core scientific questions. It combs through technical evolution context, polar environmental parameter
775 retrieval, observational uncertainties and corresponding technical breakthrough paths in a holistic manner, integrating
776 scattered research findings in the field, refining core operational laws, and addressing the fragmented adaptation
777 dilemma between existing technologies and polar application scenarios.

778 Regarding the mechanistic connection between technical innovations and inversion bottlenecks, this review
779 clarifies the adaptive logic between advanced laser altimetry technologies and cryospheric parameter retrieval
780 demands, elaborates on how multi-beam configurations compensate for spatial coverage deficiencies of single-beam
781 systems and the inherent advantages of photon-counting technology in polar weak-signal environments. It constructs
782 a complete technical chain spanning observation technology, data products and cryospheric adaptation, integrating
783 remote sensing technology with cryospheric scientific questions via a clear paradigm.

784 Centering on the integration of observational results and systematic cognition construction, this review clarifies
785 the core logic of building holistic cryospheric cognition via satellite data. It systematically integrates insights into
786 polar ice sheet and ice shelf stability, as well as multi-dimensional sea ice parameter retrieval, to construct a holistic
787 scientific understanding of the systematic change laws of the polar environment.

788 For key uncertainty sources and resolution paths, this review accurately traces core error sources in snow depth
789 estimation, complex terrain observation and system limitations, and establishes a three-dimensional breakthrough
790 system integrating signal processing optimization, model refinement and multi-source collaboration, while proposing
791 actionable uncertainty control schemes. These findings provide practical support for improving satellite data reliability
792 and managing observational uncertainties.

793 Looking ahead, based on the sorted research context and technical bottlenecks, the next generation of laser
794 altimetry satellites should rely on the synergy of four core technologies: intelligent data processing, multi-source
795 remote sensing fusion, single-satellite multi-payload integration, and on-satellite-off-satellite collaborative processing.
796 This synergy will break through current limitations in snow and subglacial terrain detection, realize polar multi-
797 parameter simultaneous observation, hourly revisit and global coverage, and support global climate change response
798 and Arctic navigation safety, advancing cryospheric observation towards higher precision, full dimensionality and
799 deeper mechanistic understanding.

800 **Acknowledgments**

801 The research was supported by the Fundamental Research Funds for the Central Universities, China, grant
802 number 2042022dx0001 and the Natural Science Foundation of Wuhan, grant number 2024040701010030.

803 **References**

- 804 1. Abdalati, W., Zwally, H.J., Bindschadler, R., Csatho, B., Farrell, S.L., Fricker, H.A., 2010. The ICESat-2 Laser
805 Altimetry Mission. *Proceedings of the IEEE* 98(5), 735–751. <https://doi.org/10.1109/JPROC.2009.2034765>.
- 806 2. Alley, K.E., Wild, C.T., Luckman, A., Scambos, T.A., Truffer, M., Pettit, E.C., 2021. Two decades of dynamic
807 change and progressive destabilization on the Thwaites Eastern Ice Shelf. *The Cryosphere* 15, 5187–5203,
808 <https://doi.org/10.5194/tc-15-5187-2021>.
- 809 3. Andersen, O. B., Knudsen, P., and Stenseng, L., 2015. The DTU13 MSS (Mean Sea Surface) and MDT (Mean
810 Dynamic Topography) from 20 Years of Satellite Altimetry. In: Jin, S., Barzaghi, R. (eds) *IGFS 2014*.
811 International Association of Geodesy Symposia, 144. Springer, Cham. https://doi.org/10.1007/1345_2015_182.
- 812 4. Bagnardi, M., Kurtz, N. T., Petty, A. A., Kwok, R., 2021. Sea surface height anomalies of the Arctic Ocean from
813 ICESat-2: A first examination and comparisons with CryoSat-2. *Geophysical Research Letters* 48,
814 e2021GL093155. <https://doi.org/10.1029/2021GL093155>.
- 815 5. Besso, H., Shean, D., Lundquist, J.D., 2024. Mountain snow depth retrievals from customized processing of
816 ICESat-2 satellite laser altimetry. *Remote Sensing of Environment* 300, 113843.
817 <https://doi.org/10.1016/j.rse.2023.113843>.
- 818 6. Bisson, K.M., Cael, B.B., 2021. How are under ice phytoplankton related to sea ice in the Southern Ocean?
819 *Geophysical Research Letters* 48, e2021GL095051. <https://doi.org/10.1029/2021GL095051>.
- 820 7. Bocquet, M., Fleury, S., Piras, F., Rinne, E., Sallila, H., Garnier, F., Rémy, F., 2023. Arctic sea ice radar
821 freeboard retrieval from the European Remote-Sensing Satellite (ERS-2) using altimetry: toward sea ice
822 thickness observation from 1995 to 2021. *The Cryosphere* 17, 3013–3039. <https://doi.org/10.5194/tc-17-3013-2023>.
- 824 8. Bolch, T., Sandberg Sørensen, L., Simonsen, S.B., Mölg, N., Machguth, H., Rastner, P., Paul, F., 2013. Mass
825 loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat data. *Geophysical Research Letters*
826 40, 875–881, <https://doi.org/10.1002/2012GL052070>.
- 827 9. Brouwer, J., Fraser, A.D., Murphy, D.J., Wongpan, P., Alberello, A., Kohout, A., 2022. Altimetric observation
828 of wave attenuation through the Antarctic marginal ice zone using ICESat-2. *The Cryosphere* 16, 2325–2353.
829 <https://doi.org/10.5194/tc-16-2325-2022>.
- 830 10. Brunt, K. M., Smith, B. E., Sutterley, T. C., Kurtz, N. T., Neumann, T. A., 2021. Comparisons of satellite and
831 airborne altimetry with ground-based data from the interior of the Antarctic ice sheet. *Geophysical Research
832 Letters* 48, e2020GL090572. <https://doi.org/10.1029/2020GL090572>.
- 833 11. Brunt, K.M., Neumann, T.A., Smith, B.E., 2019. Assessment of ICESat-2 ice sheet surface heights, based on
834 comparisons over the interior of the Antarctic ice sheet. *Geophysical Research Letters* 46, 13072–13078.
835 <https://doi.org/10.1029/2019GL084886>.
- 836 12. Buckley, E.M., Farrell, S.L., Herzfeld, U.C., Webster, M.A., Trantow, T., Baney, O.N., et al., 2023. Observing
837 the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2. *The Cryosphere* 17, 3695–
838 3719, <https://doi.org/10.5194/tc-17-3695-2023>.
- 839 13. Chartrand, A.M., Howat, I.M., 2020. Basal channel evolution on the Getz Ice Shelf, West Antarctica. *Journal of
840 Geophysical Research: Earth Surface* 125, e2019JF005293. <https://doi.org/10.1029/2019JF005293>.
- 841 14. Chen, G., Zhang, Z., Rose, S. K., Andersen, O. B., Zhang, S., Jin, T., 2022. A new Arctic MSS model derived
842 from combined Cryosat-2 and ICESat observations. *International Journal of Digital Earth* 15(1), 2202–2222.
843 <https://doi.org/10.1080/17538947.2022.2153181>.
- 844 15. Chen, J., Wilson, C., Tapley, B., 2013. Contribution of ice sheet and mountain glacier melt to recent sea level
845 rise. *Nature Geoscience* 6, 549–552. <https://doi.org/10.1038/ngeo1829>.
- 846 16. Chen, Y., Lei, R., Zhao, X., Wu, S., Liu, Y., Fan, P., Ji, Q., Zhang, P., Pang, X., 2023. A new sea ice concentration
847 product in the polar regions derived from the FengYun-3 MWRI sensors. *Earth System Science Data* 15, 3223–
848 3242. <https://doi.org/10.5194/essd-15-3223-2023>.

