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Abstract20

Precise seasonal prediction of groundwater nitrate concentrations in intensive agricultural21

areas faces challenges such as data sparsity, strong spatiotemporal heterogeneity, and complex22

hydro-biogeochemical processes. To address these issues, this study proposes an integrated23

prediction framework combining hybrid quantum-classical machine learning, advanced virtual24

sample generation (t-SNE-GMM-KNN), and remote sensing foundation model semantic25

embedding (AEF). Modeling was conducted across the 2022-2023 normal, dry, and wet seasons in26

Xiong'an New Area. Hydrochemical types were dominated by Ca-Mg-HCO3-, controlled by27

mineral dissolution and evaporation. Nitrate concentrations were highest in the dry season (mean28
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42.93 mg L-1), driven by evaporative concentration. Spatially, high-value zones shifted: southeast29

(normal), central (dry), and northwest (wet). MixSIAR modeling based on isotopes indicated30

domestic sewage and livestock manure (74.1%) as dominant sources. The t-SNE-GMM-KNN31

strategy mitigated small-sample bias while preserving nonlinear structure. When virtual samples32

were augmented to 10-fold, the Random Forest R2 in the dry season increased from 0.284 to >0.85.33

Furthermore, a hybrid quantum-classical Random Forest exhibited superior robustness for data34

sparsity, achieving peak performance in the normal season (R2=0.962, RMSE=5.73 mg L-1).35

Additionally, using only AEF embeddings achieved screening-level accuracy (R2 up to 0.860),36

providing a feasible rapid survey scheme for extensive unmonitored regions. Correlation analysis37

identified TDS and EC as persistent top predictors (r>0.8). This comprehensive framework offers38

a robust solution for seasonal nitrate prediction and sustainable water management.39

Keywords: Groundwater nitrate concentration; Hydrological seasons; Virtual sample generation;40

Hybrid quantum-classical machine learning; AlphaEarth Foundation (AEF) embeddings; Nitrate41

source apportionment.42

43

1. Introduction44

Nitrate (NO3-) contamination in groundwater poses a serious threat to drinking water safety45

and ecosystem health, particularly in intensively managed agricultural regions (Wang et al., 2021).46

In China, groundwater nitrate pollution is a growing concern, national monitoring data from 201347

to 2017 revealed a nitrate exceedance rate exceeding 10%, with Hebei Province reporting an48

alarming rate of 31.66% in 2017 (Li et al., 2019). Over recent decades, escalating nitrate49

concentrations in surface and groundwater have been driven by intensified fertilizer use in50

agriculture, along with discharges of industrial and domestic wastewater (Zhang et al., 2018).51

Severe nitrate exceedances are especially prevalent in northern and northwestern China (Gu et al.,52

2013), where key contributors include domestic and industrial effluents, nitrification of soil53

organic nitrogen, and synthetic fertilizer application (Han et al., 2016). For instance, in the North54

China Plain, shallow groundwater nitrate exceedance rates range from 9.5% to 34.1%, and a rising55

trend persists at the regional scale, particularly in agricultural areas (Wang et al., 2018). In56

monsoonal temperate regions, seasonal shifts in precipitation, evapotranspiration, and57

groundwater recharge profoundly influence the transport, dilution, and accumulation of nitrate,58
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leading to pronounced intra-annual variability in its concentration and spatial distribution (Gao et59

al., 2023; Zhu et al., 2025). Consequently, understanding and forecasting nitrate dynamics across60

hydrological seasons is essential for informed groundwater management and pollution mitigation,61

but remains a formidable challenge due to the nonlinearity, high dimensionality, and data scarcity62

inherent in such systems (Deng et al., 2023).63

Traditional monitoring and modeling approaches face three critical limitations. First, field64

sampling campaigns though providing high-fidelity hydrochemical data are inherently sparse in65

space and time, especially for large-scale or rapidly changing environments (Viswanathan et al.,66

2022), which are time-consuming, labor-intensive, and costly, limiting the spatial and temporal67

coverage of data (Cai et al., 2025). Second, while process-based models incorporate physical68

mechanisms, they require extensive parameterization and are computationally prohibitive for69

dynamic, multi-season forecasting at farm-to-regional scales (Feng et al., 2022). Hydrological70

seasonal variations (normal, dry, and wet seasons) significantly influence the migration and71

transformation of nitrogen in the soil-groundwater system (Chen et al., 2025). For instance,72

concentrated rainfall during the wet season (accounting for 60%-80% of annual precipitation) can73

promote the leaching of surface nitrogen into groundwater, leading to a 25-fold increase in stream74

nitrate concentrations during storm events compared to baseflow (Sebestyen et al., 2014),75

meanwhile, intense evaporation in the dry season leads to the accumulation of nitrate in shallow76

aquifers, where concentrations can exceed the US EPA drinking water standard of 10 mg L-1 by77

2-3 times (Liu et al., 2025; Cox et al., 2016). These seasonal differences result in distinct78

hydrochemical characteristics and nitrate concentration distributions, increasing the complexity of79

prediction models (Wu et al., 2025). Third, even advanced machine learning (ML) techniques80

such as Random Forest (RF), despite their robustness to nonlinearity and multicollinearity, still81

rely heavily on sufficient representative samples to capture the multi-modal distribution and tail82

behavior of environmental variables, particularly for heavy-tailed pollutants like NO3- (Luo et al.,83

2022). Moreover, the small sample sizes obtained from discrete sampling often lead to data84

sparsity and skewed distributions, reducing the model's generalization ability by 30%-50% when85

applied to unmonitored areas and compromising the robustness and generalization ability of86

machine learning (ML) models trained on such data (Thunyawatcharakul et al., 2025; Wang et al.,87

2024).88
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To overcome these bottlenecks, recent efforts have explored virtual sample augmentation and89

hybrid modeling. Gaussian Mixture Models (GMM) and deep generative frameworks (e.g., VAEs,90

GANs) have shown promise in enriching training data, with GMM achieving an average similarity91

of 83.0% between unmixed chemical spectra and ground truth in geochemical analysis (Farnia et92

al., 2023; Tung et al., 2023), however, they often fail to preserve the non-linear manifold structure93

of high-dimensional geochemical space or require large training sets, precisely what is lacking94

(Zhou et al., 2025). Non-linear dimensionality reduction methods, such as t-SNE, excel at95

revealing latent clusters corresponding to distinct hydrological processes, with a classification96

accuracy of 92% for annual daily hydrograph clustering in mountainous watersheds, yet lack97

explicit generative mechanisms (Wang et al., 2025; Tang et al., 2022). Meanwhile, the rise of98

foundation models in Earth observation exemplified by Google’s AlphaEarth Foundation (AEF),99

offers unprecedented opportunities: its 64-dimensional semantic embeddings, derived from100

multi-sensor satellite time series (including Sentinel-2, Landsat, and Sentinel-1), implicitly encode101

land use, vegetation phenology, soil moisture, and anthropogenic footprints at 10 m resolution102

(Tollefson, 2025). These features have been successfully applied in land use classification and103

crop monitoring, but their potential for predicting groundwater nitrate concentrations, especially104

across different hydrological seasons remains underexplored (Li et al., 2025). Quantum machine105

learning (QML) further opens a new frontier. Parameterized Quantum Circuits (PQCs) can map106

classical inputs into exponentially high-dimensional quantum Hilbert spaces, generating entangled107

feature representations that reveal complex, non-linear patterns inaccessible to classical kernels108

(Hong et al., 2025). For ozone concentration forecasting, a hybrid QML model achieved an R2 of109

94.12% for 1-hour forecasts and 75.62% for 6-hour forecasts, outperforming classical persistence110

models by a forecast skill of 31.01-57.46% (Oliveira et al., 2025). Crucially, analytical quantum111

feature extraction via Pauli-Z expectation values avoids the noisy sampling overhead of near-term112

quantum hardware, reducing computational latency by ~80% compared to sampling-based113

methods and making it viable for small-sample environmental modeling (Gujju et al., 2024;114

Oliveira et al., 2025).115

Furthermore, identifying the sources and controlling factors of nitrate pollution is crucial for116

improving prediction accuracy and guiding targeted pollution control measures. Isotopic analysis117

(δ15N-NO3- and δ18O-NO3-) combined with the MixSIAR model has proven effective in118
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quantitatively apportioning nitrate sources (Tian et al., 2025). Meanwhile, Bayesian models and119

SHapley Additive exPlanations (SHAP) analysis can reveal the key environmental variables120

driving nitrate concentration changes, enhancing the interpretability of prediction models (Alam et121

al., 2025). Despite these advancements, several gaps persist in the current research: (1) Few122

studies have integrated hybrid quantum-classical ML with virtual sample augmentation to address123

small-sample challenges in seasonal nitrate prediction; (2) The potential of AEF remote sensing124

semantic features for groundwater nitrate prediction remains untested, particularly in comparison125

with in-situ measured parameters; (3) The combined effects of hydrological seasonal variations,126

nitrate source apportionment, and key environmental drivers on prediction model performance127

require systematic investigation.128

The North China Plain, an important agricultural production region in China, is characterized129

by high nitrogen input intensity and significant seasonal hydrological variations, making it an area130

prone to groundwater nitrate pollution (Liu et al., 2025). Conducting field-scale research on nitrate131

pollution in this region is of great significance for the protection of regional water resources. The132

Xiong’an New Area in China is a typical study area at the farmland scale in the North China Plain.133

As a major agricultural area with high nitrogen input intensities and distinct seasonal hydrological134

cycles, it faces significant groundwater nitrate pollution risks. This region’s unique climatic135

regime characterized by a dry spring, wet summer with concentrated precipitation, and a cold, dry136

winter, creates marked seasonal disparities in groundwater recharge, evaporation, and pollutant137

migration (Xu et al., 2022). A mechanistic understanding of how nitrate concentrations vary138

across these hydrological seasons (normal, dry, wet) and their controlling factors is crucial for139

regional water resource management.140

To fill these gaps, this study aims to: (1) propose a novel virtual sample generation method141

(t-SNE-GMM-KNN) to enhance small-sample datasets while preserving the non-linear structure142

and multi-modal distribution of original data; (2) construct a hybrid quantum-classical random143

forest model by integrating quantum feature encoding with classical random forest, improving the144

model’s ability to capture complex environmental relationships; (3) evaluate the predictive145

performance of two input datasets (on-site measured water quality parameters and AEF remote146

sensing semantic features) across normal, dry, and wet seasons under Leave-One-Out147

