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Abstract： 11 

ICESat-2's advanced topographic laser altimeter system provides unprecedented technical support for polar 12 

environmental research including ice sheet mass balance detection and multi-dimensional sea ice parameter retrieval. 13 

However, the satellite's technical innovations and application advantages for polar environments still lack systematic 14 

elaboration, its high-precision data have not been effectively integrated from single-factor analysis to multi-process 15 

collaborative cognition, and the main sources of uncertainty as well as future technical breakthrough paths also remain 16 

unclear. To address these gaps, this review explores three core scientific questions. First, how to accurately solve the 17 

inversion challenges of key parameters through ICESat-2's technical innovations. Second, how to apply its high-18 

precision inversion results to deepen the understanding of multi-sphere and multi-element interaction processes in 19 

polar regions and further reveal their systematic change laws. Third, what are the main uncertainties in ICESat-2's 20 

polar monitoring applications and what targeted technical paths can achieve breakthroughs. By systematically 21 

organizing relevant research progress, this review clarifies the inherent connection between technical innovations and 22 

polar parameter inversion, and ultimately provides solid support for the construction of cross-element integrated 23 

scientific cognition of polar environments. 24 
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1 Introduction 27 

As a core component of the global climate system, the cryosphere’s dynamic changes are synergistically 28 

regulated by complex radiative and non-radiative interactions between the atmosphere, ocean, and ice (Goosse et al., 29 

2018; Ding et al., 2021). Polar regions, as the central part of the cryosphere, have witnessed a series of significant 30 

changes in recent decades due to intensified global warming, including rapid Arctic sea ice shrinkage, accelerated 31 

Greenland Ice Sheet ablation, and permafrost degradation (Jahn et al, 2024; Michael et al., 2021; Liu et al., 2019; 32 

Qu et al., 2022). Acting as a key regulator of polar energy balance, sea ice has a surface albedo of 80%–90%, more 33 

than 10 times that of open oceans. Its retreat significantly enhances the ocean’s capacity to absorb solar radiation, 34 

further amplifying polar warming (Serreze and Stroeve, 2015). Meanwhile, the massive freshwater stored in polar 35 

ice sheets, if fully melted, would cause a substantial rise in global sea levels, posing severe threats to coastal 36 

ecosystems and human societies (Pritchard et al., 2012). Therefore, accurately capturing changes in key polar 37 

environmental parameters and clarifying their systematic evolution laws are core prerequisites for understanding 38 

global climate change mechanisms and improving climate prediction capabilities. 39 

Remote sensing serves as the primary means for large-scale, long-term polar monitoring, but traditional remote 40 

sensing technologies have inherent limitations in practice. ICESat-1’s (Ice, Cloud, and land Elevation Satellite) single-41 

beam observation design struggled to effectively distinguish slope effects from true elevation changes, leading to large 42 

errors in ice sheet mass balance inversion (Neuenschwander et al., 2008; Urban et al., 2005). CryoSat-2’s radar 43 

signals are susceptible to snow penetration, significantly restricting the accuracy of sea ice thickness retrieval (Howat 44 

et al., 2008; Kwok et al., 2009). Launched in 2018, ICESat-2 with the advanced topographic laser altimeter system 45 

(ATLAS) overcomes traditional observational bottlenecks via revolutionary photon-counting technology, elevating 46 

key cryospheric parameter monitoring accuracy to the centimeter level and providing a novel technical approach for 47 

precise cryospheric monitoring (Markus et al., 2017). 48 

Despite the breakthroughs brought by ICESat-2 to cryosphere research, a systematic review of existing studies 49 

reveals several key scientific gaps and weaknesses. Specifically, while technical parameters such as the six-beam 50 

spatial distribution of the ATLAS system have been explicitly disclosed, and related studies have developed 51 

algorithms based on these technical characteristics and verified their accuracy improvement effects (Liu et al., 2022), 52 

most of these studies merely present inversion results without systematically elaborating on ICESat-2’s technical 53 

design and application advantages for polar environmental observations. 54 

Secondly, existing research mainly focuses on single-factor or local-scale observational analyses, such as ice 55 

sheet mass balance (Brunt et al., 2021), ice shelf stability analysis (Li et al., 2020; Li et al., 2022), lead detection 56 

(Petty et al., 2021), and sea ice thickness changes. It fails to integrate the aforementioned high-precision observational 57 

data to deepen the scientific understanding of multi-sphere and multi-factor interaction processes in polar regions, 58 

thereby revealing the systematic change laws of the polar environment. Finally, although dominant uncertainties in 59 

ICESat-2’s cryosphere observations have been initially identified and targeted resolved (Petty et al., 2023; Kwok et 60 

al., 2021), core uncertainties such as snow depth estimation biases, complex terrain observation interference, and 61 

inherent limitations of the observation system lack systematic classification and in-depth analysis of their combined 62 
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impact mechanisms. This restricts the reliability verification of ICESat-2’s observational results and forms a 63 

bottleneck for the technological development of the next generation of laser altimetry satellites. 64 

To address the above scientific gaps, this review will systematically explore three aspects: (1) By systematically 65 

reviewing ICESat-2’s core technical innovations, multi-level data product system, and adaptive design for extreme 66 

polar environments, deeply elaborate on its technical mechanisms for solving inversion challenges of key polar 67 

environmental parameters such as ice sheet mass balance and sea ice thickness. (2) By systematically integrating the 68 

understanding of polar ice sheet/ice shelf stability and multi-dimensional sea ice parameter retrieval from ICESat-2, 69 

construct a holistic scientific cognition of the systematic change laws of the polar environment. (3) By systematically 70 

clarifying the resolution of dominant observational uncertainties by ICESat-2 and the main remaining uncertainty 71 

sources, deeply analyze the impact mechanisms of each source, and further clarify feasible technical paths for targeted 72 

breakthroughs in the future. Notably, although ICESat-2 has also demonstrated significant value in ecological fields 73 

such as large-scale biomass estimation and global carbon stock assessment (Lefsky et al., 2005; Neumann et al., 74 

2019; Yu et al., 2024; Zhu et al., 2020), to maintain the focus of the research theme, this review will only 75 

systematically summarize its progress in cryosphere science, with a particular emphasis on polar environments. 76 

2 ICESat-2/ATLAS Observation System and Its Mechanistic Link to 77 

Polar Environmental Parameter Retrieval 78 

The core technical innovations of ATLAS provide basic support for the retrieval of key polar parameters by 79 

establishing high-precision and high-density observational capabilities; the multi-level data product system realizes 80 

the effective conversion of raw observational data into key polar environmental parameters through targeted 81 

preprocessing and refined processing procedures; the adaptive design of the observation system for polar 82 

environmental characteristics ensures the reliability and stability of the retrieval process in different scenarios. The 83 

integration of these three aspects enables ICESat-2 to significantly improve the accuracy and applicability of polar 84 

environmental parameter retrieval. 85 

2.1 Historical Evolution of Technical Innovations in the ICESat Series 86 

In cryospheric change research, the ICESat mission launched by NASA in 2003 has provided crucial 87 

observational data. Through laser altimetry technology, the satellite played a central role in assessing the mass balance 88 

of mountain glaciers and polar ice sheets (Gardner et al., 2011; Urban et al., 2008). Based on its elevation data, 89 

researchers first achieved spatialized estimates of the mass balance of glaciers in the Hindu Kush–Karakoram–90 

Himalaya region (Kääb et al., 2012), global peripheral glaciers, and the Greenland Ice Sheet (Bolch et al., 2013). 91 

Additionally, ICESat was successfully applied to the remote sensing retrieval of sea ice freeboard, thickness, and 92 

volume (Farrell et al., 2009; Connor et al., 2013). However, despite its remarkable achievements, ICESat’s single-93 

beam observation mode had obvious limitations in analyzing complex cryospheric processes: particularly in regions 94 

with rugged terrain, the sensor struggled to effectively distinguish slope effects from true elevation changes, requiring 95 

multi-period observational data for signal separation (Moholdt et al., 2010; Abdalati et al., 2010). Meanwhile, the 96 

low spatial resolution of the single beam limited its ability to capture microfeatures such as sea ice cracks and melt 97 
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ponds, restricting the accuracy of sea ice type identification and thickness retrieval. Coupled with laser lifespan issues, 98 

its scientific data collection ceased in 2009. 99 

Building on this, NASA launched the next-generation ICESat-2 satellite on September 15, 2018, which officially 100 

initiated scientific observation missions on October 14 of the same year. Compared with the previous mission, ICESat-101 

2 effectively addressed the limitations of ICESat’s single beam in spatial resolution and terrain slope measurement by 102 

equipping the ATLAS and a six-beam observation configuration (Howat et al., 2008), significantly enhancing the 103 

high-precision monitoring capabilities for glaciers, ice sheets, and sea ice (Magruder et al., 2020). Its observational 104 

technical characteristics are reflected in three core dimensions: observational geometry design, detection technology 105 

innovation, and positioning/coverage accuracy (Figure 1). 106 

 107 

Figure 1. Schematic diagrams of the satellite sampling configurations for ICESat and ICESat-2 108 

In terms of observational geometry design, the ATLAS altimeter onboard ICESat-2 constructs a high-density 3D 109 

observation network through an innovative configuration of three pairs of beams and yaw angle optimizatio, whose 110 

core technical design logic can be summarized as multi-beam collaborative coverage and dynamic energy adaptation. 111 

