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11 Abstract :

12 ICESat-2's advanced topographic laser altimeter system provides unprecedented technical support for polar
13 environmental research including ice sheet mass balance detection and multi-dimensional sea ice parameter retrieval.
14 However, the satellite's technical innovations and application advantages for polar environments still lack systematic
15 elaboration, its high-precision data have not been effectively integrated from single-factor analysis to multi-process
16 collaborative cognition, and the main sources of uncertainty as well as future technical breakthrough paths also remain
17 unclear. To address these gaps, this review explores three core scientific questions. First, how to accurately solve the
18 inversion challenges of key parameters through ICESat-2's technical innovations. Second, how to apply its high-
19 precision inversion results to deepen the understanding of multi-sphere and multi-element interaction processes in
20 polar regions and further reveal their systematic change laws. Third, what are the main uncertainties in ICESat-2's
21 polar monitoring applications and what targeted technical paths can achieve breakthroughs. By systematically
22 organizing relevant research progress, this review clarifies the inherent connection between technical innovations and
23 polar parameter inversion, and ultimately provides solid support for the construction of cross-element integrated

24 scientific cognition of polar environments.
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27 1 Introduction

28 As a core component of the global climate system, the cryosphere’s dynamic changes are synergistically
29 regulated by complex radiative and non-radiative interactions between the atmosphere, ocean, and ice (Goosse et al.,
30 2018; Ding et al., 2021). Polar regions, as the central part of the cryosphere, have witnessed a series of significant
31 changes in recent decades due to intensified global warming, including rapid Arctic sea ice shrinkage, accelerated
32 Greenland Ice Sheet ablation, and permafrost degradation (Jahn et al, 2024; Michael et al., 2021; Liu et al., 2019;
33 Qu et al., 2022). Acting as a key regulator of polar energy balance, sea ice has a surface albedo of 80%—90%, more
34 than 10 times that of open oceans. Its retreat significantly enhances the ocean’s capacity to absorb solar radiation,
35 further amplifying polar warming (Serreze and Stroeve, 2015). Meanwhile, the massive freshwater stored in polar
36  ice sheets, if fully melted, would cause a substantial rise in global sea levels, posing severe threats to coastal
37 ecosystems and human societies (Pritchard et al., 2012). Therefore, accurately capturing changes in key polar
38 environmental parameters and clarifying their systematic evolution laws are core prerequisites for understanding
39 global climate change mechanisms and improving climate prediction capabilities.

40 Remote sensing serves as the primary means for large-scale, long-term polar monitoring, but traditional remote
41 sensing technologies have inherent limitations in practice. ICESat-1’s (Ice, Cloud, and land Elevation Satellite) single-
42 beam observation design struggled to effectively distinguish slope effects from true elevation changes, leading to large
43 errors in ice sheet mass balance inversion (Neuenschwander et al., 2008; Urban et al., 2005). CryoSat-2’s radar
44 signals are susceptible to snow penetration, significantly restricting the accuracy of sea ice thickness retrieval (Howat
45 et al., 2008; Kwok et al., 2009). Launched in 2018, ICESat-2 with the advanced topographic laser altimeter system
46  (ATLAS) overcomes traditional observational bottlenecks via revolutionary photon-counting technology, elevating
47 key cryospheric parameter monitoring accuracy to the centimeter level and providing a novel technical approach for
48 precise cryospheric monitoring (Markus et al., 2017).

49 Despite the breakthroughs brought by ICESat-2 to cryosphere research, a systematic review of existing studies
50  reveals several key scientific gaps and weaknesses. Specifically, while technical parameters such as the six-beam
51 spatial distribution of the ATLAS system have been explicitly disclosed, and related studies have developed
52 algorithms based on these technical characteristics and verified their accuracy improvement effects (Liu et al., 2022),
53 most of these studies merely present inversion results without systematically elaborating on ICESat-2’s technical
54 design and application advantages for polar environmental observations.

55 Secondly, existing research mainly focuses on single-factor or local-scale observational analyses, such as ice
56 sheet mass balance (Brunt et al., 2021), ice shelf stability analysis (Li et al., 2020; Li et al., 2022), lead detection
57 (Petty et al., 2021), and sea ice thickness changes. It fails to integrate the aforementioned high-precision observational
58  data to deepen the scientific understanding of multi-sphere and multi-factor interaction processes in polar regions,
59 thereby revealing the systematic change laws of the polar environment. Finally, although dominant uncertainties in
60  ICESat-2’s cryosphere observations have been initially identified and targeted resolved (Petty et al., 2023; Kwok et
61 al., 2021), core uncertainties such as snow depth estimation biases, complex terrain observation interference, and

62 inherent limitations of the observation system lack systematic classification and in-depth analysis of their combined
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63 impact mechanisms. This restricts the reliability verification of ICESat-2’s observational results and forms a
64 bottleneck for the technological development of the next generation of laser altimetry satellites.

65 To address the above scientific gaps, this review will systematically explore three aspects: (1) By systematically
66  reviewing ICESat-2’s core technical innovations, multi-level data product system, and adaptive design for extreme
67 polar environments, deeply elaborate on its technical mechanisms for solving inversion challenges of key polar
68  environmental parameters such as ice sheet mass balance and sea ice thickness. (2) By systematically integrating the
69  understanding of polar ice sheet/ice shelf stability and multi-dimensional sea ice parameter retrieval from ICESat-2,
70  construct a holistic scientific cognition of the systematic change laws of the polar environment. (3) By systematically
71 clarifying the resolution of dominant observational uncertainties by ICESat-2 and the main remaining uncertainty
72 sources, deeply analyze the impact mechanisms of each source, and further clarify feasible technical paths for targeted
73 breakthroughs in the future. Notably, although ICESat-2 has also demonstrated significant value in ecological fields
74 such as large-scale biomass estimation and global carbon stock assessment (Lefsky et al., 2005; Neumann et al.,
75 2019; Yu et al., 2024; Zhu et al., 2020), to maintain the focus of the research theme, this review will only

76 systematically summarize its progress in cryosphere science, with a particular emphasis on polar environments.

77 2 ICESat-2/ATLAS Observation System and Its Mechanistic Link to
78 Polar Environmental Parameter Retrieval

79 The core technical innovations of ATLAS provide basic support for the retrieval of key polar parameters by
80 establishing high-precision and high-density observational capabilities; the multi-level data product system realizes
81 the effective conversion of raw observational data into key polar environmental parameters through targeted
82 preprocessing and refined processing procedures; the adaptive design of the observation system for polar
&3 environmental characteristics ensures the reliability and stability of the retrieval process in different scenarios. The
84 integration of these three aspects enables ICESat-2 to significantly improve the accuracy and applicability of polar

85  environmental parameter retrieval.

86 2.1 Historical Evolution of Technical Innovations in the ICESat Series

87 In cryospheric change research, the ICESat mission launched by NASA in 2003 has provided crucial
88 observational data. Through laser altimetry technology, the satellite played a central role in assessing the mass balance
89 of mountain glaciers and polar ice sheets (Gardner et al., 2011; Urban et al., 2008). Based on its elevation data,
90 researchers first achieved spatialized estimates of the mass balance of glaciers in the Hindu Kush—Karakoram—
91 Himalaya region (Kééb et al., 2012), global peripheral glaciers, and the Greenland Ice Sheet (Bolch et al., 2013).
92 Additionally, ICESat was successfully applied to the remote sensing retrieval of sea ice freeboard, thickness, and
93 volume (Farrell et al., 2009; Connor et al., 2013). However, despite its remarkable achievements, ICESat’s single-
94 beam observation mode had obvious limitations in analyzing complex cryospheric processes: particularly in regions
95 with rugged terrain, the sensor struggled to effectively distinguish slope effects from true elevation changes, requiring
96 multi-period observational data for signal separation (Moholdt et al., 2010; Abdalati et al., 2010). Meanwhile, the

97 low spatial resolution of the single beam limited its ability to capture microfeatures such as sea ice cracks and melt
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98 ponds, restricting the accuracy of sea ice type identification and thickness retrieval. Coupled with laser lifespan issues,

99 its scientific data collection ceased in 2009.
100 Building on this, NASA launched the next-generation ICESat-2 satellite on September 15, 2018, which officially
101 initiated scientific observation missions on October 14 of the same year. Compared with the previous mission, ICESat-
102 2 effectively addressed the limitations of ICESat’s single beam in spatial resolution and terrain slope measurement by
103 equipping the ATLAS and a six-beam observation configuration (Howat et al., 2008), significantly enhancing the
104  high-precision monitoring capabilities for glaciers, ice sheets, and sea ice (Magruder et al., 2020). Its observational
105 technical characteristics are reflected in three core dimensions: observational geometry design, detection technology

106 innovation, and positioning/coverage accuracy (Figure 1).
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108  Figure 1. Schematic diagrams of the satellite sampling configurations for ICESat and ICESat-2

109 In terms of observational geometry design, the ATLAS altimeter onboard ICESat-2 constructs a high-density 3D
110 observation network through an innovative configuration of three pairs of beams and yaw angle optimizatio, whose
111 core technical design logic can be summarized as multi-beam collaborative coverage and dynamic energy adaptation.
112 Specifically, unlike the first-generation ICESat’s single-beam along-track sampling mode, ATLAS splits a single laser
113 beam into three pairs of left, nadir, and right beams using diffractive optical elements. Combined with a 2° yaw angle
114 design, the strong and weak energy beams within the same beam pair form a cross-track spacing of approximately 90
115 meters. Ultimately, the six ground tracks have an along-track spacing of about 3 kilometers and a total cross-track
116  width of approximately 6 kilometers, achieving a systematic expansion of the observational coverage (Neumann et
117 al., 2019) (Figure 2). Meanwhile, the system adopts a parameter combination of 0.7-meter along-track sampling
118 interval and 11-meter laser footprint diameter to enhance the ability to capture microtopographic features; the 4:1

119 energy ratio design of strong and weak beams forms a differentiated adaptation mode for different surface reflectivity
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120 characteristics—high-energy strong beams meet the signal capture needs of low-reflectivity regions, while low-energy

121 weak beams effectively avoid signal saturation in high-reflectivity regions (Kwok et al., 2022).
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123 Figure 2. The ICESat-2 observational geometry: multi-beam configuration, laser footprints, and ground tracks.