Cross-Validation (LOOCV); (4) identify the dominant nitrate sources and key environmental148
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controlling factors using isotopic analysis, MixSIAR modeling, Bayesian analysis, and SHAP149

interpretation; (5) establish a comprehensive and accurate prediction framework for groundwater150

nitrate concentrations in intensive agricultural regions, providing scientific support for151

groundwater pollution control and sustainable water resource management in the North China152

Plain. The novelty of this study lies in the integration of hybrid quantum-classical machine153

learning, advanced virtual sample augmentation, and remote sensing semantic features to address154

the challenges of small-sample, high-dimensional, and seasonally variable nitrate prediction. The155

findings are expected to advance the state-of-the-art in groundwater quality prediction and offer a156

scalable approach for large-scale environmental monitoring in unmonitored areas.157

158

2. Materials and Methods159

2.1 Study area160

The North China Plain is one of China’s most important agricultural production bases. This161

study focuses on the Xiong’an New Area, situated in the central part of Hebei Province, as a162

representative research site within this plain. Located in the core region defined by Beijing,163

Tianjin, and Baoding, it boasts an advantageous geographical position, with straight-line distances164

of 105 km to both Beijing and Tianjin, and 30 km to Baoding. Its geographical coordinates range165

from 38°43′ to 39°10′ N latitude and from 115°38′ to 116°20′ E longitude, covering an area of166

approximately 1770 km2 (Xiong’an New Area Official Website, 2023). The specific study area is167

an unmanned farm located in Xieyeqiao Village, Nanzhang Town, Rongcheng County, within the168

Xiong'an New Area (Fig.1). The farm covers an area of 3000 hectares and primarily cultivates two169

main grain crops: wheat and corn. As the first mechanized unmanned farm in Xiong'an, it has170

achieved full mechanization and intellectualization, enabling unmanned, precise, and standardized171

operations throughout all stages of tillage, sowing, management, and harvesting.172
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173
Fig.1. Study area map showing the sampling location. ((b) Based on the standard map (Approval174

No. Ji S (2025) 009) from the Department of Natural Resources of Hebei Province; base map is175

unmodified.)176

Cultivated land constitutes a large proportion of the total area in the Xiong'an New Area and177

is predominantly dryland. Traditional fertilization in the region involves high application rates of178

nitrogen and manure. As a representative farm within this area, the study site also follows this179

conventional practice, making it susceptible to the impacts of high fertilization intensity. The180

annual nitrogen fertilizer application rate at the study site ranges from 540 to 660 kg (N) ha-1 yr-1,181

primarily supplied as urea (46% N). The extensive application of chemical fertilizers and manure182

consequently elevates the risk of nitrogen pollution in groundwater. Furthermore, the rural183

population is relatively densely distributed, contributing to pollution from domestic sewage184

discharge in the vicinity. The climate is classified as a warm-temperate, monsoonal, continental185

semi-humid climate. Springs are dry and rainless, summers are humid with abundant precipitation,186

autumns are cool and dry, and winters are cold with minimal snowfall. The mean annual air187

temperature in Xiong'an New Area is 12.6°C, exhibiting relatively minor inter-annual fluctuations.188

The mean annual precipitation is 480.8 mm, which is highly concentrated from June to September.189

The average annual sunshine duration is 2335.2 hours, with longer periods in spring and summer190

and shorter ones in autumn and winter. The average frost-free period lasts 204 days. The mean191

annual wind speed is 1.7 m s-1, with the highest average occurring in April and the lowest in192

January, August, and December. The multi-year average evaporation is 1661.1 mm (Liao et al.,193
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2020). The soil texture is dominated by silty loam, and the 2-8.5 m soil layer contains interlayers194

with high clay content such as clay and silty clay, reflecting the characteristics of vadose zone195

sediments in the central plain under geomorphic sedimentation. Nitrogen in the thick vadose zone196

is dominated by organic nitrogen, accounting for approximately 97% of the total nitrogen content.197

The shallow vadose zone at 3-6 m stores the largest amount of nitrate, accounting for about half of198

the total nitrate reserves in the North China Plain (Li et al., 2025; Zhang et al., 2007).199

Groundwater in the study area is primarily hosted in Quaternary unconsolidated porous aquifers,200

with sampled wells ranging from 70 to 120 m in depth (Bai et al., 2023). The primary source of201

groundwater recharge in the study area's farmland is atmospheric precipitation, while the main202

discharge pathway is artificial extraction for agricultural irrigation. Irrigation followed crop203

phenological stages. Wheat underwent muddy water irrigation at pre-sowing, overwintering,204

regreening, and jointing stages, and maize received a single post-sowing muddy water irrigation.205

206

2.2 Data collection and measurements207

2.2.1 Field sampling data and laboratory analysis208

Field investigations and the collection of hydrochemical and isotopic samples were209

conducted in the study area from 2022 to 2023. A total of 66, 65, and 50 groundwater samples210

were collected in October 2022, April 2023, and August 2023, respectively. All groundwater211

samples were obtained from existing agricultural irrigation wells within the study area. Prior to212

sample collection, each well was purged by pumping. Sampling commenced only after the213

pumped volume exceeded three times the well's casing volume and on-site parameters had214

stabilized (i.e., showing minor fluctuations around a constant value rather than a continuous rising215

or falling trend), a procedure implemented to ensure the representativeness of the samples. At each216

sampling point, one 1000 mL and two 100 mL samples were collected. Before final collection, the217

sample bottles were rinsed three times with the water to be sampled. Immediately after collection,218

the samples were sealed and stored in a portable cooler for transport to the laboratory for219

subsequent analysis. Furthermore, the precise geographical location of each sampling point was220

recorded using a GPS device.221

In-situ physicochemical parameters were measured using a Hach HQ400 multi-parameter222

water quality meter (Li et al., 2022). The measured parameters included water temperature (T, °C),223
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pH, total dissolved solids (TDS, mg L-1), dissolved oxygen (DO, mg L-1), electrical conductivity224

(EC, μS cm-1), and oxidation-reduction potential (ORP, mV). The concentration of HCO3- was225

determined within 24 hours of sample collection using the dilute sulfuric acid-methyl orange226

titration method (Huang et al., 2012). Prior to the determination of cations and anions, water227

samples were filtered through 0.45 μm membrane filters. Major cations (K+, Ca2+, Na+, Mg2+)228

were analyzed using an inductively coupled plasma optical emission spectrometer (Avio 500).229

Major anions (NO3-, Cl-, SO42-) were analyzed using an ion chromatograph (ICS-2100). The230

analytical precision for cations and anions was controlled within ±0.2 mg L-1, and the charge231

balance error was maintained within 5% to ensure reliability. The concentrations of nitrite232

nitrogen and ammonia nitrogen were determined using a flow injection analyzer (Smartchem 200,233

AMS Alliance) and measured using dual wavelength spectrophotometry and the indophenol blue234

method (Kim et al., 2019; Sun et al., 2022). The limits of detection for nitrite nitrogen and235

ammonium nitrogen were both 0.01 mg L-1. For the analysis of stable hydrogen and oxygen236

isotopes, water samples were filtered through 0.22 μm membrane filters and measured using an237

LGR liquid water isotope analyzer (TIWA-45-EP). The analytical precisions for δ2H, δ17O, and238

δ18O were ±0.15‰, ±0.02‰, and ±0.02‰, respectively (Hamidi et al., 2023). The isotopic239

compositions of nitrate (δ18O-NO3- and δ15N-NO3-) were determined using a MAT-253 mass240

spectrometer coupled with an elemental analyzer (Li et al., 2022). To ensure analytical precision,241

standard references, reagent blanks, and duplicate samples were employed. Furthermore,242

international standards USGS 34 and USGS 35 were used for δ18O quality control, while USGS243

32 and USGS 34 were used for δ15N quality control. All isotope results are reported in per mil244

(δ, ‰).245

246

2.2.2 Google AlphaEarth Foundation247

To facilitate comparisons with predictions based on in-situ field sampling data and to validate248

the accuracy of predicting groundwater nitrate concentration using remote sensing data, this study249

incorporates the Google AlphaEarth Foundation (AEF) dataset. AEF is a collection of250

high-dimensional surface semantic embedding features generated via pre-training on multi-source251

remote sensing data (Brown et al., 2025). By fusing imagery from Sentinel-2, Landsat, and other252

Earth observation satellites, this dataset constructs a 64-dimensional vector representation253

https://doi.org/10.5194/egusphere-2026-272
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



10

(denoted as A00-A63) at a global scale with an annual temporal resolution and a 10 m spatial254

resolution (Alvarez et al., 2025). These embeddings implicitly encode complex environmental255

semantics, such as land cover types, vegetation dynamics, soil moisture, and the intensity of256

human activity, and have been successfully applied in tasks including land use classification, crop257

monitoring, and environmental risk modeling (Tollefson et al., 2025).258

The primary processing workflow involved spatially sampling the 64-dimensional AEF259

vectors at a 10 m resolution using the GOOGLE/SATELLITE_EMBEDDING/V1/ANNUAL260

product on the Google Earth Engine (GEE) platform, based on the geographic coordinates of the261

field sampling points. To ensure data quality, only samples exhibiting exact matches between the262

GEE extraction and the actual field data points were retained. Given the redundancy within the263

initial 64-dimensional AEF features, Principal Component Analysis (PCA) based on Singular264

Value Decomposition (SVD) was employed for feature compression. Specifically, SVD was265

performed on the centered feature matrix to select the minimum number of principal components266

accounting for at least 95% of the cumulative explained variance (Ilyas et al., 2025). The267

orthogonalized, low-dimensional principal component scores were subsequently used as model268

inputs. This approach preserves the vast majority of the semantic information from the original269

embeddings while significantly mitigating the risk of overfitting. Ultimately, the PCA-reduced270

AEF features served as the input variables for the model.271

272

2.3 MixSIAR model and isotopic composition of nitrate sources273

The MixSIAR model uses prior information such as the number of end - members, errors,274

and distribution characteristics, and iterates based on the Markov Chain Monte Carlo (MCMC)275

method to quantitatively restore the contribution fraction of each end-member to the mixed sample276