849 17. Chuter, S.J., Bamber, J.L., 2015. Antarctic ice shelf thickness from CryoSat-2 radar altimetry. *Geophysical*
850 *Research Letters* 42(10), 721–10,729. <https://doi.org/10.1002/2015GL066515>.

851 18. Connor, L.N., Farrell, S.L., McAdoo, D.C., Krabill, W.B., Manizade, S., 2013. Validating ICESat Over Thick
852 Sea Ice in the Northern Canada Basin. *IEEE Transactions on Geoscience and Remote Sensing* 51(4), 2188–2200.
853 <https://doi.org/10.1109/TGRS.2012.2211603>.

854 19. Curry, J.A., Schramm, J.L., Ebert, E.E., 1995. Sea Ice-Albedo Climate Feedback Mechanism. *Climate*, 8, 240–
855 247. [https://doi.org/10.1175/1520-0442\(1995\)008<0240:SIACFM>2.0.CO;2](https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2).

856 20. Dawson, G., Landy, J., Tsamados, M., Komarov, A. S., Howell, S., Heorton, H., Krumen, T., 2022. A 10 year
857 record of Arctic summer sea ice freeboard from CryoSat-2, *Remote Sensing of Environment* 268, 112744.
858 <https://doi.org/10.1016/j.rse.2021.112744>.

859 21. Dawson, G.J., Landy, J.C., 2023. Comparing elevation and backscatter retrievals from CryoSat-2 and ICESat-2
860 over Arctic summer sea ice. *The Cryosphere* 17, 4165–4178, <https://doi.org/10.5194/tc-17-4165-2023>.

861 22. Dawson, N., Broxton, P., and Zeng, X., 2018. Evaluation of Remotely Sensed Snow Water Equivalent and Snow
862 Cover Extent over the Contiguous United States. *Journal of Hydrometeor* 19, 1777–1791.
863 <https://doi.org/10.1175/jhm-d-18-0007.1>.

864 23. Deems, J.S., Painter, T.H., Finnegan, D.C., 2013. Lidar Measurement of Snow Depth: A Review. *Journal of*
865 *Glaciology* 59(215), 467–479. <https://doi.org/10.3189/2013JoG12J154>.

866 24. Deschamps-Berger, C., Gascoin, S., Shean, D., Besso, H., Guiot, A., López-Moreno, J. I., 2023. Evaluation of
867 snow depth retrievals from ICESat-2 using airborne laser-scanning data. *The Cryosphere* 17, 2779–2792.
868 <https://doi.org/10.5194/tc-17-2779-2023>.

869 25. Ding, Y.J., Mu, C.C., Wu, T.H., Hu, G.J., Zou, D.F., Wang, D., et al., 2021. Increasing cryospheric hazards in a
870 warming climate. *Earth-Science Reviews* 213, 103500. <https://doi.org/10.1016/j.earscirev.2020.103500>.

871 26. Dong, Z., Shi, L., Lin, M., Jia, Y., Zeng, T., Wu, S., 2023. Feasibility of retrieving Arctic sea ice thickness from
872 the Chinese HY-2B Ku-band radar altimeter. *The Cryosphere* 17, 1389–1410. <https://doi.org/10.5194/tc-17-1389-2023>.

873 27. Enderlin, E.M., Elkin, C.M., Gendreau, M., Marshall, H.P., O’Neil, S., McNeil, C., 2022. Uncertainty of ICESat-
874 2 ATL06-and ATL08-derived snow depths for glacierized and vegetated mountain regions. *Remote Sensing of*
875 *Environment* 283, 113307. <https://doi.org/10.1016/j.rse.2022.113307>.

876 28. Fair, Z., Flanner, M., Brunt, K. M., Fricker, H. A., Gardner, A., 2020. Using ICESat-2 and Operation IceBridge
877 altimetry for supraglacial lake depth retrievals. *The Cryosphere* 14, 4253–4263. <https://doi.org/10.5194/tc-14-4253-202>.

878 29. Farrell, S.L., Duncan, K., Buckley, E.M., Richter-Menge, J., and Li, R., 2020. Mapping Sea Ice Surface
879 Topography in High Fidelity With ICESat-2. *Geophys. Res. Lett.* 47, e2020GL090708.
880 <https://doi.org/10.1029/2020GL090708>.

881 30. Farrell, S.L., Laxon, S.W., McAdoo, D.C., Yi, D., Zwally, H. J., 2009. Five years of Arctic sea ice freeboard
882 measurements from the Ice, Cloud and land Elevation Satellite. *Geophysical Research Letters* 114, C04008,
883 <https://doi.org/10.1029/2008JC005074>.

884 31. Feng, D., Che, T., Wang, G., Dai, L., Gao, L., Jiang, Y., et al., 2025. Seasonal snow depth dataset over flat
885 terrains in the Northern Hemisphere based on ICESat-2 data from 2018 to 2020. *International Journal of Digital*
886 *Earth* 18(1), 2528632. <https://doi.org/10.1080/17538947.2025.2528632>.