124 In terms of detection technology innovation, ATLAS’s photon-counting lidar technology breaks through the
125 limitations of traditional pulse waveform detection, enabling accurate capture of weak signals. Unlike the first-
126 generation ICESat, which obtained elevation information by integrating pulse echo waveforms, ATLAS can record
127 the position and time of each returning single photon from laser pulses, constructing a high-resolution 3D photon
128 cloud (Kwok et al., 2021). This technical characteristic endows the system with extremely high sensitivity to single-
129 photon signals, enabling effective discrimination of different surface types in mixed high- and low-reflectivity regions.
130  Additionally, the high temporal resolution of photon-counting technology, combined with multi-source data fusion
131 from GPS receivers, star trackers, and the Laser Reference System (LRS), achieves centimeter-level 3D geolocation
132 accuracy (Magruder et al., 2020).

133 In terms of positioning and coverage capabilities, ATLAS adopts a near-polar orbit design (inclination of 92°,
134 covering 88°S to 88°N) combined with the uniform distribution of 1387 independent Reference Ground Tracks
135 (RGTs), achieving comprehensive coverage of key global regions and addressing the insufficient coverage of the first-
136 generation ICESat in polar marginal areas (Abdalati et al., 2010). The system sets an average operating altitude of
137 496 kilometers and a revisit period of 91 days, balancing observational efficiency and spatiotemporal resolution; it
138 not only enables temporal dynamic monitoring of target parameters but also ensures the spatial representativeness of

139 regional-scale observations through uniform track distribution (Markus et al., 2017).

140 2.2 Multi-Level Data Product System of ICESat-2
141 ICESat-2 has constructed a multi-level data product system from Level-1 to Level-3, which realizes the effective
142 conversion of raw photon data into retrieval parameters through targeted preprocessing and refined processing

143 procedures, serving as a core bridge connecting the observation system and parameter retrieval (Magruder et al.,
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144 2020) (Figure 3). Through a hierarchical processing logic to accurately address the retrieval needs of different
145 scenarios, this product system forms a close mechanistic link with polar environmental parameter retrieval: Level-1
146 products achieve initial calibration of raw observational data, providing a high-quality foundation for subsequent
147 processing; Level-2 products extract reliable surface elevation information through purification and screening of
148 photon-level data; Level-3 products conduct dedicated refined processing and parameter retrieval for the retrieval
149 needs of different polar environmental parameters, ultimately forming thematic products adapted to different retrieval
150 objectives (Kwok et al., 2023).
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152 Figure 3. Overview of the ICESat-2 ATL data product suite and their hierarchical relationships
153 The processing flow from Level-1 to Level-2 products focuses on addressing the fundamental challenge of raw
154 photon data purification and elevation extraction, thereby providing a unified, high-quality elevation dataset for all
155  cryospheric parameter retrievals. Level-1 products, including ATLO1 (raw time tags and photon response counts) and
156  ATLO2 (geophysical range correction), achieve the initial standardization of raw observational data through
157 instrument temperature and voltage effect correction, as well as geophysical range calculation—effectively
158 eliminating systematic errors inherent to the instrument itself (Kwok et al., 2020b).
159 Building on this, Level-2 product ATLO03 provides high-precision 3D coordinates for each photon through solid
160 tide, polar tide, ocean loading tide and total atmospheric delay correction, constructing a raw photon cloud dataset
161 (Kwok et al., 2020a; Xie et al., 2023). The preprocessing flow of ATLO03 including photon aggregation, surface
162 detection, noise removal and scattering correction directly serves the goal of reliable surface elevation extraction.
163 Initial separation of signal photons and background noise is achieved through continuous pulse photon clustering and
164 height histogram construction. Outlier photons are removed using local mode positioning and window truncation
165 methods, effectively suppressing the impact of background noise and first-photon bias. Elevation data accuracy is
166 optimized through subsurface scattering correction, ultimately converting raw photon cloud data into clean and precise
167  surface elevation data to provide core foundational support for subsequent cryospheric parameter retrieval.
168 Among Level-3 thematic products, ATL0O7 and ATL10 are the core backbone products for sea ice research.
169 Together with ATL20/21, they form a sea ice parameter retrieval chain from core parameter retrieval to macro-scale
170 integration, realizing accurate conversion from elevation data to sea ice freeboard. As the basic core product for sea
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171 ice parameter retrieval, ATLO7 takes the purified elevation data from ATLO3 as input. After a series of geophysical
172 corrections based on the CryoSat-2 and DTU13 mean sea surface models, GOT4.8 tide model, and GEOS-FP-IT
173 atmospheric inverse pressure correction (Andersen et al., 2015), it generates height segments by aggregating 150
174 consecutive signal photons, with segment intervals automatically adjusted based on photon density and surface
175 reflectivity (Kwok et al., 2019; Kwok et al., 2020b). It adopts a decision tree classification algorithm based on three
176 core parameters—surface photon rate, photon distribution width, and background noise rate (Kwok et al., 2023)—
177  which can accurately distinguish surface types such as sea ice, open water, and clouds, while providing geographic
178 location, observation time, and confidence information, laying a solid data foundation for subsequent ATL10
179 freeboard retrieval (Table 1).

180 Table 1 Detailed definitions of relevant fields in the ATLO7 product

Field Type Field Name Unit Field Description
height segment asr calc / calculated apparent surface reflectivity
height segment height m segment surface height
height_segment w_gaussian m best-fit Gaussian width
height segment length seg  m segment length
classification n_pulse seg used m the number of photons used in each height segment
features photon density / calculated by dividi.ng the number of photons used by
the length of the height segment
photon_rate photon  photon rate
hist w m width of photon height distribution
background r norm Hz normalized background rate (50 pulses)
original height segment ssh_flag sea ice classification (0 = sea ice; 1 = sea surface)

classification height segment type segment surface type

/
/
fit_quality flag / (-1 =1invalid; 1 = optimal)
/
/
/

lit . .
gz;alt;gl n_pulse_seg used number of laser pulses used in sea ice segments
height_segment_quality height segment quality flag
cloud cloud flag asr cloud probability flag based on apparent reflectivity
181 ATLI10 is the core dataset for ICESat-2 sea ice research, directly conducting sea ice freeboard estimation based

182 on ATLO7 classification results: it constructs a local sea surface reference by identifying valid sea surface height
183 segments and calculates the freeboard difference of sea ice height segments relative to this reference. To improve
184 statistical robustness, ATL10 adopts an adaptive aggregation design with an approximately 10-kilometer
185 neighborhood window to generate freeboard scan segments; the window length and sampling interval can be
186 dynamically adjusted according to sea ice distribution density, and no scan segments are generated for tracks lacking
187  reliable sea surface references to avoid additional uncertainty. Each scan segment is accompanied by uncertainty
188 assessment and quality indicators integrating factors such as beam quality and distance from the sea surface reference,
189  while providing a freeboard histogram constructed from full-beam data to characterize the freeboard distribution
190 within the scan segment (Kwok et al., 2019). As an extension of ATL10, the ATL20/21 gridded products map along-
191 track freeboard and sea surface height data to a 25-kilometer polar stereographic projection grid, generating
192 daily/monthly scale sea ice freeboard statistics and monthly scale sea surface height information (Kwok et al., 2021),
193 realizing scale upgrading from fine observations to regional-scale and long-term sea ice research and providing support

194 for macro cryospheric system change analysis.
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195 In addition, to meet the retrieval needs of ice sheets and mountain glaciers, the ATLO6 product provides high-
196  precision surface elevation through linear segment fitting, adapting to the need for accurate capture of elevation
197  temporal changes in the retrieval of parameters such as ice sheet mass balance and glacier retreat rate; its extension to
198  non-glacial mountainous areas also provides supplementary support for snow depth retrieval and topographic mapping
199 (Smith et al., 2019; Deschamps-Berger et al., 2023). Based on photon classification, the ATL08 product provides
200  both surface and vegetation height information over longer linear segments, primarily serving forest structure and

201 biomass assessment (Neuenschwander et al., 2021).
202 2.3 Adaptive Design of ICESat-2 for Polar Environments

203 Polar environments exhibit significant spatiotemporal heterogeneity. Core characteristics such as surface
204 reflectivity differences, seasonal dynamic evolution, and polar solar radiation interference directly affect the quality
205 of laser observational signals and the reliability of retrieval results. The core advantage of the ICESat-2 observation
206 system lies in forming targeted environmental adaptation mechanisms through technical innovations. Through the
207  collaborative optimization of observational strategies and data processing flows, it effectively offsets the interference
208 caused by environmental heterogeneity, ensuring the stability and accuracy of parameter retrieval in different scenarios.
209 The first core environmental challenge is the extreme heterogeneity of surface reflectivity. Different surface
210 cover types in polar environments form a strong contrast pattern of "high reflectivity—low reflectivity": the
211 reflectivity of snow-covered sea ice, snow cover, and other regions can reach 0.7-0.8, while that of leads, dark cracks,
212 and other regions is only 0.1-0.2, a difference of nearly an order of magnitude (Kwok et al., 2021b). This contrast
213 risks signal saturation in high-reflectivity areas and noise-induced signal loss in low-reflectivity regions, limiting
214 capture efficiency (Kwok et al., 2022) (Figure 4). The ATLAS system addresses this through differentiated energy
215 output of strong and weak beams, matching reflectivity-specific signal needs to avoid saturation or insufficient capture,
216 and high-density multi-beam distribution that ensures complete coverage of heterogeneous surfaces without
217 observational blind spots.

