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20 Abstract

21 Precise seasonal prediction of groundwater nitrate concentrations in intensive agricultural
22 areas faces challenges such as data sparsity, strong spatiotemporal heterogeneity, and complex
23 hydro-biogeochemical processes. To address these issues, this study proposes an integrated
24 prediction framework combining hybrid quantum-classical machine learning, advanced virtual
25 sample generation (t-SNE-GMM-KNN), and remote sensing foundation model semantic
26 embedding (AEF). Modeling was conducted across the 2022-2023 normal, dry, and wet seasons in
27  Xiong'an New Area. Hydrochemical types were dominated by Ca-Mg-HCOs, controlled by

28  mineral dissolution and evaporation. Nitrate concentrations were highest in the dry season (mean
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29 42,93 mg L), driven by evaporative concentration. Spatially, high-value zones shifted: southeast
30 (normal), central (dry), and northwest (wet). MixSIAR modeling based on isotopes indicated
31 domestic sewage and livestock manure (74.1%) as dominant sources. The t-SNE-GMM-KNN
32 strategy mitigated small-sample bias while preserving nonlinear structure. When virtual samples
33 were augmented to 10-fold, the Random Forest R? in the dry season increased from 0.284 to >0.85.
34  Furthermore, a hybrid quantum-classical Random Forest exhibited superior robustness for data
35 sparsity, achieving peak performance in the normal season (R?=0.962, RMSE=5.73 mg L.
36  Additionally, using only AEF embeddings achieved screening-level accuracy (R? up to 0.860),
37  providing a feasible rapid survey scheme for extensive unmonitored regions. Correlation analysis
38  identified TDS and EC as persistent top predictors (r>0.8). This comprehensive framework offers
39 arobust solution for seasonal nitrate prediction and sustainable water management.

40  Keywords: Groundwater nitrate concentration; Hydrological seasons; Virtual sample generation;
41 Hybrid quantum-classical machine learning; AlphaEarth Foundation (AEF) embeddings; Nitrate
42 source apportionment.

43

44 1. Introduction

45 Nitrate (NO3") contamination in groundwater poses a serious threat to drinking water safety
46  and ecosystem health, particularly in intensively managed agricultural regions (Wang et al., 2021).
47  In China, groundwater nitrate pollution is a growing concern, national monitoring data from 2013
48  to 2017 revealed a nitrate exceedance rate exceeding 10%, with Hebei Province reporting an
49 alarming rate of 31.66% in 2017 (Li et al., 2019). Over recent decades, escalating nitrate
50  concentrations in surface and groundwater have been driven by intensified fertilizer use in
51 agriculture, along with discharges of industrial and domestic wastewater (Zhang et al., 2018).
52 Severe nitrate exceedances are especially prevalent in northern and northwestern China (Gu et al.,
53 2013), where key contributors include domestic and industrial effluents, nitrification of soil
54 organic nitrogen, and synthetic fertilizer application (Han et al., 2016). For instance, in the North
55  China Plain, shallow groundwater nitrate exceedance rates range from 9.5% to 34.1%, and a rising
56  trend persists at the regional scale, particularly in agricultural areas (Wang et al., 2018). In
57  monsoonal temperate regions, seasonal shifts in precipitation, evapotranspiration, and
58 groundwater recharge profoundly influence the transport, dilution, and accumulation of nitrate,
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59  leading to pronounced intra-annual variability in its concentration and spatial distribution (Gao et
60 al., 2023; Zhu et al., 2025). Consequently, understanding and forecasting nitrate dynamics across
61  hydrological seasons is essential for informed groundwater management and pollution mitigation,
62  but remains a formidable challenge due to the nonlinearity, high dimensionality, and data scarcity
63 inherent in such systems (Deng et al., 2023).

64 Traditional monitoring and modeling approaches face three critical limitations. First, field
65 sampling campaigns though providing high-fidelity hydrochemical data are inherently sparse in
66  space and time, especially for large-scale or rapidly changing environments (Viswanathan et al.,
67  2022), which are time-consuming, labor-intensive, and costly, limiting the spatial and temporal
68  coverage of data (Cai et al., 2025). Second, while process-based models incorporate physical
69  mechanisms, they require extensive parameterization and are computationally prohibitive for
70  dynamic, multi-season forecasting at farm-to-regional scales (Feng et al., 2022). Hydrological
71 seasonal variations (normal, dry, and wet seasons) significantly influence the migration and
72 transformation of nitrogen in the soil-groundwater system (Chen et al., 2025). For instance,
73 concentrated rainfall during the wet season (accounting for 60%-80% of annual precipitation) can
74  promote the leaching of surface nitrogen into groundwater, leading to a 25-fold increase in stream
75  nitrate concentrations during storm events compared to baseflow (Sebestyen et al., 2014),
76  meanwhile, intense evaporation in the dry season leads to the accumulation of nitrate in shallow
77  aquifers, where concentrations can exceed the US EPA drinking water standard of 10 mg L' by
78 2-3 times (Liu et al., 2025; Cox et al., 2016). These seasonal differences result in distinct
79  hydrochemical characteristics and nitrate concentration distributions, increasing the complexity of
80  prediction models (Wu et al., 2025). Third, even advanced machine learning (ML) techniques
81 such as Random Forest (RF), despite their robustness to nonlinearity and multicollinearity, still
82  rely heavily on sufficient representative samples to capture the multi-modal distribution and tail
83  behavior of environmental variables, particularly for heavy-tailed pollutants like NO;™ (Luo et al.,
84  2022). Moreover, the small sample sizes obtained from discrete sampling often lead to data
85 sparsity and skewed distributions, reducing the model's generalization ability by 30%-50% when
86  applied to unmonitored areas and compromising the robustness and generalization ability of
87  machine learning (ML) models trained on such data (Thunyawatcharakul et al., 2025; Wang et al.,

88  2024).
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89 To overcome these bottlenecks, recent efforts have explored virtual sample augmentation and
90 hybrid modeling. Gaussian Mixture Models (GMM) and deep generative frameworks (e.g., VAEs,
91 GANSs) have shown promise in enriching training data, with GMM achieving an average similarity
92 of 83.0% between unmixed chemical spectra and ground truth in geochemical analysis (Farnia et
93 al., 2023; Tung et al., 2023), however, they often fail to preserve the non-linear manifold structure
94 of high-dimensional geochemical space or require large training sets, precisely what is lacking
95 (Zhou et al., 2025). Non-linear dimensionality reduction methods, such as t-SNE, excel at
96  revealing latent clusters corresponding to distinct hydrological processes, with a classification
97  accuracy of 92% for annual daily hydrograph clustering in mountainous watersheds, yet lack
98  explicit generative mechanisms (Wang et al., 2025; Tang et al., 2022). Meanwhile, the rise of
99  foundation models in Earth observation exemplified by Google’s AlphaEarth Foundation (AEF),
100 offers unprecedented opportunities: its 64-dimensional semantic embeddings, derived from
101 multi-sensor satellite time series (including Sentinel-2, Landsat, and Sentinel-1), implicitly encode
102 land use, vegetation phenology, soil moisture, and anthropogenic footprints at 10 m resolution
103 (Tollefson, 2025). These features have been successfully applied in land use classification and
104 crop monitoring, but their potential for predicting groundwater nitrate concentrations, especially
105  across different hydrological seasons remains underexplored (Li et al., 2025). Quantum machine
106  learning (QML) further opens a new frontier. Parameterized Quantum Circuits (PQCs) can map
107  classical inputs into exponentially high-dimensional quantum Hilbert spaces, generating entangled
108  feature representations that reveal complex, non-linear patterns inaccessible to classical kernels
109 (Hong et al., 2025). For ozone concentration forecasting, a hybrid QML model achieved an R? of
110 94.12% for 1-hour forecasts and 75.62% for 6-hour forecasts, outperforming classical persistence
111 models by a forecast skill of 31.01-57.46% (Oliveira et al., 2025). Crucially, analytical quantum
112 feature extraction via Pauli-Z expectation values avoids the noisy sampling overhead of near-term
113 quantum hardware, reducing computational latency by ~80% compared to sampling-based
114 methods and making it viable for small-sample environmental modeling (Gujju et al., 2024;
115  Oliveira et al., 2025).

116 Furthermore, identifying the sources and controlling factors of nitrate pollution is crucial for
117  improving prediction accuracy and guiding targeted pollution control measures. Isotopic analysis
118  (3"°N-NOs" and 8'80-NOs3) combined with the MixSIAR model has proven effective in
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119  quantitatively apportioning nitrate sources (Tian et al., 2025). Meanwhile, Bayesian models and
120 SHapley Additive exPlanations (SHAP) analysis can reveal the key environmental variables
121 driving nitrate concentration changes, enhancing the interpretability of prediction models (Alam et
122 al, 2025). Despite these advancements, several gaps persist in the current research: (1) Few
123 studies have integrated hybrid quantum-classical ML with virtual sample augmentation to address
124 small-sample challenges in seasonal nitrate prediction; (2) The potential of AEF remote sensing
125 semantic features for groundwater nitrate prediction remains untested, particularly in comparison
126  with in-situ measured parameters; (3) The combined effects of hydrological seasonal variations,
127 nitrate source apportionment, and key environmental drivers on prediction model performance
128 | require systematic investigation.

129 The North China Plain, an important agricultural production region in China, is characterized
130 by high nitrogen input intensity and significant seasonal hydrological variations, making it an area
131 prone to groundwater nitrate pollution (Liu et al., 2025). Conducting field-scale research on nitrate
132 pollution in this region is of great significance for the protection of regional water resources. The
133 Xiong’an New Area in China is a typical study area at the farmland scale in the North China Plain.
134 As a major agricultural area with high nitrogen input intensities and distinct seasonal hydrological
135 cycles, it faces significant groundwater nitrate pollution risks. This region’s unique climatic
136 regime characterized by a dry spring, wet summer with concentrated precipitation, and a cold, dry
137  winter, creates marked seasonal disparities in groundwater recharge, evaporation, and pollutant
138 migration (Xu et al., 2022). A mechanistic understanding of how nitrate concentrations vary
139 across these hydrological seasons (normal, dry, wet) and their controlling factors is crucial for
140  regional water resource management.