Specifically, unlike the first-generation ICESat’s single-beam along-track sampling mode, ATLAS splits a single laser 112 

beam into three pairs of left, nadir, and right beams using diffractive optical elements. Combined with a 2° yaw angle 113 

design, the strong and weak energy beams within the same beam pair form a cross-track spacing of approximately 90 114 

meters. Ultimately, the six ground tracks have an along-track spacing of about 3 kilometers and a total cross-track 115 

width of approximately 6 kilometers, achieving a systematic expansion of the observational coverage (Neumann et 116 

al., 2019) (Figure 2). Meanwhile, the system adopts a parameter combination of 0.7-meter along-track sampling 117 

interval and 11-meter laser footprint diameter to enhance the ability to capture microtopographic features; the 4:1 118 

energy ratio design of strong and weak beams forms a differentiated adaptation mode for different surface reflectivity 119 
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characteristics—high-energy strong beams meet the signal capture needs of low-reflectivity regions, while low-energy 120 

weak beams effectively avoid signal saturation in high-reflectivity regions (Kwok et al., 2022). 121 

 122 

Figure 2. The ICESat-2 observational geometry: multi-beam configuration, laser footprints, and ground tracks. 123 

In terms of detection technology innovation, ATLAS’s photon-counting lidar technology breaks through the 124 

limitations of traditional pulse waveform detection, enabling accurate capture of weak signals. Unlike the first-125 

generation ICESat, which obtained elevation information by integrating pulse echo waveforms, ATLAS can record 126 

the position and time of each returning single photon from laser pulses, constructing a high-resolution 3D photon 127 

cloud (Kwok et al., 2021). This technical characteristic endows the system with extremely high sensitivity to single-128 

photon signals, enabling effective discrimination of different surface types in mixed high- and low-reflectivity regions. 129 

Additionally, the high temporal resolution of photon-counting technology, combined with multi-source data fusion 130 

from GPS receivers, star trackers, and the Laser Reference System (LRS), achieves centimeter-level 3D geolocation 131 

accuracy (Magruder et al., 2020). 132 

In terms of positioning and coverage capabilities, ATLAS adopts a near-polar orbit design (inclination of 92°, 133 

covering 88°S to 88°N) combined with the uniform distribution of 1387 independent Reference Ground Tracks 134 

(RGTs), achieving comprehensive coverage of key global regions and addressing the insufficient coverage of the first-135 

generation ICESat in polar marginal areas (Abdalati et al., 2010). The system sets an average operating altitude of 136 

496 kilometers and a revisit period of 91 days, balancing observational efficiency and spatiotemporal resolution; it 137 

not only enables temporal dynamic monitoring of target parameters but also ensures the spatial representativeness of 138 

regional-scale observations through uniform track distribution (Markus et al., 2017). 139 

2.2 Multi-Level Data Product System of ICESat-2 140 

ICESat-2 has constructed a multi-level data product system from Level-1 to Level-3, which realizes the effective 141 

conversion of raw photon data into retrieval parameters through targeted preprocessing and refined processing 142 

procedures, serving as a core bridge connecting the observation system and parameter retrieval (Magruder et al., 143 
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2020) (Figure 3). Through a hierarchical processing logic to accurately address the retrieval needs of different 144 

scenarios, this product system forms a close mechanistic link with polar environmental parameter retrieval: Level-1 145 

products achieve initial calibration of raw observational data, providing a high-quality foundation for subsequent 146 

processing; Level-2 products extract reliable surface elevation information through purification and screening of 147 

photon-level data; Level-3 products conduct dedicated refined processing and parameter retrieval for the retrieval 148 

needs of different polar environmental parameters, ultimately forming thematic products adapted to different retrieval 149 

objectives (Kwok et al., 2023). 150 

 151 

Figure 3. Overview of the ICESat-2 ATL data product suite and their hierarchical relationships 152 

The processing flow from Level-1 to Level-2 products focuses on addressing the fundamental challenge of raw 153 

photon data purification and elevation extraction, thereby providing a unified, high-quality elevation dataset for all 154 

cryospheric parameter retrievals. Level-1 products, including ATL01 (raw time tags and photon response counts) and 155 

ATL02 (geophysical range correction), achieve the initial standardization of raw observational data through 156 

instrument temperature and voltage effect correction, as well as geophysical range calculation—effectively 157 

eliminating systematic errors inherent to the instrument itself (Kwok et al., 2020b). 158 

Building on this, Level-2 product ATL03 provides high-precision 3D coordinates for each photon through solid 159 

tide, polar tide, ocean loading tide and total atmospheric delay correction, constructing a raw photon cloud dataset 160 

(Kwok et al., 2020a; Xie et al., 2023). The preprocessing flow of ATL03 including photon aggregation, surface 161 

detection, noise removal and scattering correction directly serves the goal of reliable surface elevation extraction. 162 

Initial separation of signal photons and background noise is achieved through continuous pulse photon clustering and 163 

height histogram construction. Outlier photons are removed using local mode positioning and window truncation 164 

methods, effectively suppressing the impact of background noise and first-photon bias. Elevation data accuracy is 165 

optimized through subsurface scattering correction, ultimately converting raw photon cloud data into clean and precise 166 

surface elevation data to provide core foundational support for subsequent cryospheric parameter retrieval. 167 

Among Level-3 thematic products, ATL07 and ATL10 are the core backbone products for sea ice research. 168 

Together with ATL20/21, they form a sea ice parameter retrieval chain from core parameter retrieval to macro-scale 169 

integration, realizing accurate conversion from elevation data to sea ice freeboard. As the basic core product for sea 170 
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ice parameter retrieval, ATL07 takes the purified elevation data from ATL03 as input. After a series of geophysical 171 

corrections based on the CryoSat-2 and DTU13 mean sea surface models, GOT4.8 tide model, and GEOS-FP-IT 172 

atmospheric inverse pressure correction (Andersen et al., 2015), it generates height segments by aggregating 150 173 

consecutive signal photons, with segment intervals automatically adjusted based on photon density and surface 174 

reflectivity (Kwok et al., 2019; Kwok et al., 2020b). It adopts a decision tree classification algorithm based on three 175 

core parameters—surface photon rate, photon distribution width, and background noise rate (Kwok et al., 2023)—176 

which can accurately distinguish surface types such as sea ice, open water, and clouds, while providing geographic 177 

location, observation time, and confidence information, laying a solid data foundation for subsequent ATL10 178 

freeboard retrieval (Table 1). 179 

Table 1 Detailed definitions of relevant fields in the ATL07 product 180 

Field Type Field Name Unit Field Description 

classification 

features 

height_segment_asr_calc / calculated apparent surface reflectivity 

height_segment_height m segment surface height 

height_segment_w_gaussian m best-fit Gaussian width 

height_segment_length_seg m segment length 

n_pulse_seg_used m the number of photons used in each height segment 

photon density / 
calculated by dividing the number of photons used by 

the length of the height segment 

photon_rate photon photon rate 

hist_w m width of photon height distribution 

background_r_norm Hz normalized background rate (50 pulses) 

original 

classification 

height_segment_ssh_flag / sea ice classification (0 = sea ice; 1 = sea surface) 

height_segment_type / segment surface type 

quality 

control 

fit_quality_flag /  (-1 = invalid; 1 = optimal) 

n_pulse_seg_used / number of laser pulses used in sea ice segments 

height_segment_quality / height segment quality flag  

cloud cloud_flag_asr / cloud probability flag based on apparent reflectivity 

ATL10 is the core dataset for ICESat-2 sea ice research, directly conducting sea ice freeboard estimation based 181 

on ATL07 classification results: it constructs a local sea surface reference by identifying valid sea surface height 182 

segments and calculates the freeboard difference of sea ice height segments relative to this reference. To improve 183 

statistical robustness, ATL10 adopts an adaptive aggregation design with an approximately 10-kilometer 184 

neighborhood window to generate freeboard scan segments; the window length and sampling interval can be 185 

dynamically adjusted according to sea ice distribution density, and no scan segments are generated for tracks lacking 186 

reliable sea surface references to avoid additional uncertainty. Each scan segment is accompanied by uncertainty 187 

assessment and quality indicators integrating factors such as beam quality and distance from the sea surface reference, 188 

while providing a freeboard histogram constructed from full-beam data to characterize the freeboard distribution 189 

within the scan segment (Kwok et al., 2019). As an extension of ATL10, the ATL20/21 gridded products map along-190 

track freeboard and sea surface height data to a 25-kilometer polar stereographic projection grid, generating 191 

daily/monthly scale sea ice freeboard statistics and monthly scale sea surface height information (Kwok et al., 2021), 192 

realizing scale upgrading from fine observations to regional-scale and long-term sea ice research and providing support 193 

for macro cryospheric system change analysis. 194 
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In addition, to meet the retrieval needs of ice sheets and mountain glaciers, the ATL06 product provides high-195 

precision surface elevation through linear segment fitting, adapting to the need for accurate capture of elevation 196 

temporal changes in the retrieval of parameters such as ice sheet mass balance and glacier retreat rate; its extension to 197 

non-glacial mountainous areas also provides supplementary support for snow depth retrieval and topographic mapping 198 

(Smith et al., 2019; Deschamps-Berger et al., 2023). Based on photon classification, the ATL08 product provides 199 

both surface and vegetation height information over longer linear segments, primarily serving forest structure and 200 

biomass assessment (Neuenschwander et al., 2021). 201 

2.3 Adaptive Design of ICESat-2 for Polar Environments 202 

Polar environments exhibit significant spatiotemporal heterogeneity. Core characteristics such as surface 203 

reflectivity differences, seasonal dynamic evolution, and polar solar radiation interference directly affect the quality 204 

of laser observational signals and the reliability of retrieval results. The core advantage of the ICESat-2 observation 205 

system lies in forming targeted environmental adaptation mechanisms through technical innovations. Through the 206 

collaborative optimization of observational strategies and data processing flows, it effectively offsets the interference 207 

caused by environmental heterogeneity, ensuring the stability and accuracy of parameter retrieval in different scenarios.  208 