218 The second core environmental challenge is the dynamic interference of polar solar radiation. ATLAS’s 532 nm
219  visible band is vulnerable to solar background noise, with polar day-night alternation and varying solar elevation
220 angles amplifying interference complexity (Kwok et al., 2020a). Background photon counts exceed signal photons
221 by multiple times when solar elevation exceeds 30°, drowning effective signals, while interference is negligible below
222 10° or during polar nights—this dynamic directly impacts signal-noise distinction accuracy (Kwok et al., 2019; Liu
223 et al., 2024). ICESat-2 mitigates this by scheduling core polar observations during twilight or nighttime to avoid high
224 solar angles, and integrating solar elevation angle into signal screening algorithms with dynamic noise thresholds.
225 High solar angles trigger strengthened verification of surface photon rate and background noise rate linear
226 relationships to remove abnormal photons; low angles shield uncertain background noise parameters, extracting
227  signals solely via spatial distribution characteristics (Kwok et al., 2023).

228 The third core environmental challenge is the seasonal dynamic evolution of polar environments. Polar
229  environments exhibit region-specific seasonal changes: Arctic sea ice develops melt ponds and ablates marginally in
230 summer, while thickening and forming cracks in winter; Antarctic Ice Sheet margins see accelerated ice shelf calving

231 and ablation in summer, with snow accumulation and smooth surfaces in winter (You et al., 2021; Shen et al., 2021).
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232 These differences reduce the accuracy of fixed retrieval algorithms. ICESat-2’s data product system addresses this

233 through dynamically adaptive classification algorithms in core sea ice products ATLO7 and ATL10. A refined

234 classification system distinguishes clouds, sea ice, and crack types like specular, dark, and rough during the growth

235 season (October—May) to match winter sea ice structure retrieval needs (Kwok et al., 2023). The system simplifies to

236 clouds, sea ice/melt pond mixtures, and cracks/melt ponds during the ablation season (June—September), focusing on

237 core surface types to ensure basic retrieval requirements.
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239  Figure 4. The main figure uses a S2 image as the background, with the laser altimetry ground tracks of the strong
240  beams (gtll, gt2l, gt31) from the ATLO7 product overlaid. The white areas in the figure represent the sea surface
241 range identified by the ATLO7 product. The series of subfigures respectively show the reflection characteristics of
242 key parameters in the ATLO7 product, including photon density, photon rate and other parameters.
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243 3 ICESat-2 Observation Results Support In-depth Understanding of
244  the Systematic Change Laws of the Polar Environment

245 3.1 Monitoring of Ice Sheet and Ice Shelf Mass Balance

246 Polar ice sheets and ice shelves are core cryospheric mass and energy storage carriers, with their mass balance
247 and stability exerting decisive regulatory effects on global sea level and climate system evolution (Chen et al., 2013;
248 Manabe & Stouffer, 1995). As key links between ice sheets and the ocean, ice shelves block inland ice flow while
249  their basal melting and calving directly regulate ice sheet mass output (Alley et al., 2021). Major ice shelves globally
250 are retreating and thinning—accelerated calving of Antarctica’s Thwaites and Pine Island Ice Shelves drives Antarctic
251 ice loss (Li et al., 2022), while Greenland’s accelerated mass loss since the 1990s has released freshwater into the
252 North Atlantic, suppressing thermohaline circulation (van den Broeke et al., 2017; Shen et al., 2020).

253 Coupling of ice sheet basal dynamics and ice shelf erosion further impacts system stability. Antarctic subglacial
254 lake drainage, a core subglacial hydrological process, transports meltwater to ice sheet downstream and grounding
255 lines, altering basal lubrication, intensifying ice shelf melting, and triggering surface uplift or collapse with potential
256 global climate and sea level impacts (Smith et al., 2009).

257 With centimeter-level elevation accuracy and high-density observation capabilities, ICESat-2 has established a
258 multi-dimensional monitoring system covering ice sheet and ice shelf mass balance, stability, and hydrological
259  processes. It advances research from single-parameter extraction to integrated multi-process, multi-scale, and multi-

260 mechanism analysis, providing key support for understanding systematic change laws (Khan et al., 2022).
261 3.1.1 Ice Sheet Elevation Change and Mass Balance

262 Ice sheet and ice shelf changes fall into two categories defined by their driving mechanisms, with distinct spatial
263 patterns: surface mass balance-driven changes show attenuated gradients and uniform thinning, whereas dynamic
264 imbalance-driven changes feature strong spatial heterogeneity and stress-transmitted instabilities (Fredensborg
265 Hansen, 2021).

266 To quantitatively analyze the above two types of ice sheet and ice shelf change processes, researchers have
267 established a multi-level methodological framework centered on ice sheet elevation change detection, based on
268 ICESat-2 combined with multi-source altimetry data such as CryoSat-2 (Paolo et al., 2015; Zhang et al., 2017). For
269 changes driven by surface mass balance, the framework accurately extracts the elevation change rate of ice sheet areas
270 by gridding and time-series fitting of photon data, while suppressing systematic errors through crossover analysis,
271 thereby supporting the analysis of their dominant mechanisms. For changes driven by dynamic imbalance, it tracks
272 local evolutionary characteristics via repeat orbit analysis and sliding window methods, and improves data signal-to-
273 noise ratio through multi-level filtering, enabling refined characterization of such processes with strong heterogeneity
274 and stress-transmitted instabilities (Wang et al., 2024).

275 Based on long-term time-series observations from ICESat-2 the overall accelerating loss trend and spatial
276 heterogeneity characteristics of the Antarctic and Greenland Ice Sheets have been accurately characterized.
277 Observation data show that the Antarctic Ice Sheet had an overall elevation decrease rate of —10.65+£3.20 cm/yr

278 between 2003 and 2020. The extreme melting event in 2019 further intensified ice mass loss (Yang et al., 2022). The
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279 Greenland Ice Sheet had a mass loss rate of —45.02+34.21 Gt/yr between 2019 and 2022 equivalent to a global sea
280  level rise of approximately 0.12 mm/yr. Rising temperatures are the main driving factor (Wang et al., 2024). Notably
281 the mass loss rate of peripheral glaciers in Greenland especially in the northern region has increased fourfold over the
282 past two decades accounting for 11+2% of the total loss of the Greenland Ice Sheet. This highlights the characteristic
283 of continuously increasing spatial heterogeneity of mass loss in the ice sheet system (Khan et al., 2022).

284 In terms of multi-source data collaboration and product validation ICESat-2 data show good consistency with
285 radar altimetry data such as CryoSat-2. At a 5 km grid resolution and 30-60 day time window the elevation change
286 trends of the Greenland Ice Sheet reflected by the two are highly consistent. The interannual difference is only 3.3+6.0
287 cm/yr which significantly improves the credibility of monitoring results (Ravinder et al., 2024). At the same time
288 cross-validation with independent data such as ground-based GNSS measurements and airborne lidar has confirmed
289  that the horizontal accuracy of ATLO3 photon-level data from ICESat-2 is better than 5 cm. The accuracy of ATL06
290 elevation products reaches sub-decimeter level providing a solid foundation for the production and dynamic update
291 of high-precision ice sheet DEMs (Shen et al., 2022). The currently achieved 500 m resolution DEM of the Antarctic
292 Ice Sheet has a root mean square error controlled at —0.19 m and has annual update capability. It significantly improves

293 the spatial details and timeliness of ice sheet topographic change monitoring.
294 3.1.2 Ice Shelf Stability Analysis

295 For the identification and morphological analysis of sub-ice shelf channels multi-beam laser profile terrain
296  analysis technology uses the advantage of ICESat-2’s six-beam dense spatial sampling to extract linear depression
297 features on the ice shelf surface. It inverts the development process and thermal erosion effect of sub-ice channels
298 combined with ice flow velocity data (Siegfried and Fricker, 2018).

299 Observations reveal that basal erosion processes play a core role in ice shelf dynamic adjustment. For example
300  subglacial melt channels extend toward the grounding line at a rate of approximately 1 km/yr along the ice flow
301 direction. The lateral migration rate reaches 70—-80 m/yr and the basement erosion rate can reach 22 m/yr. This clearly
302 reflects the dominant regulatory role of complex hydrodynamic processes at the base of ice shelves on ice shelf
303 movement and structural stability (Chartrand et al., 2020). In addition for the inversion of ice thickness changes in
304 ice shelf areas methods based on hydrostatic equilibrium principles are widely used. Ice thickness changes can be
305 directly estimated through surface elevation combined with density differences between ice and seawater (Chuter
306  and Bamber, 2015; Griggs and Bamber, 2011) providing key parameters for ice shelf mass balance and stability
307 assessment.