141 To fill these gaps, this study aims to: (1) propose a novel virtual sample generation method
142 (t-SNE-GMM-KNN) to enhance small-sample datasets while preserving the non-linear structure
143 and multi-modal distribution of original data; (2) construct a hybrid quantum-classical random
144 forest model by integrating quantum feature encoding with classical random forest, improving the
145  model’s ability to capture complex environmental relationships; (3) evaluate the predictive
146  performance of two input datasets (on-site measured water quality parameters and AEF remote
147  sensing semantic features) across normal, dry, and wet seasons under Leave-One-Out
148 Cross-Validation (LOOCYV); (4) identify the dominant nitrate sources and key environmental
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149  controlling factors using isotopic analysis, MixSIAR modeling, Bayesian analysis, and SHAP
150  interpretation; (5) establish a comprehensive and accurate prediction framework for groundwater
151 nitrate concentrations in intensive agricultural regions, providing scientific support for
152 groundwater pollution control and sustainable water resource management in the North China
153 Plain. The novelty of this study lies in the integration of hybrid quantum-classical machine
154  learning, advanced virtual sample augmentation, and remote sensing semantic features to address
155  the challenges of small-sample, high-dimensional, and seasonally variable nitrate prediction. The
156  findings are expected to advance the state-of-the-art in groundwater quality prediction and offer a
157  scalable approach for large-scale environmental monitoring in unmonitored areas.

158

159 2. Materials and Methods

160 2.1 Study area

161 The North China Plain is one of China’s most important agricultural production bases. This
162 study focuses on the Xiong’an New Area, situated in the central part of Hebei Province, as a
163 representative research site within this plain. Located in the core region defined by Beijing,
164  Tianjin, and Baoding, it boasts an advantageous geographical position, with straight-line distances
165  of 105 km to both Beijing and Tianjin, and 30 km to Baoding. Its geographical coordinates range
166  from 38°43' to 39°10' N latitude and from 115°38' to 116°20" E longitude, covering an area of
167  approximately 1770 km? (Xiong’an New Area Official Website, 2023). The specific study area is
168  an unmanned farm located in Xieyeqiao Village, Nanzhang Town, Rongcheng County, within the
169  Xiong'an New Area (Fig.1). The farm covers an area of 3000 hectares and primarily cultivates two
170  main grain crops: wheat and corn. As the first mechanized unmanned farm in Xiong'an, it has
171 achieved full mechanization and intellectualization, enabling unmanned, precise, and standardized

172 operations throughout all stages of tillage, sowing, management, and harvesting.
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173
174 Fig.1. Study area map showing the sampling location. ((b) Based on the standard map (Approval

175 No. Ji S (2025) 009) from the Department of Natural Resources of Hebei Province; base map is
176 unmodified.)

177 Cultivated land constitutes a large proportion of the total area in the Xiong'an New Area and
178  is predominantly dryland. Traditional fertilization in the region involves high application rates of
179  nitrogen and manure. As a representative farm within this area, the study site also follows this
180  conventional practice, making it susceptible to the impacts of high fertilization intensity. The
181 annual nitrogen fertilizer application rate at the study site ranges from 540 to 660 kg (N) ha'! yr'!,
182 primarily supplied as urea (46% N). The extensive application of chemical fertilizers and manure
183  consequently elevates the risk of nitrogen pollution in groundwater. Furthermore, the rural
184  population is relatively densely distributed, contributing to pollution from domestic sewage
185  discharge in the vicinity. The climate is classified as a warm-temperate, monsoonal, continental
186  semi-humid climate. Springs are dry and rainless, summers are humid with abundant precipitation,
187  autumns are cool and dry, and winters are cold with minimal snowfall. The mean annual air
188  temperature in Xiong'an New Area is 12.6°C, exhibiting relatively minor inter-annual fluctuations.
189  The mean annual precipitation is 480.8 mm, which is highly concentrated from June to September.
190  The average annual sunshine duration is 2335.2 hours, with longer periods in spring and summer
191 and shorter ones in autumn and winter. The average frost-free period lasts 204 days. The mean
192 annual wind speed is 1.7 m s!, with the highest average occurring in April and the lowest in
193 January, August, and December. The multi-year average evaporation is 1661.1 mm (Liao et al.,
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194 2020). The soil texture is dominated by silty loam, and the 2-8.5 m soil layer contains interlayers
195  with high clay content such as clay and silty clay, reflecting the characteristics of vadose zone
196  sediments in the central plain under geomorphic sedimentation. Nitrogen in the thick vadose zone
197  is dominated by organic nitrogen, accounting for approximately 97% of the total nitrogen content.
198  The shallow vadose zone at 3-6 m stores the largest amount of nitrate, accounting for about half of
199 the total nitrate reserves in the North China Plain (Li et al, 2025; Zhang et al., 2007).
200  Groundwater in the study area is primarily hosted in Quaternary unconsolidated porous aquifers,
201 with sampled wells ranging from 70 to 120 m in depth (Bai et al., 2023). The primary source of
202  groundwater recharge in the study area's farmland is atmospheric precipitation, while the main
203 discharge pathway is artificial extraction for agricultural irrigation. Irrigation followed crop
204  phenological stages. Wheat underwent muddy water irrigation at pre-sowing, overwintering,
205  regreening, and jointing stages, and maize received a single post-sowing muddy water irrigation.
206

207 2.2 Data collection and measurements

208  2.2.1 Field sampling data and laboratory analysis

209 Field investigations and the collection of hydrochemical and isotopic samples were
210 conducted in the study area from 2022 to 2023. A total of 66, 65, and 50 groundwater samples
211 were collected in October 2022, April 2023, and August 2023, respectively. All groundwater
212 samples were obtained from existing agricultural irrigation wells within the study area. Prior to
213 sample collection, each well was purged by pumping. Sampling commenced only after the
214 pumped volume exceeded three times the well's casing volume and on-site parameters had
215 stabilized (i.e., showing minor fluctuations around a constant value rather than a continuous rising
216  or falling trend), a procedure implemented to ensure the representativeness of the samples. At each
217  sampling point, one 1000 mL and two 100 mL samples were collected. Before final collection, the
218  sample bottles were rinsed three times with the water to be sampled. Immediately after collection,
219  the samples were sealed and stored in a portable cooler for transport to the laboratory for
220  subsequent analysis. Furthermore, the precise geographical location of each sampling point was
221 recorded using a GPS device.

222 In-situ physicochemical parameters were measured using a Hach HQ400 multi-parameter
223 water quality meter (Li et al., 2022). The measured parameters included water temperature (T, °C),

8
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224  pH, total dissolved solids (TDS, mg L), dissolved oxygen (DO, mg L), electrical conductivity
225  (EC, uS cm), and oxidation-reduction potential (ORP, mV). The concentration of HCO3 was
226  determined within 24 hours of sample collection using the dilute sulfuric acid-methyl orange
227  titration method (Huang et al., 2012). Prior to the determination of cations and anions, water
228 samples were filtered through 0.45 um membrane filters. Major cations (K¥, Ca?*, Na*, Mg?")
229  were analyzed using an inductively coupled plasma optical emission spectrometer (Avio 500).
230  Major anions (NOz,, Cl, SO4*) were analyzed using an ion chromatograph (ICS-2100). The
231 analytical precision for cations and anions was controlled within 0.2 mg L', and the charge
232 balance error was maintained within 5% to ensure reliability. The concentrations of nitrite
233 nitrogen and ammonia nitrogen were determined using a flow injection analyzer (Smartchem 200,
234 AMS Alliance) and measured using dual wavelength spectrophotometry and the indophenol blue
235 method (Kim et al., 2019; Sun et al., 2022). The limits of detection for nitrite nitrogen and
236  ammonium nitrogen were both 0.01 mg L. For the analysis of stable hydrogen and oxygen
237  isotopes, water samples were filtered through 0.22 um membrane filters and measured using an
238  LGR liquid water isotope analyzer (TIWA-45-EP). The analytical precisions for §°H, §'70, and
239  8'80 were £0.15%o, +0.02%0, and +£0.02%o, respectively (Hamidi et al., 2023). The isotopic
240  compositions of nitrate (3'%0-NOs and §'°N-NOj’) were determined using a MAT-253 mass
241 spectrometer coupled with an elemental analyzer (Li et al., 2022). To ensure analytical precision,
242  standard references, reagent blanks, and duplicate samples were employed. Furthermore,
243 international standards USGS 34 and USGS 35 were used for §'30 quality control, while USGS
244 32 and USGS 34 were used for 8'°N quality control. All isotope results are reported in per mil
245 (3, %o).

246

247  2.2.2 Google AlphaEarth Foundation

248 To facilitate comparisons with predictions based on in-situ field sampling data and to validate
249  the accuracy of predicting groundwater nitrate concentration using remote sensing data, this study
250  incorporates the Google AlphaEarth Foundation (AEF) dataset. AEF is a collection of
251 high-dimensional surface semantic embedding features generated via pre-training on multi-source
252  remote sensing data (Brown et al., 2025). By fusing imagery from Sentinel-2, Landsat, and other
253 Earth observation satellites, this dataset constructs a 64-dimensional vector representation
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254  (denoted as A00-A63) at a global scale with an annual temporal resolution and a 10 m spatial
255  resolution (Alvarez et al., 2025). These embeddings implicitly encode complex environmental
256  semantics, such as land cover types, vegetation dynamics, soil moisture, and the intensity of
257  human activity, and have been successfully applied in tasks including land use classification, crop
258  monitoring, and environmental risk modeling (Tollefson et al., 2025).

259 The primary processing workflow involved spatially sampling the 64-dimensional AEF
260  vectors at a 10 m resolution using the GOOGLE/SATELLITE_EMBEDDING/V1/ANNUAL
261 product on the Google Earth Engine (GEE) platform, based on the geographic coordinates of the
262  field sampling points. To ensure data quality, only samples exhibiting exact matches between the
263  GEE extraction and the actual field data points were retained. Given the redundancy within the
264  initial 64-dimensional AEF features, Principal Component Analysis (PCA) based on Singular
265  Value Decomposition (SVD) was employed for feature compression. Specifically, SVD was
266  performed on the centered feature matrix to select the minimum number of principal components
267  accounting for at least 95% of the cumulative explained variance (Ilyas et al., 2025). The
268  orthogonalized, low-dimensional principal component scores were subsequently used as model
269 inputs. This approach preserves the vast majority of the semantic information from the original
270  embeddings while significantly mitigating the risk of overfitting. Ultimately, the PCA-reduced
271 AEF features served as the input variables for the model.

272

273 2.3 MixSIAR model and isotopic composition of nitrate sources

274 The MixSIAR model uses prior information such as the number of end - members, errors,
275  and distribution characteristics, and iterates based on the Markov Chain Monte Carlo (MCMC)
276  method to quantitatively restore the contribution fraction of each end-member to the mixed sample
277  (Stock et al., 2018). At present, this analytical method has been widely applied in the quantitative
278  analysis of nitrate pollution sources in water bodies. The calculation principle of the model is as

279 follows:

280 Xy= Y r_, Pi (Sj+Cyi) +65 1
281 Sic~N (1K, wF) 2)
282 Cit~N(Ajk, T5) 3)
283 £j~N(0,07) )

10
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284 In the formula, Xij is the value of isotope j in the i-th sample (i=1, 2, ..., 20, j =1, 2); Py is the
285 contribution rate of the k-th pollution source; Sji is the value of isotope j in the k-th pollution
286  source, where p is the mean and  is the variance of the normal distribution; Cy, is the
287 fractionation coefficient, where X is the mean and 7 is the variance of the normal distribution; &
288 is the residual, with 0 as the mean and o as the variance of the normal distribution.