The first core environmental challenge is the extreme heterogeneity of surface reflectivity. Different surface 209 

cover types in polar environments form a strong contrast pattern of "high reflectivity—low reflectivity": the 210 

reflectivity of snow-covered sea ice, snow cover, and other regions can reach 0.7–0.8, while that of leads, dark cracks, 211 

and other regions is only 0.1–0.2, a difference of nearly an order of magnitude (Kwok et al., 2021b). This contrast 212 

risks signal saturation in high-reflectivity areas and noise-induced signal loss in low-reflectivity regions, limiting 213 

capture efficiency (Kwok et al., 2022) (Figure 4). The ATLAS system addresses this through differentiated energy 214 

output of strong and weak beams, matching reflectivity-specific signal needs to avoid saturation or insufficient capture, 215 

and high-density multi-beam distribution that ensures complete coverage of heterogeneous surfaces without 216 

observational blind spots. 217 

The second core environmental challenge is the dynamic interference of polar solar radiation. ATLAS’s 532 nm 218 

visible band is vulnerable to solar background noise, with polar day-night alternation and varying solar elevation 219 

angles amplifying interference complexity (Kwok et al., 2020a). Background photon counts exceed signal photons 220 

by multiple times when solar elevation exceeds 30°, drowning effective signals, while interference is negligible below 221 

10° or during polar nights—this dynamic directly impacts signal-noise distinction accuracy (Kwok et al., 2019; Liu 222 

et al., 2024). ICESat-2 mitigates this by scheduling core polar observations during twilight or nighttime to avoid high 223 

solar angles, and integrating solar elevation angle into signal screening algorithms with dynamic noise thresholds. 224 

High solar angles trigger strengthened verification of surface photon rate and background noise rate linear 225 

relationships to remove abnormal photons; low angles shield uncertain background noise parameters, extracting 226 

signals solely via spatial distribution characteristics (Kwok et al., 2023). 227 

The third core environmental challenge is the seasonal dynamic evolution of polar environments. Polar 228 

environments exhibit region-specific seasonal changes: Arctic sea ice develops melt ponds and ablates marginally in 229 

summer, while thickening and forming cracks in winter; Antarctic Ice Sheet margins see accelerated ice shelf calving 230 

and ablation in summer, with snow accumulation and smooth surfaces in winter (You et al., 2021; Shen et al., 2021). 231 
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These differences reduce the accuracy of fixed retrieval algorithms. ICESat-2’s data product system addresses this 232 

through dynamically adaptive classification algorithms in core sea ice products ATL07 and ATL10. A refined 233 

classification system distinguishes clouds, sea ice, and crack types like specular, dark, and rough during the growth 234 

season (October–May) to match winter sea ice structure retrieval needs (Kwok et al., 2023). The system simplifies to 235 

clouds, sea ice/melt pond mixtures, and cracks/melt ponds during the ablation season (June–September), focusing on 236 

core surface types to ensure basic retrieval requirements. 237 

 238 

Figure 4. The main figure uses a S2 image as the background, with the laser altimetry ground tracks of the strong 239 

beams (gt1l, gt2l, gt3l) from the ATL07 product overlaid. The white areas in the figure represent the sea surface 240 

range identified by the ATL07 product. The series of subfigures respectively show the reflection characteristics of 241 

key parameters in the ATL07 product, including photon density, photon rate and other parameters. 242 
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3 ICESat-2 Observation Results Support In-depth Understanding of 243 

the Systematic Change Laws of the Polar Environment 244 

3.1 Monitoring of Ice Sheet and Ice Shelf Mass Balance 245 

Polar ice sheets and ice shelves are core cryospheric mass and energy storage carriers, with their mass balance 246 

and stability exerting decisive regulatory effects on global sea level and climate system evolution (Chen et al., 2013; 247 

Manabe & Stouffer, 1995). As key links between ice sheets and the ocean, ice shelves block inland ice flow while 248 

their basal melting and calving directly regulate ice sheet mass output (Alley et al., 2021). Major ice shelves globally 249 

are retreating and thinning—accelerated calving of Antarctica’s Thwaites and Pine Island Ice Shelves drives Antarctic 250 

ice loss (Li et al., 2022), while Greenland’s accelerated mass loss since the 1990s has released freshwater into the 251 

North Atlantic, suppressing thermohaline circulation (van den Broeke et al., 2017; Shen et al., 2020). 252 

Coupling of ice sheet basal dynamics and ice shelf erosion further impacts system stability. Antarctic subglacial 253 

lake drainage, a core subglacial hydrological process, transports meltwater to ice sheet downstream and grounding 254 

lines, altering basal lubrication, intensifying ice shelf melting, and triggering surface uplift or collapse with potential 255 

global climate and sea level impacts (Smith et al., 2009). 256 

With centimeter-level elevation accuracy and high-density observation capabilities, ICESat-2 has established a 257 

multi-dimensional monitoring system covering ice sheet and ice shelf mass balance, stability, and hydrological 258 

processes. It advances research from single-parameter extraction to integrated multi-process, multi-scale, and multi-259 

mechanism analysis, providing key support for understanding systematic change laws (Khan et al., 2022). 260 

3.1.1 Ice Sheet Elevation Change and Mass Balance 261 

Ice sheet and ice shelf changes fall into two categories defined by their driving mechanisms, with distinct spatial 262 

patterns: surface mass balance-driven changes show attenuated gradients and uniform thinning, whereas dynamic 263 

imbalance-driven changes feature strong spatial heterogeneity and stress-transmitted instabilities (Fredensborg 264 

Hansen, 2021). 265 

To quantitatively analyze the above two types of ice sheet and ice shelf change processes, researchers have 266 

established a multi-level methodological framework centered on ice sheet elevation change detection, based on 267 

ICESat-2 combined with multi-source altimetry data such as CryoSat-2 (Paolo et al., 2015; Zhang et al., 2017). For 268 

changes driven by surface mass balance, the framework accurately extracts the elevation change rate of ice sheet areas 269 

by gridding and time-series fitting of photon data, while suppressing systematic errors through crossover analysis, 270 

thereby supporting the analysis of their dominant mechanisms. For changes driven by dynamic imbalance, it tracks 271 

local evolutionary characteristics via repeat orbit analysis and sliding window methods, and improves data signal-to-272 

noise ratio through multi-level filtering, enabling refined characterization of such processes with strong heterogeneity 273 

and stress-transmitted instabilities (Wang et al., 2024). 274 

Based on long-term time-series observations from ICESat-2 the overall accelerating loss trend and spatial 275 

heterogeneity characteristics of the Antarctic and Greenland Ice Sheets have been accurately characterized. 276 

Observation data show that the Antarctic Ice Sheet had an overall elevation decrease rate of –10.65±3.20 cm/yr 277 

between 2003 and 2020. The extreme melting event in 2019 further intensified ice mass loss (Yang et al., 2022). The 278 
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Greenland Ice Sheet had a mass loss rate of –45.02±34.21 Gt/yr between 2019 and 2022 equivalent to a global sea 279 

level rise of approximately 0.12 mm/yr. Rising temperatures are the main driving factor (Wang et al., 2024). Notably 280 

the mass loss rate of peripheral glaciers in Greenland especially in the northern region has increased fourfold over the 281 

past two decades accounting for 11±2% of the total loss of the Greenland Ice Sheet. This highlights the characteristic 282 

of continuously increasing spatial heterogeneity of mass loss in the ice sheet system (Khan et al., 2022). 283 

In terms of multi-source data collaboration and product validation ICESat-2 data show good consistency with 284 

radar altimetry data such as CryoSat-2. At a 5 km grid resolution and 30–60 day time window the elevation change 285 

trends of the Greenland Ice Sheet reflected by the two are highly consistent. The interannual difference is only 3.3±6.0 286 

cm/yr which significantly improves the credibility of monitoring results (Ravinder et al., 2024). At the same time 287 

cross-validation with independent data such as ground-based GNSS measurements and airborne lidar has confirmed 288 

that the horizontal accuracy of ATL03 photon-level data from ICESat-2 is better than 5 cm. The accuracy of ATL06 289 

elevation products reaches sub-decimeter level providing a solid foundation for the production and dynamic update 290 

of high-precision ice sheet DEMs (Shen et al., 2022). The currently achieved 500 m resolution DEM of the Antarctic 291 

Ice Sheet has a root mean square error controlled at –0.19 m and has annual update capability. It significantly improves 292 

the spatial details and timeliness of ice sheet topographic change monitoring.  293 

3.1.2 Ice Shelf Stability Analysis 294 

For the identification and morphological analysis of sub-ice shelf channels multi-beam laser profile terrain 295 

analysis technology uses the advantage of ICESat-2’s six-beam dense spatial sampling to extract linear depression 296 

features on the ice shelf surface. It inverts the development process and thermal erosion effect of sub-ice channels 297 

combined with ice flow velocity data  (Siegfried and Fricker, 2018). 298 

Observations reveal that basal erosion processes play a core role in ice shelf dynamic adjustment. For example 299 

subglacial melt channels extend toward the grounding line at a rate of approximately 1 km/yr along the ice flow 300 

direction. The lateral migration rate reaches 70–80 m/yr and the basement erosion rate can reach 22 m/yr. This clearly 301 

reflects the dominant regulatory role of complex hydrodynamic processes at the base of ice shelves on ice shelf 302 

movement and structural stability (Chartrand et al., 2020). In addition for the inversion of ice thickness changes in 303 

ice shelf areas methods based on hydrostatic equilibrium principles are widely used. Ice thickness changes can be 304 

directly estimated through surface elevation combined with density differences between ice and seawater (Chuter 305 

and Bamber, 2015; Griggs and Bamber, 2011) providing key parameters for ice shelf mass balance and stability 306 

assessment. 307 

In terms of key boundary monitoring ICESat-2 has significantly improved the spatial density and geometric 308 

accuracy of grounding line identification through repeat orbit observations. Collaborative analysis with differential 309 

interferometric synthetic aperture radar data can control the identification error of grounding line position within 0.39 310 

km (Li et al., 2020) providing high-precision geometric constraints for characterizing grounding zone migration and 311 

dynamic development of subglacial melt channels. In the monitoring of ice shelf cracks and fracture processes the 312 

high-resolution elevation data from ICESat-2 provides important support for the extraction of three-dimensional crack 313 

morphology and tracking of propagation processes. Studies have shown that crack generation and propagation are 314 

jointly driven by basement fractures extreme meteorological events and changes in the thermal-dynamic state of ice 315 

11

https://doi.org/10.5194/egusphere-2026-288
Preprint. Discussion started: 10 February 2026
c© Author(s) 2026. CC BY 4.0 License.