(Stock et al., 2018). At present, this analytical method has been widely applied in the quantitative277

analysis of nitrate pollution sources in water bodies. The calculation principle of the model is as278

follows:279

Xij= k=1
k Pk� (Sjk+Cjk)+εij (1)280

Sjk∼N μjk,ωjk2 (2)281

Cjk∼N(λjk,τjk2 ) (3)282

εij∼N(0,σj2) (4)283
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In the formula, Xij is the value of isotope j in the i-th sample (i = 1, 2, …, 20, j = 1, 2); Pk is the284

contribution rate of the k-th pollution source; Sjk is the value of isotope j in the k-th pollution285

source, where μ is the mean and ω is the variance of the normal distribution; Cjk is the286

fractionation coefficient, where λ is the mean and τ is the variance of the normal distribution; εij287

is the residual, with 0 as the mean and σ as the variance of the normal distribution.288

In this study, the MixSIAR model is used to calculate the five potential sources of NO3- in289

water bodies, namely precipitation (NP), soil organic nitrogen (SON), synthetic NH4+ fertilizer290

(NHF), synthetic NO3- fertilizer (NOF), and domestic sewage & manure (DSM). The end-291

member values of the five sources are selected as shown in Table 1 (Mao et al., 2023; Gao et al.,292

2023; Torres-Martínez et al., 2021).293

Table 1. Summary statistics of δ18O and δ15N for potential nitrate sources.294

Sources δ18O-NO3- δ15N-NO3-

Mean SD Mean SD

NP 57.2 6.9 0.6 1.5

NHF -4.1 2.7 -2.1 0.7

NOF 21.7 2.9 0.2 2.3

SON -2.7 4.4 3.8 1.8

DSM 6.1 1.6 17.4 3.9

295

2.4 t-SNE-GMM-KNN: based on nonlinear structure modeling in feature space296

To address the challenges of overfitting and poor generalization performance in small-sample297

modeling, which arise from data sparsity and skewed distributions, this study proposes a298

three-stage virtual sample generation strategy termed t-SNE-Gaussian Mixture Sampling with299

KNN Inverse mapping. This method aims to preserve the non-linear manifold structure and300

multi-modal distribution characteristics of the original high-dimensional feature space while301

generating physically plausible and statistically consistent synthetic samples. The specific302

workflow is as follows:303

1. Data standardization304

All input features are standardized using Z-score standardization to eliminate scale305
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differences and enhance the stability of the subsequent dimensionality reduction (Jamshidi et al.,306

2022).307

2. t-SNE non-linear dimensionality reduction308

t-Distributed Stochastic Neighbor Embedding (t-SNE) is employed to map the309

high-dimensional feature space into a low-dimensional latent space (d=2) (Islam et al., 2023). To310

balance the preservation of local and global structures, the perplexity is set to 10, and PCA311

initialization is used to ensure reproducibility. t-SNE effectively reveals the clustered structure of312

samples on the low-dimensional manifold, reflecting the differentiation of underlying313

environmental processes within hydrological seasons (Liu et al., 2021).314

3. GMM clustering and optimal component selection315

In the t-SNE-reduced low-dimensional space, a Gaussian Mixture Model (GMM) is316

constructed to characterize the probability density distribution of the data (Jia et al., 2022). The317

GMM assumes that the data are generated from a linear combination of several Gaussian318

distributions. The weights, means, and covariance matrices of each Gaussian component are319

estimated via the Expectation-Maximization (EM) algorithm, thereby accurately capturing the320

complex distribution patterns of the data (Yan et al., 2023). To avoid subjectively setting the321

number of clusters, the Bayesian Information Criterion (BIC) is used to automatically optimize the322

number of components, K, within the range (Ghodba et al., 2025):323

BIC(K)=-2 logL+pK logn (5)324

where L is the model's likelihood, k is the total number of free parameters for a K-component325

model, and n is the sample size. The value of K corresponding to the minimum BIC is selected as326

the optimal number of components, ensuring a balance between goodness-of-fit and model327

complexity.328

4. Virtual sample generation and inverse mapping329

Based on the optimal GMM, a specified number of virtual points are randomly sampled from330

its joint probability distribution. This generation process naturally inherits the multi-modality and331

covariance structure of the original data. To reconstruct the low-dimensional virtual samples back332

into the original feature space, a k-Nearest Neighbors regression model is trained (Niu et al., 2025).333

This model uses the t-SNE coordinates as input and the standardized original features as output,334

approximating the inverse of the non-linear t-SNE mapping. Finally, the virtual sample set in its335
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original physical units is obtained by applying inverse standardization.336

5. Physical constraints and quality control337

For the target variable, NO3-, a non-negativity constraint (NO3- ≥ 0 mg L-1) is imposed to338

prevent non-physical solutions that may arise from the regression approximation. Other variables,339

such as pH and ORP, are allowed to fluctuate within reasonable ranges without hard clipping to340

retain the model's flexibility. The consistency between the virtual and measured samples is341

validated by comparing their statistical characteristics, including mean, standard deviation,342

coefficient of variation, range of extreme values, and boxplot distributions. This comparison343

confirms that the generated data are highly consistent with the original data in terms of statistical344

properties, without introducing systematic bias or outliers.345

The advantages of this method are as follows: ① t-SNE excels at capturing local346

neighborhood relationships, effectively separating implicit subgroups under different hydrological347

conditions. ② The GMM provides a probabilistic generative framework, supporting reasonable348

extrapolation for heavy-tailed distributions and extreme values. ③ The KNN-based inverse349

mapping circumvents the need for large training datasets, which is a limitation of traditional350

autoencoders, making it particularly suitable for small-sample scenarios (Tang et al., 2022;351

Razavi-Termeh et al., 2024).352

353

2.5 Machine learning methods354

2.5.1 Random forest355

In this study, Random Forest (RF) was adopted as the baseline model. As an ensemble356

learning method that leverages bootstrap sampling and random feature selection, RF builds357

numerous decision trees and integrates their predictions (Abderzak et al., 2025). This approach358

effectively suppresses overfitting and improves generalization performance, making it especially359

well-suited for environmental data modeling scenarios involving small samples, high360

dimensionality, non-linearity, and multicollinearity (Boddu et al., 2025). Hyperparameters were361

configured based on a preliminary grid search and domain expertise: n_estimators=100,362

max_depth=5, min_samples_split=6, min_samples_leaf=3, and max_features= p . For the363

interpretation of driving mechanisms, feature importance was quantified by the mean decrease in364

Gini impurity (Gini Importance) to identify the critical hydrogeochemical indicator factors (Kaur365
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et al., 2025).366

367

2.5.2 Hybrid quantum-classical random forest368

Based on the random forest, a Hybrid Quantum-Classical Random Forest (QCRF) model was369

constructed, integrating quantum feature enhancement with classical random forests. The core370

idea of the model is: utilizing a Parameterized Quantum Circuit (PQC) to perform quantum feature371

encoding on standardized input features, generating high-dimensional quantum features with372

non-linear entanglement properties (Naresh et al., 2025). These are then concatenated with the373

original features to construct an enhanced hybrid feature space, which is finally fed into a random374

forest regressor for modeling (Lamichhane et al., 2025).375

(1) Quantum Feature Encoding376

Quantum state transformation of classical data is achieved based on the Z-feature map in377

quantum computing (Vedavyasa et al., 2025). The ZFeatureMap maps the classical378

high-dimensional feature space into a quantum Hilbert space through single-qubit Z-gate379

operations and two-qubit CZ-gate entanglement operations (Khalil et al., 2025). Its core advantage380

lies in obtaining quantum features via analytical calculation of quantum state vectors, thereby381

avoiding noise interference introduced by quantum sampling and ensuring feature stability. The382

ZFeatureMap provided by Qiskit is used as the feature encoding circuit, with its Hamiltonian form383

given by (Tehrani et al., 2024):384

UZMap(x)= k=1
R

i=1
d Hi� ⋅exp -i S⊆{1,…,d}ϕS� (x) j∈SZj�� (6)385

where d is the selected number of principal factors, R is the number of repetition layers, and ϕS386

represents data-dependent rotation angles (using linear embedding).387

For each sample x, construct the corresponding quantum state |ψ(x)⟩, and analytically388

calculate the Pauli-Z expectation value for each qubit (Liao et al., 2024):389

⟨Zi⟩=⟨ψ(x)|Zi|ψ(x)⟩=P(qi=0)-P(qi=1) (7)390

Here, the number of i is equal to the number of predictor variables. This method requires no391

quantum hardware sampling, completely avoiding the interference of measurement noise and shot392

noise on small-sample modeling, thus ensuring the determinism and reproducibility of feature393

generation.394
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(2) Feature Fusion and Modeling395

Concatenate the original n-dimensional raw features with the n-dimensional quantum ⟨Z⟩396

features to form a 2n-dimensional hybrid feature vector x_aug = [x_raw; ⟨Z⟩] (Cowlessur et al.,397

2025). That is, original features+quantum encoded features. Using this as input, construct a398

random forest regression model:399

y�= 1
M m=1

M Tree�
m
(xaug) (8)400

The hyperparameter settings are the same as those for the classical random forest method401

described above.402

403

2.6 Evaluation methods and prediction process404

2.6.1 SHAP analysis405

This study adopts the SHapley Additive exPlanations (SHAP) method for local and global406

explainability analysis (Merabet et al., 2025). Through three typical visualization methods, namely407

summary plot, dependence plot, and waterfall plot, the following are revealed respectively: (1)408

The overall ranking and distribution of feature importance across all samples (global perspective);409

(2) The nonlinear relationship or interaction effects between a single predictor variable and the410

predicted nitrate concentration (conditional dependence); (3) The contribution decomposition of411

each feature in the prediction result of a representative sample (local attribution) (Alam et al.,412

2025).413

The SHAP value is mathematically defined as: the marginal contribution of feature j to the414

model output offset from the baseline mean (Li et al., 2024), and its form is:415

ϕj= S⊆F∖{j}
|S|!(|F|-|S|-1)!

|F|!� [f(S∪{j})-f(S)] (9)416

where F is the set of all features, S is a subset not containing feature j, and f is the model output.417

By averaging the absolute SHAP values |ϕj| over all samples, a feature importance measure with a418

game-theoretic foundation, unbiased and robust, can be obtained (Hollmannet al., 2025).419