289 In this study, the MixSIAR model is used to calculate the five potential sources of NO;3™ in
290  water bodies, namely precipitation (NP), soil organic nitrogen (SON), synthetic NH4" fertilizer
291 (NHF), synthetic NOs~ fertilizer (NOF), and domestic sewage & manure (DSM). The end-
292 member values of the five sources are selected as shown in Table 1 (Mao et al., 2023; Gao et al.,
293 2023; Torres-Martinez et al., 2021).

294  Table 1. Summary statistics of §'%0 and 8'°N for potential nitrate sources.

Sources 3180-NO3 3N-NO5-
Mean SD Mean SD
NP 57.2 6.9 0.6 1.5
NHF -4.1 2.7 -2.1 0.7
NOF 21.7 2.9 0.2 23
SON -2.7 4.4 3.8 1.8
DSM 6.1 1.6 17.4 3.9

295

296 2.4 t-SNE-GMM-KNN: based on nonlinear structure modeling in feature space

297 To address the challenges of overfitting and poor generalization performance in small-sample
298  modeling, which arise from data sparsity and skewed distributions, this study proposes a
299  three-stage virtual sample generation strategy termed t-SNE-Gaussian Mixture Sampling with
300 KNN Inverse mapping. This method aims to preserve the non-linear manifold structure and
301 multi-modal distribution characteristics of the original high-dimensional feature space while
302  generating physically plausible and statistically consistent synthetic samples. The specific
303  workflow is as follows:

304 1. Data standardization

305 All input features are standardized using Z-score standardization to eliminate scale

11
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306  differences and enhance the stability of the subsequent dimensionality reduction (Jamshidi et al.,

307 2022).
308 2. t-SNE non-linear dimensionality reduction
309 t-Distributed ~ Stochastic Neighbor Embedding (t-SNE) is employed to map the

310  high-dimensional feature space into a low-dimensional latent space (d=2) (Islam et al., 2023). To
311 balance the preservation of local and global structures, the perplexity is set to 10, and PCA
312 initialization is used to ensure reproducibility. t-SNE effectively reveals the clustered structure of
313 samples on the low-dimensional manifold, reflecting the differentiation of underlying
314  environmental processes within hydrological seasons (Liu et al., 2021).

315 3. GMM clustering and optimal component selection

316 In the t-SNE-reduced low-dimensional space, a Gaussian Mixture Model (GMM) is
317  constructed to characterize the probability density distribution of the data (Jia et al., 2022). The
318 GMM assumes that the data are generated from a linear combination of several Gaussian
319  distributions. The weights, means, and covariance matrices of each Gaussian component are
320  estimated via the Expectation-Maximization (EM) algorithm, thereby accurately capturing the
321 complex distribution patterns of the data (Yan et al., 2023). To avoid subjectively setting the
322 number of clusters, the Bayesian Information Criterion (BIC) is used to automatically optimize the
323 number of components, K, within the range (Ghodba et al., 2025):

324 BIC(K)=-2logL +pxlogn %)
325  where L is the model's likelihood, k is the total number of free parameters for a K-component
326  model, and n is the sample size. The value of K corresponding to the minimum BIC is selected as
327  the optimal number of components, ensuring a balance between goodness-of-fit and model
328  complexity.

329 4. Virtual sample generation and inverse mapping

330 Based on the optimal GMM, a specified number of virtual points are randomly sampled from
331 its joint probability distribution. This generation process naturally inherits the multi-modality and
332 covariance structure of the original data. To reconstruct the low-dimensional virtual samples back
333 into the original feature space, a k-Nearest Neighbors regression model is trained (Niu et al., 2025).
334  This model uses the t-SNE coordinates as input and the standardized original features as output,
335  approximating the inverse of the non-linear t-SNE mapping. Finally, the virtual sample set in its

12
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336  original physical units is obtained by applying inverse standardization.

337 5. Physical constraints and quality control

338 For the target variable, NOs", a non-negativity constraint (NOs* > 0 mg L) is imposed to
339  prevent non-physical solutions that may arise from the regression approximation. Other variables,
340  such as pH and ORP, are allowed to fluctuate within reasonable ranges without hard clipping to
341 retain the model's flexibility. The consistency between the virtual and measured samples is
342  wvalidated by comparing their statistical characteristics, including mean, standard deviation,
343 coefficient of variation, range of extreme values, and boxplot distributions. This comparison
344  confirms that the generated data are highly consistent with the original data in terms of statistical
345  properties, without introducing systematic bias or outliers.

346 The advantages of this method are as follows: @ t-SNE excels at capturing local
347  neighborhood relationships, effectively separating implicit subgroups under different hydrological
348  conditions. 2) The GMM provides a probabilistic generative framework, supporting reasonable
349  extrapolation for heavy-tailed distributions and extreme values. (3 The KNN-based inverse
350  mapping circumvents the need for large training datasets, which is a limitation of traditional
351 autoencoders, making it particularly suitable for small-sample scenarios (Tang et al., 2022;
352 Razavi-Termeh et al., 2024).

353

354 2.5 Machine learning methods

355  2.5.1 Random forest

356 In this study, Random Forest (RF) was adopted as the baseline model. As an ensemble
357  learning method that leverages bootstrap sampling and random feature selection, RF builds
358  numerous decision trees and integrates their predictions (Abderzak et al., 2025). This approach
359  effectively suppresses overfitting and improves generalization performance, making it especially
360  well-suited for environmental data modeling scenarios involving small samples, high
361 dimensionality, non-linearity, and multicollinearity (Boddu et al., 2025). Hyperparameters were
362  configured based on a preliminary grid search and domain expertise: n_estimators=100,
363 max_depth=5, min_samples_split=6, min_samples_leaf=3, and max_features= \/p . For the
364  interpretation of driving mechanisms, feature importance was quantified by the mean decrease in
365 Gini impurity (Gini Importance) to identify the critical hydrogeochemical indicator factors (Kaur
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366  etal., 2025).

367

368  2.5.2 Hybrid quantum-classical random forest

369 Based on the random forest, a Hybrid Quantum-Classical Random Forest (QCRF) model was
370  constructed, integrating quantum feature enhancement with classical random forests. The core
371 idea of the model is: utilizing a Parameterized Quantum Circuit (PQC) to perform quantum feature
372 encoding on standardized input features, generating high-dimensional quantum features with
373  non-linear entanglement properties (Naresh et al., 2025). These are then concatenated with the
374  original features to construct an enhanced hybrid feature space, which is finally fed into a random
375  forest regressor for modeling (Lamichhane et al., 2025).

376 (1) Quantum Feature Encoding

377 Quantum state transformation of classical data is achieved based on the Z-feature map in
378  quantum computing (Vedavyasa et al, 2025). The ZFeatureMap maps the classical
379  high-dimensional feature space into a quantum Hilbert space through single-qubit Z-gate
380  operations and two-qubit CZ-gate entanglement operations (Khalil et al., 2025). Its core advantage
381 lies in obtaining quantum features via analytical calculation of quantum state vectors, thereby
382  avoiding noise interference introduced by quantum sampling and ensuring feature stability. The
383 ZFeatureMap provided by Qiskit is used as the feature encoding circuit, with its Hamiltonian form

384  given by (Tehrani et al., 2024):

385 IJZMap(X)= HE:1 [®‘i:1=1 Hi - exp ('i ZSQU d} d)S (X) ®j€S Z_])] (6)

386  where d is the selected number of principal factors, R is the number of repetition layers, and ¢g
387  represents data-dependent rotation angles (using linear embedding).

388 For each sample x, construct the corresponding quantum state |y(x)>, and analytically
389  calculate the Pauli-Z expectation value for each qubit (Liao et al., 2024):

390 (Zy=(y R Z] y(x))=P(q;=0)-P(g;=1) ()]
391 Here, the number of i is equal to the number of predictor variables. This method requires no
392 quantum hardware sampling, completely avoiding the interference of measurement noise and shot
393 noise on small-sample modeling, thus ensuring the determinism and reproducibility of feature

394 generation.
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395 (2) Feature Fusion and Modeling

396 Concatenate the original n-dimensional raw features with the n-dimensional quantum (Z)
397  features to form a 2n-dimensional hybrid feature vector x_aug = [x_raw; <Z)] (Cowlessur et al.,
398  2025). That is, original features+quantum encoded features. Using this as input, construct a
399  random forest regression model:

400 = %42221 Tree (Xaug) ©)
401 The hyperparameter settings are the same as those for the classical random forest method
402  described above.

403

404 2.6 Evaluation methods and prediction process

405  2.6.1 SHAP analysis

406 This study adopts the SHapley Additive exPlanations (SHAP) method for local and global
407 explainability analysis (Merabet et al., 2025). Through three typical visualization methods, namely
408 summary plot, dependence plot, and waterfall plot, the following are revealed respectively: (1)
409  The overall ranking and distribution of feature importance across all samples (global perspective);
410  (2) The nonlinear relationship or interaction effects between a single predictor variable and the
411 predicted nitrate concentration (conditional dependence); (3) The contribution decomposition of
412 each feature in the prediction result of a representative sample (local attribution) (Alam et al.,
413 20295).

414 The SHAP value is mathematically defined as: the marginal contribution of feature j to the

415  model output offset from the baseline mean (Li et al., 2024), and its form is:

416 0= Ssemg e ESUENAS)] ©)

417  where F is the set of all features, S is a subset not containing feature j, and f is the model output.
418 By averaging the absolute SHAP values |;| over all samples, a feature importance measure with a
419  game-theoretic foundation, unbiased and robust, can be obtained (Hollmannet al., 2025).

420

421 2.6.2 Leave-One-Out Cross-Validation (LOOCV) and model evaluation indicators

422 Given the limited sample size in each hydrological season, this study adopts Leave-One-Out

423 Cross-Validation (LOOCV) for model performance evaluation to maximize the use of training
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424  data and reduce evaluation bias (Austin et al., 2025). The LOOCV process is: each time, one
425 sample is left out as the validation set, and the remaining n-1 samples are used for training. After
426  repeating nn times, the average of the evaluation indicators is taken as the final result (Ren et al.,
427 2021).

428 The coefficient of determination R?, root mean square error (RMSE), and mean absolute
429  error (MAE) are used to quantitatively describe the model accuracy and error characteristics (Gul

430  etal, 2025):

2_ _Ejn:l(Yr}?i)Z
431 R2=1-SRl it (10)
432 RMSE={~3" | (yi-99)? n
433 MAE=23" | [y (12)

434 where y; is the measured value of the i-th sample, §; is the model’s predicted value, ¥ is the
435  mean of the measured values, and n is the number of samples in the test set.