887 32. Fredensborg Hansen, R.M., Rinne, E., Farrell, S.L., Skourup, H., 2021. Estimation of degree of sea ice ridging
888 in the Bay of Bothnia based on geolocated photon heights from ICESat-2. *The Cryosphere* 15, 2511–2529.
889 <https://doi.org/10.5194/tc-15-2511-2021>.

890 33. Fredensborg Hansen, R.M., Skourup, H., Rinne, E., Høyland, K.V., Landy, J.C., Merkouriadi, I., et al., 2024.
891 Arctic freeboard and snow depth from near-coincident CryoSat-2 and ICESat-2 (CRYO2ICE) observations: A
892 first examination of winter sea ice during 2020–2022. *Earth and Space Science* 11, e2023EA003313.
893 <https://doi.org/10.1029/2023EA003313>.

894

895

896 34. Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., et al., 2012. A Review of Global Satellite-Derived
897 Snow Products. *Advances in Space Research* 50(8), 1007–1029. <https://doi.org/10.1016/j.asr.2011.12.021>.

898 35. Gardner, A.S., Moholdt, G., Wouters, B., Wolken, G.J., Burgess, D.O., Sharp, M.J., et al., 2011. LabineSharply
899 increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago. *Nature* 473(7347), 357–360.
900 <https://doi.org/10.1038/nature10089>.

901 36. Glissenaar, I.A., Landy, J.C., Petty, A.A., Kurtz, N.T., Stroeve, J.C., 2021. Impacts of snow data and processing
902 methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness. *The Cryosphere*
903 15, 4909–4927. <https://doi.org/10.5194/tc-15-4909-2021>.

904 37. Goosse, H., Kay, J.E., Armour, K.C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., et al., 2018. Quantifying
905 climate feedbacks in polar regions. *Nature Communications* 9, 1919. <https://doi.org/10.1038/s41467-018-04173-0>.

906 38. Griggs, J.A., Bambe,r J.L., 2011. Antarctic ice-shelf thickness from satellite radar altimetry. *Journal of
907 Glaciology* 57(203):485–498. <https://doi.org/10.3189/002214311796905659>.

908 39. Guo, X., Zhao, L., Gladstone, R. M., Sun, S., Moore, J. C., 2019. Simulated retreat of Jakobshavn Isbræ during
909 the 21st century. *The Cryosphere* 13, 3139–3153. <https://doi.org/10.5194/tc-13-3139-2019>.

910 40. Ham, Y.G., Kim, J.H. & Luo, J.J., 2019. Deep learning for multi-year ENSO forecasts. *Nature* 573, 568–572.
911 <https://doi.org/10.1038/s41586-019-1559-7>.

912 41. Herzfeld, U.C., Trantow, T. Han, M., Buckley, H.E., Farrell, S.L., Lawson, M., 2023. Automated Detection and
913 Depth Determination of Melt Ponds on Sea Ice in ICESat-2 ATLAS Data—The Density-Dimension Algorithm
914 for Bifurcating Sea-Ice Reflectors (DDA-Bifurcate-Seoice). *IEEE Transactions on Geoscience and Remote
915 Sensing* 61, 4300922. <https://doi.org/10.1109/TGRS.2023.3268073>.

916 42. Howat, I.M., Smith, B.E., Joughin I., Scambos, T.A., 2008. Rates of southeast Greenland ice volume loss from
917 combined ICESat and ASTER observations. *Geophysical Research Letters* 35, L17505,
918 <https://doi.org/10.1029/2008GL034496>.

919 43. Hu, X., Hao, X., Wang, J., Huang, G., H. Yang, L.Q., 2021. Can the Depth of Seasonal Snow be Estimated From
920 ICESat-2 Products: A Case Investigation in Altay, Northwest China. *IEEE Geoscience and Remote Sensing
921 Letters* 19(1-5), 2000405. <https://doi.org/10.1109/LGRS.2021.3078805>.

922 44. Hu, Y., Lu, X., Zeng, X., Stamnes, S.A., Neuman, T.A., Kurtz, N.T., 2022. Deriving Snow Depth From ICESat-
923 2 Lidar Multiple Scattering Measurements. *Frontiers in Remote Sensing* 3, 2022.
924 <https://doi.org/10.3389/frsen.2022.855159>.

925 45. Jahn, A., Holland, M.M., Kay, J.E., 2024. Projections of an ice-free Arctic Ocean. *Nature Reviews Earth
926 & Environment* 5, 164–176. <https://doi.org/10.1038/s43017-023-00515-9>.

926 46. Kääb, A., Berthier, E., Nuth, C., Gardelle, J., Arnaud, Y., 2012. Contrasting patterns of early twenty-first-century
927 glacier mass change in the Himalayas. *Nature* 488, 495–498. <https://doi.org/10.1038/nature11324>.

928 47. Kacimi, S., Jaruwatanadilok, S., Kwok, R., 2025. SWOT observations over sea ice: A first look. *Geophysical
929 Research Letters* 52, e2025GL116079. <https://doi.org/10.1029/2025GL116079>.

930 48. Kacimi, S., Kwok, R., 2020. The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth,
931 and ice thickness. *The Cryosphere* 14, 4453–4474, <https://doi.org/10.5194/tc-14-4453-2020>.

932 49. Kacimi, S., Kwok, R., 2022. Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018–
933 2021. *Geophysical Research Letters*, 49, e2021GL097448. <https://doi.org/10.1029/2021GL097448>.

934 50. Khan, S.A., Colgan, W., Neumann, T.A., van den Broeke, M.R., Brunt, K.M., Noël, B., et al., 2022. Accelerating
935 ice loss from peripheral glaciers in North Greenland. *Geophysical Research Letters* 49, e2022GL098915.
936 <https://doi.org/10.1029/2022GL098915>.

937 51. Koo, Y., Xie, H., Kurtz, N.T., Ackley, S.F., Wang, W., 2023. Sea ice surface type classification of ICESat-2
938 ATL07 data by using data-driven machine learning model: Ross Sea, Antarctic as an example. *Remote Sensing
939 Environment* 296, 113726. <https://doi.org/10.1016/j.rse.2023.113726>.