420

2.6.2 Leave-One-Out Cross-Validation (LOOCV) and model evaluation indicators421

Given the limited sample size in each hydrological season, this study adopts Leave-One-Out422

Cross-Validation (LOOCV) for model performance evaluation to maximize the use of training423
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data and reduce evaluation bias (Austin et al., 2025). The LOOCV process is: each time, one424

sample is left out as the validation set, and the remaining n-1 samples are used for training. After425

repeating nn times, the average of the evaluation indicators is taken as the final result (Ren et al.,426

2021).427

The coefficient of determination R2, root mean square error (RMSE), and mean absolute428

error (MAE) are used to quantitatively describe the model accuracy and error characteristics (Gul429

et al., 2025):430

R2=1- i=1
n (� yi-y�i)2

i=1
n (� yi-y�)2

(10)431

RMSE= 1
n i=1

n (� yi-y�i)2 (11)432

MAE= 1
n i=1

n |� yi-y�i| (12)433

where yi is the measured value of the i-th sample, y�i is the model’s predicted value, y� is the434

mean of the measured values, and n is the number of samples in the test set.435

436

2.6.3 Standardized prediction workflow437

To systematically evaluate the nitrate concentration prediction capabilities of different input438

variables and modeling strategies across various hydrological seasons, and to validate the439

effectiveness of virtual sample augmentation for small-sample modeling, this study established a440

standardized prediction pipeline (Fig.2). The specific steps are as follows: (1) Data Preprocessing441

and Grouping: Observed samples were partitioned by seasons. Z-score normalization was applied442

separately to two types of input features: field water quality parameters and AlphaEarth443

Foundation (AEF) features reduced via Principal Component Analysis (PCA). (2) Virtual Sample444

Generation and Validation: A t-SNE-GMM-KNN strategy was employed to generate virtual445

samples. Their physical plausibility and distribution consistency were rigorously verified using446

statistical indicators, box plots, and histograms. (3) Model Training: Under unified447

hyperparameters, classical Random Forest (RF) and quantum-enhanced RF models were448

constructed. The latter generates <Z> quantum features via Parameterized Quantum Circuits (PQC)449

encoding, which are concatenated with original features to form 2*n input features. Models were450

trained using two distinct input datasets and combinations of "original samples + 1~10× virtual451

samples." (4) Model Evaluation: The Leave-One-Out Cross-Validation (LOOCV) strategy was452
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adopted to calculate R2, RMSE, and MAE. Visual diagnostics were performed using453

observed-predicted scatter plots, residual plots, and box plots. (5) Interpretability Analysis:454

Multi-scale interpretation was conducted based on the SHAP framework, including summary plots455

(global importance ranking), dependence plots (nonlinear response and interaction effects), and456

waterfall plots (local attribution). The driving mechanisms were cross-verified with results from457

Bayesian models and Pearson correlation analysis. This workflow encompasses the full process458

from data augmentation, modeling, and evaluation to attribution, providing a reproducible and459

highly transparent solution for precise groundwater nitrate prediction under conditions of small460

samples, multiple seasons, and multi-source inputs.461

462
Fig.2. Process diagram for constructing prediction framework.463

464

3. Results465

3.1 Seasonal hydrochemical controls of nitrate distribution in farmland groundwater466

3.1.1 Hydrochemical parameters467

Regarding the basic physical parameters, the pH value was weakly alkaline during the normal468

water period with minimal variation, whereas it was near-neutral in the dry and wet seasons (Table469

2). A minimum value of 5.77 occurred in the wet season, indicating the presence of acidic water470

bodies. Temperature (T) exhibited significant seasonal variation but remained relatively stable471

within each season (CV≈0.06). EC, salinity, and TDS showed consistent patterns, all peaking472
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during the dry season and reaching their lowest levels in the wet season. The redox indicators473

displayed high volatility. The mean DO was slightly higher in the wet season, while the mean474

ORP was consistently low across all seasons, with extremely large standard deviations and475

coefficients of variation. In terms of ionic composition, the average concentrations of Ca2+ and476

Mg2+ were highest during the dry season, and Na+ also peaked in this period. The concentration of477

K+ was relatively low. Among the anions, HCO3- concentration was highest in the wet season,478

while the average concentrations of Cl- and SO42- were both at their maximum during the dry479

season. The average concentration of NO3- was higher in the dry season than in other periods and480

lowest in the wet season. The concentrations of nitrite (NO2-) and ammonium (NH4+) were much481

lower than that of nitrate. Concerning the distribution of the indicators, most variables were482

right-skewed. Notably, extreme values were present for NO3- in the dry season (maximum=358.58483

mg L-1, mean=42.93 mg L-1), Cl- in the dry season (maximum=241.36 mg L-1, mean=24.90 mg484

L-1), and F- in the normal period (maximum=13.17, mean=3.70).485

Table 2. Statistical summary of chemical and field measurement parameters.486

Periods pH T EC DO ORP Salt TDS Depth K+ Ca2+

Unit ℃ μs cm-1 mg L-1 mv ppt mg L-1 m mg L-1 mg L-1

Normal season Max 8.60 16.70 1110.00 10.57 369.60 0.53 724.00 20.64 36.66 69.73

n=66 Min 7.61 13.40 349.00 2.20 -58.30 0.11 225.00 18.26 1.04 13.38

Mean 8.16 14.90 549.32 6.31 4.57 0.21 357.21 18.91 2.92 37.28

SD 0.11 0.71 173.56 1.94 56.27 0.09 113.34 0.62 4.45 13.06

CV 0.01 0.05 0.32 0.31 12.32 0.44 0.32 0.03 1.52 0.35

Dry season Max 8.21 18.80 1134.00 8.82 144.20 0.54 737.00 18.95 3.52 43.86

n=65 Min 6.97 14.10 343.00 1.85 -110.40 0.11 227.00 17.88 0.67 4.81

Mean 7.35 15.59 658.68 6.34 4.55 0.27 427.65 18.43 1.93 16.89

SD 0.45 0.92 185.20 1.64 42.10 0.10 120.55 0.27 0.56 8.35

CV 0.06 0.06 0.28 0.26 9.26 0.36 0.28 0.01 0.29 0.49

Wet season Max 8.97 21.00 977.00 9.61 195.00 0.41 635.00 18.87 3.37 51.54

n=50 Min 5.77 15.50 371.00 3.34 -112.20 0.12 243.00 17.61 1.14 17.27

Mean 7.34 17.01 535.24 6.98 17.57 0.20 347.92 18.27 1.75 25.70
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SD 0.52 0.94 153.65 1.32 47.59 0.08 100.39 0.40 0.34 6.83

CV 0.07 0.06 0.29 0.19 2.71 0.42 0.29 0.02 0.19 0.27

Na+ Mg2+ HCO3- Cl- SO42- F NO3- NO2- NH4+

Unit mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1 mg L-1

Normal season Max 98.85 92.78 192.15 87.09 40.49 13.17 161.17 0.45 0.20

n=66 Min 3.81 3.80 22.88 1.03 1.79 0.12 2.39 0.04 0.00

Mean 24.01 31.78 96.65 20.53 15.53 3.70 33.67 0.11 0.04

SD 12.46 17.18 44.51 17.84 10.02 2.02 35.83 0.08 0.04

CV 0.52 0.54 0.46 0.87 0.64 0.55 1.06 0.72 1.00

Dry season Max 123.20 138.90 289.29 241.36 123.75 0.57 358.58 10.38 0.84

n=65 Min 16.28 17.97 5.10 1.40 2.00 0.21 0.10 0.57 0.05

Mean 48.52 58.17 42.19 24.90 15.91 0.33 42.93 3.35 0.16

SD 16.48 25.86 71.11 35.13 18.67 0.08 56.35 1.98 0.11

CV 0.34 0.44 1.69 1.41 1.17 0.26 1.31 0.59 0.69

Wet season Max 36.21 53.72 207.40 51.93 34.15 0.45 98.36 4.31 0.41

n=50 Min 10.95 12.76 83.88 1.56 5.88 0.09 4.15 1.51 0.02

Mean 21.78 22.57 132.49 15.60 15.16 0.20 27.14 2.62 0.10

SD 4.90 8.13 27.12 13.60 7.47 0.08 23.86 0.61 0.08

CV 0.23 0.36 0.20 0.87 0.49 0.39 0.88 0.23 0.83

487

3.1.2 Type of water488

During the dry season, the data points are highly concentrated in the zone of calcium-type489

cations and bicarbonate-type anions, indicating that the groundwater is primarily controlled by the490

dissolution of carbonate rocks (Fig.3). In the wet season, although the Ca-Mg-HCO3- type remains491

dominant, some samples shift towards the sulfate and chloride types, reflecting the leaching input492

effect of surface pollutants (such as agricultural fertilizers and domestic sewage) brought by493

rainfall infiltration. By the normal season, the hydrochemical types exhibit the widest distribution,494

presenting a mixed type with coexisting bicarbonate and chloride types. Overall, the groundwater495

hydrochemical characteristics in the study area are jointly controlled by precipitation-evaporation496

dynamics and carbonate weathering.497
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498
Fig.3. Piper diagram classifying the hydrochemical facies of the analyzed groundwater.499

500

3.1.3 Sources and controlling factors of ions in groundwater501

The Gibbs diagram shows that the groundwater in the study area is primarily controlled by502

rock weathering during the normal, dry, and wet seasons, indicating the dominance of water-rock503

interaction (Fig. 4). The ratio of γ(Na+ + K+) to γCl- (Fig. 5a) shows that the vast majority of504

sample points plot above the 1:1 line, indicating that Na+ and K+ are primarily sourced from the505

dissolution of evaporite rocks. In the relationships between γ(Ca2+ + Mg2+) and γHCO3-, and506

between γ(Ca2+ + Mg2+) and γ(HCO3- + SO42-) (Fig. 5b-c), samples from all periods plot above the507

1:1 line, confirming that Ca2+ and Mg2+ mainly originate from the dissolution of carbonate508

minerals. Furthermore, the γCa2+-γMg2+ relationship (Fig. 5d) helps identify the types of mineral509

dissolution. Samples from the dry season are concentrated below the 1:2 line, indicating a510

dominance of magnesium-poor mineral dissolution, with cation exchange causing a relative511

depletion of Ca2+. Samples from the normal and wet seasons are stably distributed between the 1:1512

and 1:2 lines, reflecting that dolomite dissolution has reached equilibrium while calcite remains in513

a state of non-equilibrium dissolution, continuously supplying Ca2+. In the relationship between514