436

437  2.6.3 Standardized prediction workflow

438 To systematically evaluate the nitrate concentration prediction capabilities of different input
439  variables and modeling strategies across various hydrological seasons, and to validate the
440  effectiveness of virtual sample augmentation for small-sample modeling, this study established a
441 standardized prediction pipeline (Fig.2). The specific steps are as follows: (1) Data Preprocessing
442  and Grouping: Observed samples were partitioned by seasons. Z-score normalization was applied
443 separately to two types of input features: field water quality parameters and AlphaEarth
444  Foundation (AEF) features reduced via Principal Component Analysis (PCA). (2) Virtual Sample
445  Generation and Validation: A t-SNE-GMM-KNN strategy was employed to generate virtual
446  samples. Their physical plausibility and distribution consistency were rigorously verified using
447  statistical indicators, box plots, and histograms. (3) Model Training: Under unified
448 hyperparameters, classical Random Forest (RF) and quantum-enhanced RF models were
449  constructed. The latter generates <Z> quantum features via Parameterized Quantum Circuits (PQC)
450  encoding, which are concatenated with original features to form 2*n input features. Models were
451  trained using two distinct input datasets and combinations of "original samples + 1~10x virtual
452  samples." (4) Model Evaluation: The Leave-One-Out Cross-Validation (LOOCV) strategy was
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453  adopted to calculate R?, RMSE, and MAE. Visual diagnostics were performed using
454  observed-predicted scatter plots, residual plots, and box plots. (5) Interpretability Analysis:
455  Multi-scale interpretation was conducted based on the SHAP framework, including summary plots
456  (global importance ranking), dependence plots (nonlinear response and interaction effects), and
457  waterfall plots (local attribution). The driving mechanisms were cross-verified with results from
458  Bayesian models and Pearson correlation analysis. This workflow encompasses the full process
459  from data augmentation, modeling, and evaluation to attribution, providing a reproducible and
460  highly transparent solution for precise groundwater nitrate prediction under conditions of small
461 samples, multiple seasons, and multi-source inputs.
(EEL Model Evaluation:
Normal season (n=66) Data Preprocessing and LOOCY
Dry season (n=65) Seasonal Grouping
Wet season (n=50) l
| Comlrnf'l o aput feare | e Slwmm:oyﬁml
Virtual Sample Generation: ’ m-s::::;:;::“hw “'i'“-;“:;‘n’[’&':“‘; :ﬂ"ﬁﬁm
1-SNE-GMM-KNN + AEF embeddings + PCA
(295% variance retained)
ning SHAP
(D 1-SNE dimensionality
reduction
:
@ GMM l."nmieling +
automatic selection of K via =
BIC Conditional dependence:
dependence plot
iz
mprmg Result Integration and plmj»highﬂvw X
Concatenation — 2n-dim tpat
hybrid features — RF samples
=0)
I
® Qualily vzhdnpun
o
462
463 Fig.2. Process diagram for constructing prediction framework.
464
465 3. Results
466 3.1 Seasonal hydrochemical controls of nitrate distribution in farmland groundwater
467  3.1.1 Hydrochemical parameters
468 Regarding the basic physical parameters, the pH value was weakly alkaline during the normal
469  water period with minimal variation, whereas it was near-neutral in the dry and wet seasons (Table
470  2). A minimum value of 5.77 occurred in the wet season, indicating the presence of acidic water
471  bodies. Temperature (T) exhibited significant seasonal variation but remained relatively stable
472 within each season (CV=0.06). EC, salinity, and TDS showed consistent patterns, all peaking
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473 during the dry season and reaching their lowest levels in the wet season. The redox indicators
474 displayed high volatility. The mean DO was slightly higher in the wet season, while the mean
475  ORP was consistently low across all seasons, with extremely large standard deviations and
476  coefficients of variation. In terms of ionic composition, the average concentrations of Ca?* and
477  Mg?" were highest during the dry season, and Na* also peaked in this period. The concentration of
478  K* was relatively low. Among the anions, HCO3™ concentration was highest in the wet season,
479  while the average concentrations of Cl- and SO4* were both at their maximum during the dry
480  season. The average concentration of NO3 was higher in the dry season than in other periods and
481 lowest in the wet season. The concentrations of nitrite (NO2") and ammonium (NH4") were much
482  lower than that of nitrate. Concerning the distribution of the indicators, most variables were
483 right-skewed. Notably, extreme values were present for NO; in the dry season (maximum=358.58
484  mg L', mean=42.93 mg L"), CI' in the dry season (maximum=241.36 mg L', mean=24.90 mg
485 L), and F- in the normal period (maximum=13.17, mean=3.70).

486  Table 2. Statistical summary of chemical and field measurement parameters.

Periods pH T EC DO ORP Salt TDS  Depth K" Ca*
Unit (¢ ps em’! mgL! mv ppt  mgL! m mgL! mgL'

Normal season Max 8.60 16.70 1110.00 10.57 369.60 0.53 724.00 20.64 36.66 69.73
n=66 Min 7.61 13.40 349.00 2.20 -58.30 0.11 225.00 18.26 1.04 13.38
Mean 8.16 14.90 549.32 6.31 4.57 0.21 357.21 18.91 2.92 37.28

SD 0.11 0.71 173.56 1.94 56.27 0.09 113.34 0.62 4.45 13.06

(0% 0.01 0.05 0.32 0.31 12.32 0.44 0.32 0.03 1.52 0.35

Dry season Max 8.21 18.80 1134.00 8.82 144.20 0.54 737.00 18.95 3.52 43.86
n=65 Min 6.97 14.10 343.00 1.85 -110.40 0.11 227.00 17.88 0.67 4.81
Mean 7.35 15.59 658.68 6.34 4.55 0.27 427.65 18.43 1.93 16.89

SD 0.45 0.92 185.20 1.64 42.10 0.10 120.55 0.27 0.56 8.35

(0\% 0.06 0.06 0.28 0.26 9.26 0.36 0.28 0.01 0.29 0.49

Wet season Max 8.97 21.00 977.00 9.61 195.00 0.41 635.00 18.87 3.37 51.54
n=50 Min 5.77 15.50 371.00 334 -112.20 0.12 243.00 17.61 1.14 17.27
Mean 7.34 17.01 535.24 6.98 17.57 0.20 347.92 18.27 1.75 25.70
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SD 0.52 0.94 153.65 1.32 47.59 0.08 100.39 0.40 0.34 6.83

(6\% 0.07 0.06 0.29 0.19 2.71 0.42 0.29 0.02 0.19 0.27
Na* Mg? HCOs Cr SO4* F NOs NO» NH,*
Unit mg L' mg L' mg L! mg L! mgL! mgL!' mgL' mgL! mg L!
Normal season Max 98.85 92.78 192.15 87.09 40.49 13.17 161.17 0.45 0.20
n=66 Min 3.81 3.80 22.88 1.03 1.79 0.12 2.39 0.04 0.00
Mean 24.01 31.78 96.65 20.53 15.53 3.70 33.67 0.11 0.04
SD 12.46 17.18 44.51 17.84 10.02 2.02 35.83 0.08 0.04
(0% 0.52 0.54 0.46 0.87 0.64 0.55 1.06 0.72 1.00
Dry season Max 123.20 138.90 289.29 241.36 123.75 0.57 358.58 10.38 0.84
n=65 Min 16.28 17.97 5.10 1.40 2.00 0.21 0.10 0.57 0.05
Mean 48.52 58.17 42.19 24.90 1591 0.33 42.93 3.35 0.16
SD 16.48 25.86 71.11 35.13 18.67 0.08 56.35 1.98 0.11
(0% 0.34 0.44 1.69 1.41 1.17 0.26 1.31 0.59 0.69
Wet season Max 36.21 53.72 207.40 51.93 34.15 0.45 98.36 431 0.41
n=50 Min 10.95 12.76 83.88 1.56 5.88 0.09 4.15 1.51 0.02
Mean 21.78 22.57 132.49 15.60 15.16 0.20 27.14 2.62 0.10
SD 4.90 8.13 27.12 13.60 7.47 0.08 23.86 0.61 0.08
(0% 0.23 0.36 0.20 0.87 0.49 0.39 0.88 0.23 0.83

487

488  3.1.2 Type of water

489 During the dry season, the data points are highly concentrated in the zone of calcium-type
490  cations and bicarbonate-type anions, indicating that the groundwater is primarily controlled by the
491 dissolution of carbonate rocks (Fig.3). In the wet season, although the Ca-Mg-HCO5" type remains
492  dominant, some samples shift towards the sulfate and chloride types, reflecting the leaching input
493 effect of surface pollutants (such as agricultural fertilizers and domestic sewage) brought by
494 rainfall infiltration. By the normal season, the hydrochemical types exhibit the widest distribution,
495  presenting a mixed type with coexisting bicarbonate and chloride types. Overall, the groundwater
496  hydrochemical characteristics in the study area are jointly controlled by precipitation-evaporation
497  dynamics and carbonate weathering.
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498
499 Fig.3. Piper diagram classifying the hydrochemical facies of the analyzed groundwater.

500

501  3.1.3 Sources and controlling factors of ions in groundwater

502 The Gibbs diagram shows that the groundwater in the study area is primarily controlled by
503  rock weathering during the normal, dry, and wet seasons, indicating the dominance of water-rock
504  interaction (Fig. 4). The ratio of y(Na" + K*) to yCIl- (Fig. 5a) shows that the vast majority of
505 sample points plot above the 1:1 line, indicating that Na* and K* are primarily sourced from the
506  dissolution of evaporite rocks. In the relationships between y(Ca?* + Mg?") and yHCOs, and
507  between y(Ca?" + Mg?") and y(HCO;3™ + SO4*) (Fig. 5b-c), samples from all periods plot above the
508 1:1 line, confirming that Ca?>" and Mg?" mainly originate from the dissolution of carbonate
509  minerals. Furthermore, the yCa*-yMg?" relationship (Fig. 5d) helps identify the types of mineral
510  dissolution. Samples from the dry season are concentrated below the 1:2 line, indicating a
511 dominance of magnesium-poor mineral dissolution, with cation exchange causing a relative
512 depletion of Ca?". Samples from the normal and wet seasons are stably distributed between the 1:1
513 and 1:2 lines, reflecting that dolomite dissolution has reached equilibrium while calcite remains in
514  a state of non-equilibrium dissolution, continuously supplying Ca?*. In the relationship between
515 y(SO4* + CI) and YHCOj" (Fig. 5e), the distribution of sample points on both sides of the 1:1 line
516  suggests that groundwater ions have dual contributions from both evaporite and carbonate rocks.
517  Conversely, in the yCa?" versus ySO4* relationship (Fig. 5f), samples generally plot above the 1:1
518 line, which excludes gypsum as a primary source of Ca?" and indicates that Ca®* is mainly derived
519  from the dissolution of carbonate minerals. Therefore, the chemical composition of groundwater
520 in the study area is primarily controlled by the dissolution of carbonate minerals, and is also

521 influenced by hydrological seasonal variations and cation exchange processes.