940

941

942 52. Koo, Y., Xie, H., Meier, W.N., Stephen F.A., Nathan, T.K., 2025. Detection of multi-year ex-fast ice in the
943 Weddell Sea, Antarctica, using ICESat-2 satellite altimeter data. *Remote Sensing of Environment* 325, 114750.
944 <https://doi.org/10.1016/j.rse.2025.114750>.

945 53. Koo, Y.H., Lei, R., Cheng, Y., Cheng, B., Xie, H., Hoppmann, M., 2021. Estimation of thermodynamic and
946 dynamic contributions to sea ice growth in the Central Arctic using ICESat-2 and MOSAiC SIMBA buoy data.
947 *Remote Sensing of Environment* 267, 112730. <https://doi.org/10.1016/j.rse.2021.112730>.

948 54. Kwok, R., A. Petty, M. Bagnardi, N. T. Kurtz, G. F. Cunningham, A. Ivanoff., 2021. Refining the sea surface
949 identification approach for determining freeboard in the ICESat-2 sea ice products, *The Cryosphere*, 15, 821–
950 833, <https://doi.org/10.5194/tc-15-821-2021>.

951 55. Kwok, R., Cunningham, G. F., Wensnahan, M., Rigor, I., Zwally, H. J., Yi, D., 2009. Thinning and volume loss
952 of the Arctic Ocean sea ice cover: 2003–2008. *Geophysical Research Letters* 114, C07005,
953 <https://10.1029/2009JC005312>.

954 56. Kwok, R., Cunningham, G.F., Kacimi, S., Webster, M.A., Kurtz, N.T., Petty, A.A. 2020c. Decay of the snow
955 cover over Arctic sea ice from ICESat-2 acquisitions during summer melt in 2019. *Geophysical Research Letters*
956 47, e2020GL088209. <https://doi.org/10.1029/2020GL088209>.

957 57. Kwok, R., Kacimi, S., Webster, M.A., Kurtz, N. T., Petty, A.A., 2020a. Arctic snow depth and sea ice thickness
958 from ICESat-2 and CryoSat-2 freeboards: A first examination. *Journal of Geophysical Research: Oceans* 125,
959 e2019JC016008. <https://doi.org/10.1029/2019JC016008>.

960 58. Kwok, R., Markus, T., 2018. Potential basin-scale estimates of Arctic snow depth with sea ice freeboards from
961 CryoSat-2 and ICESat-2: An exploratory analysis. *Advances in Space Research* 62(6), 1243-1250.
962 <https://doi.org/10.1016/j.asr.2017.09.007>.

963 59. Kwok, R., Markus, T., Kurtz, N.T., Petty, A. A., Neumann, T.A., Farrell, S.L., et al., 2019. Surface height and
964 sea ice freeboard of the Arctic Ocean from ICESat-2: Characteristics and early results. *Journal of Geophysical
965 Research: Oceans* 124, 6942–6959. <https://doi.org/10.1029/2019JC015486>.

966 60. Kwok, R., Petty, A., Cunningham, G., Markus, T., Hancock III, D.W., Ivanoff, A., et al., 2023. ATLAS/ICESat-
967 2 L3A Sea Ice Height, Version 6. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and
968 Ice Data Center Distributed Active Archive Center. <https://doi.org/10.5067/ATLAS/ATL07.006>.

969 61. Kwok, R., Petty, A.A., Bagnardi, M., Kurtz, N.T., Cunningham, G F., Ivanoff, A., et al., 2021b. Refining the sea
970 surface identification approach for determining freeboards in the ICESat-2 sea ice products. *The Cryosphere* 15,
971 821–833. <https://doi.org/10.5194/tc-15-821-2021>.

972 62. Kwok, R., Petty, A.A., Cunningham, G., Hancock, D., Ivanoff, A., Wimert, J., et al., 2020b. Ice, Cloud, and land
973 Elevation Satellite-2 project: Algorithm Theoretical Basis Document (ATBD) for sea ice products
974 (ATL07/ATL10), release 003. <https://doi.org/10.5067/UAZPI91070H4>.

975 63. Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Del Bom Espirito-Santo, F., et al., 2005.
976 Estimates of forest canopy height and aboveground biomass using ICESat. *Geophysical Research Letters* 32,
977 L22S02, <https://doi.org/10.1029/2005GL023971>.

978 64. Li, P., Xu, Y., Zhao, Y., Liang, K., Si, Y., 2024. Denoising of Photon-Counting LiDAR Bathymetry Based on
979 Adaptive Variable OPTICS Model and Its Accuracy Assessment. *Remote Sensing* 16, 3438.
980 <https://doi.org/10.3390/rs16183438>.

981 65. Li, T., Dawson, G. J., Chuter, S. J., Bamber, J. L., 2020. Mapping the grounding zone of Larsen C Ice Shelf,
982 Antarctica, from ICESat-2 laser altimetry. *The Cryosphere* 14, 3629–3643, <https://doi.org/10.5194/tc-14-3629-2020>.

984 66. Li, T., Dawson, G.J., Chuter, S.J., Bamber, J.L., 2022. A high-resolution Antarctic grounding zone product from
985 ICESat-2 laser altimetry, *Earth System Science Data* 14, 535–557, <https://doi.org/10.5194/essd-14-535-2022>.

986 67. Li, W., Hsu, C., Tedesco, M., 2024. Advancing Arctic Sea Ice Remote Sensing with AI and Deep Learning:
987 Opportunities and Challenges. *Remote Sensing* 16, 3764. <https://doi.org/10.3390/rs16203764>.

988 68. Liang, Z.Y., Pang, X.P., Ji, Q.Q., X. Zhao, X., Li, G.Y., Chen, Y.Z., 2022. An Entropy-Weighted Network for
989 Polar Sea Ice Open Lead Detection From Sentinel-1 SAR Images. *IEEE Transactions on Geoscience and Remote
990 Sensing* 60, 4304714. <https://doi.org/10.1109/TGRS.2022.3169892>.

991 69. Liu, J., Xie, H., Guo, Y., Tong, X., Li, P., 2022. A Sea Ice Concentration Estimation Methodology Utilizing
992 ICESat-2 Photon-Counting Laser Altimeter in the Arctic. *Remote Sensing* 14, 1130.
993 <https://doi.org/10.3390/rs14051130>.