γ(SO42- + Cl-) and γHCO3- (Fig. 5e), the distribution of sample points on both sides of the 1:1 line515

suggests that groundwater ions have dual contributions from both evaporite and carbonate rocks.516

Conversely, in the γCa2+ versus γSO42- relationship (Fig. 5f), samples generally plot above the 1:1517

line, which excludes gypsum as a primary source of Ca2+ and indicates that Ca2+ is mainly derived518

from the dissolution of carbonate minerals. Therefore, the chemical composition of groundwater519

in the study area is primarily controlled by the dissolution of carbonate minerals, and is also520

influenced by hydrological seasonal variations and cation exchange processes.521
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522

Fig.4. Gibbs diagrams of the groundwater samples.523
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524

Fig.5. Plots of ion ratio relationship.525

The Chloro-Alkaline Index method was employed to analyze the cation exchange and526

adsorption between groundwater and sediments. A CAI value less than zero indicates the527

occurrence of cation exchange, with more negative values reflecting stronger exchange intensity. .528

Furthermore, the relationship between [γ(Ca2+) + γ(Mg2+) - γ(HCO3-) - γ(SO42-)] and [γ(Na+) -529

γ(Cl-)] can be used to further investigate the cation exchange processes in the groundwater. During530
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the dry season, the slope was 0.55, suggesting the presence of extremely weak cation exchange in531

the water body (Fig. 6a). With the exception of samples from the dry season, sampling points from532

the normal and wet seasons were plotted near a line with a slope of -1, with respective slopes of533

-1.52 and -1.36. This trend is consistent with the conclusions drawn from the Chloro-Alkaline534

Index, providing further evidence that cation exchange and adsorption occurred in the535

groundwater during the normal and wet seasons. The ion exchange process was more active536

during the rainy season (R2=0.41), leading to the enrichment of Na+ in the groundwater of the area.537

In contrast, most groundwater samples from the dry season showed no evidence of cation538

exchange and adsorption.539

540

Fig.6. Relationship diagram of groundwater (Ca2++Mg2+-SO42--HCO3-) and (Na+-Cl-) along with541

CAI-1 and CAI-2 correlation diagrams.542

543

3.1.4 Spatial distribution dynamics of groundwater depth and nitrate driven by seasonal544

hydrological processes545

The spatial distribution of groundwater depth reflects the regional hydraulic gradient and546

groundwater flow direction, whereas the spatial variability of nitrate concentration is closely547

associated with flow paths, pollution source inputs, and hydrological processes (Fig.7). During the548

normal season, the groundwater depth distribution is relatively uniform. The eastern region of the549

farm, characterized by shallower depths, serves as a recharge zone, with groundwater flowing550

towards the deeper western region. At this time, nitrate concentration are relatively dispersed, with551

high-concentration zones located in the southeastern part of the farm. In the dry season, the552

groundwater depth becomes shallower, and the flow direction shifts from the eastern and western553
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sides towards the central area. During this period, nitrate concentration reach their annual peak554

(mean: 42.93 mg L-1). The distribution of nitrate exhibits a higher degree of spatial coincidence555

with the groundwater flow direction, indicating that enhanced evaporative concentration during556

the dry season leads to the further accumulation of flow-transported pollutants in the discharge557

zone. In the wet season, the groundwater depth further decreases, and groundwater flows from the558

southeastern region towards the northwestern region. nitrate concentration drop to their annual559

minimum (mean: 27.14 mg L-1). High-concentration areas are distributed in the northwest,560

overlapping with regions of deeper groundwater depth. It is inferred that precipitation infiltration561

during the rainy season dilutes the groundwater nitrate; as dilution is the dominant process during562

infiltration, the nitrate concentration exhibits a decreasing trend along the groundwater flow563

direction.564

565

Fig. 7. Spatial distribution of nitrate concentration and groundwater depth in different seasons.566

567

3.2 Groundwater recharge sources and pollution source identification568

3.2.1 Stable hydrogen and oxygen isotope composition of water569

During the normal season, the mean values of groundwater δD and δ18O were -61.31‰ and570

-7.31‰, with ranges of -73.40‰ to -53.52‰ and -10.25‰ to -2.82‰, respectively. The d-excess571

values ranged from -38.07‰ to 17.30‰, with a mean of -2.80‰. In the dry season, the mean572

groundwater δD and δ18O values were -71.05‰ and -9.74‰, with ranges of -76.93‰ to -60.55‰573

and -10.75‰ to -7.86‰, respectively. The δ17O values ranged from -5.60‰ to -2.79‰, averaging574
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-5.01‰, while the d-excess varied from 0.01‰ to 13.69‰, with a mean of 6.89‰. During the wet575

season, the mean groundwater δD and δ18O were -74.43‰ and -9.99‰, with ranges of -76.84‰ to576

-70.91‰ and -10.70‰ to -8.73‰, respectively. The δ17O values were between -5.72‰ and577

-4.72‰, with a mean of -5.28‰, and the d-excess ranged from -3.67‰ to 9.80‰, averaging578

5.50‰. The d-excess during the dry season was the highest among the three periods, while it was579

the lowest during the normal period, indicating significant variations in d-excess across different580

seasons. The δ17O values in the dry season were higher than those in the wet and normal periods,581

which is a direct reflection of the impact of precipitation variations on the isotopic composition of582

the water body.583

The isotopic values of precipitation δD and δ18O ranged from -97.78‰ to -20.22‰ and from584

-13.48‰ to -1.96‰, with mean values of -55.36‰ and -7.60‰, respectively. Overall, the δ18O585

and δD values of precipitation in the study area fall within the global ranges of -50‰ to 10‰ and586

-350‰ to 50‰. The Local Meteoric Water Line (LMWL) for the study area is defined by the587

equation: δD = 6.2 δ18O-8.2 (Fig.8). Specifically, the equations for the normal, dry, and wet588

seasons are: δD = 1.07 δ18O-53.50, δD = 4.20 δ18O-30.09, and δD = 1.95 δ18O-54.97, respectively.589

The slope of the annual LMWL is lower than that of the Global Meteoric Water Line (GMWL)590

proposed by Craig in 1964 (δD = 8 δ18O+10), as well as lower than the China Meteoric Water591

Line (CMWL) (δD = 7.9 δ18O+8.2). The stable hydrogen and oxygen isotopic characteristics of592

groundwater samples from the three periods all exhibit a discrete, linear distribution and plot593

below both GMWL and LMWL. This phenomenon reveals that the water isotopes have undergone594

strong fractionation during evaporation in the normal, wet, and dry seasons. Furthermore, the595

stable hydrogen and oxygen isotope data for the dry and normal seasons are mainly concentrated596

in the lower-left region of the plot, indicating relative isotopic depletion during these two periods.597

During the normal period, the δD and δ18O values exhibit a high degree of dispersion and are598

widely distributed in the upper-central part of the scatter plot. This reflects that the stable599

hydrogen and oxygen isotopes are relatively enriched and have a wide range of variation during600

the normal season.601
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602

Fig.8. δ18O/δD relationship of groundwater samples.603

604

3.2.2 Identification of nitrate sources using isotopes and MixSIAR model605

During the normal water period, the nitrogen and oxygen isotopic compositions in606

groundwater exhibit a wide range of variation. The δ15N-NO3- values range from 5.6‰ to 24.52‰607

(average: 18.22‰), while the δ18O-NO3- values range from -6.33‰ to 6.23‰ (average: 0.22‰).608

In the low water period, the range of δ15N-NO3- values expands to 3.2‰-21.96‰ (average:609

12.19‰), and the δ18O-NO3- values range from -9.58‰ to 8.04‰ (average: 0.65‰). Previous610

studies have established characteristic δ18O-NO3- ranges for different nitrate sources: atmospheric611

deposition (23‰-75‰), nitrate fertilizers (18‰-24‰), and products of nitrification (-10‰-10‰).612

The data points are predominantly concentrated within the zone of animal manure and domestic613

wastewater, indicating that nitrate is primarily derived from these sources, with soil nitrogen as a614

secondary contributor.615

The MixSIAR model was employed to quantitatively apportion the sources of groundwater616

nitrate nitrogen. According to the average contributions from each source, the five pollution617

sources in the study area were ranked as follows: DSM (74.1%) > SON (20.9%) > NHF (4.2%) >618
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NOF (0.6%) > NP (0.2%) (Fig.9). This indicates that the primary contributor to groundwater619

NO3--N in the study area was manure and sewage, followed by soil nitrogen. The influences of620

atmospheric precipitation and chemical fertilizers on groundwater nitrate were negligible. The621

quantitative results from the MixSIAR analysis are consistent with the qualitative findings,622

confirming that manure and sewage, along with soil nitrogen, are the dominant sources of nitrate623

pollution in the study area.624

625

Fig.9. (a) distributions of δ15N-NO3- and δ18O-NO3- values in the study area. (b) proportional626

contributions of the main NO3- sources evaluated by the MixSIAR model. Note: boxplots denote627

the 25th, 50th and 75th percentiles.628

629

3.3 Bayesian model analysis and correlation analysis630

During the normal season, Bayesian model indicated the central role of Mg2+, which is631

consistent with its strong positive correlation (r=0.75) in the correlation matrix (Fig.10). Na+632

exhibited a significant negative effect, whereas it only showed a weak positive correlation (r=0.39)633

in the correlation matrix. This suggests that variations in Na+ concentration are more reflective of634

hydrological processes, such as evaporative concentration, rather than direct involvement in the635

chemical transformation of NO3-. Although the correlation matrix revealed strong correlations636

between NO3- and both TDS and EC (r > 0.8), their respective probabilities of direction (pd) in the637