308 In terms of key boundary monitoring ICESat-2 has significantly improved the spatial density and geometric
309 accuracy of grounding line identification through repeat orbit observations. Collaborative analysis with differential
310 interferometric synthetic aperture radar data can control the identification error of grounding line position within 0.39
311 km (Li et al., 2020) providing high-precision geometric constraints for characterizing grounding zone migration and
312 dynamic development of subglacial melt channels. In the monitoring of ice shelf cracks and fracture processes the
313 high-resolution elevation data from ICESat-2 provides important support for the extraction of three-dimensional crack
314 morphology and tracking of propagation processes. Studies have shown that crack generation and propagation are

315  jointly driven by basement fractures extreme meteorological events and changes in the thermal-dynamic state of ice
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316 shelves (Wang et al., 2021; Walker et al., 2021). By performing high-resolution elevation gradient and curvature
317 analysis on ICESat-2 along-track elevation data and calculating the spatial variation of surface slope and curvature
318 potential crack development areas can be accurately identified and their propagation paths can be tracked (Zhang et
319 al., 2020).

320 In terms of numerical simulation and mechanism explanation the three-dimensional full Stokes ice flow model
321 based on Elmer/Ice integrates BedMachine Antarctica terrain data and ICESat-2 ice flow velocity observations to
322 achieve accurate simulation and verification of ice shelf dynamic processes (Guo et al., 2019). Typical case studies
323 show that after the TWIT calving the Thwaites Eastern Ice Shelf (TEIS) formed a relatively independent dynamic
324 system. The basal melting rate near the grounding line increased significantly confirming that changes in the physical
325  state of the grounding line are key factors controlling the precursors of ice shelf calving (Alley et al., 2021).

326  3.1.3 Ice Sheet Hydrological Process Monitoring

327 In terms of subglacial lake monitoring, researchers first proposed a method for identifying subglacial lakes based
328 on elevation change rate thresholds using first-generation ICESat data (Wingham et al., 2006), whose core idea is to
329  calculate ice sheet surface elevation change rates, set reasonable thresholds, and combine visual interpretation to
330 identify dynamic subglacial lakes and determine their boundaries. Subsequent studies further optimized the method
331 by improving threshold adjustment and signal separation technologies (Stearns et al., 2008), and ICESat-2 has
332 achieved accurate identification and refined boundary extraction of such lakes relying on its higher-precision photon-
333 counting altimetry data under this framework.

334 For fine monitoring of subglacial lake water level changes, the repeat orbit elevation anomaly analysis method
335 based on ICESat-2 captures filling and drainage events and their dynamic characteristics by analyzing time-series
336 elevation data along preset orbits (Siegfried et al., 2021). Sliding time window and multi-source data fusion methods
337  enhance hydrological event detection continuity by integrating adjacent observation period data, while the method of
338 elevation anomaly difference inside and outside the lake extracts net elevation signals caused by subglacial lake
339 activities by subtracting background area changes from target area anomalies (Scambos et al., 2011). For rapid
340 hydrological activities, the maximum elevation change rate algorithm improves the detection capability of drainage
341 and water storage events by extracting instantaneous change extremes between consecutive grid observations. In data
342 quality control, multi-level filtering and residual elimination algorithms enhance the signal-to-noise ratio of elevation
343 change signals through step-by-step screening based on quality indicators and iterative gridded surface fitting (Fair
344 et al., 2020).

345 For supraglacial lake monitoring, ICESat-2 has realized high-precision identification and water depth inversion
346 of supraglacial lakes in Antarctica and Greenland through the automatic processing algorithm of ATLO3 photon data.
347 With a maximum detection depth of 8.25 meters and bathymetric accuracy better than 0.32 meters (Xiao et al., 2023),
348 this achievement significantly expands the application dimension of laser altimetry in ice sheet hydrological process

349  monitoring.



https://doi.org/10.5194/egusphere-2026-288
Preprint. Discussion started: 10 February 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

350 3.2 Multi-dimensional Sea Ice Parameter Retrieval

351 Accurately acquiring multi-dimensional core parameters including sea ice lead distribution, freeboard,
352 thickness, melt pond morphology and snow depth is a prerequisite for analyzing sea ice evolution laws and
353 quantifying its climate effects (Perovich & Polashenski, 2012; Koo et al., 2023). ICESat-2 has driven sea ice
354  observation to advance from extensive extraction of single parameters to synergistic and accurate inversion of
355 multi-parameters.

356  3.2.1 Lead Detection and Sea Ice Freeboard Retrieval

357 In terms of lead identification research methods have developed from early interpretation based on a single
358 elevation threshold to a collaborative classification system of machine learning and deep learning integrating multi-
359 dimensional features of photon point clouds and multi-source remote sensing information. By systematically
360 extracting elevation distribution statistics photon rate echo waveform features and background noise levels from
361 ICESat-2 photon data combined with spectral indices of high-resolution optical images and backscattering
362 characteristics of SAR images a multi-modal feature space with strong separability has been constructed (Pang et al.,
363 2022; Liu et al., 2024) (Figure 5).

364 Traditional supervised learning methods (such as random forests and support vector machines) have achieved
365 robust classification of leads and sea ice based on this feature space. Deep learning methods based on convolutional
366 neural networks and Transformer architectures have further improved the accuracy and generalization ability of lead
367 boundary identification under complex ice-water mixing conditions through end-to-end feature learning and spatial
368 context modeling (Liang et al., 2022; Ricker et al., 2023).

369 Sea ice freeboard retrieval hinges on accurate classification of sea ice and sea surface height segments, with
370  ATLO07/10-based photon classification algorithms distinguishing ice and water signals via signal intensity, photon
371 distribution, elevation statistics and waveform feature analysis. However, current inversion faces multiple challenges:
372 summer melt ponds are often misclassified as mixtures in ATL07, introducing type determination inconsistencies
373 (Tilling et al., 2020); local non-crack segments used as sea surface references may cause estimation biases;
374  ATLO07/10’s local height filter risks losing effective crack data and reducing spatial coverage; cloud attenuation can
375 misclassify low-reflectivity regions as dark cracks (Petty et al., 2021). Notably, subsequent ATLO7 versions excluded
376  dark cracks from sea surface height calculations, lowering freeboard product spatial coverage by ~10-20% (Kwok et
377  al., 2021).

378 In terms of detection and verification the method system has evolved from single optical verification to multi-
379 source collaboration and intelligent identification. Early studies based on Sentinel-2 optical images proposed a crack
380 ratio estimation method under strict spatiotemporal matching conditions. It was confirmed that ICESat-2 is reliable in
381 identifying specular cracks but there is still great uncertainty in dark cracks and thin ice cracks (Petty et al., 2021).
382 Subsequently SAR data was introduced to improve the accuracy of sea ice thickness inversion by improving the local
383 sea surface height calculation algorithm (Pang et al., 2022).

384 In recent years, the integration of machine learning methods has significantly improved detection performance.
385 A study constructing an unsupervised and supervised learning framework achieved a breakthrough in lead detection

386  accuracy of 98.6% and recall rate of 91.8% (Liu et al., 2025). At the same time near-synchronous observations from
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387 SWOT and ICESat-2 have verified their high consistency in freeboard estimation (Kacimi et al., 2025) marking a

388 new stage of multi-platform collaborative observation for sea ice parameter verification.
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390 Figure 5. A Comparison of Sea Ice/Sea Surface Classification Between the ATL07 Decision Tree and a Machine
391 Learning Approach Integrating Imagery.

392 3.2.2 Sea Ice Thickness Retrieval

393 A freeboard-thickness conversion theoretical framework based on hydrostatic equilibrium principles has been
394 established. With ICESat-2 observed sea ice freeboard as the core input parameter, sea ice thickness is indirectly
395 estimated by introducing snow depth correction terms and ice, snow, seawater density parameters (Studinger et al.,
396 2024; Bocquet et al., 2023; Dong et al., 2023; Chen et al., 2023) (Figure 6).