 

 

shelves (Wang et al., 2021; Walker et al., 2021). By performing high-resolution elevation gradient and curvature 316 

analysis on ICESat-2 along-track elevation data and calculating the spatial variation of surface slope and curvature 317 

potential crack development areas can be accurately identified and their propagation paths can be tracked (Zhang et 318 

al., 2020). 319 

In terms of numerical simulation and mechanism explanation the three-dimensional full Stokes ice flow model 320 

based on Elmer/Ice integrates BedMachine Antarctica terrain data and ICESat-2 ice flow velocity observations to 321 

achieve accurate simulation and verification of ice shelf dynamic processes (Guo et al., 2019). Typical case studies 322 

show that after the TWIT calving the Thwaites Eastern Ice Shelf (TEIS) formed a relatively independent dynamic 323 

system. The basal melting rate near the grounding line increased significantly confirming that changes in the physical 324 

state of the grounding line are key factors controlling the precursors of ice shelf calving (Alley et al., 2021). 325 

3.1.3 Ice Sheet Hydrological Process Monitoring 326 

In terms of subglacial lake monitoring, researchers first proposed a method for identifying subglacial lakes based 327 

on elevation change rate thresholds using first-generation ICESat data (Wingham et al., 2006), whose core idea is to 328 

calculate ice sheet surface elevation change rates, set reasonable thresholds, and combine visual interpretation to 329 

identify dynamic subglacial lakes and determine their boundaries. Subsequent studies further optimized the method 330 

by improving threshold adjustment and signal separation technologies (Stearns et al., 2008), and ICESat-2 has 331 

achieved accurate identification and refined boundary extraction of such lakes relying on its higher-precision photon-332 

counting altimetry data under this framework. 333 

For fine monitoring of subglacial lake water level changes, the repeat orbit elevation anomaly analysis method 334 

based on ICESat-2 captures filling and drainage events and their dynamic characteristics by analyzing time-series 335 

elevation data along preset orbits (Siegfried et al., 2021). Sliding time window and multi-source data fusion methods 336 

enhance hydrological event detection continuity by integrating adjacent observation period data, while the method of 337 

elevation anomaly difference inside and outside the lake extracts net elevation signals caused by subglacial lake 338 

activities by subtracting background area changes from target area anomalies (Scambos et al., 2011). For rapid 339 

hydrological activities, the maximum elevation change rate algorithm improves the detection capability of drainage 340 

and water storage events by extracting instantaneous change extremes between consecutive grid observations. In data 341 

quality control, multi-level filtering and residual elimination algorithms enhance the signal-to-noise ratio of elevation 342 

change signals through step-by-step screening based on quality indicators and iterative gridded surface fitting (Fair 343 

et al., 2020). 344 

For supraglacial lake monitoring, ICESat-2 has realized high-precision identification and water depth inversion 345 

of supraglacial lakes in Antarctica and Greenland through the automatic processing algorithm of ATL03 photon data. 346 

With a maximum detection depth of 8.25 meters and bathymetric accuracy better than 0.32 meters (Xiao et al., 2023), 347 

this achievement significantly expands the application dimension of laser altimetry in ice sheet hydrological process 348 

monitoring. 349 
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3.2 Multi-dimensional Sea Ice Parameter Retrieval 350 

Accurately acquiring multi-dimensional core parameters including sea ice lead distribution, freeboard, 351 

thickness, melt pond morphology and snow depth is a prerequisite for analyzing sea ice evolution laws and 352 

quantifying its climate effects (Perovich & Polashenski, 2012; Koo et al., 2023). ICESat-2 has driven sea ice 353 

observation to advance from extensive extraction of single parameters to synergistic and accurate inversion of 354 

multi-parameters. 355 

3.2.1 Lead Detection and Sea Ice Freeboard Retrieval 356 

In terms of lead identification research methods have developed from early interpretation based on a single 357 

elevation threshold to a collaborative classification system of machine learning and deep learning integrating multi-358 

dimensional features of photon point clouds and multi-source remote sensing information. By systematically 359 

extracting elevation distribution statistics photon rate echo waveform features and background noise levels from 360 

ICESat-2 photon data combined with spectral indices of high-resolution optical images and backscattering 361 

characteristics of SAR images a multi-modal feature space with strong separability has been constructed (Pang et al., 362 

2022; Liu et al., 2024) (Figure 5). 363 

Traditional supervised learning methods (such as random forests and support vector machines) have achieved 364 

robust classification of leads and sea ice based on this feature space. Deep learning methods based on convolutional 365 

neural networks and Transformer architectures have further improved the accuracy and generalization ability of lead 366 

boundary identification under complex ice-water mixing conditions through end-to-end feature learning and spatial 367 

context modeling (Liang et al., 2022; Ricker et al., 2023).  368 

Sea ice freeboard retrieval hinges on accurate classification of sea ice and sea surface height segments, with 369 

ATL07/10-based photon classification algorithms distinguishing ice and water signals via signal intensity, photon 370 

distribution, elevation statistics and waveform feature analysis. However, current inversion faces multiple challenges: 371 

summer melt ponds are often misclassified as mixtures in ATL07, introducing type determination inconsistencies 372 

(Tilling et al., 2020); local non-crack segments used as sea surface references may cause estimation biases; 373 

ATL07/10’s local height filter risks losing effective crack data and reducing spatial coverage; cloud attenuation can 374 

misclassify low-reflectivity regions as dark cracks (Petty et al., 2021). Notably, subsequent ATL07 versions excluded 375 

dark cracks from sea surface height calculations, lowering freeboard product spatial coverage by ~10–20% (Kwok et 376 

al., 2021). 377 

In terms of detection and verification the method system has evolved from single optical verification to multi-378 

source collaboration and intelligent identification. Early studies based on Sentinel-2 optical images proposed a crack 379 

ratio estimation method under strict spatiotemporal matching conditions. It was confirmed that ICESat-2 is reliable in 380 

identifying specular cracks but there is still great uncertainty in dark cracks and thin ice cracks (Petty et al., 2021). 381 

Subsequently SAR data was introduced to improve the accuracy of sea ice thickness inversion by improving the local 382 

sea surface height calculation algorithm (Pang et al., 2022). 383 

In recent years, the integration of machine learning methods has significantly improved detection performance. 384 

A study constructing an unsupervised and supervised learning framework achieved a breakthrough in lead detection 385 

accuracy of 98.6% and recall rate of 91.8% (Liu et al., 2025). At the same time near-synchronous observations from 386 
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SWOT and ICESat-2 have verified their high consistency in freeboard estimation (Kacimi et al., 2025) marking a 387 

new stage of multi-platform collaborative observation for sea ice parameter verification. 388 

 389 

Figure 5. A Comparison of Sea Ice/Sea Surface Classification Between the ATL07 Decision Tree and a Machine 390 

Learning Approach Integrating Imagery. 391 

3.2.2 Sea Ice Thickness Retrieval 392 

A freeboard-thickness conversion theoretical framework based on hydrostatic equilibrium principles has been 393 

established. With ICESat-2 observed sea ice freeboard as the core input parameter, sea ice thickness is indirectly 394 

estimated by introducing snow depth correction terms and ice, snow, seawater density parameters (Studinger et al., 395 

2024; Bocquet et al., 2023; Dong et al., 2023; Chen et al., 2023) (Figure 6). 396 

In terms of data preprocessing and multi-source collaboration the accuracy and robustness of freeboard estimation 397 

have been improved by improving sea ice/seawater classification algorithms and local sea surface height determination 398 

methods. The extensive integration of multi-source data such as CryoSat-2 radar altimetry and passive microwave 399 

brightness temperature has significantly reduced the uncertainty of thickness inversion (Koo et al., 2021; Kacimi et 400 

al., 2020). Multi-platform verification results show that the thickness inverted by ICESat-2 has good consistency with 401 

IceBridge airborne observations SIMBA buoys and satellite products such as CryoSat-2 and HY-2B. Its systematic 402 

bias is mainly caused by the differential penetration effect of lasers in thin ice areas. This phenomenon has been 403 

quantitatively explained through pulse waveform analysis and radiative transfer models. 404 
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 405 
Figure 6. Arctic Monthly Sea Ice Thickness from 2013 to 2023 Derived from CryoSat-2, ICESat-2, and an Improved 406 