20



https://doi.org/10.5194/egusphere-2026-272
Preprint. Discussion started: 29 January 2026 EG U
sphere

(© Author(s) 2026. CC BY 4.0 License.

522
523

DS (mg L)

1000 10000 - o000
Eydforation dominancel Exfporation dominance
Faporation dominance aporation dominance
1000 1000 1000 1000
=any ~ - .t - ~ .
: [ z R LRUY Y
" LR ) s, S . i B A () AR A
Rock domyifh s, g rtao® g Rock dominance - B [t ot * 8
" 2 ] z L) % L) 4
B B =
m\ 'W\ W
Jitation daxinsne) ipitation dominance cipiation dominance
- n n n 10 " n " w 0
00 0.1 02 03 04 05 05 07 08 09 10 00 01 02 03 04 05 06 07 05 09 10 00 01 02 03 04 05 06 07 05 09 10 00 01 02 03 04 05 06 07 08 09 10
Na'iNa'+Co™) (meq L) CIACIHHCO, ) (meq L) Na'/(Na™+Ca®) (meq L) CUACIHHCO, ) (meq L)
a. Normal season b. Dry season
10000
Auaporation dominance| fvaporation dominance
1000 1000
£ S 2 2%
3 « 5 ¥
z Rock dominanée z J!R dominance
8 8

0
00 0.1 02 03 04 D5 06 07 08 09 10 00 01 02 03 04 05 06 07 08 09 i€
Na'/(Na“+Ca™) (meg L) CIACT+HCO, ) (meq L)

c. Wet season

Fig.4. Gibbs diagrams of the groundwater samples.
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525 Fig.5. Plots of ion ratio relationship.
526 The Chloro-Alkaline Index method was employed to analyze the cation exchange and

527  adsorption between groundwater and sediments. A CAI value less than zero indicates the

528  occurrence of cation exchange, with more negative values reflecting stronger exchange intensity. .

529  Furthermore, the relationship between [y(Ca®") + y(Mg?") - y(HCO5") - y(SO+*)] and [y(Na*) -

530  y(CI')] can be used to further investigate the cation exchange processes in the groundwater. During
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531 the dry season, the slope was 0.55, suggesting the presence of extremely weak cation exchange in
532 the water body (Fig. 6a). With the exception of samples from the dry season, sampling points from
533 the normal and wet seasons were plotted near a line with a slope of -1, with respective slopes of
534 -1.52 and -1.36. This trend is consistent with the conclusions drawn from the Chloro-Alkaline
535  Index, providing further evidence that cation exchange and adsorption occurred in the
536 groundwater during the normal and wet seasons. The ion exchange process was more active
537  during the rainy season (R?=0.41), leading to the enrichment of Na* in the groundwater of the area.
538  In contrast, most groundwater samples from the dry season showed no evidence of cation

539  exchange and adsorption.
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541 Fig.6. Relationship diagram of groundwater (Ca?*+Mg2*-S04>-HCO5") and (Na*-Cl") along with

542 CAI-1 and CAI-2 correlation diagrams.

543

544  3.1.4 Spatial distribution dynamics of groundwater depth and nitrate driven by seasonal
545  hydrological processes

546 The spatial distribution of groundwater depth reflects the regional hydraulic gradient and
547  groundwater flow direction, whereas the spatial variability of nitrate concentration is closely
548  associated with flow paths, pollution source inputs, and hydrological processes (Fig.7). During the
549  normal season, the groundwater depth distribution is relatively uniform. The eastern region of the
550  farm, characterized by shallower depths, serves as a recharge zone, with groundwater flowing
551 towards the deeper western region. At this time, nitrate concentration are relatively dispersed, with
552 high-concentration zones located in the southeastern part of the farm. In the dry season, the

553 groundwater depth becomes shallower, and the flow direction shifts from the eastern and western
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554 sides towards the central area. During this period, nitrate concentration reach their annual peak
555  (mean: 42.93 mg L'). The distribution of nitrate exhibits a higher degree of spatial coincidence
556  with the groundwater flow direction, indicating that enhanced evaporative concentration during
557  the dry season leads to the further accumulation of flow-transported pollutants in the discharge
558  zone. In the wet season, the groundwater depth further decreases, and groundwater flows from the
559  southeastern region towards the northwestern region. nitrate concentration drop to their annual
560 minimum (mean: 27.14 mg L). High-concentration areas are distributed in the northwest,
561  overlapping with regions of deeper groundwater depth. It is inferred that precipitation infiltration
562  during the rainy season dilutes the groundwater nitrate; as dilution is the dominant process during
563  infiltration, the nitrate concentration exhibits a decreasing trend along the groundwater flow
564  direction.

(a) Nitrate concentration distribution map (b) Groundwater depth distribution map

ormal season
2022.10

Wet season
2023.8

565

566  Fig. 7. Spatial distribution of nitrate concentration and groundwater depth in different seasons.

567

568 3.2 Groundwater recharge sources and pollution source identification

569  3.2.1 Stable hydrogen and oxygen isotope composition of water

570 During the normal season, the mean values of groundwater 8D and §'%0 were -61.31%o and
571 -7.31%o, with ranges of -73.40%o to -53.52%o0 and -10.25%o to -2.82%o, respectively. The d-excess
572 values ranged from -38.07%o to 17.30%o, with a mean of -2.80%o. In the dry season, the mean
573  groundwater 8D and 8'%0 values were -71.05%o and -9.74%o, with ranges of -76.93%o to -60.55%o

574 and -10.75%o to -7.86%, respectively. The 8'7O values ranged from -5.60%o to -2.79%o, averaging
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575 -5.01%o, while the d-excess varied from 0.01%o to 13.69%., with a mean of 6.89%o. During the wet
576  season, the mean groundwater 8D and 8'%0 were -74.43%o and -9.99%o, with ranges of -76.84%o to
577 -70.91%o0 and -10.70%o to -8.73%., respectively. The 870 values were between -5.72%o and
578  -4.72%o, with a mean of -5.28%o, and the d-excess ranged from -3.67%o to 9.80%., averaging
579  5.50%o. The d-excess during the dry season was the highest among the three periods, while it was
580  the lowest during the normal period, indicating significant variations in d-excess across different
581 seasons. The §'70O values in the dry season were higher than those in the wet and normal periods,
582 which is a direct reflection of the impact of precipitation variations on the isotopic composition of
583  the water body.

584 The isotopic values of precipitation 8D and 3'%0 ranged from -97.78%o to -20.22%o and from
585 -13.48%o to -1.96%o0, with mean values of -55.36%o and -7.60%o, respectively. Overall, the 3'%0
586  and 3D values of precipitation in the study area fall within the global ranges of -50%o to 10%o and
587  -350%o to 50%o. The Local Meteoric Water Line (LMWL) for the study area is defined by the
588  equation: 8D = 6.2 §'%0-8.2 (Fig.8). Specifically, the equations for the normal, dry, and wet
589  seasons are: 8D = 1.07 §'%0-53.50, 8D = 4.20 5'¥0-30.09, and 8D = 1.95 §'%0-54.97, respectively.
590 The slope of the annual LMWL is lower than that of the Global Meteoric Water Line (GMWL)
591 proposed by Craig in 1964 (3D = 8 §'80+10), as well as lower than the China Meteoric Water
592 Line (CMWL) (8D = 7.9 §'80+8.2). The stable hydrogen and oxygen isotopic characteristics of
593 groundwater samples from the three periods all exhibit a discrete, linear distribution and plot
594 below both GMWL and LMWL. This phenomenon reveals that the water isotopes have undergone
595 strong fractionation during evaporation in the normal, wet, and dry seasons. Furthermore, the
596  stable hydrogen and oxygen isotope data for the dry and normal seasons are mainly concentrated
597  in the lower-left region of the plot, indicating relative isotopic depletion during these two periods.
598  During the normal period, the 8D and §'30 values exhibit a high degree of dispersion and are
599  widely distributed in the upper-central part of the scatter plot. This reflects that the stable
600  hydrogen and oxygen isotopes are relatively enriched and have a wide range of variation during

601 the normal season.
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604

605  3.2.2 Identification of nitrate sources using isotopes and MixSIAR model

606 During the normal water period, the nitrogen and oxygen isotopic compositions in
607  groundwater exhibit a wide range of variation. The §'SN-NOj- values range from 5.6%o to 24.52%o
608  (average: 18.22%o), while the 3'%0-NO;" values range from -6.33%o to 6.23%o (average: 0.22%o).
609  In the low water period, the range of 3'°N-NOj;  values expands to 3.2%0-21.96%0 (average:
610 12.19%o0), and the 3'80-NOs" values range from -9.58%o to 8.04%o (average: 0.65%o). Previous
611 studies have established characteristic §'%0-NOs" ranges for different nitrate sources: atmospheric
612 deposition (23%o-75%o), nitrate fertilizers (18%o0-24%o), and products of nitrification (-10%o-10%o).
613 The data points are predominantly concentrated within the zone of animal manure and domestic
614  wastewater, indicating that nitrate is primarily derived from these sources, with soil nitrogen as a
615 secondary contributor.

616 The MixSIAR model was employed to quantitatively apportion the sources of groundwater
617  nitrate nitrogen. According to the average contributions from each source, the five pollution
618 sources in the study area were ranked as follows: DSM (74.1%) > SON (20.9%) > NHF (4.2%) >
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NOF (0.6%) > NP (0.2%) (Fig.9). This indicates that the primary contributor to groundwater
NOs-N in the study area was manure and sewage, followed by soil nitrogen. The influences of
atmospheric precipitation and chemical fertilizers on groundwater nitrate were negligible. The
quantitative results from the MixSIAR analysis are consistent with the qualitative findings,
confirming that manure and sewage, along with soil nitrogen, are the dominant sources of nitrate

pollution in the study area.
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Fig.9. (a) distributions of "°N-NOs" and 5'®0-NOs" values in the study area. (b) proportional
contributions of the main NOj3™ sources evaluated by the MixSIAR model. Note: boxplots denote

the 25th, 50th and 75th percentiles.