994 70. Liu, J.P., Chen, Z.Q., Hu Y.Y., Zhang, Y.Y., Ding, Y.F., Cheng, X., et al., 2019. Towards reliable Arctic sea ice
995 prediction using multivariate data assimilation. *Science Bulletin* 64(1), 63–72.
996 <https://doi.org/10.1016/j.scib.2018.11.018>.

997 71. Liu, W., Liu, T., Jin, J., Li., W., Jiang., 2023. Adaptive Clustering-Based Method for ICESat-2 Sea Ice Retrieval.
998 *IEEE Transactions on Geoscience and Remote Sensing* 61, 4301814.
999 <https://doi.org/10.1109/TGRS.2023.3287909>.

1000 72. Liu, W.X., Tsamados, M., Petty A., Jin, T.Y., Chen, W.B., Stroeve, J., 2025. Enhanced sea ice classification for
1001 ICESat-2 using combined unsupervised and supervised machine learning. *Remote Sensing of Environment* 318,
1002 114607. <https://doi.org/10.1016/j.rse.2025.114607>.

1003 73. Liu, Z., and Schweiger, A., 2024. ICESat-2 Shows Sea Ice Leads Have Little Overall Effects on the Arctic
1004 Cloudiness in Cold Months. *Climate* 37, 4045–4058. <https://doi.org/10.1175/JCLI-D-23-0285.1>.

1005 74. Magruder, L.A., Brunt, K.M., & Alonso, M., 2020. Early ICESat-2 on-orbit geolocation validation using ground-
1006 based corner cube retro-reflectors. *Remote Sensing*, 12, 3653. <https://doi.org/10.3390/rs12213653>.

1007 75. Magruder, L.A., Farrell, S.L., Neuenschwander, A., Duncanson, L., Csatho, B., Kacimi, S., et al., 2024. Monitoring Earth's climate variables with satellite laser altimetry. *Nature Reviews Earth Environment* 5, 120–
1008 136. <https://doi.org/10.1038/s43017-023-00508-8>.

1009 76. Manabe, S., Stouffer, R., 1995. Simulation of abrupt climate change induced by freshwater input to the North
1010 Atlantic Ocean. *Nature* 378, 165–167. <https://doi.org/10.1038/378165a0>.

1011 77. Marcq, S., and Weiss, J., 2012. Influence of sea ice lead-width distribution on turbulent heat transfer between
1012 the ocean and the atmosphere. *The Cryosphere* 6, 143–156. <https://doi.org/10.5194/tc-6-143-2012>.

1013 78. Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., et al., 2017. The Ice, Cloud, and land
1014 Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. *Remote Sensing of
1015 Environment* 190, 260–273. <https://doi.org/10.1016/j.rse.2016.12.029>.

1016 79. Michael, P., Karen, L.S., and Lorenzo, M.P., 2021. Arctic amplification of climate change: a review of
1017 underlying mechanisms. *Environmental Research Letters* 16, 9. <https://doi.org/10.1088/1748-9326/ac1c29>.

1018 80. Moholdt, G., Nuth,C, Hagen, J.O., Kohler, J., 2010. Recent elevation changes of Svalbard glaciers derived from
1019 ICESat laser altimetry. *Remote Sensing of Environment* 114(11), 2756–2767.
1020 <https://doi.org/10.1016/j.rse.2010.06.008>.

1021 81. Neuenschwander, A.L., Pitts K.L., Jelley B.P., Robbins J., Klotz B., Popescu S.C., 2021. ATLAS/ICESat-2 L3A
1022 land and vegetation height, version 5. NASA National Snow and Ice Data Center Distributed Active Archive
1023 Center, Boulder, Colorado USA. <https://doi.org/10.5067/ATLAS/ATL08.005>.

1024 82. Neuenschwander, A.L., Urban, T.J., Gutierrez, R., Schutz, B.E., 2008. Characterization of ICESat/GLAS
1025 waveforms over terrestrial ecosystems: Implications for vegetation mapping. *Geophysical Research Letters* 113,
1026 G02S03. <https://doi.org/10.1029/2007JG000557>.

1027 83. Neumann, T.A., Brenner, A., Hancock, D., Robbins, J., Gibbons, A., Lee, J., 2022. Ice, Cloud, and Land
1028 Elevation Satellite (ICESat-2) Project Algorithm Theoretical Basis Document (ATBD) for Global Geolocated
1029 Photons ATL03, Version 6. ICESat-2 Project. <https://doi.org/10.5067/GA5KCLJT7LOT>.

1030 84. Neumann, T.A., Martino, A.J., Markus, T., Bae, S., Bock, M.R., Brenner, A.C., et al., 2019. The Ice, Cloud, and
1031 land Elevation Satellite—2 mission: A global geolocated photon product derived from the Advanced
1032 Topographic Laser Altimeter System. *Remote Sensing of Environment* 233, 111325.
1033 <https://doi.org/10.1016/j.rse.2019.111325>.

1034 85. Painter, T.H., Berisford, D.F., Boardman, J.W., Bormann, K.J., Deems, J.S., Gehrke, F., et al. 2016. The
1035 Airborne Snow Observatory: Fusion of Scanning Lidar, Imaging Spectrometer, and Physically-Based Modeling
1036 for Mapping Snow Water Equivalent and Snow Albedo. *Remote Sensing Environment* 184, 139–152.
1037 <https://doi.org/10.1016/j.rse.2016.06.018>.

1039 86. Pang, X., Zhang, C., Ji, Q., Chen, Y., Zhen, Z., Zhu, Y., et al., 2023. Analysis of sea ice conditions and
1040 navigability in the Arctic Northeast Passage during the summer from 2002-2021. *Geo-Spatial Information*
1041 *Science* 26(3), 465–479. <https://doi.org/10.1080/10095020.2022.2124128>.

1042 87. Pang, X.P., Chen, Y.Z., Ji, Q., Li, G.Y., Shi, L.J., Lan, M.S., et al., 2022. An Improved Algorithm for the
1043 Retrieval of the Antarctic Sea Ice Freeboard and Thickness from ICESat-2 Altimeter Data. *Remote Sensing* 14,
1044 1069. <https://doi.org/10.3390/rs14051069>.

1045 88. Paolo, F.S., Fricker, H.A., Padman, L., 2015. Volume loss from Antarctic ice shelves is
1046 accelerating. *Science* 348, 327–331. <https://doi.org/10.1126/science.aa0940>.