397 In terms of data preprocessing and multi-source collaboration the accuracy and robustness of freeboard estimation
398 have been improved by improving sea ice/seawater classification algorithms and local sea surface height determination
399  methods. The extensive integration of multi-source data such as CryoSat-2 radar altimetry and passive microwave
400  brightness temperature has significantly reduced the uncertainty of thickness inversion (Koo et al., 2021; Kacimi et
401 al., 2020). Multi-platform verification results show that the thickness inverted by ICESat-2 has good consistency with
402 IceBridge airborne observations SIMBA buoys and satellite products such as CryoSat-2 and HY-2B. Its systematic
403 bias is mainly caused by the differential penetration effect of lasers in thin ice areas. This phenomenon has been

404 quantitatively explained through pulse waveform analysis and radiative transfer models.
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Figure 6. Arctic Monthly Sea Ice Thickness from 2013 to 2023 Derived from CryoSat-2, ICESat-2, and an Improved

Snow Model

In terms of inversion method innovation the improved One-Layer Model (OLMi) has reduced the inversion

uncertainty of Antarctic sea ice thickness to approximately 0.3 meters by optimizing freeboard calculation and

reference sea surface determination (Xu et al., 2021). At the same time machine learning methods have been gradually

applied to feature recognition and parameter optimization related to thickness. For example random forest models can

realize automatic detection of detached fast ice with an identification accuracy of 99% (Koo et al., 2025). Current
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413 research further explores the application of deep learning in thickness inversion. By integrating multi-source remote
414  sensing features and physical constraints the thickness estimation accuracy under complex ice conditions is improved.
415 In terms of scientific application and mechanism cognition the thickness products inverted by ICESat-2 have
416 supported the drawing of spatial distribution maps of sea ice thickness in the Arctic and Antarctic (3—4 m in the Arctic
417 and 2-3 m in the Antarctic) revealing their seasonal and interannual change characteristics (Shen et al., 2021; Petty
418 et al., 2020). Research has further quantified the relative contributions of thermodynamic growth and dynamic
419  thickening of sea ice. It has been found that the scope of the Antarctic marginal ice zone is significantly underestimated
420 by approximately 7 times in traditional sea ice concentration algorithms highlighting the unique value of laser
421 altimetry in finely depicting sea ice-ocean interactions (Brouwer et al., 2022). These observations not only deepen
422 the understanding of sea ice change processes and climate effects but also provide a centimeter-level accuracy
423 elevation benchmark for global cryosphere remote sensing monitoring playing an irreplaceable role in Earth system
424 change research (Magruder et al., 2024).

425  3.2.3 Melt Pond Detection

426 The spatial distribution, depth, and geometric morphology of melt ponds are jointly regulated by ice type, surface
427 roughness, and melting stage (Dawson et al., 2022). In recent years, research using high-precision laser altimetry data
428 such as ICESat-2 has advanced notably in multi-source data collaboration, algorithm innovation, and parameter
429 inversion (Webster et al., 2022). Melt pond detection integrates ICESat-2’s photon penetration capability and multi-
430 spectral images’ spectral response characteristics, forming a complete observation chain from micro-scale water depth
431 inversion and macro-scale spatial mapping to climate effect analysis.

432 In terms of detection and inversion methods, the UMD-RDA algorithm based on ICESat-2 photon point clouds
433 has achieved centimeter-level resolution detection of sea ice microtopography, revealing structural differences
434 between multi-year and first-year ice. At the point scale, laser photons penetrate clear water, enabling water depth
435 inversion (accuracy ~0.1 m) via analyzing echo time differences between water surfaces and pond bottoms, with
436  accuracy affected by water turbidity, ice internal structure, and pond bottom morphology (Farrell et al., 2020). For
437 coverage and morphology monitoring, the improved normalized difference water index classification combined with
438 dual-surface elevation tracking algorithm realizes synergistic inversion of melt pond coverage (seasonal peak:
439 16%+6%) and depth (seasonal peak: 0.97 m+0.51 m). Additionally, the density-dimension dual-segmentation
440 algorithm achieves automatic 0.7 m-resolution detection and feature extraction of melt ponds, showing good
441 operational potential (Buckley et al., 2023; Tilling et al., 2018).

442 At the regional scale, multi-spectral images identify melt pond ranges via normalized difference water index and
443 spectral features; collaboration with ICESat-2 data enables acquisition of their three-dimensional morphology and
444 spatial distribution, as well as quantification of their impacts on ice surface albedo and ice-albedo feedback intensity
445 (Buckley et al., 2023). Due to their optical and thermodynamic properties falling between high-albedo ice and low-
446  albedo open water, melt ponds are often misclassified as leads or thin ice in traditional methods, affecting the reliability
447 of sea ice concentration, freeboard, and mass balance estimation (Dawson et al., 2022). To address this, current
448 research constructs multi-modal deep learning models integrating laser elevation, multi-spectral, and thermal infrared

449 data, classifying melt ponds as an independent land cover type.
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450 For multi-source data fusion and verification, combining spectral characteristics of high-resolution optical images
451 improves melt pond boundary identification accuracy, and medium-resolution optical data is found to systematically
452 underestimate melt pond coverage (Tilling et al., 2020). Meanwhile, cross-validation between CryoSat-2 and ICESat-
453 2 reveals radar signals’ elevation underestimation on melt pond surfaces due to complex scattering, highlighting the

454 complementary value of laser and radar observations (Dawson & Landy, 2023; Kwok et al., 2020c¢).
455 3.2.4 Snow Depth

456 Currently snow depth estimation has formed an inversion system integrating multi-sensor collaboration physical
457  mechanisms and data-driven methods. Three mainstream method systems have been developed with ICESat-2 as the
458 core (Yan et al., 2024; Glissenaar et al., 2021).

459 The first is the radar-laser collaborative inversion method. Based on synchronous observations from CryoSat-2
460 and ICESat-2 it utilizes the characteristic that radar signals can penetrate dry snow layers while laser signals are
461 mainly reflected from the snow layer surface. By accurately registering the observed elevations of the two the radar
462 penetration depth is directly estimated and then the snow depth is calculated (Kwok et al., 2018; Saha et al., 2025).
463 This method has been systematically verified in the Arctic sea ice area revealing the seasonal change of snow depth
464 from approximately 9 cm in October to 19 cm in April. The snow depth in multi-year ice areas is significantly higher
465 than that in first-year ice (Kwok et al., 2020a). However there is an underestimation of 2—4 c¢m in areas without open
466 leads. The inversion accuracy is jointly affected by ice surface roughness snow salinity and tide correction errors
467  (Fredensborg Hansen et al., 2024). Further integrating L-band passive microwave radiation can realize the joint
468 optimization inversion of sea ice thickness and snow depth effectively reducing the uncertainty caused by parameter
469 coupling (Zhou et al., 2018).

470 The second is the laser altimetry differential method. Based on photon elevation data such as ICESat-2
471 ATLO6/ATLOS the seasonal snow depth is directly extracted by differencing with high-precision snow-free DEM.
472 This method performs well in low-slope non-vegetated areas. The basin-scale snow depth inversion accuracy can
473 reach 0.18-0.33 m (RMSE) and it has a high correlation with measured snow depth in flat bare areas (R? up to 0.88)
474 (Besso et al., 2024; Deschamps-Berger et al., 2023; Feng et al., 2025). However in complex terrain forested areas
475 and glacier surfaces the inversion accuracy decreases significantly affected by terrain occlusion vegetation penetration
476 and seasonal evolution of ice surfaces (Enderlin et al., 2022).

477 The third is the multi-source data fusion and machine learning method. Snow depth estimation is performed by
478 integrating passive microwave optical remote sensing and reanalysis data combined with radiative transfer models or
479  machine learning algorithms. Passive microwave radiation information is incorporated into the modeling framework.
480 Its brightness temperature is sensitive to snow layer microphysical properties and can establish a correlation with snow
481 depth through radiative transfer models or machine learning methods (Saha et al., 2025). Optical remote sensing
482 combined with radiative transfer models can achieve high-precision snow depth inversion under suitable conditions.
483 The average difference between the simplified scheme and buoy-measured snow depth is only 4.1 cm (Wang et al.,
484 2023). Machine learning methods can effectively integrate passive microwave brightness temperature laser altimetry
485 features and other auxiliary data to realize daily snow depth estimation in the Arctic with an RMSE of about 9-10 cm

486 showing strong spatiotemporal modeling and generalization capabilities (Sun-Mack et al., 2025).
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487 Furthermore multi-source data fusion strategies adopt dynamic assimilation and feature fusion methods such as
488  observation updates based on time-series filtering and cross-modal feature extraction and mapping using neural
489  networks. They integrate complementary information from radar altimetry laser altimetry passive microwave and
490  reanalysis data effectively suppressing systematic biases caused by sensor limitations seasonal changes and spatial

491 heterogeneity (Zeng et al., 2018; Hu et al., 2022; Kacimi et al., 2022).

492 3.3 Holistic Changes of the Polar Environment and Multi-element

493 Collaborative Applications

494 Constructing a holistic understanding of polar cryosphere systematic changes is key to clarifying intra-sphere
495 and cross-sphere coupling mechanisms and linking local-regional-global cognition. As an initial forcing factor,
496  climate warming reshapes atmospheric circulation and ocean thermal structure, acting on cryosphere core components
497 to trigger chain responses that feed back to sphere interactions, forming feedback loops that amplify or regulate climate
498  signals (Zeng et al., 2018; Saha et al., 2025; Hu et al., 2022) (Figure 7). Examples include ice sheet meltwater
499 altering ocean stratification to regulate sea ice dynamics, and sea ice reduction with melt pond development lowering
500  albedo to drive atmospheric-sea ice-energy positive feedback. The cryosphere is also deeply intertwined with
501 ecological and atmospheric spheres (Quartly et al., 2019; Zhang et al., 2023). ICESat-2 provides key data for
502 analyzing multi-sphere and multi-element collaborative coupling mechanisms (Ham et al., 2019). It captures subtle
503 changes in ice sheets, sea ice, vegetation and other elements, supporting quantification of interaction intensity,

504  revelation of evolution laws and construction of holistic cognition.
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506 Figure 7. Schematic diagram of polar environmental elements. It illustrates the typical ice-ocean system
507  environmental elements in polar regions covering ice units such as ice sheets ice shelves glaciers and sea ice.
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508  3.3.1 Analysis of Ice Sheet/Ice Shelf-Ocean-Atmosphere Coupling Mechanisms

509 Under climate warming, rising polar temperatures intensify ice sheet surface melting, altering ice surface runoff
510 paths and reshaping the ice sheet’s internal hydrological cycle (Scambos et al., 2011; Smith et al., 2009). Increased
511 frequency and intensity of subglacial lake filling and drainage change lubrication conditions between the ice sheet
512 base and bedrock, reducing ice flow resistance and accelerating ice flow, forming a multi-element collaborative
513 response chain of temperature rise, enhanced hydrological activity, and dynamic strengthening (Alley et al., 2021).
514 Accelerated ice flow triggers further multi-element chain reactions. It increases ice shelf mass output to the ocean,
515 intensifying interactions between the ice shelf front and warm circumpolar currents and raising ice shelf basal erosion
516 rates. Meanwhile, continuous ice shelf thinning and structural damage cause inland grounding line migration,
517  weakening overall ice sheet stability (Siegfried and Fricker, 2018). This multi-element chain collaborative response
518 profoundly affects polar mass balance and global sea level change trends.