3.3 Bayesian model analysis and correlation analysis

During the normal season, Bayesian model indicated the central role of Mg?*, which is
consistent with its strong positive correlation (r=0.75) in the correlation matrix (Fig.10). Na*
exhibited a significant negative effect, whereas it only showed a weak positive correlation (r=0.39)
in the correlation matrix. This suggests that variations in Na* concentration are more reflective of
hydrological processes, such as evaporative concentration, rather than direct involvement in the
chemical transformation of NOjs". Although the correlation matrix revealed strong correlations
between NO3™ and both TDS and EC (r > 0.8), their respective probabilities of direction (pd) in the
Bayesian model were both below 80%. This further confirms that their influence is primarily
manifested indirectly through collinearity with other ions. In the dry season, Bayesian model
identified SO4> as the primary positive driver of NOs", a finding that is in strong agreement with
the high positive correlation (r=0.96) between SO4> and NOs™ observed in the correlation matrix.
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642  Concurrently, Bayesian model indicated significant negative effects for both Na* and Ca?*, which
643 contrasts with their weak positive correlations with NO;  in the correlation matrix. This
644  discrepancy likely arises because the elevated concentrations of Na* and Ca?" are attributed to
645  evaporative concentration, whereas the increase in NOs stems from anthropogenic inputs,
646  indicating no direct causal relationship between them. During the wet season, Bayesian model
647  identified Cl- and Mg?" as the most critical driving factors, with clear directional effects and high
648  confidence. This aligns with the trends observed in the correlation matrix, where NO;3™ correlated
649  negatively with Cl- (=-0.78) and positively with Mg?* (r=0.84), thereby validating their direct
650  influence on NO3™ concentrations during the wet season. While the correlation matrix also showed
651 high positive correlations between NO;z™ and both TDS and EC, their posterior distributions in the
652  Bayesian model were wider and their pd values were lower. This suggests that their impact is
653  likely a result of high collinearity with key variables such as Mg?* and CI, rather than an

654  independent effect.
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655

656  Fig.10. Factor effects and Pearson coefficients of physicochemical variables on NO;- at different
657  periods. The left part of each subgraph shows the relative importance and posterior distribution of
658  each environmental variable to NOs- after the Bayesian model operation. The red area represents
659  the probability density of the positive effect, and the blue area represents the probability density of
660  the negative effect. The percentage values beside the distribution represent the Probability of
661 Direction (pd). The right part of each subgraph is the heat map of the correlation analysis.

662

663 3.4 Model performance evaluation

664  3.4.1 Virtual data analysis
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665 To address the modeling bias arising from limited measured samples, this study constructed
666  virtual datasets at 1-10 times the original scale based on a strategy combining t-SNE
667  dimensionality reduction, GMM clustering sampling, and KNN inverse mapping, to enhance the
668  robustness of model training. Taking the 10x virtual dataset as an example, the statistical
669  characteristics (Table 3) show that the virtual samples effectively reproduced the central tendency
670  and dispersion of the original data. For the normal season, the mean NO3- concentration was 30.41
671 mg L (vs. observed mean of 33.67), with a standard deviation of 28.78 (vs. 35.83) and a
672 coefficient of variation (CV) of 0.95 (vs. 1.06). In the dry season, the maximum value of the
673 virtual samples reached 178.09 mg L-!, while this did not fully replicate the extreme high values
674  (observed maximum of 358.58 mg L), it effectively expanded the range of the heavy-tailed
675  distribution. For the wet season, although the CV for all indicators was slightly lower than the
676  measured values, their ranges (8.47-80.37 vs. 4.15-98.36 mg L") still showed a high degree of
677  overlap, indicating that no systematic distortion was introduced.

678  Table 3. Statistical characteristics of different virtual samples.

Periods pH T EC DO ORP Salt TDS NOs~
Unit (¢ s em'! mgL! mv ppt mgL! mgL!

Normal season Max 8.32 16.2 963.6 9.31 101.02 0.42 628.6 124.03
n=660 Min 7.95 13.88 378.2 3.52 -48.28 0.12 245 5.10
Mean 8.18 14.72 527.31 6.66 2.09 0.20 342.72 30.41

SD 0.07 0.54 148.31 1.66 25.97 0.08 96.92 28.78

(0\% 0.01 0.04 0.28 0.25 12.44 0.41 0.28 0.95

Dry season Max 8.19 17.59 987.8 8.10 69.18 0.44 641.8 178.09
n=650 Min 7.04 14.44 417.6 2.68 -59.14  0.132 267.8 5.19
Mean 7.35 15.49 661.79 6.414 0.52 0.27 429.90 37.75

SD 0.44 0.69 170.65 1.24 29.61 0.09 111.16 33.13

(0\% 0.06 0.04 0.26 0.19 57.21 0.34 0.26 0.88

Wet season Max 8.21 18.88 872.8 8.54 56.4 0.37 569 80.37
n=500 Min 6.31 16.12 395.8 5.34 -77.64 0.13 257.6 8.47
Mean 7.38 16.93 535.7 7.06 13.75 0.20 348.24 25.85
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SD 0.33 0.62 131.02 0.78 28.85 0.08 86.05 19.88
(6\% 0.04 0.04 0.24 0.11 2.10 0.38 0.25 0.77
679 Standardized multivariate boxplots (Fig.11) visually confirm that the median, interquartile

680  range (IQR), whisker length, and outlier distribution of the virtual data for each period were
681 highly similar to the measured data, demonstrating that the central tendency and dispersion
682  characteristics were well-preserved. Hydrological seasonal characteristics, such as high
683 EC/TDS/CI/NOs™ in the dry season and low, concentrated NOs™ in the wet season, were also
684  accurately preserved. Although the number of some newly added outliers slightly increased, they
685 all fell within physically reasonable ranges, with no non-physical solutions, such as negative
686  concentrations or out-of-bounds pH values, occurring. Fig.12 presents a comparison of nitrate
687  concentration frequency distributions between the original and synthetic datasets across normal,
688  dry, and wet periods. The distributional comparison indicates that the proposed t-SNE + GMM +
689  KNN inverse mapping synthetic sample generation strategy maintains the core features of the
690  NOj; distribution for each hydrological period, while simultaneously improving sample
691  representation in sparse areas and intervals of high variability. Therefore, the t-SNE + GMM
692  method effectively captured the non-linear structure and extreme value information of the original

693 data, and can provide reliable data support for subsequent model training.
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698 different periods.

699

700  3.4.2 Prediction based on on-site measured water quality data

701 During the normal season, the R? values for the baseline Random Forest and the
702  quantum-enhanced RF models were 0.673 and 0.660, respectively, indicating high prediction
703 errors (Table S1). As the number of virtual samples was increased from 1-fold to 10-fold the size
704  of the original dataset, the R?> of both models steadily improved to above 0.958, with the
705  quantum-enhanced RF model performing better and ultimately achieving an R? of 0.9622. When
706  the number of virtual samples exceeded 500, the performance gains began to plateau. For the dry
707  season, the modeling performance with the original data was the poorest, which is correlated with
708  the high variability of NOs™ concentrations during this period (Table S2). This suggests that with a
709  limited sample size, models are susceptible to interference from outliers, and a small number of
710  measured samples is insufficient to support effective model learning. After introducing virtual
711 samples, the model performance improved significantly. A mere 1-fold augmentation of the
712 sample size increased the R? to 0.527 (RF). When augmented to 8-fold, the R? reached 0.854.
713 Although the quantum-enhanced model slightly underperformed the classical RF in the initial
714 stages (<2-fold augmentation), their performances converged at higher augmentation levels, both
715  achieving high accuracy. This indicates that virtual samples effectively mitigated the modeling
716  challenges posed by data sparsity and skewed distributions. In contrast, the modeling performance
717  with original data was optimal during the wet season, attributed to the generally lower NOs-
718  concentrations and their smaller spatial variability (Table S3). The use of virtual samples further
719  elevated the prediction accuracy to an exceptionally high level. A 4-fold augmentation yielded an
720  R? of 0.962. After augmentation to 10-fold, the R? of the RF model stabilized at 0.977, with the
721 RMSE dropping to as low as 3.03 mg L. The overall performance of the quantum-enhanced RF
722 was consistent with the classical RF, with only slight fluctuations within a very small error range,
723 showing that when data quality is high and the relationships are more linear, the marginal gains
724  from quantum feature encoding are limited.

725 During the normal season, as illustrated in Fig. 13(A1)-(A2), a deviation was observed
726  between the predicted and observed values for both models when utilizing only the 66 original
727  samples. The prediction results exhibited high dispersion, and the median deviated markedly from
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728  the observed median. This is consistent with the low R? values, indicating errors inherent in
729 small-sample modeling. With an increase in the number of virtual samples, the distribution of
730  predicted values gradually converged towards the observed values, and the interquartile range
731 (IQR) and whiskers of the boxplots progressively narrowed, indicating a substantial enhancement
732 in model stability and accuracy. When the virtual samples were expanded tenfold (to 660 virtual
733 samples), the boxplots of the predicted values highly overlapped with those of the observed values,
734  consistent with the reduction of the RMSE to 6.02 mg L. In the final stage, the
735  quantum-enhanced model slightly outperformed the classical RF model, achieving an R? of 0.9622.
736 In the dry season (Fig. 13(B1)-(B2)), on the original dataset, the predicted values from both
737  models were generally overestimated due to the extremely high and skewed distribution of NO3-
738  concentrations. Consequently, the predicted boxplots were positioned entirely above the actual
739 values, yielding an R? of only 0.28. The introduction of virtual samples led to a substantial
740  improvement in model performance. Starting from single-fold augmentation, the median and
741 range of the predicted boxplots began to converge towards the observed values, at augmentation
742  levels of 8-fold and higher, the predicted values effectively captured the distributional
743 characteristics of the high-concentration intervals. Although the classical RF model slightly
744  outperformed the quantum-enhanced model at low augmentation levels, their performances
745  converged as the sample size further increased. This demonstrates that the virtual sample
746  generation strategy effectively alleviates modeling challenges caused by data sparsity and extreme
747 values. During the wet season (Fig. 13(C1)-(C2)), the predicted values of both models already
748  exhibited good consistency with the observed values on the original dataset, with the predicted
749  boxplots substantially overlapping the observed ones. With the incorporation of virtual samples,
750  the prediction accuracy and stability of the models were further enhanced. The IQR and whiskers
751 of the boxplots continued to narrow, and the predicted values became more concentrated within
752 the true distribution range of the observed values. Following tenfold data augmentation, the
753  agreement between predicted and observed values was exceptionally high, with an R? reaching

754 0.977 and an RMSE decreasing to 3.03 mg L-!, demonstrating excellent predictive performance.

33



https://doi.org/10.5194/egusphere-2026-272
Preprint. Discussion started: 29 January 2026
(© Author(s) 2026. CC BY 4.0 License.