1047 89. Perovich, D.K. and Polashenski, C., 2012. Albedo Evolution of Seasonal Arctic Sea Ice, *Geophysical Research*
1048 Letters 39, L08501. <https://doi.org/10.1029/2012GL051432>.

1049 90. Petty, A.A., Bagnardi, M., Kurtz, N.T., Tilling, R., Fons, S., Armitage, T., et al., 2021. Assessment of ICESat-2
1050 sea ice surface classification with Sentinel-2 imagery: Implications for freeboard and new estimates of lead and
1051 floe geometry. *Earth and Space Science* 8, e2020EA001491. <https://doi.org/10.1029/2020EA001491>.

1052 91. Petty, A.A., Keeney, N., Cabaj, A., Kushner, P., and Bagnardi, M., 2023. Winter Arctic sea ice thickness from
1053 ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data
1054 collection. *The Cryosphere* 17, 127–156. <https://doi.org/10.5194/tc-17-127-2023>.

1055 92. Petty, A.A., Keeney, N., Cabaj, A., Kushner, P., and Bagnardi, M., 2023b. Winter Arctic sea ice thickness from
1056 ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data
1057 collection. *The Cryosphere* 17, 127–156. <https://doi.org/10.5194/tc-17-127-2023>.

1058 93. Petty, A.A., Kurtz, N.T., Kwok, R., Markus, T., Neumann, T.A., 2020. Winter Arctic sea ice thickness from
1059 ICESat-2 freeboards. *Journal of Geophysical Research: Oceans* 125, e2019JC015764.
1060 <https://doi.org/10.1029/2019JC015764>.

1061 94. Pritchard, H.D., Ligtenberg, S.R.M., Fricker, H.A., Vaughan, D.G., van den Broeke, M.R., Padman, L., 2012.
1062 Antarctic ice-sheet loss driven by basal melting of ice shelves. *Nature* 484, 502–505.
1063 <https://doi.org/10.1038/nature10968>.

1064 95. Qu, M., Zhao, X., Pang, X.P., Lei, R.B., 2022. Review of Arctic Sea Ice Leads:Physics and Remote Sensing.
1065 *Advance in Earth Sciences* 37(4), 382-391.(In Chinese with English abstract).

1066 96. Quartly, G.D., Rinne, E., Passaro, M., Andersen, O.B., Dinardo, S., Fleury, S., et al., 2019. Retrieving Sea Level
1067 and Freeboard in the Arctic: A Review of Current Radar Altimetry Methodologies and Future Perspectives.
1068 *Remote Sensing* 11, 881. <https://doi.org/10.3390/rs11070881>.

1069 97. Ravinder, N., Shepherd, A., Otosaka, I., Slater, T., Muir, A., Gilbert, L., 2024. Greenland Ice Sheet elevation
1070 change from CryoSat-2 and ICESat-2. *Geophysical Research Letters* 51, e2024GL110822.
1071 <https://doi.org/10.1029/2024GL110822>.

1072 98. Ricker, R., Fons, S., Jutila, A., Hutter, N., Duncan, K., Farrell, S. L., et al., 2023. Linking scales of sea ice surface
1073 topography: evaluation of ICESat-2 measurements with coincident helicopter laser scanning during MOSAiC.
1074 *The Cryosphere* 17, 1411–1429. <https://doi.org/10.5194/tc-17-1411-2023>.

1075 99. Saha, M., Stroeve, J., Isleifson, D., Yackel, J., Nandan, V., Landy, J. C., et al., 2025. Snow depth estimation on
1076 leadless landfast ice using Cryo2Ice satellite observations. *The Cryosphere* 19, 325–346.
1077 <https://doi.org/10.5194/tc-19-325-2025>.

1078 100. Scambos, T.A., Berthier, E., Shuman, C.A., 2011. The triggering of subglacial lake drainage during rapid glacier
1079 drawdown: Crane Glacier, Antarctic Peninsula. *Annals of Glaciology* 52(59), 74–82.
1080 <https://doi.org/10.3189/172756411799096204>.

1081 101. Serreze, M.C., and Stroeve, J., 2015. Arctic sea ice trends, variability and implications for seasonal ice
1082 forecasting. *Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences*,
1083 37320140159. <http://doi.org/10.1098/rsta.2014.0159>.

1084 102. Shen, X., Ke, C.Q., Fan, Y., Drolma, L., 2022. A new digital elevation model (DEM) dataset of the entire
1085 Antarctic continent derived from ICESat-2. *Earth System Science Data* 14, 3075–3089,
1086 <https://doi.org/10.5194/essd-14-3075-2022>.

1087 103. Shen, X., Ke, C.Q., Wang, Q., Zhang, J., L. Zhang, S.X., 2021. Assessment of Arctic Sea Ice Thickness Estimates
1088 from ICESat-2 Using IceBird Airborne Measurements. In *IEEE Transactions on Geoscience and Remote
1089 Sensing* 59(5), 3764-3775. <https://doi.org/10.1109/TGRS.2020.3022945>.

1090 104. Shen, X., Ke, C.Q., Yu, X., Cai, Y., Fan, Y., 2020. Evaluation of Ice, Cloud, And Land Elevation Satellite-2
1091 (ICESat-2) land ice surface heights using Airborne Topographic Mapper (ATM) data in Antarctica. *International
1092 Journal of Remote Sensing* 42(7), 2556–2573. <https://doi.org/10.1080/01431161.2020.1856962>.

1093 105. Siegfried, M.R., Fricker, H.A., 2021. Illuminating active subglacial lake processes with ICESat-2 laser
1094 altimetry. *Geophysical Research Letters* 48, e2020GL091089. <https://doi.org/10.1029/2020GL091089>.

1095 106. Siegfried, M.R., Fricker, H.A., 2018. Thirteen years of subglacial lake activity in Antarctica from multi-mission
1096 satellite altimetry. *Annals of Glaciology* 59(76), 42-55. <https://doi.org/10.1017/aog.2017.36>.

1097 107. Smith, B., Fricker, H.A., Holschuh, N., Gardner, A.S., Adusumilli, S., Brunt, K.M., 2019. Land ice height-
1098 retrieval algorithm for NASA's ICESat-2 photon-counting laser altimeter. *Remote Sensing Environment* 233,
1099 111352, <https://doi.org/10.1016/j.rse.2019.111352>.