Bayesian model were both below 80%. This further confirms that their influence is primarily638

manifested indirectly through collinearity with other ions. In the dry season, Bayesian model639

identified SO42- as the primary positive driver of NO3-, a finding that is in strong agreement with640

the high positive correlation (r=0.96) between SO42- and NO3- observed in the correlation matrix.641
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Concurrently, Bayesian model indicated significant negative effects for both Na+ and Ca2+, which642

contrasts with their weak positive correlations with NO3- in the correlation matrix. This643

discrepancy likely arises because the elevated concentrations of Na+ and Ca2+ are attributed to644

evaporative concentration, whereas the increase in NO3- stems from anthropogenic inputs,645

indicating no direct causal relationship between them. During the wet season, Bayesian model646

identified Cl- and Mg2+ as the most critical driving factors, with clear directional effects and high647

confidence. This aligns with the trends observed in the correlation matrix, where NO3- correlated648

negatively with Cl- (r=-0.78) and positively with Mg2+ (r=0.84), thereby validating their direct649

influence on NO3- concentrations during the wet season. While the correlation matrix also showed650

high positive correlations between NO3- and both TDS and EC, their posterior distributions in the651

Bayesian model were wider and their pd values were lower. This suggests that their impact is652

likely a result of high collinearity with key variables such as Mg2+ and Cl-, rather than an653

independent effect.654

655

Fig.10. Factor effects and Pearson coefficients of physicochemical variables on NO3- at different656

periods. The left part of each subgraph shows the relative importance and posterior distribution of657

each environmental variable to NO3- after the Bayesian model operation. The red area represents658

the probability density of the positive effect, and the blue area represents the probability density of659

the negative effect. The percentage values beside the distribution represent the Probability of660

Direction (pd). The right part of each subgraph is the heat map of the correlation analysis.661

662

3.4 Model performance evaluation663

3.4.1 Virtual data analysis664
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To address the modeling bias arising from limited measured samples, this study constructed665

virtual datasets at 1-10 times the original scale based on a strategy combining t-SNE666

dimensionality reduction, GMM clustering sampling, and KNN inverse mapping, to enhance the667

robustness of model training. Taking the 10x virtual dataset as an example, the statistical668

characteristics (Table 3) show that the virtual samples effectively reproduced the central tendency669

and dispersion of the original data. For the normal season, the mean NO3- concentration was 30.41670

mg L-1 (vs. observed mean of 33.67), with a standard deviation of 28.78 (vs. 35.83) and a671

coefficient of variation (CV) of 0.95 (vs. 1.06). In the dry season, the maximum value of the672

virtual samples reached 178.09 mg L-1, while this did not fully replicate the extreme high values673

(observed maximum of 358.58 mg L-1), it effectively expanded the range of the heavy-tailed674

distribution. For the wet season, although the CV for all indicators was slightly lower than the675

measured values, their ranges (8.47-80.37 vs. 4.15-98.36 mg L-1) still showed a high degree of676

overlap, indicating that no systematic distortion was introduced.677

Table 3. Statistical characteristics of different virtual samples.678

Periods pH T EC DO ORP Salt TDS NO3-

Unit ℃ μs cm-1 mg L-1 mv ppt mg L-1 mg L-1

Normal season Max 8.32 16.2 963.6 9.31 101.02 0.42 628.6 124.03

n=660 Min 7.95 13.88 378.2 3.52 -48.28 0.12 245 5.10

Mean 8.18 14.72 527.31 6.66 2.09 0.20 342.72 30.41

SD 0.07 0.54 148.31 1.66 25.97 0.08 96.92 28.78

CV 0.01 0.04 0.28 0.25 12.44 0.41 0.28 0.95

Dry season Max 8.19 17.59 987.8 8.10 69.18 0.44 641.8 178.09

n=650 Min 7.04 14.44 417.6 2.68 -59.14 0.132 267.8 5.19

Mean 7.35 15.49 661.79 6.414 0.52 0.27 429.90 37.75

SD 0.44 0.69 170.65 1.24 29.61 0.09 111.16 33.13

CV 0.06 0.04 0.26 0.19 57.21 0.34 0.26 0.88

Wet season Max 8.21 18.88 872.8 8.54 56.4 0.37 569 80.37

n=500 Min 6.31 16.12 395.8 5.34 -77.64 0.13 257.6 8.47

Mean 7.38 16.93 535.7 7.06 13.75 0.20 348.24 25.85
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SD 0.33 0.62 131.02 0.78 28.85 0.08 86.05 19.88

CV 0.04 0.04 0.24 0.11 2.10 0.38 0.25 0.77

Standardized multivariate boxplots (Fig.11) visually confirm that the median, interquartile679

range (IQR), whisker length, and outlier distribution of the virtual data for each period were680

highly similar to the measured data, demonstrating that the central tendency and dispersion681

characteristics were well-preserved. Hydrological seasonal characteristics, such as high682

EC/TDS/Cl-/NO3- in the dry season and low, concentrated NO3- in the wet season, were also683

accurately preserved. Although the number of some newly added outliers slightly increased, they684

all fell within physically reasonable ranges, with no non-physical solutions, such as negative685

concentrations or out-of-bounds pH values, occurring. Fig.12 presents a comparison of nitrate686

concentration frequency distributions between the original and synthetic datasets across normal,687

dry, and wet periods. The distributional comparison indicates that the proposed t-SNE + GMM +688

KNN inverse mapping synthetic sample generation strategy maintains the core features of the689

NO3- distribution for each hydrological period, while simultaneously improving sample690

representation in sparse areas and intervals of high variability. Therefore, the t-SNE + GMM691

method effectively captured the non-linear structure and extreme value information of the original692

data, and can provide reliable data support for subsequent model training.693
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694

Fig.11. Box plots of the observed and virtual variable data at different periods.695

696

Fig.12. Comparison of nitrate concentration distribution in the original and virtual datasets under697
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different periods.698

699

3.4.2 Prediction based on on-site measured water quality data700

During the normal season, the R2 values for the baseline Random Forest and the701

quantum-enhanced RF models were 0.673 and 0.660, respectively, indicating high prediction702

errors (Table S1). As the number of virtual samples was increased from 1-fold to 10-fold the size703

of the original dataset, the R2 of both models steadily improved to above 0.958, with the704

quantum-enhanced RF model performing better and ultimately achieving an R2 of 0.9622. When705

the number of virtual samples exceeded 500, the performance gains began to plateau. For the dry706

season, the modeling performance with the original data was the poorest, which is correlated with707

the high variability of NO3- concentrations during this period (Table S2). This suggests that with a708

limited sample size, models are susceptible to interference from outliers, and a small number of709

measured samples is insufficient to support effective model learning. After introducing virtual710

samples, the model performance improved significantly. A mere 1-fold augmentation of the711

sample size increased the R2 to 0.527 (RF). When augmented to 8-fold, the R2 reached 0.854.712

Although the quantum-enhanced model slightly underperformed the classical RF in the initial713

stages (≤2-fold augmentation), their performances converged at higher augmentation levels, both714

achieving high accuracy. This indicates that virtual samples effectively mitigated the modeling715

challenges posed by data sparsity and skewed distributions. In contrast, the modeling performance716

with original data was optimal during the wet season, attributed to the generally lower NO3-717

concentrations and their smaller spatial variability (Table S3). The use of virtual samples further718

elevated the prediction accuracy to an exceptionally high level. A 4-fold augmentation yielded an719

R2 of 0.962. After augmentation to 10-fold, the R2 of the RF model stabilized at 0.977, with the720

RMSE dropping to as low as 3.03 mg L-1. The overall performance of the quantum-enhanced RF721

was consistent with the classical RF, with only slight fluctuations within a very small error range,722

showing that when data quality is high and the relationships are more linear, the marginal gains723

from quantum feature encoding are limited.724

During the normal season, as illustrated in Fig. 13(A1)-(A2), a deviation was observed725

between the predicted and observed values for both models when utilizing only the 66 original726

samples. The prediction results exhibited high dispersion, and the median deviated markedly from727
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the observed median. This is consistent with the low R2 values, indicating errors inherent in728

small-sample modeling. With an increase in the number of virtual samples, the distribution of729

predicted values gradually converged towards the observed values, and the interquartile range730

(IQR) and whiskers of the boxplots progressively narrowed, indicating a substantial enhancement731

in model stability and accuracy. When the virtual samples were expanded tenfold (to 660 virtual732

samples), the boxplots of the predicted values highly overlapped with those of the observed values,733

consistent with the reduction of the RMSE to 6.02 mg L-1. In the final stage, the734

quantum-enhanced model slightly outperformed the classical RF model, achieving an R2 of 0.9622.735

In the dry season (Fig. 13(B1)-(B2)), on the original dataset, the predicted values from both736

models were generally overestimated due to the extremely high and skewed distribution of NO3-737

concentrations. Consequently, the predicted boxplots were positioned entirely above the actual738

values, yielding an R2 of only 0.28. The introduction of virtual samples led to a substantial739

improvement in model performance. Starting from single-fold augmentation, the median and740

range of the predicted boxplots began to converge towards the observed values, at augmentation741

levels of 8-fold and higher, the predicted values effectively captured the distributional742

characteristics of the high-concentration intervals. Although the classical RF model slightly743

outperformed the quantum-enhanced model at low augmentation levels, their performances744

converged as the sample size further increased. This demonstrates that the virtual sample745

generation strategy effectively alleviates modeling challenges caused by data sparsity and extreme746

values. During the wet season (Fig. 13(C1)-(C2)), the predicted values of both models already747

exhibited good consistency with the observed values on the original dataset, with the predicted748

boxplots substantially overlapping the observed ones. With the incorporation of virtual samples,749

the prediction accuracy and stability of the models were further enhanced. The IQR and whiskers750

of the boxplots continued to narrow, and the predicted values became more concentrated within751

the true distribution range of the observed values. Following tenfold data augmentation, the752

agreement between predicted and observed values was exceptionally high, with an R2 reaching753

0.977 and an RMSE decreasing to 3.03 mg L-1, demonstrating excellent predictive performance.754
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755

Fig.13. Comparison of observed and predicted NO3- concentrations across data augmentation756

levels for random forest and quantum feature-enhanced random forest models in normal, dry, and757

wet Seasons.758

759

3.4.3 Prediction based on AlphaEarth Foundation Embeddings760

To explore the potential of remote sensing semantic embedding features in predicting761

groundwater nitrate concentrations, this section employs the 64-dimensional surface semantic762

vectors derived from the Google AlphaEarth Foundation (AEF) dataset as model input variables.763

We reduced the variables through principal component analysis to preserve ≥95% variance.764

During the normal season, modeling based on original samples yielded poor performance.765