EGUsphere\

755
756

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776

771

(A1) Normal season (B1) Dry season (C1) Wet season

160 - Observedl - Observed

- rediceed

ol E Proicicd

Random forest
@

H ‘.’
IIIIIIIIIII n--------- "l""llll

[ Daiaset

(A2) Normal season (B2) Dry season (C2) Wet season
160 . Observed
- Prdicied

Quantum feature enhanced
random forest

Fig.13. Comparison of observed and predicted NO3™ concentrations across data augmentation
levels for random forest and quantum feature-enhanced random forest models in normal, dry, and

wet Seasons.

3.4.3 Prediction based on AlphaEarth Foundation Embeddings

To explore the potential of remote sensing semantic embedding features in predicting
groundwater nitrate concentrations, this section employs the 64-dimensional surface semantic
vectors derived from the Google AlphaEarth Foundation (AEF) dataset as model input variables.
We reduced the variables through principal component analysis to preserve =95% variance.

During the normal season, modeling based on original samples yielded poor performance.
The R? for Random Forest and quantum-enhanced RF were 0.167 and 0.119, respectively, with
RMSE values as high as 32.89 and 33.82 mg L' (Table S4). These results suggest that, given the
limited sample size, relying solely on AEF embedding features is insufficient to fully capture the
hydrological processes characteristic of this period. Model performance improved with the
introduction of virtual samples. When the virtual samples were expanded to ten times the size of
the original dataset, the R? of the RF model increased to 0.860, and the RMSE decreased to 10.73
mg L. Similarly, the quantum-enhanced RF achieved an R? of 0.844, exhibiting a consistent
overall trend. A comparison of boxplots (Fig. 14A) reveals that the initial predictions severely
overestimated the low-to-medium concentration ranges while underestimating the high-value tails.
As the sample size expanded, the predicted boxplots progressively converged toward the observed
distribution. The agreement between the median and interquartile range (IQR) improved
significantly, confirming that virtual samples effectively enhanced the capability of AEF features
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778  to represent non-linear patterns.
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780 Fig.14. Comparison of observation and prediction of NO3~ concentration by random forest and
781 quantum featution-enhanced random forest models at data enhancement levels in normal, dry and
782 wet seasons: based on AlphaEarth Foundation as the input variable.

783 In the dry season, modeling with the original dataset resulted in a negative R2, reflecting the

784  extremely weak generalization ability of AEF features in scenarios characterized by high
785  variability and heavy-tailed distributions (Table S5). Following the introduction of a single-fold of
786  virtual samples, the R? rose to 0.039. Upon an 8-fold expansion, the RF R? reached 0.641
787  (RMSE=21.05 mg L), at a 10-fold expansion, it further improved to 0.674 (RMSE=19.86 mg
788 L. The quantum-enhanced RF slightly outperformed the standard RF at high expansion levels,
789  indicating that quantum encoding offers certain advantages in mitigating the influence of extreme
790  values and enhancing model robustness (Fig. 14B). The prediction distribution plots indicate that
791  the initial model failed entirely to identify the high-concentration clustering characteristics of NO3
792 during the dry season. After data augmentation, the predicted boxplots progressively covered the
793 true high-value intervals, and the trend of tail extension gradually aligned with the observed data.
794 In the wet season, although modeling with the original data still yielded a negative R, the
795  performance improvement was the most rapid (Table S6). An R? of 0.5 was achieved with only a
796  2-fold expansion of virtual samples. At 5-fold expansion, it reached 0.685, and after a 10-fold
797  expansion, the RF R? stabilized at 0.784 (RMSE=8.27 mg L), while the quantum-enhanced RF
798  reached 0.781. The boxplots show that the predicted values, initially severely dispersed and
799  systematically biased, rapidly converged to the dense intervals of the observed values, with the
800  final IQR and whisker ranges showing a high degree of overlap.
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801 Compared to modeling results based on in-situ observation data, the predictive performance
802  based on AlphaEarth Foundation embedding features was generally lower. Under the same virtual
803 sample augmentation multiplier, the maximum R? for the normal, dry, and wet seasons were
804 approximately 10.27%, 17.37%, and 19.33% lower, respectively. This indicates that measured
805  water quality parameters more directly reflect the key processes of nitrogen migration and
806  transformation. However, given that AEF can be obtained globally without the need for field
807  sampling, it offers a feasible alternative for the rapid screening of groundwater nitrate risks in
808  large-scale unmonitored areas.

809

810 3.5 Feature importance analysis

811 Fig.15 illustrates the feature importance rankings of the RF and quantum-enhanced RF
812  models when using in-situ measured water quality parameters as inputs across different
813  hydrological seasons. The dominant predictive factors vary across different seasons, and the
814  virtual sample augmentation strategy influences both the stability of feature importance and model
815  performance. There are distinct differences in the key driving factors for each season, which aligns
816 with the results of the Bayesian models and correlation analysis. In the normal season, TDS, EC,
817  Salt, and DO are the most important predictive variables, with their importance significantly
818  higher than that of other parameters. In the dry season, TDS, EC, Salt, and pH exhibit the highest
819 importance. In the wet season, the importance of TDS, EC, Salt, and ORP is most prominent. With
820  the increase in the number of virtual samples, the ranking of feature importance tends to stabilize.
821 For instance, in the dry season, when the sample size increased from the original 65 to 715, the
822  importance of TDS and EC continued to rise and eventually stabilized. Comparing the RF and
823 quantum-enhanced models, quantum enhancement did not fundamentally alter the ranking of
824  feature importance; however, it slightly increased the importance of certain variables or made
825  them more stable, demonstrating the effectiveness of quantum feature encoding as a means of

826 information enhancement.
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Fig.15. Input feature importance of classical and quantum-enhanced Random Forest in seasonal
nitrate prediction under different data augmentation strategies: based on Gini index and SHAP
Model.

Fig.16 presents the feature importance of the RF and quantum-enhanced RF models when
using only the 64-dimensional AEF semantic embedding vectors as inputs. Since the AEF features
themselves are highly abstract, we cannot assign them specific physical meanings; however, we
can infer which remote sensing semantic information is critical for predicting nitrate concentration
through their importance rankings. Compared to in-situ measured parameters, the importance of
AEF features fluctuates significantly more across different seasons and data volumes, lacking a
consistent core feature set. This reflects that although AEF embeddings contain rich
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838  environmental semantic information, their direct correlation with groundwater nitrate
839  concentration is relatively weak, necessitating the learning of large amounts of data to establish a
840  robust mapping relationship. In the normal season, features such as A05, A07, and A0O exhibit
841 relatively high importance. These features may encode seasonal information related to land use
842 types, soil moisture, or vegetation cover. In the dry season, features such as A0S, A06, and A0S
843  are relatively more important. These features may be associated with surface dryness, bare surface
844  area, or the intensity of human activity, correlating with the spatial distribution of
845  high-concentration NOs™ pollution sources during the dry season. In the wet season, the
846  importance of features like A02, A03, and AO5 is prominent. These features may be related to
847  surface runoff, vegetation growth status, or soil water content, reflecting the driving effect of

848  rainfall on pollutant migration during the wet season.
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850 Fig.16. Importance of AEF input features in seasonal nitrate prediction using classical and
851 quantum enhanced Random Forest under different data augmentation strategies.

852 The introduction of virtual samples is crucial for stabilizing the importance of AEF features.

853  On the original dataset, the feature importance ranking was chaotic and unstable; as virtual
854  samples increased, the ranking gradually became clearer, and the importance of certain core
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855  features was highlighted. This once again demonstrates the effectiveness of the virtual sample
856 generation strategy for small-sample modeling. When using AEF features, the feature importance
857  distribution of the quantum-enhanced model is similar to that of the RF model, but it occasionally
858  assigns slightly higher weights to certain features . This suggests that quantum feature encoding
859  may assist the model in extracting more discriminative information from the high-dimensional,
860  complex remote sensing semantic space, thereby slightly optimizing the feature selection process.

861 Fig.17 presents a local feature attribution analysis for representative samples predicting the
862  highest and lowest NOs~ concentrations using SHAP waterfall plots. Regardless of whether the
863 classical RF or the quantum-enhanced RF model is used, samples predicting high NOs
864  concentrations are driven by a set of features with positive contributions (red bars). In the normal
865 season, for the highest NOs~ sample with a predicted value of 161.17 mg L., features A0S, A09,
866  and A06 contributed the highest positive values, with A05 making the largest contribution and
867  serving as the key factor driving the prediction to a high level. In the dry season, for the sample
868  with a predicted value as high as 358.58 mg L', features A12, A00, and A07 were the main
869  positive driving factors, with A12 contributing most prominently. In the wet season, for the
870  sample with a predicted value of 98.36 mg L-!, features A03, A02, and A04 provided the main
871 positive contributions, with A03 contributing the most. For samples predicting low NO3
872  concentrations, model decisions mainly rely on features with negative contributions (blue bars).
873 The role of these features is to pull the predicted value down from the baseline (E[f(X)]). In the
874  normal season, for the lowest NOs™ sample with a predicted value of 2.39 mg L', features A0S,
875  A04, and AOO exhibited strong negative contributions, with A05 showing the largest negative
876  contribution. In the dry season, for the sample with a predicted value of only 0.10 mg L-!, features
877  A09, A12, and A06 were the main negative driving factors, with A09 contributing the most
878  negatively. In the wet season, for the sample with a predicted value of 4.15 mg L-!, features A03,
879  A06, and AO0 provided the main negative contributions, with A03 contributing the most

880  negatively.
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882 Fig.17. SHAP waterfall-based feature attribution comparison between classical and
883 quantum-enhanced Random Forest across different seasons.
884
885 4. Discussion
886 4.1 Nitrogen sources, migration, and transformation
887 The Piper diagram indicates that the hydrochemical type is predominantly Ca-Mg-HCOs".

888  The Gibbs diagram and ion ratios confirm that the hydrochemical background is dominated by
889  carbonate rock dissolution, with weak cation exchange. Concentrated precipitation during the
890  rainy season leads to dilution and infiltration, reducing the NOs™ concentration to 27.14 mg L.
891 This indicates that surface manure leaches into the groundwater with rainfall (Sun et al., 2024).
892  During this period, cation exchange is enhanced, improving the aquifer's temporary retention
893 capacity for NO3- (Wang et al., 2025). Isotopic evidence and MixSIAR source apportionment
894  consistently indicate that the primary sources of current nitrate pollution are domestic sewage and
895 manure (DSM, 74.1%) and soil organic nitrogen (SON, 20.9%), whereas the contributions from
896  chemical fertilizers and precipitation are minimal. This suggests that in the study area, the direct
897  leaching of fertilizer nitrogen is not the dominant pathway, rather,fertilizer nitrogen remains in the
898  soil-vadose zone and enters groundwater through long-term water drive (Wang et al., 2025).
899  Given that the vadose zone thickness in the North China Plain generally exceeds 10 m, the
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900  currently elevated NOs levels are more likely derived from historical fertilizer residues and the
901 long-term infiltration of manure, particularly as the farmlands in the study area are situated near
902  rural residential areas (Wu et al., 2024). The mean 3'’N-NOj" values range from 12.2%o to 18.2%o,
903  which far exceeds the typical range for chemical fertilizers but closely matches that of manure and
904  soil organic nitrogen. This confirms that the nitrogen has undergone microbial mineralization and
905 nitrification processes (Li et al., 2022). SON is converted to NOs3~ through ammonification
906 followed by nitrification under aerobic conditions, while ammonium from DSM also enters the
907  groundwater via nitrification (Liu et al., 2023).