1100 108. Smith, B.E., Fricker, H.A., Joughin, I.R., Tulaczyk, S., 2009. An inventory of active subglacial lakes in
1101 Antarctica detected by ICESat (2003–2008). *Journal of Glaciology* 55(192), 573-595.
1102 <https://doi.org/10.3189/002214309789470879>.

1103 109. Song, L., Song, C., Song, S., Luo, T., Chen, K., Liu, Y., Zhang, L.K., 2023. Integrating ICESat-2 altimetry and
1104 machine learning to estimate the seasonal water level and storage variations of national-scale lakes in
1105 China. *Remote Sensing Environment* 294, 113657. <https://doi.org/10.1016/j.rse.2023.113657>.

1106 110. Spinhirne, J.D., Palm, S.P., Hart, W.D., Hlavka, D.L., Welton, E.J., 2005. Cloud and aerosol measurements from
1107 GLAS: Overview and initial results. *Geophysical Research Letters* 32, L22S03. <https://doi.org/10.1029/2005GL023507>.

1108 111. Stearns, L., Smith, B. & Hamilton, G., 2008. Increased flow speed on a large East Antarctic outlet glacier caused
1109 by subglacial floods. *Nature Geoscience* 1, 827–831. <https://doi.org/10.1038/ngeo356>.

1110 112. Studinger, M., Smith, B.E., Kurtz, N., Petty, A., Sutterley, T., Tilling, R., 2024. Estimating differential
1111 penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations
1112 and models. *The Cryosphere* 18, 2625–2652. <https://doi.org/10.5194/tc-18-2625-2024>.

1113 113. Sun-Mack, S., Hu, Y., Lu, X., Chen, Y., Omar, A., 2025. Neural network-based snow depth retrieval from
1114 AMSR-2 brightness temperatures using ICESat-2 measurement as ground truth. *Front. Remote Sensing* 6,
1115 1591276. <https://doi.org/10.3389/frsen.2025.1591276>.

1116 114. Tilling, R. L., Ridout, A., and Shepherd, A., 2018. Estimating Arctic sea ice thickness and volume using CryoSat-
1117 2 radar altimeter data. *Advances in Space Research* 62, 1203–1225. <https://doi.org/10.1016/j.asr.2017.10.051>.

1118 115. Tilling, R., Kurtz, N.T., Bagnardi, M., Petty, A.A., Kwok, R. 2020. Detection of melt ponds on Arctic summer
1119 sea ice from ICESat-2. *Geophysical Research Letters* 47,
1120 e2020GL090644. <https://doi.org/10.1029/2020GL090644>.

1121 116. Urban, T. J., Schutz, B.E., 2005. ICESat sea level comparisons. *Geophysical Research Letters* 32, L23S10,
1122 <https://doi.org/10.1029/2005GL024306>.

1123 117. Urban, T. J., Schutz, B.E., Neuenschwander, A.L., 2008. A survey of ICESat coastal altimetry applications:
1124 Continental coast, open ocean island, and inland river. *Terrestrial Atmospheric and Oceanic Sciences Journal* 9,
1125 1-19. [https://doi.org/10.3319/TAO.2008.19.1-2.1\(SA\)](https://doi.org/10.3319/TAO.2008.19.1-2.1(SA)).

1126 118. van den Broeke, M., Box, J., Fettweis, X., Hanan, E., Noël, B., Tedesco, M., et al., 2017. Greenland Ice Sheet
1127 Surface Mass Loss: Recent Developments in Observation and Modeling. *Current Climate Change Reports* 3,
1128 345–356. <https://doi.org/10.1007/s40641-017-0084-8>.

1129 119. Walker, C.C., Becker, M.K., Fricker, H.A., 2021. A high resolution, three-dimensional view of the D-28 calving
1130 event from Amery Ice Shelf with ICESat-2 and satellite imagery. *Geophysical Research Letters* 48,
1131 e2020GL091200. <https://doi.org/10.1029/2020GL091200>.

1132 120. Wang, G.Y., Ke, C.Q., Fan, Y.B., Shen, X.Y., Cai, Y., Nourani, V., 2024. Accelerated glacier mass loss in the
1133 mid-latitude Eurasia from 2019 to 2022 revealed by ICESat-2. *Advances in Climate Change Research* 15(5),
1134 815-829. <https://doi.org/10.1016/j.accre.2024.09.008>.

1135 121. Wang, M., Oppelt, N., 2023. Estimating Early Summer Snow Depth on Sea Ice Using a Radiative Transfer
1136 Model and Optical Satellite Data. *Remote Sensing* 15, 5016. <https://doi.org/10.3390/rs15205016>.

1137 122. Wang, S., Alexander, P., Wu, Q., Tedesco, M., 2021. Characterization of ice shelf fracture features using ICESat-
1138 2 – A case study over the Amery Ice Shelf. *Remote Sensing of Environment* 255, 112266.
1139 <https://doi.org/10.1016/j.rse.2020.112266>Get rights and content.

1140 123. Webster, M.A., Holland, M., Wright, N.C., Hendricks, S., Hutter, N., Itkin, P., Light, B., Linhardt, F., et al.,
1141 2022. Spatiotemporal Evolution of Melt Ponds on Arctic Sea Ice: MOSAiC Observations and Model Results.
1142 *Elementa: Science of the Anthropocene* 10, 000072. <https://doi.org/10.1525/elementa.2021.000072>.

1143 124. Wingham, D., Siegert, M., Shepherd, A., Muir, A.S., 2006. Rapid discharge connects Antarctic subglacial lakes.
1144 *Nature* 440, 1033–1036. <https://doi.org/10.1038/nature04660>.

1145 125. Xiao, W., Hui, F., Cheng, X., Liang, Q., 2023. An automated algorithm to retrieve the location and depth of
1146 supraglacial lakes from ICESat-2 ATL03 data. *Remote Sensing of Environment* 298, 113730.
1147 <https://doi.org/10.1016/j.rse.2023.113730>.

1148 126. Xie, T., Kong, R., Nurunnabi, A., Bai, S., Zhang, X., 2023. Machine-learning-method-based inversion of shallow
1149 bathymetric maps using ICESat-2 ATL03 data. *IEEE J Sel Top. Appl. Earth Observations Remote Sensing* 16,
1150 3697–3714. <https://doi.org/10.1109/JSTARS.2023.3260831>.