Snow Model 407 

In terms of inversion method innovation the improved One-Layer Model (OLMi) has reduced the inversion 408 

uncertainty of Antarctic sea ice thickness to approximately 0.3 meters by optimizing freeboard calculation and 409 

reference sea surface determination (Xu et al., 2021). At the same time machine learning methods have been gradually 410 

applied to feature recognition and parameter optimization related to thickness. For example random forest models can 411 

realize automatic detection of detached fast ice with an identification accuracy of 99% (Koo et al., 2025). Current 412 
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research further explores the application of deep learning in thickness inversion. By integrating multi-source remote 413 

sensing features and physical constraints the thickness estimation accuracy under complex ice conditions is improved. 414 

In terms of scientific application and mechanism cognition the thickness products inverted by ICESat-2 have 415 

supported the drawing of spatial distribution maps of sea ice thickness in the Arctic and Antarctic (3–4 m in the Arctic 416 

and 2–3 m in the Antarctic) revealing their seasonal and interannual change characteristics (Shen et al., 2021; Petty 417 

et al., 2020). Research has further quantified the relative contributions of thermodynamic growth and dynamic 418 

thickening of sea ice. It has been found that the scope of the Antarctic marginal ice zone is significantly underestimated 419 

by approximately 7 times in traditional sea ice concentration algorithms highlighting the unique value of laser 420 

altimetry in finely depicting sea ice-ocean interactions (Brouwer et al., 2022). These observations not only deepen 421 

the understanding of sea ice change processes and climate effects but also provide a centimeter-level accuracy 422 

elevation benchmark for global cryosphere remote sensing monitoring playing an irreplaceable role in Earth system 423 

change research (Magruder et al., 2024). 424 

3.2.3 Melt Pond Detection 425 

The spatial distribution, depth, and geometric morphology of melt ponds are jointly regulated by ice type, surface 426 

roughness, and melting stage (Dawson et al., 2022). In recent years, research using high-precision laser altimetry data 427 

such as ICESat-2 has advanced notably in multi-source data collaboration, algorithm innovation, and parameter 428 

inversion (Webster et al., 2022). Melt pond detection integrates ICESat-2’s photon penetration capability and multi-429 

spectral images’ spectral response characteristics, forming a complete observation chain from micro-scale water depth 430 

inversion and macro-scale spatial mapping to climate effect analysis. 431 

In terms of detection and inversion methods, the UMD-RDA algorithm based on ICESat-2 photon point clouds 432 

has achieved centimeter-level resolution detection of sea ice microtopography, revealing structural differences 433 

between multi-year and first-year ice. At the point scale, laser photons penetrate clear water, enabling water depth 434 

inversion (accuracy ~0.1 m) via analyzing echo time differences between water surfaces and pond bottoms, with 435 

accuracy affected by water turbidity, ice internal structure, and pond bottom morphology (Farrell et al., 2020). For 436 

coverage and morphology monitoring, the improved normalized difference water index classification combined with 437 

dual-surface elevation tracking algorithm realizes synergistic inversion of melt pond coverage (seasonal peak: 438 

16%±6%) and depth (seasonal peak: 0.97 m±0.51 m). Additionally, the density-dimension dual-segmentation 439 

algorithm achieves automatic 0.7 m-resolution detection and feature extraction of melt ponds, showing good 440 

operational potential (Buckley et al., 2023; Tilling et al., 2018). 441 

At the regional scale, multi-spectral images identify melt pond ranges via normalized difference water index and 442 

spectral features; collaboration with ICESat-2 data enables acquisition of their three-dimensional morphology and 443 

spatial distribution, as well as quantification of their impacts on ice surface albedo and ice-albedo feedback intensity 444 

(Buckley et al., 2023). Due to their optical and thermodynamic properties falling between high-albedo ice and low-445 

albedo open water, melt ponds are often misclassified as leads or thin ice in traditional methods, affecting the reliability 446 

of sea ice concentration, freeboard, and mass balance estimation (Dawson et al., 2022). To address this, current 447 

research constructs multi-modal deep learning models integrating laser elevation, multi-spectral, and thermal infrared 448 

data, classifying melt ponds as an independent land cover type. 449 
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For multi-source data fusion and verification, combining spectral characteristics of high-resolution optical images  450 

improves melt pond boundary identification accuracy, and medium-resolution optical data is found to systematically 451 

underestimate melt pond coverage (Tilling et al., 2020). Meanwhile, cross-validation between CryoSat-2 and ICESat-452 

2 reveals radar signals’ elevation underestimation on melt pond surfaces due to complex scattering, highlighting the 453 

complementary value of laser and radar observations (Dawson & Landy, 2023; Kwok et al., 2020c). 454 

3.2.4 Snow Depth 455 

Currently snow depth estimation has formed an inversion system integrating multi-sensor collaboration physical 456 

mechanisms and data-driven methods. Three mainstream method systems have been developed with ICESat-2 as the 457 

core (Yan et al., 2024; Glissenaar et al., 2021). 458 

The first is the radar-laser collaborative inversion method. Based on synchronous observations from CryoSat-2 459 

and ICESat-2 it utilizes the characteristic that radar signals can penetrate dry snow layers  while laser signals are 460 

mainly reflected from the snow layer surface. By accurately registering the observed elevations of the two the radar 461 

penetration depth is directly estimated and then the snow depth is calculated (Kwok et al., 2018; Saha et al., 2025). 462 

This method has been systematically verified in the Arctic sea ice area revealing the seasonal change of snow depth 463 

from approximately 9 cm in October to 19 cm in April. The snow depth in multi-year ice areas is significantly higher 464 

than that in first-year ice (Kwok et al., 2020a). However there is an underestimation of 2–4 cm in areas without open 465 

leads. The inversion accuracy is jointly affected by ice surface roughness snow salinity and tide correction errors 466 

(Fredensborg Hansen et al., 2024). Further integrating L-band passive microwave radiation can realize the joint 467 

optimization inversion of sea ice thickness and snow depth effectively reducing the uncertainty caused by parameter 468 

coupling (Zhou et al., 2018). 469 

The second is the laser altimetry differential method. Based on photon elevation data such as ICESat-2 470 

ATL06/ATL08 the seasonal snow depth is directly extracted by differencing with high-precision snow-free DEM. 471 

This method performs well in low-slope non-vegetated areas. The basin-scale snow depth inversion accuracy can 472 

reach 0.18–0.33 m (RMSE) and it has a high correlation with measured snow depth in flat bare areas (R² up to 0.88) 473 

(Besso et al., 2024; Deschamps-Berger et al., 2023; Feng et al., 2025). However in complex terrain forested areas 474 

and glacier surfaces the inversion accuracy decreases significantly affected by terrain occlusion vegetation penetration 475 

and seasonal evolution of ice surfaces (Enderlin et al., 2022).  476 

The third is the multi-source data fusion and machine learning method. Snow depth estimation is performed by 477 

integrating passive microwave optical remote sensing and reanalysis data combined with radiative transfer models or 478 

machine learning algorithms. Passive microwave radiation information is incorporated into the modeling framework. 479 

Its brightness temperature is sensitive to snow layer microphysical properties and can establish a correlation with snow 480 

depth through radiative transfer models or machine learning methods (Saha et al., 2025). Optical remote sensing 481 

combined with radiative transfer models can achieve high-precision snow depth inversion under suitable conditions. 482 

The average difference between the simplified scheme and buoy-measured snow depth is only 4.1 cm (Wang et al., 483 

2023). Machine learning methods can effectively integrate passive microwave brightness temperature laser altimetry 484 

features and other auxiliary data to realize daily snow depth estimation in the Arctic with an RMSE of about 9–10 cm 485 

showing strong spatiotemporal modeling and generalization capabilities (Sun-Mack et al., 2025). 486 
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Furthermore multi-source data fusion strategies adopt dynamic assimilation and feature fusion methods such as 487 

observation updates based on time-series filtering and cross-modal feature extraction and mapping using neural 488 

networks. They integrate complementary information from radar altimetry laser altimetry passive microwave and 489 

reanalysis data effectively suppressing systematic biases caused by sensor limitations seasonal changes and spatial 490 

heterogeneity (Zeng et al., 2018; Hu et al., 2022; Kacimi et al., 2022). 491 

3.3 Holistic Changes of the Polar Environment and Multi-element 492 

Collaborative Applications 493 

Constructing a holistic understanding of polar cryosphere systematic changes is key to clarifying intra-sphere 494 

and cross-sphere coupling mechanisms and linking local-regional-global cognition. As an initial forcing factor, 495 

climate warming reshapes atmospheric circulation and ocean thermal structure, acting on cryosphere core components 496 

to trigger chain responses that feed back to sphere interactions, forming feedback loops that amplify or regulate climate 497 

signals (Zeng et al., 2018; Saha et al., 2025; Hu et al., 2022) (Figure 7). Examples include ice sheet meltwater 498 

altering ocean stratification to regulate sea ice dynamics, and sea ice reduction with melt pond development lowering 499 

albedo to drive atmospheric-sea ice-energy positive feedback. The cryosphere is also deeply intertwined with 500 

ecological and atmospheric spheres (Quartly et al., 2019; Zhang et al., 2023). ICESat-2 provides key data for 501 

analyzing multi-sphere and multi-element collaborative coupling mechanisms (Ham et al., 2019). It captures subtle 502 

changes in ice sheets, sea ice, vegetation and other elements, supporting quantification of interaction intensity, 503 

revelation of evolution laws and construction of holistic cognition. 504 

 505 

Figure 7. Schematic diagram of polar environmental elements. It illustrates the typical ice-ocean system 506 

environmental elements in polar regions covering ice units such as ice sheets ice shelves glaciers and sea ice. 507 
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3.3.1 Analysis of Ice Sheet/Ice Shelf-Ocean-Atmosphere Coupling Mechanisms 508 