The R2 for Random Forest and quantum-enhanced RF were 0.167 and 0.119, respectively, with766

RMSE values as high as 32.89 and 33.82 mg L-1 (Table S4). These results suggest that, given the767

limited sample size, relying solely on AEF embedding features is insufficient to fully capture the768

hydrological processes characteristic of this period. Model performance improved with the769

introduction of virtual samples. When the virtual samples were expanded to ten times the size of770

the original dataset, the R2 of the RF model increased to 0.860, and the RMSE decreased to 10.73771

mg L-1. Similarly, the quantum-enhanced RF achieved an R2 of 0.844, exhibiting a consistent772

overall trend. A comparison of boxplots (Fig. 14A) reveals that the initial predictions severely773

overestimated the low-to-medium concentration ranges while underestimating the high-value tails.774

As the sample size expanded, the predicted boxplots progressively converged toward the observed775

distribution. The agreement between the median and interquartile range (IQR) improved776

significantly, confirming that virtual samples effectively enhanced the capability of AEF features777
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to represent non-linear patterns.778

779

Fig.14. Comparison of observation and prediction of NO3- concentration by random forest and780

quantum featution-enhanced random forest models at data enhancement levels in normal, dry and781

wet seasons: based on AlphaEarth Foundation as the input variable.782

In the dry season, modeling with the original dataset resulted in a negative R2, reflecting the783

extremely weak generalization ability of AEF features in scenarios characterized by high784

variability and heavy-tailed distributions (Table S5). Following the introduction of a single-fold of785

virtual samples, the R2 rose to 0.039. Upon an 8-fold expansion, the RF R2 reached 0.641786

(RMSE=21.05 mg L-1), at a 10-fold expansion, it further improved to 0.674 (RMSE=19.86 mg787

L-1). The quantum-enhanced RF slightly outperformed the standard RF at high expansion levels,788

indicating that quantum encoding offers certain advantages in mitigating the influence of extreme789

values and enhancing model robustness (Fig. 14B). The prediction distribution plots indicate that790

the initial model failed entirely to identify the high-concentration clustering characteristics of NO3-791

during the dry season. After data augmentation, the predicted boxplots progressively covered the792

true high-value intervals, and the trend of tail extension gradually aligned with the observed data.793

In the wet season, although modeling with the original data still yielded a negative R2, the794

performance improvement was the most rapid (Table S6). An R2 of 0.5 was achieved with only a795

2-fold expansion of virtual samples. At 5-fold expansion, it reached 0.685, and after a 10-fold796

expansion, the RF R2 stabilized at 0.784 (RMSE=8.27 mg L-1), while the quantum-enhanced RF797

reached 0.781. The boxplots show that the predicted values, initially severely dispersed and798

systematically biased, rapidly converged to the dense intervals of the observed values, with the799

final IQR and whisker ranges showing a high degree of overlap.800
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Compared to modeling results based on in-situ observation data, the predictive performance801

based on AlphaEarth Foundation embedding features was generally lower. Under the same virtual802

sample augmentation multiplier, the maximum R2 for the normal, dry, and wet seasons were803

approximately 10.27%, 17.37%, and 19.33% lower, respectively. This indicates that measured804

water quality parameters more directly reflect the key processes of nitrogen migration and805

transformation. However, given that AEF can be obtained globally without the need for field806

sampling, it offers a feasible alternative for the rapid screening of groundwater nitrate risks in807

large-scale unmonitored areas.808

809

3.5 Feature importance analysis810

Fig.15 illustrates the feature importance rankings of the RF and quantum-enhanced RF811

models when using in-situ measured water quality parameters as inputs across different812

hydrological seasons. The dominant predictive factors vary across different seasons, and the813

virtual sample augmentation strategy influences both the stability of feature importance and model814

performance. There are distinct differences in the key driving factors for each season, which aligns815

with the results of the Bayesian models and correlation analysis. In the normal season, TDS, EC,816

Salt, and DO are the most important predictive variables, with their importance significantly817

higher than that of other parameters. In the dry season, TDS, EC, Salt, and pH exhibit the highest818

importance. In the wet season, the importance of TDS, EC, Salt, and ORP is most prominent. With819

the increase in the number of virtual samples, the ranking of feature importance tends to stabilize.820

For instance, in the dry season, when the sample size increased from the original 65 to 715, the821

importance of TDS and EC continued to rise and eventually stabilized. Comparing the RF and822

quantum-enhanced models, quantum enhancement did not fundamentally alter the ranking of823

feature importance; however, it slightly increased the importance of certain variables or made824

them more stable, demonstrating the effectiveness of quantum feature encoding as a means of825

information enhancement.826
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827

Fig.15. Input feature importance of classical and quantum-enhanced Random Forest in seasonal828

nitrate prediction under different data augmentation strategies: based on Gini index and SHAP829

Model.830

Fig.16 presents the feature importance of the RF and quantum-enhanced RF models when831

using only the 64-dimensional AEF semantic embedding vectors as inputs. Since the AEF features832

themselves are highly abstract, we cannot assign them specific physical meanings; however, we833

can infer which remote sensing semantic information is critical for predicting nitrate concentration834

through their importance rankings. Compared to in-situ measured parameters, the importance of835

AEF features fluctuates significantly more across different seasons and data volumes, lacking a836

consistent core feature set. This reflects that although AEF embeddings contain rich837
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environmental semantic information, their direct correlation with groundwater nitrate838

concentration is relatively weak, necessitating the learning of large amounts of data to establish a839

robust mapping relationship. In the normal season, features such as A05, A07, and A00 exhibit840

relatively high importance. These features may encode seasonal information related to land use841

types, soil moisture, or vegetation cover. In the dry season, features such as A08, A06, and A05842

are relatively more important. These features may be associated with surface dryness, bare surface843

area, or the intensity of human activity, correlating with the spatial distribution of844

high-concentration NO3- pollution sources during the dry season. In the wet season, the845

importance of features like A02, A03, and A05 is prominent. These features may be related to846

surface runoff, vegetation growth status, or soil water content, reflecting the driving effect of847

rainfall on pollutant migration during the wet season.848

849
Fig.16. Importance of AEF input features in seasonal nitrate prediction using classical and850

quantum enhanced Random Forest under different data augmentation strategies.851

The introduction of virtual samples is crucial for stabilizing the importance of AEF features.852

On the original dataset, the feature importance ranking was chaotic and unstable; as virtual853

samples increased, the ranking gradually became clearer, and the importance of certain core854
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features was highlighted. This once again demonstrates the effectiveness of the virtual sample855

generation strategy for small-sample modeling. When using AEF features, the feature importance856

distribution of the quantum-enhanced model is similar to that of the RF model, but it occasionally857

assigns slightly higher weights to certain features . This suggests that quantum feature encoding858

may assist the model in extracting more discriminative information from the high-dimensional,859

complex remote sensing semantic space, thereby slightly optimizing the feature selection process.860

Fig.17 presents a local feature attribution analysis for representative samples predicting the861

highest and lowest NO3- concentrations using SHAP waterfall plots. Regardless of whether the862

classical RF or the quantum-enhanced RF model is used, samples predicting high NO3-863

concentrations are driven by a set of features with positive contributions (red bars). In the normal864

season, for the highest NO3- sample with a predicted value of 161.17 mg L-1, features A05, A09,865

and A06 contributed the highest positive values, with A05 making the largest contribution and866

serving as the key factor driving the prediction to a high level. In the dry season, for the sample867

with a predicted value as high as 358.58 mg L-1, features A12, A00, and A07 were the main868

positive driving factors, with A12 contributing most prominently. In the wet season, for the869

sample with a predicted value of 98.36 mg L-1, features A03, A02, and A04 provided the main870

positive contributions, with A03 contributing the most. For samples predicting low NO3-871

concentrations, model decisions mainly rely on features with negative contributions (blue bars).872

The role of these features is to pull the predicted value down from the baseline (E[f(X)]). In the873

normal season, for the lowest NO3- sample with a predicted value of 2.39 mg L-1, features A05,874

A04, and A00 exhibited strong negative contributions, with A05 showing the largest negative875

contribution. In the dry season, for the sample with a predicted value of only 0.10 mg L-1, features876

A09, A12, and A06 were the main negative driving factors, with A09 contributing the most877

negatively. In the wet season, for the sample with a predicted value of 4.15 mg L-1, features A03,878

A06, and A00 provided the main negative contributions, with A03 contributing the most879

negatively.880
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881
Fig.17. SHAP waterfall-based feature attribution comparison between classical and882

quantum-enhanced Random Forest across different seasons.883

884

4. Discussion885

4.1 Nitrogen sources, migration, and transformation886

The Piper diagram indicates that the hydrochemical type is predominantly Ca-Mg-HCO3-.887

The Gibbs diagram and ion ratios confirm that the hydrochemical background is dominated by888

carbonate rock dissolution, with weak cation exchange. Concentrated precipitation during the889

rainy season leads to dilution and infiltration, reducing the NO3- concentration to 27.14 mg L-1.890

This indicates that surface manure leaches into the groundwater with rainfall (Sun et al., 2024).891

During this period, cation exchange is enhanced, improving the aquifer's temporary retention892

capacity for NO3- (Wang et al., 2025). Isotopic evidence and MixSIAR source apportionment893

consistently indicate that the primary sources of current nitrate pollution are domestic sewage and894

manure (DSM, 74.1%) and soil organic nitrogen (SON, 20.9%), whereas the contributions from895

chemical fertilizers and precipitation are minimal. This suggests that in the study area, the direct896

leaching of fertilizer nitrogen is not the dominant pathway, rather,fertilizer nitrogen remains in the897

soil-vadose zone and enters groundwater through long-term water drive (Wang et al., 2025).898