908 The seasonal variation in nitrate concentrations is essentially driven by scarce precipitation
909  and strong evaporation during the dry season. This leads to a decline in groundwater levels and a
910  reduction in flow velocity, creating a positive migration potential gradient. Consequently, NOs"
911 accumulates in the discharge areas along with the groundwater flow. Furthermore, cation
912  exchange is inhibited, weakened Na* adsorption and relative Ca?* depletion indicate a decrease in
913  the aquifer's retention capacity for NOs-, making accumulation the dominant process (Ahmed et al.,
914  2013). In contrast, concentrated precipitation during the wet season triggers rapid infiltration,
915  raising groundwater levels and increasing flow velocity, during which cation exchange becomes
916  active (Zhang et al., 2023). The groundwater is generally oxidizing, as evidenced by the extremely
917  low concentrations of NO>  (<0.11 mg L) and NH4" (<0.16 mg L"). This indicates that the
918  majority of the area is an oxidative environment conducive to the stable existence of NO3~. The
919  3'30-NOs" values range from -9.58%o to 8.04 %o, falling within the typical nitrification interval.
920  This excludes significant denitrification, confirming that the transformation process is dominated
921 by nitrification while denitrification is limited (Zhang et al., 2025).

922

923 4.2 Virtual sample generation effectively mitigates small-sample bias and reveals the model’s
924  sensitive response to seasonal heterogeneity

925 Model overfitting and insufficient generalization resulting from small-sample data are
926  prevalent challenges in the field of environmental forecasting (Zhu et al., 2023). The
927  t-SNE-GMM-KNN virtual sample generation strategy proposed in this study demonstrates that the
928  generated virtual samples are highly consistent with the original data in terms of statistical
929 characteristics, such as mean, standard deviation, and coefficient of variation, and successfully
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930  reproduce hydrochemical differences across different seasons. The substantial improvement in
931 model performance following virtual sample expansion clearly confirms that data sparsity, rather
932  than insufficient model capacity, is the core bottleneck in seasonal nitrate modeling (Saha et al.,
933 2023). Furthermore, even with the incorporation of generated virtual samples, the magnitude of
934  prediction performance gains exhibits seasonal divergence. During the dry season, characterized
935 by highly right-skewed NO3" concentrations, the model benefits most significantly. With 10-fold
936  expansion, the R? value surges from 0.28 to over 0.85. Conversely, in the wet season, although the
937  absolute performance gain is smaller due to dominant dilution effects and low concentrations,
938  excellent predictive accuracy is still achieved. This phenomenon aligns with fundamental
939  hydrological principles: strong evaporation and concentration during the dry season intensify the
940  spatial heterogeneity of pollutant accumulation and process nonlinearity, necessitating richer
941 samples to characterize tail behaviors (Li et al., 2025). In contrast, the dilution effects caused by
942 rainfall leaching during the wet season tend to homogenize the system, reducing its dependency
943 on sample size (Bigler et al., 2024). The t-SNE-GMM-KNN strategy proposed in this study
944  outperforms traditional oversampling methods (e.g., SMOTE) or deep generative models (e.g.,
945  VAE) in preserving multimodal structures and heavy-tailed covariance; the latter often ignore the
946  manifold geometric properties of high-dimensional geochemical spaces or inherently rely on large
947  amounts of training data (Udu et al., 2025), which is precisely what is lacking in the scenario of
948  this study. Compared to common methods such as Gaussian Mixture Models (GMM) and
949 Generative Adversarial Networks (GANs), the core advantages of this strategy are reflected in
950  three aspects: first, t-SNE dimensionality reduction accurately captures sample clustering
951 structures driven by different hydrological processes, providing a reliable foundation for
952 subsequent distribution modeling; second, the number of GMM clusters is automatically
953  optimized based on the Bayesian Information Criterion (BIC), avoiding biases arising from
954  subjective settings; and third, KNN inverse mapping enables reconstruction from low-dimensional
955  to high-dimensional space without the need for large-scale training data, making it more suitable
956 for small-sample scenarios (Silva et al., 2023; Kurniawan et al., 2024; Peng et al., 2025).

957

958 4.3 Performance analysis of hybrid quantum-classical model

959 Quantum Machine Learning offers a novel approach to capturing complex non-linear
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960  relationships through feature mapping in high-dimensional quantum Hilbert spaces. The hybrid
961 quantum-classical Random Forest yields slight performance improvements in scenarios where
962  original data is scarce or the distribution is highly skewed (Lamichhane et al., 2025). When
963 classical feature representation capacity approaches saturation, the Z-feature mapping based on
964  Parameterized Quantum Circuits (PQC) can expose entangled non-linear patterns in the Hilbert
965 space, thereby enhancing feature discriminability. The gain from this enhancement tends to
966  converge after sufficient virtual sample expansion. In this study, quantum features were generated
967 by analytically calculating the Pauli-Z expectation value (Z), completely circumventing hardware
968  noise interference associated with quantum sampling. This renders the quantum-enhanced RF
969  practically feasible for small-sample environmental tasks. However, the performance
970  improvement of the quantum-enhanced RF is not absolute; in scenarios with high data quality and
971 significant linear relationships during the wet season, the marginal gain of quantum features is
972 limited. Conversely, in the dry season, characterized by sparse data and numerous extreme values,
973 quantum encoding demonstrates stronger stability by reducing measurement noise interference
974  (Ranga et al., 2024). This phenomenon indicates that the advantages of hybrid quantum-classical
975  modeling are concentrated in scenarios with data complexity and limited information. Its essence
976  lies in expanding the model’s representational capacity through quantum feature enhancement,
977  rather than replacing the core logic of classical models. This exploration verifies the potential
978  value of quantum machine learning in addressing small-sample problems in earth sciences, even if
979 its absolute advantage may not be as pronounced as in pure quantum algorithms (Adhikari, 2022).

980

981 4.4 Potential and limitations of using AlphaEarth Foundation Embeddings for large-scale
982  monitoring

983 Modeling performance using only AEF embeddings as input generally yields an R?
984  approximately 10-20% lower than that achieved using measured water quality parameters. The
985  core reason for this discrepancy lies in the fact that water quality parameters directly reflect the
986  immediate state of the groundwater chemical environment and are directly related to nitrate
987  transport and transformation processes, whereas surface remote sensing semantics provide only an
988 indirect characterization (Alam et al., 2025). After 10-fold virtual expansion, the AEF model still
989  achieves R? values of >0.67 in the dry season, >0.85 in the normal season, and >0.78 in the wet
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990  season, proving its feasibility as a rapid large-scale screening tool, particularly in unmonitored
991 areas. Seasonal shifts in feature importance (dominated by A05/A00 in the normal season,
992  AO08/A06 in the dry season, A02/A03 in the wet season) suggest potential physical interpretations.
993  A05/A00 may encode crop residue or soil organic matter information, A08/A06 may characterize
994  the degree of bare soil exposure, and A02/A03 may reflect vegetation growth status or surface
995  runoff potential. These inferences align highly with MixSIAR source apportionment and Bayesian
996  driving factors. Although causal inference remains indirect, the global coverage and annual update
997  characteristics of AEF make it a powerful supplement rather than a substitute for large-scale
998  monitoring.
999
1000 5. Conclusions
1001 This study develops an integrated prediction framework combining hybrid quantum-classical
1002  machine learning, advanced virtual sample augmentation (t-SNE-GMM-KNN), and remote
1003 sensing foundation model embedding (AlphaEarth Foundation, AEF). The framework is designed
1004  to systematically address three core challenges in predicting groundwater nitrate concentrations in
1005  agricultural areas across different hydrological seasons: small sample bias, seasonal heterogeneity,
1006  and input data scarcity.
1007 Hydrological seasonality acts as the dominant controlling factor for the spatiotemporal
1008  variability of nitrates. Nitrate concentrations peak during the dry season (mean: 42.93 mg L),
1009  driven primarily by evaporative concentration and pollutant accumulation effects. In contrast,
1010 concentrations reach a minimum in the wet season (mean: 27.14 mg L") due to dilution by
1011 precipitation. The groundwater hydrochemical type is consistently Ca-Mg-HCO; across all
1012 seasons, controlled predominantly by carbonate mineral dissolution. TDS, EC, and salinity remain
1013 consistently top-ranked across all seasons, with additional season-specific drivers including Mg?*
1014 and Na* (normal season), SO4* (dry season), and CI- (wet season). Stable hydrogen and oxygen
1015  isotope analysis reveals strong evaporative fractionation of groundwater. MixSIAR analysis
1016  quantitatively apportioned nitrate sources: domestic sewage and manure (DSM) contribute 74.1%,
1017  soil organic nitrogen (SON) 20.9%, while synthetic fertilizers (NHF+NOF=4.8%) and
1018  atmospheric deposition (0.2%) are negligible, strongly indicating that legacy nitrogen stored in the
1019 thick vadose zone, rather than in-season fertilizer leaching, sustains current pollution.
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1020 The proposed t-SNE-GMM-KNN virtual sample strategy effectively alleviates the bottleneck
1021  associated with small-sample modeling. By preserving the nonlinear manifold structure and
1022 multimodal distribution characteristics of the high-dimensional hydrochemical space, this method
1023 significantly enhances the model's ability to fit heavy-tailed distributions. Model performance
1024  improves significantly with virtual sample expansion. Using measured parameters as inputs, a
1025 10-fold augmentation increased the coefficient of determination (R?) for the dry season from 0.284
1026 to >0.85, while stabilizing it at >0.95 for the normal and wet seasons. This confirms that data
1027  sparsity is the fundamental constraint limiting performance. Although performance gains are
1028  limited with high-quality data, the quantum-enhanced Random Forest demonstrates superior
1029  stability compared to classical models in small-sample, highly skewed scenarios, validating the
1030  feasibility and value of quantum feature enhancement strategies in environmental small-sample
1031 learning. The overall prediction performance using measured hydrochemical parameters surpasses
1032 that of AEF remote sensing semantic embeddings (R? is approximately 10-20% higher), as the
1033 former directly reflects subsurface nitrogen migration and transformation processes. Following
1034 10-fold virtual sample augmentation, the AEF model also achieves usable accuracy, with feature
1035 importance exhibiting seasonal shifts.
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