Under climate warming, rising polar temperatures intensify ice sheet surface melting, altering ice surface runoff 509 

paths and reshaping the ice sheet’s internal hydrological cycle (Scambos et al., 2011; Smith et al., 2009). Increased 510 

frequency and intensity of subglacial lake filling and drainage change lubrication conditions between the ice sheet 511 

base and bedrock, reducing ice flow resistance and accelerating ice flow, forming a multi-element collaborative 512 

response chain of temperature rise, enhanced hydrological activity, and dynamic strengthening (Alley et al., 2021). 513 

Accelerated ice flow triggers further multi-element chain reactions. It increases ice shelf mass output to the ocean, 514 

intensifying interactions between the ice shelf front and warm circumpolar currents and raising ice shelf basal erosion 515 

rates. Meanwhile, continuous ice shelf thinning and structural damage cause inland grounding line migration, 516 

weakening overall ice sheet stability (Siegfried and Fricker, 2018). This multi-element chain collaborative response 517 

profoundly affects polar mass balance and global sea level change trends. 518 

ICESat-2’s high-precision time-series data enables accurate quantification of multi-element collaborative effect 519 

intensity and key correlation parameters. For instance, its ice flow velocity and subglacial lake water level data capture 520 

temporal synchronization and spatial correspondence between Antarctic subglacial lake drainage events and sudden 521 

ice flow acceleration, clarifying subglacial hydrological processes’ regulatory effect on ice sheet dynamics (Herzfeld 522 

et al., 2023). 523 

Tracking Greenland Ice Sheet melt pond coverage, surface albedo, and melting rate changes reveals that a 10% 524 

increase in melt pond coverage reduces surface albedo by 8%-12%, boosting surface melting rate by 15%-20% 525 

(Niehaus et al., 2025; Painter et al., 2016). Additionally, ICESat-2 ice sheet elevation data separates contributions 526 

of dynamic thinning and surface accumulation/ablation processes, enabling accurate attribution of ice sheet change 527 

mechanisms and clarifying their contribution to global sea level rise (Khan et al., 2022; Brunt et al., 2019). 528 

3.3.2 Analysis of Sea Ice-Ocean-Atmosphere Coupling Mechanisms 529 

As a key interface for polar cryosphere-ocean-atmosphere interactions, sea ice drives multi-element collaborative 530 

evolution via energy exchange regulation and material cycle coupling. In terms of energy exchange, polar warming-531 

induced rapid snow melting and extensive ice surface melt ponds lower ice surface albedo. This enhances polar solar 532 

radiation absorption efficiency, strengthens sensible heat, latent heat and radiative energy exchange between sea and 533 

atmosphere, and accelerates sea ice thermodynamic ablation (Perovich & Polashenski, 2012). Meanwhile, increased 534 

sea ice fragmentation and large-scale lead development expand direct ocean-atmosphere contact area, amplifying 535 

energy exchange intensity. This forms a positive feedback cycle of warming, sea ice ablation and enhanced energy 536 

exchange, promoting atmospheric-sea ice-energy collaborative intensification and polar warming (Curry et al., 1995; 537 

Marcq et al., 2012). 538 

In material cycle, high-salinity brine released during sea ice growth strengthens ocean vertical mixing, boosting 539 

deep warm water upward transport that feeds back to sea ice basal erosion. Abundant freshwater from sea ice ablation 540 

alters upper ocean stratification stability, inhibiting deep warm water upward transport and forming negative feedback 541 

on sea ice melting—together maintaining the dynamic balance of the polar ocean-sea ice system (Deems et al., 2013; 542 

Painter et al., 2016). Additionally, sea ice has close cross-component connections with ice sheets and ice shelves, 543 

highlighting polar environment holism. Ocean surface temperature and salinity changes from sea ice ablation affect 544 
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ice shelf front current distribution and regulate ice shelf basal erosion rate. Freshwater from ice sheet and ice shelf 545 

melting alters sea ice growth conditions, inhibiting its formation and development, forming an ice sheet-ice shelf-sea 546 

ice-ocean multi-element cross-component collaborative evolution pattern (Frei et al., 2012). 547 

ICESat-2 data supports systematic analysis of seasonal and interannual dynamic characteristics of sea ice growth 548 

and ablation, as well as their collaborative correlations with atmospheric temperature, ocean currents and other 549 

elements (Tilling et al., 2020; Buckley et al., 2023). Combined with surface albedo, snow depth and other auxiliary 550 

parameters, it enables ice surface energy balance closure calculation and improves polar energy-sea ice-atmosphere 551 

multi-element cycle models. Freshwater release flux estimated from high-resolution sea ice thickness data accurately 552 

characterizes the impact of ice melting on ocean surface salinity, clarifying polar freshwater-ocean-thermohaline 553 

circulation collaborative mechanisms. 554 

ICESat-2 along-track thickness information allows accurate evaluation of seasonal and interannual sea ice mass 555 

balance changes at regional and basin scales. Combined with sea ice movement trajectory data, it accounts for ice 556 

mass budget in specific sea areas (Herzfeld et al., 2023). Research results on energy and material fluxes based on its 557 

high-precision data provide key parameterization scheme verification for ocean-ice-atmosphere coupling models, 558 

improving model reliability in simulating polar multi-element collaborative evolution (Dawson et al., 2018). 559 

3.3.3 Analysis of Polar Cryosphere-Ecology-Atmosphere Coupling Mechanisms 560 

Holistic polar environment changes manifest not only in cryosphere-ocean-atmosphere core interactions but also 561 

in cryosphere-ecology-atmosphere multi-element collaborative evolution. In tundra ecosystem research, ICESat-2 562 

vegetation canopy height data is a key structural parameter linked to tundra carbon-nitrogen cycle efficiency, 563 

permafrost thermal stability and habitat quality, providing critical initial data and verification basis for building 564 

cryosphere-ecology-permafrost multi-element coupling models (Zhang et al., 2025).  565 

Meanwhile, ICESat-2 snow depth and canopy height data facilitate accurate analysis of their interaction 566 

mechanisms. For instance, tall shrubs capture and retain snow, altering winter soil thermal insulation, which in turn 567 

affects permafrost thermal state and melting depth. This provides a new perspective for understanding vegetation-568 

snow-soil-permafrost cascading collaborative effects and revealing polar ecology-cryosphere evolution laws (Bisson 569 

et al., 2021). 570 

In polar atmospheric process research, ICESat-2 derived atmospheric parameter data fills gaps in traditional 571 

passive remote sensing for refined polar boundary layer vertical structure observation. Analyzing photon vertical 572 

distribution in atmospheric scattering layers enables accurate inversion of aerosol extinction coefficient profiles and 573 

cloud vertical structure parameters, clarifying vertical transport paths and distribution laws of aerosols, water vapor 574 

and clouds in the polar boundary layer (Urban et al., 2008; Zhang et al., 2023). This quantifies their contribution to 575 

cloud condensation nuclei formation and regulation of surface net radiation. Measured data-based vertical process 576 

constraints make up for climate model deficiencies in simulating polar cloud-radiation-aerosol collaborative forcing, 577 

improving model accuracy in simulating polar cryosphere-atmosphere coupling. 578 
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4. Key Uncertainties and Technical Breakthrough Paths in ICESat-2 579 

Cryosphere Observations 580 

Early algorithms have improved accuracy by addressing photon signal processing refraction correction and multi-581 

source data fusion. However breakthroughs in addressing snow depth spatiotemporal heterogeneity complex terrain 582 

interference and observation system limitations remain insufficient. This chapter systematically sorts out the initial 583 

resolution of dominant uncertainties through ICESat-2 algorithm evolution. It deeply traces the core uncertainty 584 

sources in snow depth estimation complex terrain observation and observation system limitations. It clarifies future 585 

technical development directions providing theoretical and technical support for analyzing the mechanisms of polar 586 

system change. 587 

4.1 ICESat-2 Algorithm Evolution Initial Resolution of Uncertainties and 588 

Practical Achievements 589 

4.1.1 Core Algorithm Improvements in the Academic Community 590 

Table 2 Core Algorithm Innovations in the Academic Community 591 

Associated 

Products 

Uncertainty Issues Improved Algorithms Optimization Effects and 

Conclusions 

References 

ATL07 Cloud attenuation reduces 

photon rate leading to 

misclassification of dark 

leads. This causes the 

reference value of sea surface 

height to be too high and 

freeboard estimation to be too 

low. 

Construct an automatic sea 

surface type classification 

algorithm based on multi-

parameters such as photon 

rate distribution width and 

background noise. 

Version R003 only uses 

specular lead data. The 

coverage rate decreases by 

10–20% but the average 

freeboard increases by 0–4 

cm.  

Kwok et al, 

2021 

ATL10 

NESOSIM 

v1.1 

Snow spatiotemporal 

heterogeneity and simplified 

model assumptions lead to 

insufficient sea ice thickness 

inversion accuracy. 

NESOSIM v1.1 introduces 

atmospheric blowing snow 

loss terms ERA5 snowfall 

forcing calibrated by 

CloudSat and recalibrates 

with OIB snow depth data. 

The upgrade of ATL10 

rel003~005 freeboard 

improves thickness 

inversion accuracy. It 

enhances consistency with 

CryoSat-2 results.  

Petty et al., 

2023 

ATL03 

ATL07 

Significant noise photon 

interference. It is difficult to 

accurately extract sea ice 

signal photons affecting the 

accuracy of sea ice change 

monitoring. 

Propose an Adaptive 

Clustering and Kernel Density 

Estimation method to 

accurately separate noise and 

sea ice signal photons from 

photon cloud data. 

It outperforms traditional 

algorithms under different 

signal-to-noise ratio 

conditions. The accuracy 

and F-score reach 0.97. The 

inverted height has a 

correlation R ＞ 0.97 with 

ATM airborne data. 