1151 127. Xu, Y., Li, H., Liu, B., Xie, H., Ozsoy-Cicek, B., 2021. Deriving Antarctic sea-ice thickness from satellite
1152 altimetry and estimating consistency for NASA's ICESat/ICESat-2 missions. *Geophysical Research Letters* 48,
1153 e2021GL093425. <https://doi.org/10.1029/2021GL093425>.

1154 128. Yan, Z.N., Ji, Q., He, B., Chen, Y.Z., Wang, Y.Y., & Pang, X.P., 2024. A combined multi-source data and deep
1155 learning approach for retrieving snow depth on Antarctic Sea ice during the melting season. *International Journal
1156 of Digital Earth*, 17(1). <https://doi.org/10.1080/17538947.2024.2376260>.

1157 129. Yang, B., Liang, S., Huang, H., Li, X., 2022. An elevation change dataset in Greenland ice sheet from 2003 to
1158 2020 using satellite altimetry data. *Big Earth Data* 8(2), 231–248.
1159 <https://doi.org/10.1080/20964471.2022.2116796>.

1160 130. Yang, R.Y., Zhong, Y.F., Su, Y., 2025. Multi-E2E: An end-to-end urban land-use mapping framework
1161 integrating high-resolution remote sensing images and multi-source geographical data *Remote Sensing of
1162 Environment* 330, 114966. <https://doi.org/10.1016/j.rse.2025.114966>

1163 131. You, Q.L., Cai, Z.Y., Pepin, N., Chen, D.L., Ahrens, B., Jiang, Z.H., et al., 2021. Warming amplification over
1164 the Arctic Pole and Third Pole: Trends, mechanisms and consequences. *Earth-Science Reviews* 217, 103625.
1165 <https://doi.org/10.1016/j.earscirev.2021.103625>.

1166 132. Yu, J., Nie, S., Liu, W., Zhu, X., Sun, Z., Li, J., et al., 2024. Mapping global mangrove canopy height by
1167 integrating ice, cloud, and land elevation Satellite-2 photon-counting LiDAR data with multi-source images.
1168 *Science of the Total Environment* 939, 173487. <https://doi.org/10.1016/j.scitotenv.2024.173487>.

1169 133. Zeng, X., Broxton, P., Dawson, N., 2018. Snowpack Change from 1982–2016 over Conterminous United States.
1170 *Geophysical Research Letters* 15, 12940–12947. <https://doi.org/10.1029/2018GL079621>.

1171 134. Zhang, B., Wang, Z., Yang, Q., Liu, J., An, J., Li, F., et al., 2020. Elevation Changes of the Antarctic Ice Sheet
1172 from Joint Envisat and CryoSat-2 Radar Altimetry. *Remote Sensing* 12, 3746. <https://doi.org/10.3390/rs12223746>.

1173 135. Zhang, D.F., Chen, Y.F., Le, Y., Dong, Y.S., Dai, G.M., Wang, L.Z., 2022. Refraction and coordinate correction
1174 with the JONSWAP model for ICESat-2 bathymetry. *ISPRS Journal of Photogrammetry and Remote Sensing*
1175 186, 285–300. <https://doi.org/10.1016/j.isprsjprs.2022.02.020>.

1176 136. Zhang, F.Y., Lei, R.B., Zhai, M.X., Pang, X.P., Li, N., 2023. The impacts of anomalies in atmospheric circulations
1177 on Arctic sea ice outflow and sea ice conditions in the Barents and Greenland seas: case study in 2020. *The
1178 Cryosphere* 17, 4609–4628. <https://doi.org/10.5194/tc-17-4609-2023>.

1179 137. Zhang, Q., Huai, B., van Den Broeke, M.R., Cappelen, J., Ding, M.H., Wang, Y.T., 2022b. Temporal and Spatial
1180 Variability in Contemporary Greenland Warming (1958–2020). *Journal of Climate* 35(9): 2755–2767.
1181 <https://doi.org/10.1175/JCLI-D-21-0313.1>.

1182 138. Zhang, T., Price, S., Ju, L., Leng, W., Brondex, J., Durand, G., et al., 2017. A comparison of two Stokes ice sheet
1183 models applied to the Marine Ice Sheet Model Intercomparison Project for plan view models (MISMIP3d). *The
1184 Cryosphere* 11, 179–190. <https://doi.org/10.5194/tc-11-179-201>.

1185 139. Zhang, X., Ma, Y., Zhang, F., Li, Z., Zhang, J., 2025. Multi-Model Synergistic Satellite-Derived Bathymetry
1186 Fusion Approach Based on Mamba Coral Reef Habitat Classification. *Remote Sensing* 17, 2134.
1187 <https://doi.org/10.3390/rs17132134>.

1188 140. Zhao, X., Huo, R., Chen, Y.Z., Ma, Y., Ji, Q., Pang, X.P., 2024. Route Planning in the Arctic Ice Region Assisted
1189 by ICESat-2 Elevation Information. *Geomatics and Information Science of Wuhan University* 49(9) 1610-1620.
1190 In Chinese with English abstract.

1191 141. Zhou, L., Xu, S., Liu, J., Wang, B., 2018. On the retrieval of sea ice thickness and snow depth using concurrent
1192 laser altimetry and L-band remote sensing data. *The Cryosphere* 12, 993–1012. <https://doi.org/10.5194/tc-12-993-2018>.

1194 142. Zhu, X., Wang, C., Nie, S., Pan, F., Xi, X., Hu, Z., 2020. Mapping forest height using photon-counting LiDAR
1195 data and Landsat 8 OLI data: a case study in Virginia and North Carolina, USA. *Ecological Indicators* 114,
1196 106287. <https://doi.org/10.1016/j.ecolind.2020.106287>.

1197 143. Niehaus, H., Spreen, G., Istomina, L., and Nicolaus, M., 2025. Regional and seasonal evolution of melt ponds
1198 on Arctic sea ice. *The Cryosphere*, 19, 3915–3938, <https://doi.org/10.5194/tc-19-3915-2025>.

1199 144. Magruder, L., Neumann, T., Kurtz, N., 2021. ICESat-2 early mission synopsis and observatory performance.
1200 *Earth and Space Science*, 8, e2020EA001555. <https://doi.org/10.1029/2020EA001555>.