519 ICESat-2’s high-precision time-series data enables accurate quantification of multi-element collaborative effect
520 intensity and key correlation parameters. For instance, its ice flow velocity and subglacial lake water level data capture
521 temporal synchronization and spatial correspondence between Antarctic subglacial lake drainage events and sudden
522 ice flow acceleration, clarifying subglacial hydrological processes’ regulatory effect on ice sheet dynamics (Herzfeld
523 et al., 2023).

524 Tracking Greenland Ice Sheet melt pond coverage, surface albedo, and melting rate changes reveals that a 10%
525 increase in melt pond coverage reduces surface albedo by 8%-12%, boosting surface melting rate by 15%-20%
526 (Niehaus et al., 2025; Painter et al., 2016). Additionally, ICESat-2 ice sheet elevation data separates contributions
527 of dynamic thinning and surface accumulation/ablation processes, enabling accurate attribution of ice sheet change

528 mechanisms and clarifying their contribution to global sea level rise (Khan et al., 2022; Brunt et al., 2019).
529 3.3.2 Analysis of Sea Ice-Ocean-Atmosphere Coupling Mechanisms

530 As akey interface for polar cryosphere-ocean-atmosphere interactions, sea ice drives multi-element collaborative
531 evolution via energy exchange regulation and material cycle coupling. In terms of energy exchange, polar warming-
532 induced rapid snow melting and extensive ice surface melt ponds lower ice surface albedo. This enhances polar solar
533 radiation absorption efficiency, strengthens sensible heat, latent heat and radiative energy exchange between sea and
534 atmosphere, and accelerates sea ice thermodynamic ablation (Perovich & Polashenski, 2012). Meanwhile, increased
535 sea ice fragmentation and large-scale lead development expand direct ocean-atmosphere contact area, amplifying
536 energy exchange intensity. This forms a positive feedback cycle of warming, sea ice ablation and enhanced energy
537 exchange, promoting atmospheric-sea ice-energy collaborative intensification and polar warming (Curry et al., 1995;
538 Marcq et al., 2012).

539 In material cycle, high-salinity brine released during sea ice growth strengthens ocean vertical mixing, boosting
540 deep warm water upward transport that feeds back to sea ice basal erosion. Abundant freshwater from sea ice ablation
541 alters upper ocean stratification stability, inhibiting deep warm water upward transport and forming negative feedback
542 on sea ice melting—together maintaining the dynamic balance of the polar ocean-sea ice system (Deems et al., 2013;
543 Painter et al., 2016). Additionally, sea ice has close cross-component connections with ice sheets and ice shelves,

544 highlighting polar environment holism. Ocean surface temperature and salinity changes from sea ice ablation affect
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545 ice shelf front current distribution and regulate ice shelf basal erosion rate. Freshwater from ice sheet and ice shelf
546 melting alters sea ice growth conditions, inhibiting its formation and development, forming an ice sheet-ice shelf-sea
547 ice-ocean multi-element cross-component collaborative evolution pattern (Frei et al., 2012).

548 ICESat-2 data supports systematic analysis of seasonal and interannual dynamic characteristics of sea ice growth
549 and ablation, as well as their collaborative correlations with atmospheric temperature, ocean currents and other
550 elements (Tilling et al., 2020; Buckley et al., 2023). Combined with surface albedo, snow depth and other auxiliary
551 parameters, it enables ice surface energy balance closure calculation and improves polar energy-sea ice-atmosphere
552 multi-element cycle models. Freshwater release flux estimated from high-resolution sea ice thickness data accurately
553 characterizes the impact of ice melting on ocean surface salinity, clarifying polar freshwater-ocean-thermohaline
554  circulation collaborative mechanisms.

555 ICESat-2 along-track thickness information allows accurate evaluation of seasonal and interannual sea ice mass
556  balance changes at regional and basin scales. Combined with sea ice movement trajectory data, it accounts for ice
557  mass budget in specific sea areas (Herzfeld et al., 2023). Research results on energy and material fluxes based on its
558 high-precision data provide key parameterization scheme verification for ocean-ice-atmosphere coupling models,

559 improving model reliability in simulating polar multi-element collaborative evolution (Dawson et al., 2018).
560  3.3.3 Analysis of Polar Cryosphere-Ecology-Atmosphere Coupling Mechanisms

561 Holistic polar environment changes manifest not only in cryosphere-ocean-atmosphere core interactions but also
562 in cryosphere-ecology-atmosphere multi-element collaborative evolution. In tundra ecosystem research, ICESat-2
563 vegetation canopy height data is a key structural parameter linked to tundra carbon-nitrogen cycle efficiency,
564  permafrost thermal stability and habitat quality, providing critical initial data and verification basis for building
565 cryosphere-ecology-permafrost multi-element coupling models (Zhang et al., 2025).

566 Meanwhile, ICESat-2 snow depth and canopy height data facilitate accurate analysis of their interaction
567  mechanisms. For instance, tall shrubs capture and retain snow, altering winter soil thermal insulation, which in turn
568 affects permafrost thermal state and melting depth. This provides a new perspective for understanding vegetation-
569 snow-soil-permafrost cascading collaborative effects and revealing polar ecology-cryosphere evolution laws (Bisson
570 et al., 2021).

571 In polar atmospheric process research, ICESat-2 derived atmospheric parameter data fills gaps in traditional
572 passive remote sensing for refined polar boundary layer vertical structure observation. Analyzing photon vertical
573 distribution in atmospheric scattering layers enables accurate inversion of aerosol extinction coefficient profiles and
574 cloud vertical structure parameters, clarifying vertical transport paths and distribution laws of aerosols, water vapor
575 and clouds in the polar boundary layer (Urban et al., 2008; Zhang et al., 2023). This quantifies their contribution to
576 cloud condensation nuclei formation and regulation of surface net radiation. Measured data-based vertical process
577 constraints make up for climate model deficiencies in simulating polar cloud-radiation-aerosol collaborative forcing,

578  improving model accuracy in simulating polar cryosphere-atmosphere coupling.

20
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579 4. Key Uncertainties and Technical Breakthrough Paths in ICESat-2
sso  Cryosphere Observations
581 Early algorithms have improved accuracy by addressing photon signal processing refraction correction and multi-
582 source data fusion. However breakthroughs in addressing snow depth spatiotemporal heterogeneity complex terrain
583 interference and observation system limitations remain insufficient. This chapter systematically sorts out the initial
584 resolution of dominant uncertainties through ICESat-2 algorithm evolution. It deeply traces the core uncertainty
585 sources in snow depth estimation complex terrain observation and observation system limitations. It clarifies future
586  technical development directions providing theoretical and technical support for analyzing the mechanisms of polar
587 system change.
588 4.1 ICESat-2 Algorithm Evolution Initial Resolution of Uncertainties and
589 Practical Achievements
590  4.1.1 Core Algorithm Improvements in the Academic Community
591 Table 2 Core Algorithm Innovations in the Academic Community
Associated Uncertainty Issues Improved Algorithms Optimization Effects and References
Products Conclusions
ATLO7 Cloud attenuation reduces Construct an automatic sea Version R003 only uses Kwok et al,
photon rate leading to surface type classification specular lead data. The 2021
misclassification of dark algorithm based on multi- coverage rate decreases by
leads. This causes the parameters such as photon 10-20% but the average
reference value of sea surface rate distribution width and freeboard increases by 0—4
height to be too high and background noise. cm.
freeboard estimation to be too
low.
ATLI10 Snow spatiotemporal NESOSIM vl.1 introduces The upgrade of ATLI10 Petty et al.,
NESOSIM heterogeneity and simplified atmospheric blowing snow  rel003~005 freeboard 2023
vl.l model assumptions lead to loss terms ERAS snowfall improves thickness
insufficient sea ice thickness forcing calibrated by inversion accuracy. It
inversion accuracy. CloudSat and recalibrates enhances consistency with
with OIB snow depth data. CryoSat-2 results.
ATLO3 Significant noise photon Propose an Adaptive It outperforms traditional Liu et al,
ATLO7 interference. It is difficult to  Clustering and Kernel Density  algorithms under different 2023
accurately extract sea ice Estimation method to  signal-to-noise ratio
signal photons affecting the accurately separate noise and conditions. The accuracy
accuracy of sea ice change sea ice signal photons from and F-score reach 0.97. The
monitoring. photon cloud data. inverted height has a
correlation R > 0.97 with
ATM airborne data.
ATLAS Deviations between model A  refraction  correction Realize photon-level 3D Zhang et al.,
Underwater assumptions ~ and  actual method based on ray tracing coordinate compensation. 2022
terrain- scenarios lead to systematic and JONSWAP wave Overcome the limitation of
related displacement errors spectrum. Reconstruct the vertical correction. Improve
products wave profile to calculate the bathymetric accuracy in

air/sea surface intersection of
seabed photons.

shallow water areas and
fluctuating  sea
surface conditions

under

21
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592 Aiming at observational bottlenecks such as sea ice freeboard estimation bias and insufficient bathymetric
593 accuracy in early ICESat-2 data products caused by cloud interference noise photons and model simplification the
594 academic community has carried out algorithm innovations focusing on core links such as signal processing and model
595 adaptation (Chen et al., 2022). Through the implementation and application transformation of technical schemes it
596 has helped continuously improve the accuracy of polar environmental observation data providing key support for

597 subsequent product iterations (Table 2).