Given that the vadose zone thickness in the North China Plain generally exceeds 10 m, the899
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currently elevated NO3- levels are more likely derived from historical fertilizer residues and the900

long-term infiltration of manure, particularly as the farmlands in the study area are situated near901

rural residential areas (Wu et al., 2024). The mean δ15N-NO3- values range from 12.2‰ to 18.2‰,902

which far exceeds the typical range for chemical fertilizers but closely matches that of manure and903

soil organic nitrogen. This confirms that the nitrogen has undergone microbial mineralization and904

nitrification processes (Li et al., 2022). SON is converted to NO3- through ammonification905

followed by nitrification under aerobic conditions, while ammonium from DSM also enters the906

groundwater via nitrification (Liu et al., 2023).907

The seasonal variation in nitrate concentrations is essentially driven by scarce precipitation908

and strong evaporation during the dry season. This leads to a decline in groundwater levels and a909

reduction in flow velocity, creating a positive migration potential gradient. Consequently, NO3-910

accumulates in the discharge areas along with the groundwater flow. Furthermore, cation911

exchange is inhibited, weakened Na+ adsorption and relative Ca2+ depletion indicate a decrease in912

the aquifer's retention capacity for NO3-, making accumulation the dominant process (Ahmed et al.,913

2013). In contrast, concentrated precipitation during the wet season triggers rapid infiltration,914

raising groundwater levels and increasing flow velocity, during which cation exchange becomes915

active (Zhang et al., 2023). The groundwater is generally oxidizing, as evidenced by the extremely916

low concentrations of NO2- (<0.11 mg L-1) and NH4+ (<0.16 mg L-1). This indicates that the917

majority of the area is an oxidative environment conducive to the stable existence of NO3-. The918

δ18O-NO3- values range from -9.58‰ to 8.04‰ , falling within the typical nitrification interval.919

This excludes significant denitrification, confirming that the transformation process is dominated920

by nitrification while denitrification is limited (Zhang et al., 2025).921

922

4.2 Virtual sample generation effectively mitigates small-sample bias and reveals the model’s923

sensitive response to seasonal heterogeneity924

Model overfitting and insufficient generalization resulting from small-sample data are925

prevalent challenges in the field of environmental forecasting (Zhu et al., 2023). The926

t-SNE-GMM-KNN virtual sample generation strategy proposed in this study demonstrates that the927

generated virtual samples are highly consistent with the original data in terms of statistical928

characteristics, such as mean, standard deviation, and coefficient of variation, and successfully929
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reproduce hydrochemical differences across different seasons. The substantial improvement in930

model performance following virtual sample expansion clearly confirms that data sparsity, rather931

than insufficient model capacity, is the core bottleneck in seasonal nitrate modeling (Saha et al.,932

2023). Furthermore, even with the incorporation of generated virtual samples, the magnitude of933

prediction performance gains exhibits seasonal divergence. During the dry season, characterized934

by highly right-skewed NO3- concentrations, the model benefits most significantly. With 10-fold935

expansion, the R2 value surges from 0.28 to over 0.85. Conversely, in the wet season, although the936

absolute performance gain is smaller due to dominant dilution effects and low concentrations,937

excellent predictive accuracy is still achieved. This phenomenon aligns with fundamental938

hydrological principles: strong evaporation and concentration during the dry season intensify the939

spatial heterogeneity of pollutant accumulation and process nonlinearity, necessitating richer940

samples to characterize tail behaviors (Li et al., 2025). In contrast, the dilution effects caused by941

rainfall leaching during the wet season tend to homogenize the system, reducing its dependency942

on sample size (Bigler et al., 2024). The t-SNE–GMM–KNN strategy proposed in this study943

outperforms traditional oversampling methods (e.g., SMOTE) or deep generative models (e.g.,944

VAE) in preserving multimodal structures and heavy-tailed covariance; the latter often ignore the945

manifold geometric properties of high-dimensional geochemical spaces or inherently rely on large946

amounts of training data (Udu et al., 2025), which is precisely what is lacking in the scenario of947

this study. Compared to common methods such as Gaussian Mixture Models (GMM) and948

Generative Adversarial Networks (GANs), the core advantages of this strategy are reflected in949

three aspects: first, t-SNE dimensionality reduction accurately captures sample clustering950

structures driven by different hydrological processes, providing a reliable foundation for951

subsequent distribution modeling; second, the number of GMM clusters is automatically952

optimized based on the Bayesian Information Criterion (BIC), avoiding biases arising from953

subjective settings; and third, KNN inverse mapping enables reconstruction from low-dimensional954

to high-dimensional space without the need for large-scale training data, making it more suitable955

for small-sample scenarios (Silva et al., 2023; Kurniawan et al., 2024; Peng et al., 2025).956

957

4.3 Performance analysis of hybrid quantum-classical model958

Quantum Machine Learning offers a novel approach to capturing complex non-linear959
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relationships through feature mapping in high-dimensional quantum Hilbert spaces. The hybrid960

quantum-classical Random Forest yields slight performance improvements in scenarios where961

original data is scarce or the distribution is highly skewed (Lamichhane et al., 2025). When962

classical feature representation capacity approaches saturation, the Z-feature mapping based on963

Parameterized Quantum Circuits (PQC) can expose entangled non-linear patterns in the Hilbert964

space, thereby enhancing feature discriminability. The gain from this enhancement tends to965

converge after sufficient virtual sample expansion. In this study, quantum features were generated966

by analytically calculating the Pauli-Z expectation value ⟨Z⟩, completely circumventing hardware967

noise interference associated with quantum sampling. This renders the quantum-enhanced RF968

practically feasible for small-sample environmental tasks. However, the performance969

improvement of the quantum-enhanced RF is not absolute; in scenarios with high data quality and970

significant linear relationships during the wet season, the marginal gain of quantum features is971

limited. Conversely, in the dry season, characterized by sparse data and numerous extreme values,972

quantum encoding demonstrates stronger stability by reducing measurement noise interference973

(Ranga et al., 2024). This phenomenon indicates that the advantages of hybrid quantum-classical974

modeling are concentrated in scenarios with data complexity and limited information. Its essence975

lies in expanding the model’s representational capacity through quantum feature enhancement,976

rather than replacing the core logic of classical models. This exploration verifies the potential977

value of quantum machine learning in addressing small-sample problems in earth sciences, even if978

its absolute advantage may not be as pronounced as in pure quantum algorithms (Adhikari, 2022).979

980

4.4 Potential and limitations of using AlphaEarth Foundation Embeddings for large-scale981

monitoring982

Modeling performance using only AEF embeddings as input generally yields an R2983

approximately 10-20% lower than that achieved using measured water quality parameters. The984

core reason for this discrepancy lies in the fact that water quality parameters directly reflect the985

immediate state of the groundwater chemical environment and are directly related to nitrate986

transport and transformation processes, whereas surface remote sensing semantics provide only an987

indirect characterization (Alam et al., 2025). After 10-fold virtual expansion, the AEF model still988

achieves R2 values of >0.67 in the dry season, >0.85 in the normal season, and >0.78 in the wet989

https://doi.org/10.5194/egusphere-2026-272
Preprint. Discussion started: 29 January 2026
c© Author(s) 2026. CC BY 4.0 License.



44

season, proving its feasibility as a rapid large-scale screening tool, particularly in unmonitored990

areas. Seasonal shifts in feature importance (dominated by A05/A00 in the normal season,991

A08/A06 in the dry season, A02/A03 in the wet season) suggest potential physical interpretations.992

A05/A00 may encode crop residue or soil organic matter information, A08/A06 may characterize993

the degree of bare soil exposure, and A02/A03 may reflect vegetation growth status or surface994

runoff potential. These inferences align highly with MixSIAR source apportionment and Bayesian995

driving factors. Although causal inference remains indirect, the global coverage and annual update996

characteristics of AEF make it a powerful supplement rather than a substitute for large-scale997

monitoring.998

999

5. Conclusions1000

This study develops an integrated prediction framework combining hybrid quantum-classical1001

machine learning, advanced virtual sample augmentation (t-SNE–GMM–KNN), and remote1002

sensing foundation model embedding (AlphaEarth Foundation, AEF). The framework is designed1003

to systematically address three core challenges in predicting groundwater nitrate concentrations in1004

agricultural areas across different hydrological seasons: small sample bias, seasonal heterogeneity,1005

and input data scarcity.1006

Hydrological seasonality acts as the dominant controlling factor for the spatiotemporal1007

variability of nitrates. Nitrate concentrations peak during the dry season (mean: 42.93 mg L-1),1008

driven primarily by evaporative concentration and pollutant accumulation effects. In contrast,1009

concentrations reach a minimum in the wet season (mean: 27.14 mg L-1) due to dilution by1010

precipitation. The groundwater hydrochemical type is consistently Ca-Mg-HCO3- across all1011

seasons, controlled predominantly by carbonate mineral dissolution. TDS, EC, and salinity remain1012

consistently top-ranked across all seasons, with additional season-specific drivers including Mg2+1013

and Na+ (normal season), SO42- (dry season), and Cl- (wet season). Stable hydrogen and oxygen1014

isotope analysis reveals strong evaporative fractionation of groundwater. MixSIAR analysis1015

quantitatively apportioned nitrate sources: domestic sewage and manure (DSM) contribute 74.1%,1016

soil organic nitrogen (SON) 20.9%, while synthetic fertilizers (NHF+NOF=4.8%) and1017

atmospheric deposition (0.2%) are negligible, strongly indicating that legacy nitrogen stored in the1018

thick vadose zone, rather than in-season fertilizer leaching, sustains current pollution.1019
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The proposed t-SNE-GMM-KNN virtual sample strategy effectively alleviates the bottleneck1020

associated with small-sample modeling. By preserving the nonlinear manifold structure and1021

multimodal distribution characteristics of the high-dimensional hydrochemical space, this method1022

significantly enhances the model's ability to fit heavy-tailed distributions. Model performance1023

improves significantly with virtual sample expansion. Using measured parameters as inputs, a1024

10-fold augmentation increased the coefficient of determination (R²) for the dry season from 0.2841025

to >0.85, while stabilizing it at >0.95 for the normal and wet seasons. This confirms that data1026

sparsity is the fundamental constraint limiting performance. Although performance gains are1027

limited with high-quality data, the quantum-enhanced Random Forest demonstrates superior1028

stability compared to classical models in small-sample, highly skewed scenarios, validating the1029

feasibility and value of quantum feature enhancement strategies in environmental small-sample1030

learning. The overall prediction performance using measured hydrochemical parameters surpasses1031

that of AEF remote sensing semantic embeddings (R² is approximately 10-20% higher), as the1032

former directly reflects subsurface nitrogen migration and transformation processes. Following1033

10-fold virtual sample augmentation, the AEF model also achieves usable accuracy, with feature1034

importance exhibiting seasonal shifts.1035
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