Liu et al., 

2023 

ATLAS 

Underwater 

terrain-

related 

products 

Deviations between model 

assumptions and actual 

scenarios lead to systematic 

displacement errors 

A refraction correction 

method based on ray tracing 

and JONSWAP wave 

spectrum. Reconstruct the 

wave profile to calculate the 

air/sea surface intersection of 

seabed photons. 

Realize photon-level 3D 

coordinate compensation. 

Overcome the limitation of 

vertical correction. Improve 

bathymetric accuracy in 

shallow water areas and 

under fluctuating sea 

surface conditions 

Zhang et al., 

2022 
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Aiming at observational bottlenecks such as sea ice freeboard estimation bias and insufficient bathymetric 592 

accuracy in early ICESat-2 data products caused by cloud interference noise photons and model simplification the 593 

academic community has carried out algorithm innovations focusing on core links such as signal processing and model 594 

adaptation (Chen et al., 2022). Through the implementation and application transformation of technical schemes it 595 

has helped continuously improve the accuracy of polar environmental observation data providing key support for 596 

subsequent product iterations (Table 2). 597 

4.1.2 Multi-version Iteration of Official Algorithms 598 

Official version iteration integrates academic algorithm innovations into global optimized products, translating 599 

technical breakthroughs into large-scale applications. 600 

In the elevation product iteration from V03 to V07, the official launched multi-dimensional collaborative 601 

upgrades focusing on enhancing data absolute accuracy and reliability (Kwok et al., 2022). On one hand, it integrated 602 

high-precision tidal parameters, modern reference frameworks and high-resolution DEM, while updating atmospheric 603 

and oceanic correction models to systematically address comprehensive uncertainties from terrain and atmospheric 604 

interference, absorbing academic technical insights on complex scene correction. On the other hand, it upgraded the 605 

quality control system, expanding control dimensions from basic engineering markers to photon-level parameters, 606 

adding a dynamic uncertainty assessment module to strengthen signal extraction in high signal-to-noise ratio 607 

environments. Supplementary core indicators such as geometric parameters and photon weights improved product 608 

data dimensions and application flexibility, providing standardized data support for subsequent uncertainty tracing 609 

and in-depth analysis (Bagnardi et al., 2021). 610 

In the sea ice product iteration from V04 to V06, the official took reference benchmark unification as the core, 611 

linking algorithm correction, quality control upgrades and function expansion to achieve global performance 612 

optimization (Kwok et al., 2021b). To address freeboard inversion bias caused by inconsistent early tidal benchmarks, 613 

it built a unified and reliable geometric foundation through full-link tidal benchmark unification and parameter 614 

transmission, laying a standardized premise for centimeter-level freeboard inversion. Absorbing academic automated 615 

processing experience, it upgraded quality control from traditional manual inspection to an automated multi-level 616 

filtering system, which accurately identifies and removes invalid and abnormal data by combining multi-dimensional 617 

quality markers and auxiliary data to ensure product purity. It also corrected sea ice segment length calculation 618 

methods, calibrated first photon bias, applied dynamic atmospheric correction models to improve inversion accuracy, 619 

expanded product parameter dimensions, deepened integration with external remote sensing data, and enhanced 620 

product adaptability in climatology and air-sea interaction research (Neumann et al., 2022), forming a standardized 621 

and highly compatible observation product system. 622 

4.2 Tracing Core Uncertainties in ICESat-2 Cryosphere Observations 623 

Although early algorithm iterations have resolved some dominant uncertainties residual errors and potential 624 

interference still exist in snow depth estimation complex terrain observation and observation system limitations.  625 
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4.2.1 Uncertainty Sources in Snow Depth Estimation 626 

Snow depth is a core parameter for sea ice thickness inversion and ice sheet mass balance assessment, with its 627 

uncertainties directly affecting downstream results. These uncertainties manifest in three dimensions. 628 

First, interference from snow’s spatiotemporal heterogeneity (Petty et al., 2023). Polar snow forms complex 629 

layered structures and dynamic density distributions under blowing snow, wind-driven accumulation and snowmelt 630 

refreezing. Its physical characteristics vary by region and season, limiting the universality of single models. Early 631 

models incorporated blowing snow loss terms but failed to fully characterize spatiotemporal heterogeneity, with local 632 

snow depth fluctuations and compaction-induced photon interaction changes during snowmelt causing estimation 633 

biases. 634 

Second, observation system signal recognition errors (Liu et al., 2023). Photon signals are prone to cloud, aerosol 635 

scattering and background noise interference, with unresolved confusion in snow-ice and snow-atmosphere interface 636 

classification. Cloud attenuation may misclassify snow surface photons as ice surface ones, underestimating snow 637 

depth, while high-reflectivity snow amplifies noise and impairs effective photon extraction—driving continuous 638 

optimization of denoising algorithms. 639 

Third, deviations between model assumptions and actual scenarios (Zhang et al., 2022). Traditional snow depth 640 

inversion relies on hydrostatic equilibrium or empirical models, ignoring processes like spatiotemporal snowfall 641 

differences. Most parameters depend on regional calibration data, lacking global applicability. Even with optimized 642 

density parameters, fixed assumptions conflict with actual snow density, and low snowfall data spatial resolution leads 643 

to inaccurate accumulation estimation and systematic biases. 644 

4.2.2 Uncertainty Sources in Complex Terrain Observations 645 

Complex terrains such as ice sheet margins, ice shelf regions with dense crevasses, and mountain glaciers have 646 

become high-uncertainty areas due to their special geometric characteristics and poor compatibility with observation 647 

systems. Their impacts run through the entire processes of signal reception and data processing: 648 

On the one hand, topographic geometric characteristics induce multiple interferences (Li et al., 2024). Steep 649 

terrain causes laser spot occlusion, forming observational blind spots. Complex structures trigger multi-path reflection 650 

of photons, generating spurious signals that interfere with the extraction of true elevation—this is also the core 651 

background for the optimization of the AV-OPTICS model for near-seabed terrain. Meanwhile, the slope effect alters 652 

the spot projection area; when the slope is large, signals disperse, reducing observation resolution and accuracy. The 653 

narrow structures and steep sidewalls in areas with dense crevasses further exacerbate this problem. 654 

On the other hand, there is a mismatch between observation systems and terrain resolution (Kwok et al., 2023). 655 

Inherent limitations in the along-track sampling interval and spot size of ICESat-2 prevent accurate coverage of small-656 

scale, highly heterogeneous terrains, leading to the loss of topographic details. Moreover, atmospheric correction 657 

models for complex terrains are mostly based on flat surface assumptions, ignoring the impact of topographic relief 658 

on atmospheric scattering and refraction. Insufficient correction further amplifies uncertainties, which is also an 659 

important reason for the continuous optimization of the atmospheric correction model in the ATL03 version. 660 
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4.2.3 Uncertainty Sources in Observation System Limitations 661 

Observation system inherent limitations and on-orbit interference are core uncertainty sources in cryosphere 662 

observations, manifesting mainly in three dimensions: payload performance, on-orbit operation, and observation 663 

coverage. 664 

First, inherent limitations of payload performance. The photon-counting lidar payload has technical shortcomings, 665 

with weak ability to capture faint signals. On low-albedo ice-snow surfaces, thin snow cover or shadowed areas, 666 

signals are easily attenuated, making effective extraction difficult and causing inversion errors (Neumann et al., 2019). 667 

Fixed laser spot size and emission frequency limit spatial sampling density, failing to adapt to small-scale terrain and 668 

fine snow structure observation needs, restricting accuracy improvement. Additionally, payload measurement noise 669 

and systematic bias slightly affect photon positioning and elevation inversion, becoming inherent uncertainty factors. 670 

Second, impacts of on-orbit operation interference. Satellite attitude jitter, orbit deviation and other dynamic 671 

interferences are unavoidable, shifting laser irradiation positions from preset paths and indirectly reducing photon 672 

positioning accuracy (Magruder et al., 2021). Such deviations accumulate in complex terrain and large-scale 673 

continuous observations, amplifying overall errors. Meanwhile, ionospheric and atmospheric disturbances alter laser 674 

signal propagation paths, interfering with signal reception and analysis and increasing data processing uncertainty. 675 

Third, limitations of observation coverage and timeliness. Constrained by observation perspective, scanning 676 

range and orbit design, large-scale cryosphere observations have time intervals, making high-frequency dynamic 677 

monitoring difficult. Short-time scale processes like snow ablation, sea ice deformation and glacier movement are 678 

easily missed, leading to incomplete capture of cryosphere changes (Markus et al., 2017). Moreover, single-payload 679 

observation mode poorly adapts to complex weather; heavy clouds, snowfall and other conditions degrade data quality 680 

or even cause interruptions, forming blind spots and exacerbating uncertainties. 681 

4.3 Technical Paths and Future Directions for ICESat-2 Cryosphere 682 

Observations 683 

4.3.1 In-depth Breakthrough Paths for Uncertainties in Snow Depth Estimation 684 

Build on early snow depth models and signal processing algorithms, advancing collaboration across signal 685 

recognition, model mechanism and data fusion to address snow heterogeneity, signal interference and model deviation. 686 

At the signal processing level, upgrade adaptive photon classification and denoising technologies (Liu et al., 687 

2023). Integrate deep learning semantic segmentation, random forests and other technologies into existing algorithms 688 

to construct a multi-feature classification model based on photon intensity, spatial distribution and temporal changes, 689 

distinguishing snow surface, ice surface photons and noise accurately. Develop dynamic threshold algorithms that 690 

adjust parameters by regional signal-to-noise ratio to reduce misfiltering of effective snow photons, and use 691 

convolutional neural networks to extract spatial texture features for complex snow scenarios. 692 