598  4.1.2 Multi-version Iteration of Official Algorithms

599 Official version iteration integrates academic algorithm innovations into global optimized products, translating
600 technical breakthroughs into large-scale applications.

601 In the elevation product iteration from V03 to V07, the official launched multi-dimensional collaborative
602  upgrades focusing on enhancing data absolute accuracy and reliability (Kwok et al., 2022). On one hand, it integrated
603 high-precision tidal parameters, modern reference frameworks and high-resolution DEM, while updating atmospheric
604 and oceanic correction models to systematically address comprehensive uncertainties from terrain and atmospheric
605 interference, absorbing academic technical insights on complex scene correction. On the other hand, it upgraded the
606 quality control system, expanding control dimensions from basic engineering markers to photon-level parameters,
607 adding a dynamic uncertainty assessment module to strengthen signal extraction in high signal-to-noise ratio
608 environments. Supplementary core indicators such as geometric parameters and photon weights improved product
609  data dimensions and application flexibility, providing standardized data support for subsequent uncertainty tracing
610 and in-depth analysis (Bagnardi et al., 2021).

611 In the sea ice product iteration from V04 to V06, the official took reference benchmark unification as the core,
612 linking algorithm correction, quality control upgrades and function expansion to achieve global performance
613 optimization (Kwok et al., 2021b). To address freeboard inversion bias caused by inconsistent early tidal benchmarks,
614 it built a unified and reliable geometric foundation through full-link tidal benchmark unification and parameter
615 transmission, laying a standardized premise for centimeter-level freeboard inversion. Absorbing academic automated
616 processing experience, it upgraded quality control from traditional manual inspection to an automated multi-level
617 filtering system, which accurately identifies and removes invalid and abnormal data by combining multi-dimensional
618 quality markers and auxiliary data to ensure product purity. It also corrected sea ice segment length calculation
619 methods, calibrated first photon bias, applied dynamic atmospheric correction models to improve inversion accuracy,
620 expanded product parameter dimensions, deepened integration with external remote sensing data, and enhanced
621 product adaptability in climatology and air-sea interaction research (Neumann et al., 2022), forming a standardized

622 and highly compatible observation product system.

623 4.2 Tracing Core Uncertainties in ICESat-2 Cryosphere Observations

624 Although early algorithm iterations have resolved some dominant uncertainties residual errors and potential

625 interference still exist in snow depth estimation complex terrain observation and observation system limitations.
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626  4.2.1 Uncertainty Sources in Snow Depth Estimation

627 Snow depth is a core parameter for sea ice thickness inversion and ice sheet mass balance assessment, with its
628 uncertainties directly affecting downstream results. These uncertainties manifest in three dimensions.

629 First, interference from snow’s spatiotemporal heterogeneity (Petty et al., 2023). Polar snow forms complex
630 layered structures and dynamic density distributions under blowing snow, wind-driven accumulation and snowmelt
631 refreezing. Its physical characteristics vary by region and season, limiting the universality of single models. Early
632 models incorporated blowing snow loss terms but failed to fully characterize spatiotemporal heterogeneity, with local
633 snow depth fluctuations and compaction-induced photon interaction changes during snowmelt causing estimation
634 biases.

635 Second, observation system signal recognition errors (Liu et al., 2023). Photon signals are prone to cloud, aerosol
636 scattering and background noise interference, with unresolved confusion in snow-ice and snow-atmosphere interface
637 classification. Cloud attenuation may misclassify snow surface photons as ice surface ones, underestimating snow
638 depth, while high-reflectivity snow amplifies noise and impairs effective photon extraction—driving continuous
639 optimization of denoising algorithms.

640 Third, deviations between model assumptions and actual scenarios (Zhang et al., 2022). Traditional snow depth
641 inversion relies on hydrostatic equilibrium or empirical models, ignoring processes like spatiotemporal snowfall
642 differences. Most parameters depend on regional calibration data, lacking global applicability. Even with optimized
643 density parameters, fixed assumptions conflict with actual snow density, and low snowfall data spatial resolution leads

644  to inaccurate accumulation estimation and systematic biases.
645  4.2.2 Uncertainty Sources in Complex Terrain Observations

646 Complex terrains such as ice sheet margins, ice shelf regions with dense crevasses, and mountain glaciers have
647  become high-uncertainty areas due to their special geometric characteristics and poor compatibility with observation
648 systems. Their impacts run through the entire processes of signal reception and data processing:

649 On the one hand, topographic geometric characteristics induce multiple interferences (Li et al., 2024). Steep
650  terrain causes laser spot occlusion, forming observational blind spots. Complex structures trigger multi-path reflection
651 of photons, generating spurious signals that interfere with the extraction of true elevation—this is also the core
652 background for the optimization of the AV-OPTICS model for near-seabed terrain. Meanwhile, the slope effect alters
653 the spot projection area; when the slope is large, signals disperse, reducing observation resolution and accuracy. The
654 narrow structures and steep sidewalls in areas with dense crevasses further exacerbate this problem.

655 On the other hand, there is a mismatch between observation systems and terrain resolution (Kwok et al., 2023).
656 Inherent limitations in the along-track sampling interval and spot size of ICESat-2 prevent accurate coverage of small-
657  scale, highly heterogeneous terrains, leading to the loss of topographic details. Moreover, atmospheric correction
658 models for complex terrains are mostly based on flat surface assumptions, ignoring the impact of topographic relief
659 on atmospheric scattering and refraction. Insufficient correction further amplifies uncertainties, which is also an

660 important reason for the continuous optimization of the atmospheric correction model in the ATLO3 version.
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661  4.2.3 Uncertainty Sources in Observation System Limitations

662 Observation system inherent limitations and on-orbit interference are core uncertainty sources in cryosphere
663 observations, manifesting mainly in three dimensions: payload performance, on-orbit operation, and observation
664 coverage.

665 First, inherent limitations of payload performance. The photon-counting lidar payload has technical shortcomings,
666  with weak ability to capture faint signals. On low-albedo ice-snow surfaces, thin snow cover or shadowed areas,
667 signals are easily attenuated, making effective extraction difficult and causing inversion errors (Neumann et al., 2019).
668 Fixed laser spot size and emission frequency limit spatial sampling density, failing to adapt to small-scale terrain and
669 fine snow structure observation needs, restricting accuracy improvement. Additionally, payload measurement noise
670 and systematic bias slightly affect photon positioning and elevation inversion, becoming inherent uncertainty factors.
671 Second, impacts of on-orbit operation interference. Satellite attitude jitter, orbit deviation and other dynamic
672 interferences are unavoidable, shifting laser irradiation positions from preset paths and indirectly reducing photon
673 positioning accuracy (Magruder et al., 2021). Such deviations accumulate in complex terrain and large-scale
674 continuous observations, amplifying overall errors. Meanwhile, ionospheric and atmospheric disturbances alter laser
675 signal propagation paths, interfering with signal reception and analysis and increasing data processing uncertainty.
676 Third, limitations of observation coverage and timeliness. Constrained by observation perspective, scanning
677 range and orbit design, large-scale cryosphere observations have time intervals, making high-frequency dynamic
678 monitoring difficult. Short-time scale processes like snow ablation, sea ice deformation and glacier movement are
679 easily missed, leading to incomplete capture of cryosphere changes (Markus et al., 2017). Moreover, single-payload
680 observation mode poorly adapts to complex weather; heavy clouds, snowfall and other conditions degrade data quality

681 or even cause interruptions, forming blind spots and exacerbating uncertainties.

682 4.3 Technical Paths and Future Directions for ICESat-2 Cryosphere
683 Observations

684  4.3.1 In-depth Breakthrough Paths for Uncertainties in Snow Depth Estimation

685 Build on early snow depth models and signal processing algorithms, advancing collaboration across signal
686  recognition, model mechanism and data fusion to address snow heterogeneity, signal interference and model deviation.
687 At the signal processing level, upgrade adaptive photon classification and denoising technologies (Liu et al.,
688 2023). Integrate deep learning semantic segmentation, random forests and other technologies into existing algorithms
689 to construct a multi-feature classification model based on photon intensity, spatial distribution and temporal changes,
690 distinguishing snow surface, ice surface photons and noise accurately. Develop dynamic threshold algorithms that
691 adjust parameters by regional signal-to-noise ratio to reduce misfiltering of effective snow photons, and use
692 convolutional neural networks to extract spatial texture features for complex snow scenarios.

693 At the model optimization level, construct a multi-process dynamic snow model (Petty et al., 2023b). Enhance
694  parameterized characterization of atmospheric blowing snow and snowmelt refreezing processes based on existing

695 models. Integrate satellite snow vertical structure data to optimize spatiotemporal dynamic schemes for snow density,
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696  replacing fixed density assumptions. Establish regional and seasonal calibration systems by fusing high-resolution
697 snowfall data and airborne measurements to improve global applicability and mitigate biases from snow heterogeneity.
698 At the multi-source fusion level, build a collaborative observation system (Zhang et al., 2022b). Combine high-
699  precision laser altimetry data, wide-coverage microwave remote sensing data and ground observation data. Adopt data
700 assimilation technology to achieve high-precision, wide-coverage snow depth inversion, leveraging multi-source data
701 complementarity to reduce single-observation uncertainty and overcome limitations of early single data sources.

702 4.3.2 In-depth Breakthrough Paths for Uncertainties in Complex Terrain Observation

703 Address terrain occlusion, multi-path reflection and resolution mismatch in small or complex terrain observation
704 through observation strategies, signal processing and platform collaboration.

705 At the observation strategy level, adaptively optimize satellite observation parameters (Kwok et al., 2023). Adopt
706 encrypted orbits in key regions to reduce along-track sampling intervals, optimize laser spot size and emission
707 frequency to improve small-scale terrain resolution. Develop dynamic observation modes that adjust emission
708 parameters based on terrain slope, roughness and other prior information to mitigate occlusion and multi-path
709  reflection impacts at the source.

710 At the signal processing level, develop terrain-adaptive correction algorithms (Li et al., 2024). Integrate high-
711 resolution DEM prior information into existing models to identify occluded areas and multi-path reflection risk zones,
712 performing targeted photon signal correction. Introduce slope correction models to adjust photon elevation calculation
713 methods and eliminate slope-induced systematic biases. Use ray tracing to simulate photon propagation paths, correct
714 false signals in steep terrain, and develop morphological clustering algorithms to extract crack wall true elevation
715 accurately.

716 At the platform collaboration level, construct a three-dimensional observation network (Bagnardi et al., 2021).
717 Integrate laser altimetry data with high-resolution optical and SAR satellite macro-structural information to identify
718 blind spots and interference sources. Utilize UAVs and airborne lidar for close-range high-precision observations,
719  providing correction samples for laser data and forming an air-space-ground collaborative system to resolve

720 uncertainties.
721 4.3.3 Targeted Breakthrough Paths for Observation System Limitations

722 Address payload inherent limitations, on-orbit interference and resolution mismatch through payload technology
723 upgrades, on-orbit control optimization and observation mode adjustment, systematically improving data accuracy.
724 Upgrade payload technology to break hardware bottlenecks (Kwok et al., 2022). Enhance weak signal detection
725 sensitivity for low-albedo and thin snow scenarios, reduce signal attenuation errors. Upgrade laser emission and
726 reception modules to shrink spot size and increase frequency while maintaining observation range, improving spatial
727 sampling density for small-scale terrain. Integrate high-precision attitude measurement and correction modules to
728 monitor and correct on-orbit attitude jitter and orbit deviation in real time, enhancing data reliability.

729 Optimize on-orbit control and preprocessing. Build a collaborative processing system via intelligent control and
730 edge computing, adopting intelligent on-orbit control algorithms to adjust observation angles and paths based on snow
731 type and terrain complexity. Conduct high-frequency repeated observations in key regions to compensate for large-

732 scale observation time intervals and reduce omission of short-scale cryosphere changes (Magruder et al., 2024).
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733 Strengthen on-orbit preprocessing capabilities to complete weak signal enhancement, outlier removal and uncertainty
734 prediction in advance, prioritizing high-value data transmission to reduce ground processing pressure.

735 Adjust observation modes through main-auxiliary payload linkage. Combine optimized lidar with microwave
736  radiometers and hyperspectral imagers to leverage multi-payload complementarity (Magruder et al., 2021). Use
737 microwave radiometers' all-weather advantages for cloud-covered scenario calibration, and hyperspectral imagers'
738 spectral recognition capabilities to improve photon classification accuracy in weak signal scenarios, alleviating system

739 limitations systematically.

740  4.3.4 Future Direction Multi-dimensional Technology Fusion Empowers Accurate

741 Cryosphere Observations

742 Advance cryosphere observation capabilities through deep coupling of intelligent data processing, multi-source
743 remote sensing fusion, single-satellite multi-payload integration and on-satellite-off-satellite collaborative processing,
744 building a high-precision, full-dimension, all-weather and intelligent observation system.

745 Develop intelligent data processing based on deep learning and reinforcement learning, building end-to-end
746  photon signal processing models adaptable to snow cover, complex terrain and fluctuating sea surfaces (Yang et al.,
747 2025). Complete signal classification, noise removal and outlier elimination without preset parameters, adopting
748 scenario-specific strategies—using background rate parameters for non-polar night scenarios and solar radiation-
749 independent photon characteristics for polar nights. Integrate physical mechanisms and data-driven hybrid modeling,
750 embedding snow evolution and terrain undulation processes into the framework to upgrade from phenomenon fitting
751 to mechanism explanation.

752 Promote multi-source remote sensing fusion by integrating optimized laser data with SAR, optical and gravity
753 satellite observations (Liu et al., 2025). Use data assimilation for collaborative inversion of elevation, humidity,
754 density and mass balance. Leverage optical satellites' macro texture recognition and SAR satellites' all-weather
755 advantages to locate blind spots and correct multi-path reflection false signals, taking high-precision elevation data as
756  the core reference to generate high-resolution application products for practical scenarios, forming an algorithm
757 optimization-data complementarity-application implementation closed loop.

758 Realize single-satellite multi-payload integration in upgraded satellite models, integrating lidar, hyperspectral
759 imagers and microwave radiometers for simultaneous acquisition of elevation, spectral characteristics, thermal
760  radiation intensity and humidity (Pang et al., 2023). Reduce spatiotemporal registration errors in multi-platform
761 fusion, and reserve expansion interfaces for flexible addition of interferometric measurement and thermal infrared
762 detection payloads to adapt to environmental changes and application demands.

763 Advance on-satellite-off-satellite collaboration: optimize on-satellite preprocessing to extract core parameters
764 such as sea ice thickness and concentration, reducing invalid data transmission; integrate off-satellite SAR ice type
765 identification, optical melt pond distribution and meteorological data to generate 100-meter high-resolution navigation
766  risk assessment maps (Zhao et al., 2024). Construct intelligent route planning systems based on multi-dimensional
767 data and ship parameters, and assimilate sea ice dynamic models with ocean current and atmospheric circulation

768 predictions for short-term sea ice change early warning (Ricker et al., 2023). Use long-term time-series data for
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769 seasonal waterway prediction and fleet deployment, and dynamically monitor port-surrounding sea ice to assess

770  infrastructure damage risks (Petty et al., 2021).

771 5. Summary and Outlook

772 This review takes laser altimetry satellite technology as the core anchor, systematically collates its technical
773 characteristics and polar environmental application progress, and constructs a problem-driven analytical framework
774 around three core scientific questions. It combs through technical evolution context, polar environmental parameter
775  retrieval, observational uncertainties and corresponding technical breakthrough paths in a holistic manner, integrating
776 scattered research findings in the field, refining core operational laws, and addressing the fragmented adaptation
777  dilemma between existing technologies and polar application scenarios.

778 Regarding the mechanistic connection between technical innovations and inversion bottlenecks, this review
779 clarifies the adaptive logic between advanced laser altimetry technologies and cryospheric parameter retrieval
780 demands, elaborates on how multi-beam configurations compensate for spatial coverage deficiencies of single-beam
781 systems and the inherent advantages of photon-counting technology in polar weak-signal environments. It constructs
782 a complete technical chain spanning observation technology, data products and cryospheric adaptation, integrating
783 remote sensing technology with cryospheric scientific questions via a clear paradigm.

784 Centering on the integration of observational results and systematic cognition construction, this review clarifies
785 the core logic of building holistic cryospheric cognition via satellite data. It systematically integrates insights into
786 polar ice sheet and ice shelf stability, as well as multi-dimensional sea ice parameter retrieval, to construct a holistic
787 scientific understanding of the systematic change laws of the polar environment.

788 For key uncertainty sources and resolution paths, this review accurately traces core error sources in snow depth
789 estimation, complex terrain observation and system limitations, and establishes a three-dimensional breakthrough
790 system integrating signal processing optimization, model refinement and multi-source collaboration, while proposing
791 actionable uncertainty control schemes. These findings provide practical support for improving satellite data reliability
792 and managing observational uncertainties.

793 Looking ahead, based on the sorted research context and technical bottlenecks, the next generation of laser
794 altimetry satellites should rely on the synergy of four core technologies: intelligent data processing, multi-source
795 remote sensing fusion, single-satellite multi-payload integration, and on-satellite-off-satellite collaborative processing.
796 This synergy will break through current limitations in snow and subglacial terrain detection, realize polar multi-
797  parameter simultaneous observation, hourly revisit and global coverage, and support global climate change response
798 and Arctic navigation safety, advancing cryospheric observation towards higher precision, full dimensionality and

799 deeper mechanistic understanding.
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