At the model optimization level, construct a multi-process dynamic snow model (Petty et al., 2023b). Enhance 693 

parameterized characterization of atmospheric blowing snow and snowmelt refreezing processes based on existing 694 

models. Integrate satellite snow vertical structure data to optimize spatiotemporal dynamic schemes for snow density, 695 
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replacing fixed density assumptions. Establish regional and seasonal calibration systems by fusing high-resolution 696 

snowfall data and airborne measurements to improve global applicability and mitigate biases from snow heterogeneity. 697 

At the multi-source fusion level, build a collaborative observation system (Zhang et al., 2022b). Combine high-698 

precision laser altimetry data, wide-coverage microwave remote sensing data and ground observation data. Adopt data 699 

assimilation technology to achieve high-precision, wide-coverage snow depth inversion, leveraging multi-source data 700 

complementarity to reduce single-observation uncertainty and overcome limitations of early single data sources. 701 

4.3.2 In-depth Breakthrough Paths for Uncertainties in Complex Terrain Observation 702 

Address terrain occlusion, multi-path reflection and resolution mismatch in small or complex terrain observation 703 

through observation strategies, signal processing and platform collaboration. 704 

At the observation strategy level, adaptively optimize satellite observation parameters (Kwok et al., 2023). Adopt 705 

encrypted orbits in key regions to reduce along-track sampling intervals, optimize laser spot size and emission 706 

frequency to improve small-scale terrain resolution. Develop dynamic observation modes that adjust emission 707 

parameters based on terrain slope, roughness and other prior information to mitigate occlusion and multi-path 708 

reflection impacts at the source. 709 

At the signal processing level, develop terrain-adaptive correction algorithms (Li et al., 2024). Integrate high-710 

resolution DEM prior information into existing models to identify occluded areas and multi-path reflection risk zones, 711 

performing targeted photon signal correction. Introduce slope correction models to adjust photon elevation calculation 712 

methods and eliminate slope-induced systematic biases. Use ray tracing to simulate photon propagation paths, correct 713 

false signals in steep terrain, and develop morphological clustering algorithms to extract crack wall true elevation 714 

accurately. 715 

At the platform collaboration level, construct a three-dimensional observation network (Bagnardi et al., 2021). 716 

Integrate laser altimetry data with high-resolution optical and SAR satellite macro-structural information to identify 717 

blind spots and interference sources. Utilize UAVs and airborne lidar for close-range high-precision observations, 718 

providing correction samples for laser data and forming an air-space-ground collaborative system to resolve 719 

uncertainties. 720 

4.3.3 Targeted Breakthrough Paths for Observation System Limitations 721 

Address payload inherent limitations, on-orbit interference and resolution mismatch through payload technology 722 

upgrades, on-orbit control optimization and observation mode adjustment, systematically improving data accuracy. 723 

Upgrade payload technology to break hardware bottlenecks (Kwok et al., 2022). Enhance weak signal detection 724 

sensitivity for low-albedo and thin snow scenarios, reduce signal attenuation errors. Upgrade laser emission and 725 

reception modules to shrink spot size and increase frequency while maintaining observation range, improving spatial 726 

sampling density for small-scale terrain. Integrate high-precision attitude measurement and correction modules to 727 

monitor and correct on-orbit attitude jitter and orbit deviation in real time, enhancing data reliability. 728 

Optimize on-orbit control and preprocessing. Build a collaborative processing system via intelligent control and 729 

edge computing, adopting intelligent on-orbit control algorithms to adjust observation angles and paths based on snow 730 

type and terrain complexity. Conduct high-frequency repeated observations in key regions to compensate for large-731 

scale observation time intervals and reduce omission of short-scale cryosphere changes (Magruder et al., 2024). 732 
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Strengthen on-orbit preprocessing capabilities to complete weak signal enhancement, outlier removal and uncertainty 733 

prediction in advance, prioritizing high-value data transmission to reduce ground processing pressure. 734 

Adjust observation modes through main-auxiliary payload linkage. Combine optimized lidar with microwave 735 

radiometers and hyperspectral imagers to leverage multi-payload complementarity (Magruder et al., 2021). Use 736 

microwave radiometers' all-weather advantages for cloud-covered scenario calibration, and hyperspectral imagers' 737 

spectral recognition capabilities to improve photon classification accuracy in weak signal scenarios, alleviating system 738 

limitations systematically. 739 

4.3.4 Future Direction Multi-dimensional Technology Fusion Empowers Accurate 740 

Cryosphere Observations 741 

Advance cryosphere observation capabilities through deep coupling of intelligent data processing, multi-source 742 

remote sensing fusion, single-satellite multi-payload integration and on-satellite-off-satellite collaborative processing, 743 

building a high-precision, full-dimension, all-weather and intelligent observation system. 744 

Develop intelligent data processing based on deep learning and reinforcement learning, building end-to-end 745 

photon signal processing models adaptable to snow cover, complex terrain and fluctuating sea surfaces (Yang et al., 746 

2025). Complete signal classification, noise removal and outlier elimination without preset parameters, adopting 747 

scenario-specific strategies—using background rate parameters for non-polar night scenarios and solar radiation-748 

independent photon characteristics for polar nights. Integrate physical mechanisms and data-driven hybrid modeling, 749 

embedding snow evolution and terrain undulation processes into the framework to upgrade from phenomenon fitting 750 

to mechanism explanation. 751 

Promote multi-source remote sensing fusion by integrating optimized laser data with SAR, optical and gravity 752 

satellite observations (Liu et al., 2025). Use data assimilation for collaborative inversion of elevation, humidity, 753 

density and mass balance. Leverage optical satellites' macro texture recognition and SAR satellites' all-weather 754 

advantages to locate blind spots and correct multi-path reflection false signals, taking high-precision elevation data as 755 

the core reference to generate high-resolution application products for practical scenarios, forming an algorithm 756 

optimization-data complementarity-application implementation closed loop. 757 

Realize single-satellite multi-payload integration in upgraded satellite models, integrating lidar, hyperspectral 758 

imagers and microwave radiometers for simultaneous acquisition of elevation, spectral characteristics, thermal 759 

radiation intensity and humidity (Pang et al., 2023). Reduce spatiotemporal registration errors in multi-platform 760 

fusion, and reserve expansion interfaces for flexible addition of interferometric measurement and thermal infrared 761 

detection payloads to adapt to environmental changes and application demands. 762 

Advance on-satellite-off-satellite collaboration: optimize on-satellite preprocessing to extract core parameters 763 

such as sea ice thickness and concentration, reducing invalid data transmission; integrate off-satellite SAR ice type 764 

identification, optical melt pond distribution and meteorological data to generate 100-meter high-resolution navigation 765 

risk assessment maps (Zhao et al., 2024). Construct intelligent route planning systems based on multi-dimensional 766 

data and ship parameters, and assimilate sea ice dynamic models with ocean current and atmospheric circulation 767 

predictions for short-term sea ice change early warning (Ricker et al., 2023). Use long-term time-series data for 768 
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seasonal waterway prediction and fleet deployment, and dynamically monitor port-surrounding sea ice to assess 769 

infrastructure damage risks (Petty et al., 2021). 770 

5. Summary and Outlook 771 

This review takes laser altimetry satellite technology as the core anchor, systematically collates its technical 772 

characteristics and polar environmental application progress, and constructs a problem-driven analytical framework 773 

around three core scientific questions. It combs through technical evolution context, polar environmental parameter 774 

retrieval, observational uncertainties and corresponding technical breakthrough paths in a holistic manner, integrating 775 

scattered research findings in the field, refining core operational laws, and addressing the fragmented adaptation 776 

dilemma between existing technologies and polar application scenarios.  777 

Regarding the mechanistic connection between technical innovations and inversion bottlenecks, this review 778 

clarifies the adaptive logic between advanced laser altimetry technologies and cryospheric parameter retrieval 779 

demands, elaborates on how multi-beam configurations compensate for spatial coverage deficiencies of single-beam 780 

systems and the inherent advantages of photon-counting technology in polar weak-signal environments. It constructs 781 

a complete technical chain spanning observation technology, data products and cryospheric adaptation, integrating 782 

remote sensing technology with cryospheric scientific questions via a clear paradigm. 783 

Centering on the integration of observational results and systematic cognition construction, this review clarifies 784 

the core logic of building holistic cryospheric cognition via satellite data. It systematically integrates insights into 785 

polar ice sheet and ice shelf stability, as well as multi-dimensional sea ice parameter retrieval, to construct a holistic 786 

scientific understanding of the systematic change laws of the polar environment.  787 

For key uncertainty sources and resolution paths, this review accurately traces core error sources in snow depth 788 

estimation, complex terrain observation and system limitations, and establishes a three-dimensional breakthrough 789 

system integrating signal processing optimization, model refinement and multi-source collaboration, while proposing 790 

actionable uncertainty control schemes. These findings provide practical support for improving satellite data reliability 791 

and managing observational uncertainties. 792 

Looking ahead, based on the sorted research context and technical bottlenecks, the next generation of laser 793 

altimetry satellites should rely on the synergy of four core technologies: intelligent data processing, multi-source 794 

remote sensing fusion, single-satellite multi-payload integration, and on-satellite-off-satellite collaborative processing. 795 

This synergy will break through current limitations in snow and subglacial terrain detection, realize polar multi-796 

parameter simultaneous observation, hourly revisit and global coverage, and support global climate change response 797 

and Arctic navigation safety, advancing cryospheric observation towards higher precision, full dimensionality and 798 

deeper mechanistic understanding. 799 
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